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We discuss the solvability of the following strongly nonlinear BVP:{(
a
(
x(t)

)
Φ

(
x′(t)

))′ = f
(
t, x(t), x′(t)

)
, t ∈ R,

x(−∞) = α, x(+∞) = β

where α < β , Φ : (−r, r) → R is a general increasing homeomorphism with bounded
domain (singular Φ-Laplacian), a is a positive, continuous function and f is a Carathéodory
nonlinear function. We give conditions for the existence and non-existence of heteroclinic
solutions in terms of the behavior of y �→ f (t, x, y) and y �→ Φ(y) as y → 0, and of
t �→ f (t, x, y) as |t| → +∞. Our approach is based on fixed point techniques suitably
combined to the method of upper and lower solutions.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we discuss the solvability of certain boundary value problems on the whole real line, associated to a
differential equation involving the mixed differential operator (a(x)Φ(x′))′ , where a is a positive, continuous function and
Φ is the so-called singular Φ-Laplacian.

More precisely, we investigate the existence and the non-existence of solutions to the following boundary value problem{(
a
(
x(t)

)
Φ

(
x′(t)

))′ = f
(
t, x(t), x′(t)

)
a.e. t ∈ R,

x(−∞) = α, x(+∞) = β
(P)

where α < β are given constants, Φ : (−r, r) → R, r > 0, is a general increasing homeomorphism with Φ(0) = 0, a is positive
and continuous, and f is a Carathéodory nonlinear function.

Differential equations governed by nonlinear differential operators have been widely studied. In this setting, the most
investigated operator is the classical p-Laplacian, that is Φp(y) := y|y|p−2 with p > 1, which, in recent years, has been
generalized to other types of differential operators that preserve the monotonicity of the p-Laplacian, but are not homo-
geneous. These more general operators, which are usually referred to as Φ-Laplacian, are involved in some models, e.g. in
non-Newtonian fluid theory, diffusion of flows in porous media, nonlinear elasticity and theory of capillary surfaces. The
related nonlinear differential equation has the form(

Φ
(
x′))′ = f

(
t, x, x′),

where Φ : R → R is an increasing homeomorphism such that Φ(0) = 0. For a comprehensive bibliography on this subject,
see e.g. [7].
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More recently, equations involving other types of differential operators have been studied for instance by Bereanu and
Mawhin. They considered the case in which the increasing homeomorphism Φ is defined on the whole real line but is not
surjective (see e.g. [1,2,4]), and the case in which Φ is defined only on a bounded domain (see [1,3,5]). In this case such an
operator is also called singular Φ-Laplacian, and this is also the case we are investigating here.

A different point of view arising from other types of models, e.g. reaction–diffusion equations with non-constant dif-
fusivity and porous media equations, leads to consider nonlinear differential operators of the type (a(x)x′)′ , where a is a
positive and continuous function. For references see again [7].

In this paper we are interested in the case of mixed differential operators. In particular, we consider the following
strongly nonlinear equation:(

a(x)Φ
(
x′))′ = f

(
t, x, x′),

and we discuss the existence of heteroclinic solutions on the whole real line to the above equation. The same problem
was addressed recently by Cupini, Marcelli and Papalini in [7], in the case in which Φ : R → R is a generic increasing
homeomorphism, and by Marcelli and Papalini in [9] when Φ(y) ≡ y.

In the papers [6,7,9] the authors linked the solvability of (P) to the relative behaviors of f (t, x, ·) and Φ(·) as y → 0,
and of f (·, x, y) as |t| → +∞. Moreover, it was shown that (apart the special case when f (t, x, y) ∼ 1

t as |t| → +∞) the
presence of the function a in the differential operator and the dependence on x in the right-hand side do not play any role
for the solvability of (P).

Here we are concerned with the same problem, but in the case of the singular Φ-Laplacian. Our approach is based on
fixed point techniques suitably combined to the method of upper and lower solutions. First, we give an existence result for
an auxiliary problem on a sequence of compact intervals, then by a diagonal process we achieve the existence of heteroclinic
solutions on the whole real line. In this way we obtain our existence result for problem (P).

The main difference between our results and those in [7] is the following: since we are dealing with a singular Φ-
Laplacian operator, in our case suitable a priori bounds on the derivative of the solutions are already guaranteed by the
structure of Φ . Then, the Nagumo-type condition on the growth of Φ as y → +∞, which is needed in [7], here is not
replaced by any assumption. Hence, here we are able to reach similar conclusions as in [7] but under milder hypotheses.
We stress that a similar feature has been pointed out in [3].

As in [7], in our case the sufficient conditions guaranteeing the solvability of problem (P) are rather sharp and cannot
be improved, in the following sense: in many concrete situations they are both necessary and sufficient for the existence of
solutions.

For instance, when the operator Φ is asymptotic to a power |y|μ as y → 0, and the right-hand side has the product
structure

f (t, x, y) = h(t)g(x)c(y)

where h ∈ Lq
loc(R), for some 1 � q � ∞, satisfies t · h(t) � 0 for every t , the map g is positive in [α,β], and c(y) > 0 for

y 	= 0, we obtain the following result (see Corollary 4.3 and Remark 4.4): if there are δ > −1, ν > 0 such that∣∣h(t)
∣∣ ∼ const.|t|δ as |t| → +∞ and

∣∣c(y)
∣∣ ∼ const.|y|ν as y → 0

then

(P ) admits solutions ⇔ ν < δ + μ + 1.

This necessary and sufficient condition for the existence of solutions emphasizes the crucial relation between the infinitesi-
mal order ν of c(y) as y → 0 and the rate δ of h(t) as |t| → +∞.

Observe that the behavior of both the right-hand side f and the differential operator (a(x)Φ(x′))′ with respect to x does
not affect the solvability of (P), which results to be completely independent of a(x) and g(x). Similar conclusions have been
reached in [6,7,9].

The paper is organized as follows. In Section 2 we give two preliminary results: the first one is related to an auxiliary
boundary value problem on a compact interval, while the second one is a convergence result. Section 3 is devoted to our
main result, Theorem 3.1, together with a non-existence result, Theorem 3.2. In Section 4 we present some operative criteria
for the solvability of (P) when the right-hand side has the product structure

f (t, x, y) = b(t, x)c(x, y),

and we conclude the paper with some examples.

2. Preliminary results

In this section we give two preliminary results. The first one is an existence result for an auxiliary boundary value
problem on a compact interval, while the second one is a convergence result.

Let I = [a,b] ⊂ R be a compact interval, A : C1(I) → C(I), x �→ Ax , and F : C1(I) → L1(I), x �→ Fx , two continuous maps
and, given r > 0, let Φ : (−r, r) → R be an increasing homeomorphism such that Φ(0) = 0.
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Given α,β ∈ R with α < β , consider the following auxiliary problem on I:{(
Au(t)Φ

(
u′(t)

))′ = Fu(t), a.e. on I,

u(a) = α, u(b) = β.
(Q)

By a solution of problem (Q) we mean a function u ∈ C1(I) such that |u′(t)| < r for all t ∈ I and Au · (Φ ◦ u′) ∈ W 1,1(I),
which satisfies u(a) = α, u(b) = β and (Au(t)Φ(u′(t)))′ = Fu(t) a.e. on I .

Our first result, Theorem 2.1, provides a necessary and sufficient condition for the existence of a solution of problem (Q)
in terms of the constants r, α, β and the length of the interval I . This existence result has been proved in Theorem 1 of [8].
Here we prove a further estimate of the derivative of the solution in terms of the same constants.

Theorem 2.1. Assume that the following conditions hold:

(F1) there exist m, M > 0 such that m � Ax(t) � M for every x ∈ C1(I), t ∈ I;
(F2) the map A sends bounded sets of C1(I) into uniformly continuous sets in C(I), i.e., for every bounded set D ⊂ C1(I) and every

ε > 0 there exists ρ = ρ(ε) > 0 such that∣∣Ax(t1) − Ax(t2)
∣∣ < ε for any x ∈ D and any t1, t2 ∈ I with |t1 − t2| < ρ;

(F3) there exists η ∈ L1(I) such that |Fx(t)| � η(t), a.e. on I , for any x ∈ C1(I).

Then, problem (Q) admits a solution u if and only if b − a >
β−α

r .

Moreover, there exists a decreasing function k : ( β−α
r ,+∞) → (0, r), which depends only on m, M, η, such that∣∣u′(t)

∣∣ � k(b − a) for every t ∈ I. (1)

Proof. The fact that there exists a solution u of (Q) if and only if b − a >
β−α

r has been proved in [8, Theorem 1].
Moreover, the argument in [8, Theorem 1] shows that problem (Q) has a solution u, which is obtained as a fixed point

of a suitable multivalued operator (which in our case is single-valued), as follows.
Let

D = {
y ∈ C(I): ‖y‖C � ‖η‖1

}
,

where ‖ · ‖C and ‖ · ‖1 denote the norms in C(I) and L1(I) respectively. In Claim I of the proof of [8, Theorem 1], the authors
establish the following fact: for every x ∈ C1(I) and every y ∈ D there is a constant Ixy ∈ R such that

b∫
a

Φ−1
(

Ixy + y(t)

Ax(t)

)
dt = β − α.

Then, they define an operator g : C1(I) × D → C1(I) by

g(x,y)(t) = α +
t∫

a

Φ−1
(

Ixy + y(s)

Ax(s)

)
ds, for all x ∈ C1(I), y ∈ D and all t ∈ I

and define the following multivalued operator:

Γ : S → 2S , Γx = g
(x, F̂ x)

where the domain S is a suitable convex and compact subset of C1(I) and, for x ∈ C1(I),

F̂ x =
{

y ∈ C(I): ∃ f ∈ Fx with y(t) =
t∫

0

f (s)ds, ∀t ∈ I

}
.

Then, in [8], the solution u of problem (Q) is obtained as a fixed point of Γ .
Notice that, in our case, since the operator F is single-valued, we have simply

F̂ x(t) =
t∫

0

Fx(s)ds, t ∈ I.

In order to estimate |u′(t)|, t ∈ I , we will give an estimate of the derivative with respect to t of the operator g(x,y)(t) for
any given x ∈ C1(I) and y ∈ D .
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For this purpose, recall first that, in Claim I of the proof of [8, Theorem 1], by the mean value theorem the authors
deduce the existence of t̄ ∈ I such that

(b − a)Φ−1
(

Ixy + y(t̄)

Ax(t̄)

)
= β − α

for every x ∈ C1(I) and y ∈ D . Thus,

Ixy + y(t̄)

Ax(t̄)
= Φ

(
β − α

b − a

)
.

Put, for simplicity, σ := b − a. It follows that, for every x ∈ C1(I) and every y ∈ D , we have

|Ixy| � ‖η‖1 + MΦ

(
β − α

σ

)
. (2)

Consequently, for every x ∈ C1(I), y ∈ D and every t ∈ I , we have∣∣∣∣ Ixy + y(t)

Ax(t)

∣∣∣∣ � 1

m

(
MΦ

(
β − α

σ

)
+ 2‖η‖1

)
.

Now, by definition of the operator g(x,y)(t), for every x ∈ C1(I), y ∈ D and every t ∈ I , we have

g′
(x,y)(t) = Φ−1

(
Ixy + y(t)

Ax(t)

)
.

Therefore,

∣∣g′
(x,y)(t)

∣∣ �
∣∣∣∣Φ−1

(
Ixy + y(t)

Ax(t)

)∣∣∣∣. (3)

Now observe that, since Φ is an increasing homeomorphism, given θ0 > 0, for all θ such that |θ | � θ0 one has |Φ−1(θ)| �
max{Φ−1(θ0),−Φ−1(−θ0)}. Consequently, from inequalities (2) and (3) it follows that there is a function

k = k(σ ) := max

{
Φ−1

(
M

m
Φ

(
β − α

σ

)
+ 2‖η‖1

m

)
,−Φ−1

(
− M

m
Φ

(
β − α

σ

)
− 2‖η‖1

m

)}

such that∣∣g′
(x,y)(t)

∣∣ � k < r (4)

for every x ∈ C1(I), y ∈ D and every t ∈ I . Clearly, k is defined on (
β−α

r ,+∞) with values in (0, r), depends only on m, M, η,
and is increasing as a function of σ .

Finally, since u = g
(u, F̂u)

, from the estimate (4) we get that |u′(t)| � k < r for every t ∈ I , and the assertion follows. �
Let now a : R → R be a positive continuous function and f : R

3 → R a Carathéodory function. Let us consider the prob-
lem {(

a
(
x(t)

)
Φ

(
x′(t)

))′ = f
(
t, x(t), x′(t)

)
a.e. t ∈ R,

x(−∞) = α, u(+∞) = β.
(P)

By a solution of problem (P) we mean a function x ∈ C1(R) such that |x′(t)| < r for all t ∈ R and (a◦x) ·(Φ ◦x′) ∈ W 1,1(R),
which satisfies x(−∞) = α, x(+∞) = β and (a(x(t))Φ(x′(t)))′ = f (t, x(t), x′(t)) for a.e. t ∈ R.

As pointed out in the introduction, in our main results we will investigate the existence and non-existence of solutions
to problem (P).

To prove the existence we will apply a sequential approach. Roughly speaking we will restrict equation(
a
(
x(t)

)
Φ

(
x′(t)

))′ = f
(
t, x(t), x′(t)

)
for a.e. t ∈ R,

on a sequence of compact intervals exhausting R, then we will use Theorem 2.1 in order to prove the existence of a solution
in any compact interval and finally we will show that these solutions converge on the whole R to a solution of (P).

We state the convergence result that we will need in Lemma 2.2 below. This lemma is analogous to Lemma 2.2 in [7].
Therefore we omit the proof since it can be carried out as in [7]. Let us stress that the estimates on the derivative of the
solution x can be proved using a convergence argument together with the boundedness assumption on the derivatives of un .
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Lemma 2.2. For all n ∈ N let In := [−n,n] and let (un)n be a sequence in C1(In) which verifies the following conditions: |u′
n(t)| < r

for all t ∈ In, (a ◦ un)(Φ ◦ u′
n) ∈ W 1,1(In), un(−n) = α, un(n) = β , the sequence (un(0))n is bounded and(

a
(
un(t)

)
Φ

(
u′

n(t)
))′ = f

(
t, un(t), u′

n(t)
)

for a.e. t ∈ In.

Assume that there exist two functions H, γ ∈ L1(R), with H continuous, such that:∣∣u′
n(t)

∣∣ � H(t) < r for all t ∈ In, for all n ∈ N, (5)

and ∣∣a(
un(t)

)
Φ

(
u′

n(t)
)∣∣ � γ (t) a.e. on In, for all n ∈ N. (6)

Then, the sequence (xn)n of piecewise C1 functions on R defined by

xn(t) :=
{ un(t) for t ∈ In,

β for t > n,

α for t < −n

admits a subsequence uniformly convergent in R to a function x ∈ C1(R), which is a solution of problem (P) with the additional
property |x′(t)| � H(t) < r for all t ∈ R.

3. Existence and non-existence theorems

In this section we investigate the existence of solutions to problem (P). We will give both an existence result, Theo-
rem 3.1, and a non-existence result, Theorem 3.2. Our approach is based on fixed point techniques suitably combined to the
method of upper and lower solutions.

We will make the following assumption on the function f :

there exist two constants α < β such that

f (t,α,0) � 0 and f (t, β,0) � 0 for a.e. t ∈ R. (H)

Clearly, assumption (H) implies that the constant functions α and β respectively are constant lower and upper solutions of
equation(

a
(
x(t)

)
Φ

(
x′(t)

))′ = f
(
t, x(t), x′(t)

)
.

Throughout this section we will adopt the following notation:

m := min
x∈[α,β]a(x) > 0, M := max

x∈[α,β]a(x).

Moreover, in what follows [x]+ and [x]− respectively will denote the positive and negative part of the real number x,
and we will set x ∧ y := min{x, y}, x ∨ y := max{x, y}.

The following is our main existence result. Its proof follows the same outline as in Theorem 3.2 of [7], in which the
authors consider a similar problem with a nonsingular Φ-Laplacian operator, but with some differences. The main difference
is that, in our case, due to the presence of a singular Φ-Laplacian operator, here we do not need a Nagumo-type assumption
as in [7]. Roughly speaking, that assumption is needed in order to guarantee that the derivative of the solution is not too
large. In our case this condition is ensured by the additional properties of the solutions which we have established in
Theorem 2.1 above.

Theorem 3.1. Assume that there is μ > 0 such that

lim inf
y→0

|Φ(y)|
|y|μ > 0. (7)

Assume moreover that there are L > 0 and γ > 1, a function η ∈ L1(R) and a function K ∈ W 1,1
loc ([0,+∞)), null in [0, L] and strictly

increasing in [L,+∞), with the following properties:

+∞∫
K (t)−

1
μ(γ −1) dt < +∞, (8){

f (t, x, y) � −K ′(t)Φ
(|y|)γ ,

f (−t, x, y) � K ′(t)Φ
(|y|)γ for a.e. t � L, every x ∈ [α,β], |y| � Θ, (9)
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with Θ := Φ−1( M
m Φ(k1)), and k1 := k(2L) < r, where the function k is the same as in the assertion of Theorem 2.1 above. Further,∣∣ f (t, x, y)
∣∣ � η(t) if x ∈ [α,β], |y| � N(t), for a.e. t ∈ R (10)

where

N(t) := Φ−1
(

M

m

{(
Φ(k1)

)−(γ −1) + γ − 1

M
K

(|t|)}− 1
γ −1

)
.

Then, there exists a function x ∈ C1(R), with α � x(t) � β for every t ∈ R, which is a solution of problem (P).

Proof. Without loss of generality, assume L >
β−α

2r .
Given n ∈ N with n � L, set In := [−n,n]. Define a truncation operator T : W 1,1(In) → W 1,1(In), x �→ Tx , by

Tx(t) := [
β ∧ x(t)

] ∨ α, t ∈ In. (11)

The operator T is well defined and we have T ′
x(t) = x′(t) for a.e. t ∈ In such that α < x(t) < β , whereas T ′

x(t) = 0 for a.e. t
such that x(t) � α, and T ′

x(t) = 0 for a.e. t such that x(t) � β .
Given x ∈ W 1,1

loc (R), define

Q x(t) := −N(t) ∨ [
T ′

x(t) ∧ N(t)
]
. (12)

Moreover, define a penalty function w : R → R by

w(x) := [x − β]+ − [x − α]−.

Clearly, w(x) = 0 if α � x � β .
Consider the following auxiliary boundary value problem on the compact interval In:{(

a
(
Tx(t)

)
Φ

(
x′(t)

))′ = f
(
t, Tx(t), Q x(t)

) + arctan
(

w
(
x(t)

))
, a.e. in In,

x(−n) = α, x(n) = β.
(P∗

n )

Let us prove that problem (P∗
n) admits solutions for every n � L. For this purpose, let A : C1(In) → C(In), x �→ Ax , and

F : C1(In) → L1(In), x �→ Fx , be defined by

Ax(t) := a
(
Tx(t)

)
and Fx(t) := f

(
t, Tx(t), Q x(t)

) + arctan
(

w
(
x(t)

))
, t ∈ In.

It is not difficult to show that the maps A and F are well defined and continuous and satisfy assumptions (F 1)–(F 3) of
Theorem 2.1. Moreover, for n � L the condition 2n > (β − α)/r is satisfied too. Therefore, for n � L Theorem 2.1 applies to
problem (P∗

n) yielding the existence of a solution un ∈ C1(In) which satisfies the estimate |u′
n(t)| � k(2n) < r for all t ∈ In .

In order to apply Lemma 2.2 we need to show that for any n � L the function un is actually a solution of equation(
a
(
x(t)

)
Φ

(
x′(t)

))′ = f
(
t, x(t), x′(t)

)
for a.e. t ∈ In.

For this purpose, from now on the proof will be split into steps.

Step 1. We have α � un(t) � β for all t ∈ In , hence Tun (t) ≡ un(t) and w(un(t)) ≡ 0.

First we show that α � un(t) for every t ∈ In . If t0 is such that un(t0) − α := min(un(t) − α) < 0, by the boundary
conditions in (P∗

n), t0 belongs to a compact interval [t1, t2] ⊂ In satisfying un(t1) = un(t2) = α and un(t) < α for every
t ∈ (t1, t2). Hence, Tun (t) ≡ α and Q un (t) ≡ 0 in [t1, t2], and by assumption (H), for a.e. t ∈ (t1, t2) we have(

a(α)Φ
(
u′

n(t)
))′ = a(α)

(
Φ

(
u′

n(t)
))′ = f (t,α,0) + arctan

(
un(t) − α

)
< 0.

Thus, the function t �→ Φ(u′
n(t)) is strictly decreasing in (t1, t2), so since u′

n(t0) = 0 we have

Φ
(
u′

n(t)
)
< Φ

(
u′

n(t0)
) = 0

for every t ∈ (t0, t2). Since Φ is strictly increasing, we deduce that u′
n(t) < 0 in (t0, t2), which implies un(t0) > un(t2) = α,

in contradiction with the definition of t0.
Similarly one can show that un(t) � β for every t ∈ In .

Step 2. The function t �→ a(un(t))Φ(u′
n(t)) is decreasing in [−n,−L] and in [L,n].

In fact, since un is a solution to (P∗
n) and N(t) � Φ−1( M

m Φ(k1)) for every t ∈ R, by (12) we get |Q un (t)| � Θ (see (9)).
Using Step 1 and assumption (9) we have that for a.e. t � L(

a
(
un(t)

)
Φ

(
u′

n(t)
))′ = f

(
t, un(t), Q un (t)

)
� −K ′(t)Φ

(∣∣Q un (t)
∣∣)γ � 0 (13)

and we get the claim in [L,n]. Analogously we can prove the monotonicity in [−n,−L].
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Step 3. We have u′
n(t) � 0 whenever L � |t| � n.

Suppose u′
n(t̄) < 0 for some t̄ ∈ [L,n). Then, since Φ(0) = 0, by the previous step we have

a
(
un(t)

)
Φ

(
u′

n(t)
)
� a

(
un(t̄)

)
Φ

(
u′

n(t̄)
)
< 0 for every t ∈ [t̄,n]

and then, by the sign of a and Φ , we infer u′
n(t) < 0 for every t ∈ [t̄,n]. Thus, since un solves the boundary conditions

in (P∗
n), using Step 1 we get

β = un(n) < un(t̄) � β,

a contradiction. Similarly, we can show that u′
n(t) � 0 in [−n,−L].

Step 4. If u′
n(t0) = 0 for some t0 ∈ [L,n) then u′

n(t) ≡ 0 in [t0,n).

Indeed, if u′
n(t0) = 0 for some t0 ∈ [L,n), since Φ(0) = 0, by Step 2 we have a(un(t))Φ(u′

n(t)) � 0 in [t0,n], hence
u′

n(t) � 0 in [t0,n] and the claim follows from Step 3.

Step 5. We have |u′
n(t)| � N(t) for a.e. t ∈ In .

First notice that |u′
n(t)| < k1 for every t ∈ [−L, L] and n � L.

In fact, by Theorem 2.1, since the function k is decreasing we have∣∣u′
n(t)

∣∣ < k(2n) � k(2L) = k1,

for every t ∈ [−L, L] and n � L. Now, in the interval [−L, L] the function N is constantly equal to Θ � k1. Thus, |u′
n(t)| <

k1 � N(t) for t ∈ [−L, L].
Moreover, in force of Step 3, we have u′

n(t) � 0 for every t ∈ In \ [−L, L]. Hence, in order to prove the claim, it remains
to show that u′

n(t) � N(t) for every t ∈ In \ [−L, L].
For this purpose, let t̂ := sup{t > L: u′

n(τ ) < N(τ ) in [L, t]}. By Step 5, t̂ is well defined. Assume, by contradiction, t̂ < n.
In view of Step 4, we have u′

n(t) > 0 in [L, t̂]. Moreover, by Step 1 and the definition of Q un , we have(
a
(
un(t)

)
Φ

(
u′

n(t)
))′ = f

(
t, Tun (t), Q un (t)

) = f
(
t, un(t), u′

n(t)
)

a.e. in [L, t̂].
Since u′

n is nonnegative in [L,n), by (13) we have

(
a
(
un(t)

)
Φ

(
u′

n(t)
))′ � −K ′(t)Φ

(
u′

n(t)
)γ � − K ′(t)

Mγ

(
a
(
un(t)

)
Φ

(
u′

n(t)
))γ

for a.e. t ∈ [L, t̂]. Then, recalling that K (L) = 0 and u′
n(t) > 0 in [L, t̂], we get

1

1 − γ

[(
a
(
un(t)

)
Φ

(
u′

n(t)
))1−γ − (

a
(
un(L)

)
Φ

(
u′

n(L)
))1−γ ] =

t∫
L

(a(un(s))Φ(u′
n(s)))′

(a(un(s))Φ(u′
n(s)))γ

ds � − K (t)

Mγ

for every t ∈ [L, t̄].
Now, u′

n(L) < k1 and consequently Φ(u′
n(L)) < Φ(k1). Thus, recalling that a is positive, we obtain

(
a
(
un(t)

)
Φ

(
u′

n(t)
))1−γ �

(
a
(
un(L)

)
Φ

(
u′

n(L)
))1−γ + γ − 1

Mγ
K (t)

>
(
MΦ(k1)

)1−γ + γ − 1

Mγ
K (t)

which implies

u′
n(t) < Φ−1

(
M

m

{
Φ(k1)

1−γ + γ − 1

M
K (t)

}1/(1−γ ))
= N(t)

for every t ∈ [L, t̂], in contradiction with the definition of t̂ . So, t̂ = n and the claim is proved. The same argument works in
the interval [−n,−L] too.

Summarizing, taking into account the properties proved in Steps 1–5, we get(
a
(
un(t)

)
Φ

(
u′

n(t)
))′ = f

(
t, un(t), u′

n(t)
)

a.e. t ∈ In

for every n � L.
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Therefore, the sequence (un)n satisfies all the assumptions of Lemma 2.2, with H(t) = N(t) and γ (t) = η(t), t ∈ R. Indeed,
η ∈ L1(R) by assumption. Moreover by definition the function N is continuous and such that N(t) � Θ < r for all t ∈ R.

Further, assumption (7) implies that lim supξ→0
|Φ−1(ξ)|
|ξ |1/μ < +∞. Hence, from assumption (8) we get N ∈ L1(R).

Finally, Lemma 2.2 implies the existence of a solution x of problem (P). �
The assumptions of the previous existence result are not improvable, in the following sense: if conditions (7) and (9) are

satisfied with the reversed inequalities and the summability condition (8) does not hold, then problem (P) does not admit
solutions. This fact is stated in the next theorem.

Theorem 3.2. Assume that there is μ > 0 such that

lim sup
y→0

|Φ(y)|
|y|μ < +∞. (14)

Suppose that there are L � 0, 0 < ρ < r, γ > 1 and a positive strictly increasing function K ∈ W 1,1
loc ([L,+∞)) which satisfies

+∞∫
K (t)−

1
μ(γ −1) dt = +∞ (15)

along with one of the following conditions:

f (t, x, y) � −K ′(t)Φ
(|y|)γ for a.e. t � L, every x ∈ [α,β], |y| < ρ (16)

or

f (t, x, y) � K ′(−t)Φ
(|y|)γ for a.e. t � −L, every x ∈ [α,β], |y| < ρ. (17)

Assume moreover that

t f (t, x, y) � 0 for a.e. |t| � L, every x ∈ R, |y| < ρ. (18)

Then, problem (P) can only admit solutions which are constant in [L,+∞) (when (16) holds) or constant in (−∞,−L] (when (17)
holds). Therefore, if both (16) and (17) hold and L = 0, then problem (P) does not admit solutions. More precisely, no function
x ∈ C1(R), with (a◦ x)(Φ ◦ x′) almost everywhere differentiable, exists satisfying the boundary conditions and the differential equation
in (P).

Proof. The proof is quite similar to that of [9, Theorem 4]. However, we give it for completeness.
Suppose that (16) holds (the proof being similar if (17) holds). Let x ∈ C1(R), with (a ◦ x)(Φ ◦ x′) almost everywhere

differentiable (not necessarily belonging to W 1,1(R)), be a solution of problem (P).
First of all, let us prove that limt→+∞ x′(t) = 0. Indeed, since x(+∞) = β ∈ R, we have lim supt→+∞ x′(t) � 0 and

lim inft→+∞ x′(t) � 0. If lim inft→+∞ x′(t) < 0, then there exists an interval [t1, t2] ⊂ [L,+∞) such that −ρ < x′(t) < 0
in [t1, t2] and 0 > Φ(x′(t2)) > m

M Φ(x′(t1)). However, by virtue of assumption (18) we deduce that a(x(t))Φ(x′(t)) is decreas-
ing in [t1, t2], and thus

Φ
(
x′(t2)

)
� 1

M
a
(
x(t2)

)
Φ

(
x′(t2)

)
� 1

M
a
(
x(t1)

)
Φ

(
x′(t1)

)
� m

M
Φ

(
x′(t1)

)
,

a contradiction. So, necessarily lim inft→+∞ x′(t) = 0.
Similarly we get lim supt→+∞ x′(t) = 0, and consequently limt→+∞ x′(t) = 0. Hence, we can define t∗ := inf{t � L:

|x′(t)| < ρ in [t,+∞)}.
Let us now prove that x′(t) � 0 for every t � t∗ . Indeed, if x′(t̂) < 0 for some t̂ � t∗ , being a(x(t))Φ(x′(t)) decreasing

in [t∗,+∞), we get

Φ
(
x′(t)

)
� 1

M
a
(
x(t)

)
Φ

(
x′(t)

)
� 1

M
a
(
x(t̂)

)
Φ

(
x′(t̂)

)
� m

M
Φ

(
x′(t̂)

)
< 0,

for every t � t̂ , in contradiction with the boundedness of x.
Let us define t̃ := inf{t � t∗: x(τ ) � α in [t,+∞)} � t∗ .
Assume by contradiction that x′(t̄) > 0 for some t̄ � t̃ . Put T := sup{t � t̄: x′(τ ) > 0 in [t̄, t]}, and observe that T = +∞.

Indeed, if T < +∞, since 0 < x′(t) < ρ in [t̄, T ], by (16) we have(
a
(
x(t)

)
Φ

(
x′(t)

))′ = f
(
t, x(t), x′(t)

)
� −K ′(t)Φ

(∣∣x′(t)
∣∣)γ for a.e. t ∈ [t̄, T ]. (19)

Without loss of generality, assume ρ so small that Φ(ρ) � 1. Being γ > 1, we get

(
a
(
x(t)

)
Φ

(
x′(t)

))′ � −K ′(t)Φ
(
x′(t)

)
� − K ′(t)

a
(
x(t)

)
Φ

(
x′(t)

)
,

m̃
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where m̃ := min{a(ξ) | ξ ∈ [x(t̄), x(T )]}. Then, integrating in [t, T ], with t < T , and taking into account that x′(T ) = 0, we
obtain

a
(
x(t)

)
Φ

(
x′(t)

)
�

T∫
t

K ′(τ )

m̃
a
(
x(τ )

)
Φ

(
x′(τ )

)
dτ for every t ∈ (t̄, T ].

By the Gronwall’s inequality we get a(x(t))Φ(x′(t)) � 0, i.e. x′(t) � 0 in the same interval, in contradiction with the definition
of T . Hence, T = +∞.

Observe now that by (19) we get

1

1 − γ

[
a
(
x(t)

)
Φ

(
x′(t)

)1−γ − a
(
x(t)

)
Φ

(
x′(t)

)1−γ ] =
t∫

t̄

(a(x(s))Φ(x′(s)))′

(a(x(s))Φ(x′(s)))γ
ds � 1

m̃

(
K (t̄) − K (t)

)

therefore, putting M̃ := max{a(ξ) | ξ ∈ [x(t̄), x(T )]}, for a.e. t � t̄ we have

M̃1−γ x′(t)1−γ � a
(
x(t)

)
Φ

(
x′(t)

)1−γ � a
(
x(t̄)

)
Φ

(
x′(t̄)

)1−γ + (γ − 1)

m̃γ

(
K (t) − K (t̄)

)
then

x′(t) � 1

M̃

(
a
(
x(t̄)

)
Φ

(
x′(t̄)

)1−γ + (γ − 1)

m̃γ

(
K (t) − K (t̄)

)) 1
1−γ

.

By virtue of (15) we deduce that x(+∞) − x(t̄) = ∫ +∞
t̄ x′(τ )dτ = +∞, in contradiction with the boundedness of x.

Therefore, x′(t) ≡ 0 in [t̃,+∞) and by the definition of t̃ this implies t̃ = t∗ . So, x′(t) ≡ 0 in [t∗,+∞) and by the definition
of t∗ this implies t∗ = L. �
Remark 3.3. If the sign condition in (18) is satisfied with the reversed inequality, i.e., if

t f (t, x, y) � 0 for a.e. |t| � L, every x ∈ R, |y| < ρ (20)

then it is possible to prove that limx→±∞ x′(t) = 0 and x′(t) � 0 for |t| � L. So, since α < β , when L = 0 problem (P) does
not admit solutions.

4. Criteria for right-hand side of the type f (t, x, y) = b(t, x)c(x, y)

In this section, following [7], we will give some operative criteria which can be applied when the right-hand side has
the following product structure

f (t, x, y) = b(t, x)c(x, y).

We will show the link between the local behaviors of c(x, ·) at y = 0 and of b(·, x) at infinity which plays a key role for
the existence or non-existence of solutions.

We will assume that b is a Carathéodory function and c is a continuous function satisfying

c(x, y) > 0 for every y 	= 0 and x ∈ [α,β]; c(α,0) = c(β,0) = 0,

for suitable constants α < β . Clearly this implies that assumption (H) on p. 671 is satisfied.
As in the previous section, we denote

m := min
x∈[α,β]a(x) > 0, M := max

x∈[α,β]a(x).

Our first result, which is a consequence of Theorem 3.1, provides sufficient conditions for the existence of solutions to
problem (P) when f has the above product structure.

Theorem 4.1. Suppose that

t · b(t, x) � 0 for a.e. t such that |t| � t̄, every x ∈ [α,β] (21)

for some t̄ � 0, and there exists a function λ ∈ Lq
loc(R), 1 � q � +∞, such that∣∣b(t, x)

∣∣ � λ(t) for a.e. t ∈ R, every x ∈ [α,β]. (22)

Moreover, assume that there exist real constants −1 < δ1 � δ2 , 0 < γ2 � γ1 , satisfying

γ1 > 1, γ2(δ1 + 1) > (γ1 − 1)(δ2 + 1), (23)
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such that for every x ∈ [α,β] we have

h1|t|δ1 �
∣∣b(t, x)

∣∣ � h2|t|δ2 , a.e. |t| > L, (24)

q1Φ
(|y|)γ1 � c(x, y) � q2Φ

(|y|)γ2
, whenever |y| < ρ, (25)

for certain positive constants h1 , h2 , q1 , q2 and for L � t̄ and ρ < r.
Finally, assume that (7) holds for some positive constant μ < δ1+1

γ1−1 .

Then, problem (P) admits solutions.

Proof. Let Θ := Φ−1( M
m Φ(k1)) and k1 := k(2L) < r as in the statement of Theorem 3.1. Moreover, let

σ := max{ρ,Θ}
and

m0 := min
{

c(x, y): x ∈ [α,β], ρ � |y| � σ
}
.

Observe that m0 > 0 since c(x, y) > 0 for y 	= 0. Finally, let

ψ0 := min

{
m0

Φ(σ)γ1
,q1

}

and

K (t) :=
{

ψ0
∫ t

L min{minx∈[α,β] b(−τ , x),−maxx∈[α,β] b(τ , x)}dτ for t � L,

0 for 0 � t � L.

Assumption (22) implies that K ∈ W 1,1
loc ([0,+∞)) and by (24) we get K (t) → +∞ as t → +∞. Finally from (21) and (24) it

follows that the function K is strictly increasing on [L,+∞).
Observe that from the definition of ψ0 and assumption (25), it follows that

c(x, y) � ψ0Φ
(|y|)γ1 for every x ∈ [α,β], y ∈ [−σ ,σ ].

Therefore, by (21) we get

f (t, x, y) = b(t, x)c(x, y) � ψ0b(t, x)Φ
(|y|)γ1 � −K ′(t)Φ

(|y|)γ1

and

f (−t, x, y) = b(−t, x)c(x, y) � ψ0b(−t, x)Φ
(|y|)γ1 � K ′(t)Φ

(|y|)γ1

for a.e. t � L, every x ∈ [α,β] and every y ∈ [−σ ,σ ]. Thus, assumption (9) of Theorem 3.1 holds with γ = γ1.
Now, assumption (24) implies that h1ψ0tδ1 � K ′(t) for a.e. t � L. Consequently,

K (t) � h1ψ0

δ1 + 1

(
tδ1+1 − Lδ1+1). (26)

Hence, by the upper bound on the constant μ we obtain that condition (8) is satisfied with γ = γ1.
Moreover, since lim|t|→+∞ N(t) = 0, there is a constant L∗ > L such that N(t) � ρ for every |t| � L∗ . Let

η(t) :=
{

maxx∈[α,β] |b(t, x)| · max(x,y)∈[α,β]×[−σ ,σ ] c(x, y) if |t| � L∗,
h2q2|t|δ2Φ(N(t))γ2 if |t| > L∗.

By assumptions (24) and (25), for every y such that |y| � N(t) for a.e. t ∈ R, and every x ∈ [α,β], we have∣∣ f (t, x, y)
∣∣ = ∣∣b(t, x)

∣∣c(x, y) � η(t).

Let us show that η ∈ L1(R). Indeed, by (22) and the continuity of c we get η ∈ L1([−L∗, L∗]). Moreover, when |t| > L∗ ,
by (26) we have

0 < η(t) � h2q2|t|δ2

{
M

m

(
Φ(k1)

−(γ1−1) + γ1 − 1

M
K

(|t|))− 1
γ1−1

}γ2

� h2q2|t|δ2

{
M

m

(
Φ(k1)

−(γ1−1) + γ1 − 1

M

h1ψ0

δ1 + 1

(|t|δ1+1 − Lδ1+1))− 1
γ1−1

}γ2

.

The last term belongs to L1(R \ [−L∗, L∗]). In fact, by the bound on μ, we have γ2(δ1+1)
γ1−1 − δ2 > 1. This shows that η ∈ L1(R).

Hence, Theorem 3.1 applies yielding the existence of a solution to problem (P). �
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We state now a non-existence result, which follows from Theorem 3.2.

Theorem 4.2. Suppose that

t · b(t, x) � 0 for a.e. t ∈ R and every x ∈ [α,β]. (27)

Assume that there are real constants δ > −1, γ > 1, Λ � 0, and a positive function � ∈ L1([0,Λ]) such that∣∣b(t, x)
∣∣ � λ1|t|δ, for every x ∈ [α,β], a.e. |t| > Λ, (28)∣∣b(t, x)
∣∣ � �

(|t|) for a.e. |t| � Λ, x ∈ [α,β], (29)

c(x, y) � λ2Φ
(|y|)γ , for every x ∈ [α,β], |y| < ρ (30)

for some positive constants λ1 , λ2 and for some positive ρ < r. Finally, assume that condition (14) holds for some positive constant μ,
with μ � δ+1

γ −1 .

Then, problem (P) does not admit solutions.

Proof. Let

g(t) :=
{

�(t) for 0 � t � Λ,

λ1tδ for t < Λ.

Moreover, let K (t) := λ2
∫ t

0 g(τ )dτ for t � 0. Observe that K (t) is a strictly increasing function and belongs to

W 1,1
loc ([0,+∞)). Further, for every t � Λ we have

K (t) = λ2

Λ∫
0

�(τ )dτ + λ1λ2

t∫
Λ

τ δ dτ = λ2

Λ∫
0

�(τ )dτ + λ1λ2

δ + 1

(
tδ+1 − Λδ+1).

Hence, by the lower bound on the constant μ we get (15). Moreover, by (28), (29) and (30) we obtain that both (16)
and (17) of Theorem 3.2 hold with L = 0. Thus, Theorem 3.2 applies, and this completes the proof. �

A more effective result can be stated if the right-hand side has the product structure

f (t, x, y) = h(t)g(x)c(y).

In fact, in this case the link between the local behaviors of c(·) at y = 0 and of h(·) at infinity can be expressed in a quite
simple way. The next result expresses the existence and non-existence of solutions in this case.

Corollary 4.3. Let f (t, x, y) = h(t)g(x)c(y), where h ∈ Lq
loc(R), for some 1 � q � +∞, c is continuous in R and g is continuous and

positive in [α,β].
Assume that c(y) > 0 for y 	= 0; t · h(t) � 0 for every t and suppose that

lim|t|→+∞
∣∣h(t)

∣∣|t|−δ ∈ (0,+∞) for some δ > −1, (31)

lim
y→0

c(y)|y|−ν ∈ (0,+∞) for some ν > 0. (32)

Then, the following assertions hold:

– if condition (14) holds with a positive constant μ � ν − δ − 1, then (P) has no solution;
– if we further assume that condition (7) holds for some positive constant μ, with ν − δ − 1 < μ < ν , then (P) admits solutions.

Proof. Put b(t, x) := h(t)g(x). Let us prove the first assertion using Theorem 4.2. Suppose that condition (14) holds true
and that μ � ν − δ − 1. Then, γ := ν

μ > 1 and it is not difficult to show that assumptions (31) and (32) imply that condi-
tions (27)–(30) hold for suitable positive constants λ1, λ2, Λ, ρ . Thus, Theorem 4.2 applies and consequently problem (P)
does not admit solutions.

Assume now that (7) holds with ν − δ − 1 < μ < ν , and let us prove that in this case all the assumptions of Theorem 4.1
are satisfied. Observe first that conditions (21) and (22) are satisfied. Moreover, assumption (31) implies that (24) holds
with δ1 = δ2 = δ and a suitable choice of the positive constants h1, h2, L. Finally, let γ2 := ν

μ . It is possible to choose
γ1 ∈ (γ2, γ2 + 1) in such a way that conditions (23) and (25) hold. Hence Theorem 4.1 applies yielding the existence of
solutions to (P). �
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Remark 4.4. When the function Φ behaves as a power as y → 0, that is there exist μ, c1, c2, y0 > 0 such that

c1|y|μ �
∣∣Φ(y)

∣∣ � c2|y|μ for every y with |y| ∈ (0, y0) (33)

then the two assertions of Corollary 4.3 can be joined into a necessary and sufficient condition whenever ν > μ. In fact, in
this case problem (P) admits solutions if and only if ν − δ − 1 < μ.

Remark 4.5. Notice that in the previous criteria the functions a and g do not play any role for the existence or non-existence
of solutions to (P).

We close the paper with the following illustrating examples.

Example 4.6. Consider the increasing homeomorphism Φ : (−r, r) → R given by

Φ(y) := sign(y)|y|μ
(r2 − y2)κ

with μ,κ > 0, and let

f (t, x, y) := −|t|λ
t

g(x)|y|ν

with λ,ν > 0 and g a generic continuous positive function. Let us discuss the existence of solutions to (P) using Corollary 4.3

with h(t) = −|t|λ
t and c(y) = |y|ν . First notice that assumption (32) holds, and (31) holds with δ = λ − 1. Therefore, if

ν � μ + λ, then (P) has no solutions.
As for the existence, if μ < ν < μ + λ, as a consequence of Remark 4.4 we have that problem (P) admits solutions.

Example 4.7. Consider the map Φ : (−1,1) → R given by

Φ(y) := y√
1 − y2

and let

f (t, x, y) := −tg(x)|y|ν
with ν > 1 and g continuous and positive. In this particular case our equation becomes(

a(x(t))x′(t)√
1 − x′(t)2

)′
= −tg

(
x(t)

)∣∣x′(t)
∣∣ν

with a continuous and positive.
By Remark 4.4, problem (P) admits solutions if and only if 1 < ν < 2.

Example 4.8. Let Φ : (−1,1) → R be given by

Φ(y) := y3 − y2 + y√
1 − y2

,

so that Φ is a non-symmetric increasing homeomorphism, and let f (t, x, y) be the same as in the previous example. Again
by Remark 4.4, problem (P) admits solutions if 1 < ν < 2 while it has no solution for ν � 2.
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