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Let A be a closed linear operator on a complex Banach space X and let
Ž .l g D A be a fixed element of the resolvent set of A. Let U and Y be Banach

Ž . Ž .spaces, and let D g LL U, X and E g LL X, Y be bounded linear operators. We
Ž .define r A; D, E byl

5 5sup r G 0: l g D A q D D E for all D g LL Y , U with D F r� 4Ž . Ž .
and prove that

1
r A; D , E s .Ž .l ER l, A DŽ .

We give two applications of this result. The first is an exact formula for the
so-called stability radius of the generator of a C -semigroup of linear operators on0
a Hilbert space; it is derived from a precise result about robustness under
perturbations of uniform boundedness in the right half-plane of the resolvent of an
arbitrary semigroup generator. The second application gives sufficient conditions

Ž .on the norm of the operators B g LL X such that the classical solutions of thej
delay equation

n

u t s Au t q B u t y h , t G 0,Ž . Ž .˙ Ž .Ý j j
js1

pŽw x .are exponentially stable in L yh, 0 ; X . Q 1998 Academic Press
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0. INTRODUCTION

In this paper we investigate the robustness of certain properties of a
closed linear operator A on a Banach space X under small additive
perturbations. Some ‘‘structure’’ in the perturbation will be allowed, in the
following sense: we fix Banach spaces U and Y and two operators D g
Ž . Ž . Ž Ž Ž . ..LL U, X and E g LL X, Y or even E g LL DD A , Y , and consider per-

Ž .turbations of the form D D E, with D g LL Y, U . The question we address
is the following.

Ž .If A has a certain property P , what is the supremum of all
r G0 with the following property: for all bounded linear

Ž . 5 5operators D g LL Y, U with norm D F r, the perturbed
Ž .operator A q D D E has property P as well.

Among the properties we consider are the following: containment of a
given complex number l g C in the resolvent set of the operator, contain-
ment of a given set V ; C in the resolvent set, and uniform boundedness
of the resolvent on V. For these properties we give a precise answer to the

Ž .above question in terms of the so-called transfer function l ¬ ER l, A D,
Ž . Ž .y1where R l, A [ l y A is the resolvent of A.

In two subsequent sections, we give two applications of the abstract
results of Section 1. In Section 2 we prove some new results on robust
stability. Among others, we obtain an exact formula for the stability radius
for generators of Hilbert space semigroups. In Section 3 we study the delay
equation

n

u t s Au t q B u t y h , t G 0,Ž . Ž .˙ Ž .Ý j j
js1

where A is the generator of a C -semigroup on a Banach space X.0
Regarding the bounded operators B as a perturbation of an appropriatej

Cauchy problem corresponding to the absence of delays, we obtain suffi-
cient conditions on A and B for exponential stability of classical solu-j
tions.
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1. THE ABSTRACT PERTURBATION RESULTS

Throughout this section, X, U, and Y are fixed complex Banach spaces,
Ž . Ž .A is a closed linear operator on X with domain DD A , and D g LL U, X

Ž Ž . . Ž .and E g LL DD A , Y are bounded linear operators; we regard DD A as a
5 5Banach space with respect to the graph norm ? .DDŽ A.

PROPOSITION 1. Let A be a closed linear operator on X and suppose
Ž . Ž .l g D A . If D g LL Y, U satisfies

1
5 5D F 1 y d 1.1Ž . Ž .

ER l, A DŽ .
Ž . Ž .for some d g 0, 1 , then l g D A q D D E , and

1
5 5R l, A q D D E F R l, A 1 q D D E R l, A .Ž . Ž . Ž .ž /d

Ž . 5 Ž . 5Proof. Fix l g D A . From D E R l, A D F 1 y d we see that I y
Ž .D E R l, A D is invertible. Using the Neumann series we estimate

` 1ny1I y D E R l, A D F 1 y d s .Ž . Ž .Ž . Ý
dns0

Ž .It follows that I y D D E R l, A is invertible as well, and its inverse is
given by

y1 y1I y D D E R l, A s I q D I y D E R l, A D D E R l, A .Ž . Ž . Ž .Ž . Ž .
By the above estimate,

1y1 5 5I y D D E R l, A F 1 q D D E R l, A .Ž . Ž .Ž .
d

Ž Ž ..Ž .From the identity l y A y D D E s I y D D E R l, A l y A we see
that l y A y D D E is closed, being the composition of a closed operator
and a bounded invertible operator. It also shows that l y A y D D E maps
Ž . Ž .y1DD A injectively onto X. Hence, the inverse mapping l y A y D D E

is well defined on X, and being the inverse of a closed operator, it is
Ž .y1closed. Hence by the closed graph theorem, l y A y D D E is bounded,

Ž .which means that l g D A q D D E . By the previous estimate, we obtain

y1R l, A q D D E s R l, A I y D D E R l, AŽ . Ž . Ž .Ž .
1

5 5F R l, A 1 q D D E R l, A .Ž . Ž .ž /d
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Ž .This result shows that the property ‘‘l g D A ’’ is stable under small
Ž .perturbations. Next we show that the bound 1.1 is actually the best

Ž .possible. To this end, for l g D A we introduce the quantity

r A; D , E [ sup r G 0: l g D A q D D E for all�Ž . Ž .l

5 5D g LL Y , U with D F r .4Ž .

THEOREM 1.2. Let A be a closed linear operator on X. Then for all
Ž .l g D A we ha¨e

1
r A; D , E s .Ž .l ER l, A DŽ .

5 Ž . 5y1 5 5 ŽProof. If 0 F r - ER l, A D and D F r, then l g D A q
. Ž . 5 Ž . 5y1D D E by Proposition 1.1. Hence, r A; D, E G ER l, A D . To provel

5 5the converse inequality, let us fix « ) 0. Choose u g U, u s 1, such that

1 1
F q « .

ER l, A Du ER l, A DŽ . Ž .
U U 5 U 5By the Hahn]Banach theorem we may choose y g Y , y s 1, such

that

ER l, A DuŽ .
U, y s 1.¦ ;ER l, A DuŽ .

Ž .Define D g LL Y, U by

² U:y , y u
D y [ , y g Y .

ER l, A DuŽ .

Ž .Then D E R l, A Du s u and

1
5 5D F q « .

ER l, A DŽ .

Ž .Set ¨ [ R l, A Du. Then D E¨ s u / 0, so ¨ / 0, and

l y A y D D E ¨ s Du y D D E R l, A Du s Du y Du s 0.Ž . Ž .
ŽThis shows that l y A y D D E is not injective, which implies l g s A q

.D D E .

We remark that the proofs of Proposition 1.1 and Theorem 1.2 are
based entirely on techniques in a paper of Latushkin, Montgomery-Smith,

w xand Randolph 13 , where they are used to obtain the two-sided bounds
Ž .2.4 below for robust stability.
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Ž .For a subset V ; D A we define

r A; D , E [ sup r G 0: V ; D A q D D E for all�Ž . Ž .V

5 5D g LL Y , U with D F r .4Ž .

We then have the following straightforward generalization of Theorem 1.2:

Ž .COROLLARY 1.3. Let A be a closed linear operator on X. If V ; D A ,
then

1
r A; D , E s inf .Ž .V ER l, A DlgV Ž .

We may also impose uniform boundedness of the resolvent on the set V
Ž . 5 Ž .5by defining, for a subset V ; D A such that sup R l, A - `,lg V

r` A; D , E [ sup r G 0: V ; D A q D D E andŽ . Ž .½V

5 5sup R l, A q D D E - ` for all D g LL Y , U with D F r .Ž . Ž . 5
lgV

COROLLARY 1.4. Let A be a closed linear operator on X and assume that
Ž .E extends to a bounded operator from X into Y. If V ; D A with

5 Ž .5sup R l, A - `, thenlg V

1
`r A; D , E s .Ž .V sup ER l, A DŽ .lg V

`Ž . ŽProof. It is clear from the definition that r A; D, E F r A; D,V V

. `ŽE . Hence by Corollary 1.3 we only need to prove the inequality r A;V

. 5 Ž . 5y1D, E G inf ER l, A D . But this inequality follows immediatelylg V

5 Ž .5 5 5 5 Ž .5from Proposition 1.1, since D E R l, A F D E R l, A and
5 Ž .5sup R l, A - `.lg V

2. APPLICATION TO ROBUST STABILITY
OF C -SEMIGROUPS0

Throughout this section we fix complex Banach spaces X, U, and Y, and
Ž . Ž .bounded linear operators D g LL U, X and E g LL X, Y . We further

� Ž .4consider a C -semigroup T s T t of bounded linear operators on X,0 t G 0
and denote by A its generator. Our terminology concerning semigroups is

w x w xstandard; for more information we refer to 16 and 18 .
In this section and the next we will be concerned with the behavior

Ž wunder small perturbations of the following four quantities see 17,
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x.Chap. 1 :

v Ž . � Ž .4The spectral bound s A s sup Re l: l g s A
v Ž .The abscissa of uniform boundedness s A of the resolvent of A,0

� 4s A [ inf v g R: Re l ) v ; D A and sup R l, A - `Ž . Ž . Ž .½ 50
Re l)v

v Ž .The growth bound v A ,1

v A [ inf v g R: there exists M ) 0 such thatŽ . �1

v t 5 5T t x F Me x for all x g DD A and t G 0Ž . Ž . 4DDŽ A.

v Ž .The uniform growth bound v A ,0

v A [ inf v g R: there exists M ) 0 such that�Ž .0

v tT t F Me for all t G 0 .4Ž .
w xIt is well known 17, Sect. 1.2, 4.1 that

y` F s A F v A F s A F v A - `. 2.1Ž . Ž . Ž . Ž . Ž .1 0 0

Ž . Ž Ž . .If v A - 0 resp. v A - 0 , then T is said to be uniformly exponen-0 1
Ž .tially stable resp. exponentially stable . Below we will use the following

Ž . � 4 Ž . 5 Žsimple fact concerning s A : if Re l ) 0 ; D A and sup R l,0 Re l) 0
.5 Ž . w xA - `, then s A - 0; see 17, Lemma 2.3.4 .0
We start by studying the behavior of the abscissa of uniform bounded-

ness under small additive perturbations. To this end, for a semigroup with
Ž .s A - 0 we define0

r A; D , E [ sup r G 0: s A q D D E - 0 for all�Ž . Ž .s 00

5 5D g LL Y , U with D F r .4Ž .
Recalling that the suprema along vertical lines Re l s c of a bounded

� 4holomorphic X-valued function on Re l ) 0 decrease as c increases, an
� 4application of Corollary 1.4 to V s Re l ) 0 shows the following:

THEOREM 2.1. Suppose A is the generator of a C -semigroup on X. If0
Ž .s A - 0, then0

1
r A; D , E s .Ž .s0 sup ER iv , A DŽ .v g R

For a uniformly exponentially stable C -semigroup we now define0

r A; D , E [ sup r G 0: v A q D D E - 0 for all�Ž . Ž .v 00

5 5D g LL Y , U with D F r .4Ž .
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w x Ž w x x.It is a well-known theorem of Gearhart 4 cf. 17 , Corollary 2.2.5 that
for C -semigroups on a Hilbert space, the abscissa of uniform bounded-0
ness of the resolvent and the uniform growth bound always coincide.
Hence if X is isomorphic to a Hilbert space, Theorem 2.1 assumes the
following form:

COROLLARY 2.2. Suppose A is the generator of a C -semigroup on X. If X0
Ž .is isomorphic to a Hilbert space, and if v A - 0, then0

1
r A; D , E s .Ž .v 0 sup ER iv , A DŽ .v g R

Remark. It is not assumed that U and Y are isomorphic to Hilbert
spaces.

Ž .The quantity r A; D, E is called the stability radius of A with respectv 0
Ž .to the ‘‘perturbation structure’’ D, E and was introduced, in the finite-di-

w xmensional setting, by Hinrichsen and Pritchard 5 ; see also their survey
w xpaper 6 . To state some known results about the stability radius, for

w . Ž . Ž pŽp g 1, ` we define the input]output operator L A; D, E g LL L R ;p q
. pŽ ..U , L R ; Y byq

s
pL A; D , E f s [ E T s y t Df t dt s G 0, f g L R ; U .Ž . Ž . Ž . Ž . Ž .Hp q

0

Ž .This operator is easily seen to be bounded if v A - 0; conversely,0
Ž . Ž . wif U s Y s X, then boundedness of L A; I, I implies v A - 0 17,p 0

xTheorem 3.3.1 . The following results are well known:

v If X, U, and Y are finite-dimensional, then

1
r A; D , E s . 2.2Ž . Ž .v 0 sup ER iv , A DŽ .v g R

v If X is a Banach space, and U and Y are Hilbert spaces, then

1 1
s r A; D , E s . 2.3Ž . Ž .v 0L A; D , E sup ER iv , A DŽ . Ž .2 v g R

v w .If X, U, and Y are arbitrary Banach spaces, then for all p g 1, ` ,

1 1
F r A; D , E F . 2.4Ž . Ž .v 0 sup ER iv , A DL A; D , E Ž .Ž . v g Rp

Ž . Ž . w xThe identities 2.2 and 2.3 are due to Hinrichsen and Pritchard 6 and
w x Ž .Pritchard and Townley 19 where a more general setup is considered ,
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respectively. Notice that in some sense our Corollary 2.2 complements the
Ž .second identity in 2.3 .
Ž .The inequalities 2.4 were obtained by Latushkin, Montgomery-Smith,

w xand Randolph 13 by using the theory of evolutionary semigroups; this
further enabled them to extend certain results on time-varying systems due

w xto Hinrichsen and Pritchard 7 . They also showed that the inequality
Ž .between the first and third terms in 2.4 may be strict. More results on the
w xtime-varying case may be found in 2 .

In the case of positive semigroups, Theorem 2.1 and Corollary 2.2
simplify somewhat:

Ž .COROLLARY 2.3. If X, U, and Y are Banach lattices, D g LL U, X and
Ž .E g LL X, Y are positï e, and A is the generator of a positï e C -semigroup0

Ž .on X with s A - 0, then0

1
r A; D , E s .Ž .s y10 5 5EA D

If , in addition, X is isomorphic to a Hilbert space, then the same result holds
for the uniform growth bound.

Proof. From

< < < <ER iv , A Du F E R iv , A D u F ER 0, A D uŽ . Ž . Ž .

w x 5 Ž . 5 5 Ž . 516, Corollary C-III-1.3 it follows that ER iv, A D F ER 0, A D s
5 y1 5EA D for all v g R. Accordingly, the supremum in the expressions in
Theorem 2.1 and Corollary 2.2 is taken for v s 0.

For a detailed treatment of the theory of positive semigroups we refer
w xto 16 .
The next application is concerned with semigroups that are uniformly

continuous for t ) 0. First we recall that if A is the generator of a
C -semigroup that is uniformly continuous for t ) t for some t G 0, then0 0 0
the spectral mapping theorem

� 4 � 4s T t _ 0 s exp ts A _ 0Ž . Ž .Ž . Ž .

w x w xholds for all t G 0 16, Theorem A-III-6.6 , 17, Theorem 2.3.2 . In particu-
Ž . Ž . Ž .lar, this implies that s A s s A s v A . We will combine Theorem0 0

w x2.1 with the following simple observation 16, Theorem A-II-1.30 , the
proof of which is included for the reader’s convenience.

LEMMA 2.4. If A is the generator of a C -semigroup T on X that is0
uniformly continuous for t ) 0, and if B is a bounded linear operator on X,
then the semigroup generated by A q B is uniformly continuous for t ) 0.
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� Ž .4Proof. Let S s S t denote the semigroup generated by A q B.t G 0
Ž . Ž . Ž .Put V t [ T t , t G 0, and define the operators V t inductively by0 n

t
V t x [ T t y s BV s x ds, n g N, x g X , t G 0.Ž . Ž . Ž .Hnq1 n

0

w x 5 Ž .5 v tAs is well known 18, Section 3.1 , if T t F Me for all t G 0, then

n 5 5 n nM B t
v tV t F Me , n g N, t G 0,Ž .n n!

and
`

S t s V t , t G 0,Ž . Ž .Ý n
ns0

w .the convergence being uniform on compact subsets of 0, ` . Fix n G 0 and
positive real numbers 0 - « - d - d - `. For d F t F tX F d , from0 1 0 1

tX
X XV t x y V t x s T t y s BV s x dsŽ . Ž . Ž . Ž .Hnq1 nq1 n

t

t Xq T t y s y T t y s BV s x dsŽ . Ž . Ž .Ž .H n
0

we obtain, by splitting the second integral as H t s H t q H ty«,0 ty« 0

XV t y V tŽ . Ž .nq1 nq1

X XF C t y t q « q sup T t y s y T t y s ,Ž . Ž . Ž .n ž /
w xsg 0, ty«

5 5where C is a finite constant depending on M, v, B , d , d , and n only.n 0 1
It follows that

Xlim sup V t y V t F C « ,Ž . Ž .nq1 nq1 n
Xt x t

Ž .and since « can be taken arbitrarily small, we see that V ? is uniformlynq1
Ž .continuous for t ) 0. Therefore the same is true for S ? .

COROLLARY 2.5. Suppose A is the generator of a uniformly exponentially
stable C -semigroup on X that is uniformly continuous for t ) 0. Then0

1
r A; D , E s .Ž .v 0 sup ER iv , A DŽ .v g R
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This result applies to compact semigroups, differentiable semigroups,
and analytic semigroups, since each of these is uniformly continuous for
t ) 0.

pŽw x .3. DELAY EQUATIONS IN L yh, 0 ; X

Throughout this section, we fix a C -semigroup T with generator A on a0
w .complex Banach space X. We also fix p g 1, ` and nonnegative real

numbers 0 F h - ??? - h \ h.1 n
Given bounded linear operators B , . . . , B on X, we will study the1 n

delay equation

n

u t s Au t q B u t y h , t G 0,Ž . Ž .˙ Ž .Ý j j
js1

DEŽ .B , . . . , B1 n u 0 s x ,Ž .
wu t s f t , t g yh , 0 .Ž . Ž . .

pŽw x .Here, x g X is the initial value and f g L yh, 0 ; X is the ‘‘history’’
w xfunction. This equation has been investigated by Nakagiri 14, 15 ; see also

w x1, 3, 8, 9, 12, 21 for related studies.
Ž . Ž . p Žw . .A mild solution of DE is a function u ?; x, f g L yh, ` ; XB , . . . , B loc1 n

satisfying

T t x q H tT t y s Ýn B u s y h ; x , f ds, t G 0,Ž . Ž . Ž .0 js1 j j
u t ; x , f sŽ . ½ wf t , t g yh , 0 .Ž . .

w x pŽw x .It follows form 14, Theorem 2.1 that for all x g X and f g L yh, 0 ; X
Ž . w .a unique mild solution u ?; x, f exists; this solution is continuous on 0, `

and exponentially bounded. To study the asymptotic behavior of these
solutions by semigroup methods, we introduce the product space XX [ X =

pŽw x . Ž .L yh, 0 ; X and define bounded linear operators TT t on XX asB , . . . , B1 np Žw . .follows. Given a function u g L yh, ` ; X , for each t G 0 we defineloc
pŽw x . Ž . Ž . w xu g L yh, 0 ; X by u s [ u t q s , s g yh, 0 . Denoting the uniquet t

Ž . Ž .mild solution of DE by u ?; x, f , we now defineB , . . . , B1 n

TT t x , f [ u t ; x , f , u ?; x , f , t G 0.Ž . Ž . Ž . Ž .Ž .B , . . . , B t1 n
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w xBy 15, Proposition 3.1 we have

� Ž .4PROPOSITION 3.1. The family TT s TT t defines a C -B , . . . , B B , . . . , B t G 0 01 n 1 n

semigroup of linear operators on XX . Its generator AA is gï en byB , . . . , B1 n

DD AAŽ .B , . . . , B1 n

1, p w xs x , f g XX : f g W yh , 0 ; X , f 0 s x g DD A ,� 4Ž . Ž . Ž .Ž .
n

X
AA x , f s Ax q B f yh , f , x , f g DD AA .Ž . Ž .Ž . Ž .ÝB , . . . , B j j B , . . . , B1 n 1 nž /

js1

1, pŽw x .Here W yh, 0 ; X is the space of absolutely continuous X-valued
w xfunctions f on yh, 0 that are strongly differentiable a.e. with derivative

X pŽw x .f g L yh, 0 ; X .
Whenever the operators B , . . . , B are understood, we will drop them1 n

from the notation and simply write TT and AA.
w xThe spectrum and resolvent of AA are described by 15, Theorem 6.1 as

follows.

Ž . ŽPROPOSITION 3.2. We ha¨e l g D A if and only if l g D A q
n ylh j .Ý e B . In this case the resol̈ ent of AA is gï en byjs1 j

n
yl h jR l, AA s E R l, A q e B H F q T ,Ž . Ýl j l lž /

js1

Ž . Ž . Ž . Ž .where E g LL X, XX , H g LL XX , X , F g LL XX , XX , and T g LL XX , XX arel l l

defined by

E x [ x , el?x ;Ž .l

0
lsH x , f [ x q e f s ds;Ž . Ž .Hl

yh

n

F x , f [ x , x ? B f yh y ? ;Ž . Ž . Ž .Ý wyh , 0x j jjž /
js1

0
lŽ? yj .T x , f [ 0, e f j dj .Ž . Ž .Hl ž /

?

Ž . Ž .Our first result relates the abscissa s AA to s A :0 0

Ž .THEOREM 3.3. Assume that s A - 0. If
n 1

iv h jsup e B - ,Ý j sup R iv , AŽ .vgR v g Rjs1

Ž .then s AA - 0.0
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Ž .Proof. Choose d g 0, 1 such that

n 1
iv h jsup e B F 1 y d .Ž .Ý j sup R iv , AŽ .vgR v g Rjs1

Recalling that the suprema along vertical lines Re l s c of bounded
analytic functions decrease as c increases, for all l g C with Re l ) 0 we
have

n n 1
yl h iv hj je B F sup e B F 1 y dŽ .Ý Ýj j sup R iv , AŽ .vgR v g Rjs1 js1

1
F 1 y d .Ž .

R l, AŽ .

� 4 Ž n ylh j .Therefore by Proposition 1.1, Re l ) 0 ; D A q Ý e B , and forjs1 j
all l g C with Re l ) 0 we have

n n1
yl h ylhj jR l, A q e B F R l, A 1 q e B R l, AŽ . Ž .Ý Ýj jž / ž /djs1 js1

1 y d 1
F R l, A 1 q s R l, A .Ž . Ž .ž /d d

� 4 Ž .Hence by Proposition 3.2, Re l ) 0 ; D AA and

n
yl h jR l, AA s E R l, A q e B H F q TŽ . Ýl j l lž /

js1

n1
1r p 1r q 5 5 5 5F R l, A 1 q h 1 q h 1 q B q TŽ . Ž . Ž . Ý j 0ž /d js1

5 Žfor all l g C with Re l ) 0; 1rp q 1rq s 1. Therefore, sup R l,Re l) 0
.5 Ž .AA - `, which implies s AA - 0.0

Ž . Ž .Note that by 2.1 in particular we have v AA - 0, which means that1
the semigroup TT is exponentially stable. This, in turn, implies that there

Ž . Ž . �Ž .exist M ) 0 and v ) 0 such that for all x, f g DD AA s x, f g X =
1, pŽw x . Ž . Ž .4W yh, 0 ; X : f 0 s x g DD A we have

yv tu t ; x , f F Me x , f .Ž . Ž . Ž .DD AA
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COROLLARY 3.4. Suppose p s 2 and X is isomorphic to Hilbert space. If
Ž .v A - 0 and0

n 1
iv h jsup e B - ,Ý j sup R iv , AŽ .vgR v g Rjs1

Ž .then v AA - 0.0

Ž .Another situation in which information about v AA may be obtained0
Ž .from s AA is described in the following proposition.0

PROPOSITION 3.5. If the semigroup generated by A is uniformly continuous
for t ) 0, then the semigroup generated by AA is uniformly continuous for
t ) h.

w x Ž .Proof. We proceed as in the proof of 15, Proposition 3.1 . For x, f g
XX we define

n

k s ; x , f [ B u s y h ; x , f , s G 0,Ž . Ž .Ý j j
js1

Ž . Ž .where u ?; x, f is the unique mild solution of DE with initialB , . . . , B1 n
Ž .value x, f . For t ) 0 set

t
Q x , f [ T t y s k s ; x , f ds, x , f g XX ,Ž . Ž . Ž . Ž .Ht

0

Ž xand for « g 0, t set

ty«
Q x , f [ T t y s k s ; x , f ds, x , f g XX .Ž . Ž . Ž . Ž .Ht , «

0

w xThe argument in 15 shows that there exist constants M ) 0 and N ) 0,t t
both increasing with t, such that

pk ?; x , f F M x , fŽ . Ž .Žw x .L 0, t ; X XXt

and

1 1
1r qQ x , f y Q x , f F « N x , f , q s 1.Ž . Ž . Ž . XXt , « t t p q
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5 Ž .5 XDefine K [ sup T s . Fix h q « F t F t F 2h q « . Then, forh s gw0, h x
w xall s g yh, 0 ,

Xu t q s ; x , f y u t q s ; x , fŽ . Ž .
XF T t q s x y T t q s xŽ . Ž .

Xt qs Xq T t q s y s k s ; x , f dsŽ . Ž .H
tqs

tqs Xq T t q s y s y T t q s y s k s ; x , f dsŽ . Ž . Ž .Ž .H
tqsy«

tqsy« Xq T t q s y s y T t q s y s k s ; x , f dsŽ . Ž . Ž .Ž .H
0

XF T t q s y T t q s x , fŽ . Ž . Ž . XX

1rqXq t y t N x , fŽ . Ž . XX2 hq«

1rq1r qq K q 1 « N x , f q 2h M x , fŽ . Ž . Ž . Ž .XX XXh 2 hq« 2 h

X= sup T t q s y s y T t q s y s .Ž . Ž .
w xsg 0, tqsy«

It follows that

Xlim sup sup sup u t q s ; x , f y u t q s ; x , fŽ . Ž .ž /Xt x t w xŽ . sg yh , 0x , f F1XX

F K q 1 « 1r qN ,Ž .h 2 hq«

and therefore,

X plim sup sup u x , f y u x , fŽ . Ž . Žw x .L yh , 0 ; Xt tž /Xt x t Ž .x , f F1XX

F K q 1 « 1r qh1r pN .Ž .h 2 hq«

It follows that

X 1r q 1r plim sup TT t y TT t F K q 1 « 1 q h N .Ž . Ž . Ž . Ž .h 2 hq«
Xt x t

Since the choice of « ) 0 was arbitrary and N decreases with « , this2 hq«
X5 Ž . Ž .5Xproves that lim TT t y TT t s 0.t x t
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COROLLARY 3.6. Assume that A generates a uniformly exponentially
stable C -semigroup that is uniformly continuous for t ) 0. If0

n 1
iv h j5 5sup e B - ,Ý j sup R iv , AŽ .vgR v g Rjs1

Ž .then v AA - 0, i.e., TT is uniformly exponentially stable.0

We now consider the case n s 1 in more detail and return to the
notation TT and AA to denote the semigroup on XX and its generatorB B
governing the solutions of the problem

u t s Au t q Bu t y h , t G 0,Ž . Ž . Ž .˙
u 0 s x ,Ž .

wu t s f t , t g yh , 0 .Ž . Ž . .

Ž . ŽAssuming that s AA - 0 AA being the generator AA corresponding to0 0 0 B
.the zero operator B s 0 , we define

5 5r AA [ sup r G 0: s AA - 0 for all B g LL X with B F r .� 4Ž . Ž . Ž .s 0 0 B0

With this notation, the case n s 1 of Theorem 3.3 says that

1
r AA G .Ž .s 00 sup R iv , AŽ .v g R

In fact, we have the following more precise result.

Ž .THEOREM 3.7. If s A - 0, then0

1
r AA s r A; I , I s .Ž . Ž .s 0 s0 0 sup R iv , AŽ .v g R

Proof. It only remains to prove the inequality

1
r AA F .Ž .s 00 sup R iv , AŽ .v g R

Fix « ) 0 and choose v g R such that0

1 1
F q « .

R iv , A sup R iv , AŽ . Ž .0 v g R
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Ž Ž . . Ž .Define operators E g LL DD AA , X and D g LL X, XX by0

E x , f [ f yh , Dx [ x , 0 .Ž . Ž . Ž .

Using Proposition 3.2 it is easily verified that

ER iv , AA Dx s eyi v 0 hR iv , A x , x g X ,Ž . Ž .0 0 0

5 Ž . 5 5 Ž .5and therefore ER iv , AA D s R iv , A . By Theorem 1.2 there ex-0 0 0
Ž .ists B g LL X such that0

1
5 5B F q «0 ER iv , AA DŽ .0 0

and

iv g s AA q DB E .Ž .0 0 0

Ž .Noting that AA s AA q DB E, this means that iv g s AA . ThereforeB 0 0 0 B0 0
� 4AA cannot have a uniformly bounded resolvent on Re l ) 0 . The esti-B0

mate

1 1
5 5B F q « s q «0 ER iv , AA D R iv , AŽ . Ž .0 0 0

1
F q 2«

sup R iv , AŽ .v g R

then shows that

1
r AA F q 2« .Ž .s 00 sup R iv , AŽ .v g R

In particular, if p s 2 and X is isomorphic to a Hilbert space, or if T is
uniformly continuous for t ) 0, it follows that

1
r AA s r A; I , I s ,Ž . Ž .v 0 v0 0 sup R iv , AŽ .v g R

Ž .where r AA is defined in the obvious way.v 00

For the generator A of a positive semigroup on a Banach lattice X we
Ž . Ž . Ž . Ž . Ž . Ž .have s A s v A s s A ; moreover, s A g s A whenever s A )1 0
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w xy` 16, Theorem C-III-1.1 . This will be used to prove the following
versions of Theorems 3.3 and 3.7:

THEOREM 3.3X. Let A generate a positï e C -semigroup on a Banach0
lattice X, and assume that the operators B are positï e, j s 1, . . . , n. Thenj

Ž .the semigroup TT is positï e. If s A - 0 andB , . . . , B 01 n

n 1
B - ,Ý j y15 5Ajs1

Ž .then s AA - 0.0 B , . . . , B1 n

Ž .Proof. It is an easy consequence of Proposition 3.2 that R l, AAB , . . . , B1 n

Ž .G 0 for sufficiently large real l. Then TT t G 0 for all t G 0 by theB , . . . , B1 nw xexponential formula 18, Theorem 1.8.3 .
5 Ž .5 5 Ž .5 Ž .Since R l, A F R Re l, A for all l g C with Re l ) s A , for
Ž .some d g 0, 1 and all l G 0 we have

n n 1 1
yl h je B F B F 1 y d F 1 y d .Ž . Ž .Ý Ýj j R 0, A R l, AŽ . Ž .js1 js1

w . Ž .Hence, 0, ` ; D AA by Propositions 1.1 and 3.2. Since AAB , . . . , B B , . . . , B1 n 1 n

generates a positive semigroup, this implies that

s AA s s AA - 0.Ž . Ž .0 B , . . . , B B , . . . , B1 n 1 n

If n s 1 we have

THEOREM 3.7X. Let A generate a positï e C -semigroup on a Banach0
Ž .lattice X with s A - 0. Then0

1
r AA s r A; I , I s .Ž . Ž .s 0 s y10 0 A

Ž . Ž . XThe identities r AA s r A; I, I in Theorems 3.7 and 3.7 can bes 0 s0 0

interpreted as saying that the stability radius for boundedness of the
Žresolvent for the delay problem is independent of the delay h and equals

to stability radius for boundedness of the resolvent for the undelay
.problem .

In the situation of Theorem 3.7X, if in addition B is assumed to be
Ž . Ž . Ž .positive, then we further have s A q B s v A q B and s AA s0 1 0 B
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Ž .v AA , so that we can reformulate this observation in terms of exponen-1 B
Žw x .tial stability of the semigroups involved. In the state space C yh, 0 ; X

Ž w xthis is a well known phenomenon cf. 16, Corollary B-IV-3.10 , where
.different methods are used . For further results on the stability of delay

Žw x . w xequations in C yh, 0 ; X , the reader might consult 10, 11, 20 .
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