Robust Stability of C_0 -Semigroups and an Application to Stability of Delay Equations

A. Fischer*

Institute for Dynamical Systems, University of Bremen, D-28334 Bremen, Germany

CORE Metadata, citation and similar papers at core.uk

ed by Elsevier - Publisher Connector

J. M. A. M. van Neerven†‡

Department of Mathematics, Delft University of Technology, 2600 GA Delft, *The Netherlands*

Submitted by G. F. Webb

Received October 14, 1997

Let *A* be a closed linear operator on a complex Banach space *X* and let $\lambda \in \mathcal{Q}(A)$ be a fixed element of the resolvent set of *A*. Let *U* and *Y* be Banach spaces, and let $D \in \mathcal{L}(U, X)$ and $E \in \mathcal{L}(X, Y)$ be bounded linear operators. We define $r_{\lambda}(A; D, E)$ by

 $\sup \{ r \geq 0 : \lambda \in \varrho(A + D \Delta E) \text{ for all } \Delta \in \mathcal{L}(Y, U) \text{ with } ||\Delta|| \leq r \}$

and prove that

$$
r_{\lambda}(A; D, E) = \frac{1}{\| ER(\lambda, A)D\|}.
$$

We give two applications of this result. The first is an exact formula for the so-called stability radius of the generator of a C_0 -semigroup of linear operators on a Hilbert space; it is derived from a precise result about robustness under perturbations of uniform boundedness in the right half-plane of the resolvent of an arbitrary semigroup generator. The second application gives sufficient conditions on the norm of the operators $B_i \in \mathcal{L}(X)$ such that the classical solutions of the delay equation

$$
\dot{u}(t) = Au(t) + \sum_{j=1}^{n} B_j u(t-h_j), \qquad t \ge 0,
$$

are exponentially stable in $L^p([-h, 0]; X)$. \otimes 1998 Academic Press

* E-mail: af@mathematik.uni-bremen.de

† This research has been made possible by a fellowship of the Royal Netherlands Academy of Arts and Sciences.

‡ E-mail: neerven@twi.tudelft.nl

Key Words: perturbation; stability radius, robust stability; infinite-dimensional linear systems; stability of delay equations; functional differential equations

0. INTRODUCTION

In this paper we investigate the robustness of certain properties of a closed linear operator *A* on a Banach space *X* under small additive perturbations. Some ''structure'' in the perturbation will be allowed, in the following sense: we fix Banach spaces U and Y and two operators $D \in$ $\mathscr{L}(U, X)$ and $E \in \mathscr{L}(X, Y)$ (or even $E \in \mathscr{L}(\mathscr{D}(A), Y)$), and consider perturbations of the form $D \Delta E$, with $\Delta \in \mathcal{L}(Y, U)$. The question we address is the following.

If A has a certain property (P) , what is the supremum of all $r \geq 0$ with the following property: for all bounded linear operators $\Delta \in \mathscr{L}(Y, U)$ with norm $\|\Delta\| \leq r$, the perturbed operator $A + D \Delta E$ has property (P) as well.

Among the properties we consider are the following: containment of a given complex number $\lambda \in \mathbb{C}$ in the resolvent set of the operator, containment of a given set $\Omega \subset \mathbb{C}$ in the resolvent set, and uniform boundedness of the resolvent on $\Omega.$ For these properties we give a precise answer to the above question in terms of the so-called *transfer function* $\lambda \mapsto ER(\lambda, A)D$, where $R(\lambda, A) := (\lambda - A)^{-1}$ is the resolvent of *A*.

In two subsequent sections, we give two applications of the abstract results of [Section 1.](#page-2-0) In [Section 2](#page-4-0) we prove some new results on robust stability. Among others, we obtain an exact formula for the stability radius for generators of Hilbert space semigroups. In [Section 3](#page-9-0) we study the delay equation

$$
\dot{u}(t) = Au(t) + \sum_{j=1}^n B_j u(t-h_j), \qquad t \ge 0,
$$

where *A* is the generator of a C_0 -semigroup on a Banach space *X*. Regarding the bounded operators B_j as a perturbation of an appropriate Cauchy problem corresponding to the absence of delays, we obtain sufficient conditions on A and B_j for exponential stability of classical solutions.

1. THE ABSTRACT PERTURBATION RESULTS

Throughout this section, *X*, *U*, and *Y* are fixed complex Banach spaces, *A* is a closed linear operator on *X* with domain $\mathscr{D}(A)$, and $D \in \mathscr{L}(U, X)$ and $E \in \mathcal{L}(\mathcal{D}(A), Y)$ are bounded linear operators; we regard $\mathcal{D}(A)$ as a Banach space with respect to the graph norm $\|\cdot\|_{\mathscr{B}(A)}$.

PROPOSITION 1. *Let A be a closed linear operator on X and suppose* $\lambda \in \rho(A)$. If $\Delta \in \mathcal{L}(Y, U)$ satisfies

$$
\|\Delta\| \le (1 - \delta) \frac{1}{\|ER(\lambda, A)D\|} \tag{1.1}
$$

for some $\delta \in (0, 1)$ *, then* $\lambda \in \rho(A + D \Delta E)$ *, and*

$$
\|R(\lambda, A + D \Delta E)\| \leq \|R(\lambda, A)\| \bigg(1 + \frac{1}{\delta} \|D\| \|\Delta E R(\lambda, A)\|\bigg).
$$

Proof. Fix $\lambda \in \rho(A)$. From $\|\Delta ER(\lambda, A)D\| \leq 1 - \delta$ we see that $I \Delta E R(\lambda, A)D$ is invertible. Using the Neumann series we estimate

$$
\left\|(I-\Delta ER(\lambda,A)D)^{-1}\right\|\leq \sum_{n=0}^{\infty}(1-\delta)^n=\frac{1}{\delta}.
$$

It follows that $I - D \Delta E R(\lambda, A)$ is invertible as well, and its inverse is given by

$$
(I - D \Delta ER(\lambda, A))^{-1} = I + D(I - \Delta ER(\lambda, A)D)^{-1} \Delta ER(\lambda, A).
$$

By the above estimate,

П

$$
\left\| \left(I - D \Delta ER(\lambda, A) \right)^{-1} \right\| \leq 1 + \frac{1}{\delta} \|D\| \|\Delta ER(\lambda, A) \|.
$$

From the identity $\lambda - A - D \Delta E = (I - D \Delta E R(\lambda, A))(\lambda - A)$ we see that $\lambda - A - D \Delta E$ is closed, being the composition of a closed operator and a bounded invertible operator. It also shows that $\lambda - A - D \Delta E$ maps $\mathscr{D}(A)$ injectively onto *X*. Hence, the inverse mapping $(\lambda - A - D \Delta E)^{-1}$ is well defined on X , and being the inverse of a closed operator, it is closed. Hence by the closed graph theorem, $(\lambda - A - D \Delta E)^{-1}$ is bounded, which means that $\lambda \in \rho(A + D \Delta E)$. By the previous estimate, we obtain

$$
\|R(\lambda, A + D \Delta E)\| = \|R(\lambda, A)(I - D \Delta E R(\lambda, A))^{-1}\|
$$

\$\leq \|R(\lambda, A)\| \left(1 + \frac{1}{\delta} \|D\| \|\Delta E R(\lambda, A)\| \right).

This result shows that the property " $\lambda \in \rho(A)$ " is stable under small perturbations. Next we show that the bound (1.1) is actually the best possible. To this end, for $\lambda \in \rho(A)$ we introduce the quantity

$$
r_{\lambda}(A; D, E) := \sup\{r \ge 0: \quad \lambda \in \varrho(A + D \Delta E) \text{ for all }
$$

$$
\Delta \in \mathscr{L}(Y, U) \text{ with } ||\Delta|| \le r\}.
$$

THEOREM 1.2. *Let A be a closed linear operator on X*. *Then for all* $\lambda \in o(A)$ we have

$$
r_{\lambda}(A; D, E) = \frac{1}{\| ER(\lambda, A)D\|}.
$$

Proof. If $0 \le r < ||ER(\lambda, A)D||^{-1}$ and $||\Delta|| \le r$, then $\lambda \in \varrho(A +$ $D \Delta E$) by Proposition 1.1. Hence, $r_{\lambda}(A; D, E) \geq ||ER(\lambda, A)D||^{-1}$. To prove the converse inequality, let us fix $\varepsilon > 0$. Choose $u \in U$, $||u|| = 1$, such that

$$
\frac{1}{\|ER(\lambda,A)Du\|} \leq \frac{1}{\|ER(\lambda,A)D\|} + \varepsilon.
$$

By the Hahn-Banach theorem we may choose $y^* \in Y^*$, $||y^*|| = 1$, such that

$$
\left\langle \frac{ER(\lambda, A)Du}{\|ER(\lambda, A)Du\|}, y^*\right\rangle = 1.
$$

Define $\Delta \in \mathcal{L}(Y, U)$ by

$$
\Delta y := \frac{\langle y, y^* \rangle u}{\| ER(\lambda, A)Du\|}, \quad y \in Y.
$$

Then $\Delta ER(\lambda, A)Du = u$ and

$$
\|\Delta\| \leq \frac{1}{\|ER(\lambda,A)D\|} + \varepsilon.
$$

Set $v := R(\lambda, A)Du$. Then $\Delta Ev = u \neq 0$, so $v \neq 0$, and

 $(\lambda - A - D \Delta E)v = Du - D \Delta E R(\lambda, A) Du = Du - Du = 0.$

This shows that $\lambda - A - D \Delta E$ is not injective, which implies $\lambda \in \sigma(A + A)$ $D \Delta E$.

We remark that the proofs of Proposition 1.1 and Theorem 1.2 are based entirely on techniques in a paper of Latushkin, Montgomery-Smith, and Randolph [13], where they are used to obtain the two-sided bounds (2.4) below for robust stability.

For a subset $\Omega \subset \rho(A)$ we define

$$
r_{\Omega}(A; D, E) := \sup \{ r \ge 0 : \quad \Omega \subset \varrho(A + D \Delta E) \text{ for all } \\\Delta \in \mathcal{L}(Y, U) \text{ with } ||\Delta|| \le r \}.
$$

We then have the following straightforward generalization of Theorem 1.2:

COROLLARY 1.3. Let A be a closed linear operator on X. If $\Omega \subset \rho(A)$, *then*

$$
r_{\Omega}(A; D, E) = \inf_{\lambda \in \Omega} \frac{1}{\| ER(\lambda, A)D\|}.
$$

We may also impose uniform boundedness of the resolvent on the set Ω by defining, for a subset $\Omega \subset \rho(A)$ such that $\sup_{\lambda \in \Omega} ||R(\lambda, A)|| < \infty$,

$$
r_{\Omega}^{\infty}(A; D, E) \coloneqq \sup \Bigl\{ r \ge 0 \colon \ \Omega \subset \varrho(A + D \Delta E) \text{ and}
$$

$$
\sup_{\lambda \in \Omega} \Vert R(\lambda, A + D \Delta E) \Vert < \infty \text{ for all } \Delta \in \mathcal{L}(Y, U) \text{ with } \Vert \Delta \Vert \le r \Bigr\}.
$$

COROLLARY 1.4. *Let A be a closed linear operator on X and assume that E* extends to a bounded operator from X into Y. If $\Omega \subset \rho(A)$ with $\sup_{\lambda \in \Omega}$ $\|R(\lambda, A)\| < \infty$, *then*

$$
r_{\Omega}^{\infty}(A; D, E) = \frac{1}{\sup_{\lambda \in \Omega} \Vert ER(\lambda, A)D \Vert}.
$$

Proof. It is clear from the definition that $r_{\Omega}^*(A; D, E) \le r_{\Omega}(A; D, E)$ E). Hence by Corollary 1.3 we only need to prove the inequality $r_{\Omega}^{\infty}(A)$; D, E) $\geq \inf_{\lambda \in \Omega} |ER(\lambda, A)D||^{-1}$. But this inequality follows immediately from Proposition 1.1, since $\|\Delta E R(\lambda, A)\| \leq \|\Delta E\| \|R(\lambda, A)\|$ and $\sup_{\lambda \in \Omega}$ $\|R(\lambda, A)\| < \infty$.

2. APPLICATION TO ROBUST STABILITY OF C_0 -SEMIGROUPS

Throughout this section we fix complex Banach spaces *X*, *U*, and *Y*, and bounded linear operators $D \in \mathcal{L}(U, X)$ and $E \in \mathcal{L}(X, Y)$. We further consider a C_0 -semigroup **T** = { $T(t)$ }_{*t* ≥ 0} of bounded linear operators on *X*, and denote by *A* its generator. Our terminology concerning semigroups is standard; for more information we refer to $[16]$ and $[18]$.

In this section and the next we will be concerned with the behavior under small perturbations of the following four quantities (see [17, Chap. 1 $\left| \right\rangle$:

- The *spectral bound* $s(A) = \sup \{ \text{Re } \lambda : \lambda \in \sigma(A) \}$
- The *abscissa of uniform boundedness* $s_0(A)$ of the resolvent of A,

$$
s_0(A) := \inf \Big\{ \omega \in \mathbb{R} \colon \{ \text{Re } \lambda > \omega \} \subset \varrho(A) \text{ and } \sup_{\text{Re } \lambda > \omega} \| R(\lambda, A) \| < \infty \Big\}
$$

• The *growth bound* $\omega_1(A)$,

 $\omega_1(A) := \inf \{ \omega \in \mathbb{R} : \text{there exists } M > 0 \text{ such that } \Omega \subset \mathbb{R} \}$

$$
||T(t)x|| \le Me^{\omega t}||x||_{\mathscr{D}(A)}
$$
 for all $x \in \mathscr{D}(A)$ and $t \ge 0$

• The *uniform growth bound* $\omega_0(A)$,

 $\omega_0(A) := \inf \{ \omega \in \mathbb{R} : \text{there exists } M > 0 \text{ such that }$

$$
||T(t)|| \le Me^{\omega t} \text{ for all } t \ge 0.
$$

It is well known $[17, Sect. 1.2, 4.1]$ that

$$
-\infty \leq s(A) \leq \omega_1(A) \leq s_0(A) \leq \omega_0(A) < \infty. \tag{2.1}
$$

If $\omega_0(A) < 0$ (resp. $\omega_1(A) < 0$), then **T** is said to be *uniformly exponentially stable* (resp. *exponentially stable*). Below we will use the following simple fact concerning $s_0(A)$: if $\{Re \lambda > 0\} \subset \rho(A)$ and $\sup_{Re \lambda > 0} ||R(\lambda, \lambda)|$ *A*) $\| \lt \infty$, then $s_0(A) \lt 0$; see [17, Lemma 2.3.4].

We start by studying the behavior of the abscissa of uniform boundedness under small additive perturbations. To this end, for a semigroup with $s_0(A)$ < 0 we define

$$
r_{s_0}(A; D, E) := \sup\{r \ge 0: s_0(A + D \Delta E) < 0 \text{ for all } \Delta \in \mathcal{L}(Y, U) \text{ with } \|\Delta\| \le r\}.
$$

Recalling that the suprema along vertical lines Re $\lambda = c$ of a bounded holomorphic *X*-valued function on {Re $\lambda > 0$ } decrease as *c* increases, an application of Corollary 1.4 to $\Omega = \{ \text{Re } \lambda > 0 \}$ shows the following:

THEOREM 2.1. Suppose A is the generator of a C_0 -semigroup on X. If $s_0(A) < 0$, *then*

$$
r_{s_0}(A; D, E) = \frac{1}{\sup_{\omega \in \mathbb{R}} \|ER(i\omega, A)D\|}.
$$

For a uniformly exponentially stable C_0 -semigroup we now define

$$
r_{\omega_0}(A; D, E) := \sup \{ r \ge 0: \quad \omega_0(A + D \Delta E) < 0 \text{ for all } \}
$$
\n
$$
\Delta \in \mathcal{L}(Y, U) \text{ with } ||\Delta|| \le r \}.
$$

It is a well-known theorem of Gearhart $[4]$ (cf. $[17]$, Corollary 2.2.5) that for C_0 -semigroups on a Hilbert space, the abscissa of uniform boundedness of the resolvent and the uniform growth bound always coincide. Hence if X is isomorphic to a Hilbert space. Theorem 2.1 assumes the following form:

COROLLARY 2.2. *Suppose A is the generator of a C*₀-*semigroup on X*. If X *is isomorphic to a Hilbert space, and if* $\omega_0(A) < 0$, *then*

$$
r_{\omega_0}(A; D, E) = \frac{1}{\sup_{\omega \in \mathbb{R}} \|ER(i\omega, A)D\|}.
$$

Remark. It is not assumed that *U* and *Y* are isomorphic to Hilbert spaces.

The quantity $r_{\omega_0}(A; D, E)$ is called the *stability radius* of *A* with respect to the "perturbation structure" (D, E) and was introduced, in the finite-dimensional setting, by Hinrichsen and Pritchard [5]; see also their survey paper [6]. To state some known results about the stability radius, for $p \in [1, \infty)$ we define the *input*-output operator $\mathbb{L}_p(A; D, E) \in \mathcal{L}(L^p(\mathbb{R}_+;$ U), $L^p(\mathbb{R}_+; Y)$ by

$$
\mathbb{L}_p(A;D,E)f(s) := E\int_0^s T(s-t)Df(t) dt \qquad s \ge 0, \quad f \in L^p(\mathbb{R}_+;U).
$$

This operator is easily seen to be bounded if $\omega_0(A) < 0$; conversely, if $U = Y = X$, then boundedness of $\mathbb{L}_n(A; I, I)$ implies $\omega_0(A) < 0$ [17, Theorem 3.3.1]. The following results are well known:

^v If *X*, *U*, and *Y* are finite-dimensional, then

$$
r_{\omega_0}(A; D, E) = \frac{1}{\sup_{\omega \in \mathbb{R}} \|ER(i\omega, A)D\|}.
$$
 (2.2)

^v If *X* is a Banach space, and *U* and *Y* are Hilbert spaces, then

$$
\frac{1}{\|\mathbb{L}_{2}(A; D, E)\|} = r_{\omega_0}(A; D, E) = \frac{1}{\sup_{\omega \in \mathbb{R}} \|ER(i\omega, A)D\|}. (2.3)
$$

• If *X*, *U*, and *Y* are arbitrary Banach spaces, then for all $p \in [1, \infty)$,

$$
\frac{1}{\left\|\mathbb{L}_{p}(A; D, E)\right\|} \leq r_{\omega_0}(A; D, E) \leq \frac{1}{\sup_{\omega \in \mathbb{R}} \|ER(i\omega, A)D\|}. \tag{2.4}
$$

The identities (2.2) and (2.3) are due to Hinrichsen and Pritchard $[6]$ and Pritchard and Townley [19] (where a more general setup is considered), respectively. Notice that in some sense our Corollary 2.2 complements the $\frac{1}{2}$ second identity in (2.3) .

The inequalities (2.4) were obtained by Latushkin, Montgomery-Smith, and Randolph [13] by using the theory of evolutionary semigroups; this further enabled them to extend certain results on time-varying systems due
to Hinrichsen and Pritchard [7]. They also showed that the inequality between the first and third terms in (2.4) may be strict. More results on the time-varying case may be found in $[2]$.

In the case of positive semigroups, Theorem 2.1 and Corollary 2.2 simplify somewhat:

COROLLARY 2.3. *If X*, *U*, and *Y* are Banach lattices, $D \in \mathcal{L}(U, X)$ and $E \in \mathcal{L}(X, Y)$ are positive, and A is the generator of a positive C_0 -semigroup *on X* with $s_0(A) < 0$, then

$$
r_{s_0}(A; D, E) = \frac{1}{\|EA^{-1}D\|}.
$$

If, *in addition*, *X is isomorphic to a Hilbert space*, *then the same result holds for the uniform growth bound*.

Proof. From

$$
|ER(i\omega,A)Du| \leq E|R(i\omega,A)|D|u| \leq ER(0,A)D|u|
$$

[[16,](#page-18-0) Corollary C-III-1.3] it follows that $\|ER(i\omega, A)D\| \leq \|ER(0, A)D\|$ = $||EA^{-1}D||$ for all $\omega \in \mathbb{R}$. Accordingly, the supremum in the expressions in Theorem 2.1 and Corollary 2.2 is taken for $\omega = 0$.

For a detailed treatment of the theory of positive semigroups we refer to $[16]$.

The next application is concerned with semigroups that are uniformly continuous for $t > 0$. First we recall that if A is the generator of a *C*₀-semigroup that is uniformly continuous for $t > t_0$ for some $t_0 \ge 0$, then the spectral mapping theorem

$$
\sigma(T(t))\setminus\{0\}=\exp(t\sigma(A))\setminus\{0\}
$$

holds for all $t \ge 0$ [16, Theorem A-III-6.6], [17, Theorem 2.3.2]. In particular, this implies that $s(A) = s_0(A) = \omega_0(A)$. We will combine Theorem 2.1 with the following simple observation $[16,$ Theorem A-II-1.30], the proof of which is included for the reader's convenience.

LEMMA 2.4. If A is the generator of a C_0 -semigroup **T** on X that is *uniformly continuous for* $t > 0$, *and if B is a bounded linear operator on* X, *then the semigroup generated by* $A + B$ *is uniformly continuous for t* > 0.

Proof. Let $S = \{S(t)\}_{t>0}$ denote the semigroup generated by $A + B$. Put $V_0(t) = T(t)$, $t \ge 0$, and define the operators $V_n(t)$ inductively by

$$
V_{n+1}(t)x := \int_0^t T(t-s)BV_n(s)x ds, \qquad n \in \mathbb{N}, \quad x \in X, \quad t \ge 0.
$$

As is well known [18, Section 3.1], if $||T(t)|| \le Me^{\omega t}$ for all $t \ge 0$, then

$$
||V_n(t)|| \le Me^{\omega t} \frac{M^n ||B||^n t^n}{n!}, \qquad n \in \mathbb{N}, \quad t \ge 0,
$$

and

$$
S(t) = \sum_{n=0}^{\infty} V_n(t), \qquad t \geq 0,
$$

the convergence being uniform on compact subsets of $[0, \infty)$. Fix $n \geq 0$ and positive real numbers $0 < \varepsilon < \delta_0 < \delta_1 < \infty$. For $\delta_0 \le t \le t' \le \delta_1$, from

$$
V_{n+1}(t')x - V_{n+1}(t)x = \int_{t}^{t'} T(t'-s)BV_n(s)x ds
$$

+
$$
\int_{0}^{t} (T(t'-s) - T(t-s))BV_n(s)x ds
$$

we obtain, by splitting the second integral as $\int_0^t = \int_{t-\varepsilon}^t + \int_0^{t-\varepsilon}$,

$$
\|V_{n+1}(t') - V_{n+1}(t)\|
$$

\n
$$
\leq C_n \Big((t'-t) + \varepsilon + \sup_{s \in [0, t-\varepsilon]} \|T(t'-s) - T(t-s)\|\Big),
$$

where C_n is a finite constant depending on *M*, ω , ||B||, δ_0 , δ_1 , and *n* only. It follows that

$$
\limsup_{t'\downarrow t} \|V_{n+1}(t') - V_{n+1}(t)\| \leq C_n \varepsilon,
$$

and since ε can be taken arbitrarily small, we see that $V_{n+1}(\cdot)$ is uniformly continuous for $t > 0$. Therefore the same is true for *S* $(·)$.

COROLLARY 2.5. *Suppose A is the generator of a uniformly exponentially stable* C_0 -*semigroup on X that is uniformly continuous for t* > 0. *Then*

$$
r_{\omega_0}(A; D, E) = \frac{1}{\sup_{\omega \in \mathbb{R}} \|ER(i\omega, A)D\|}.
$$

This result applies to compact semigroups, differentiable semigroups, and analytic semigroups, since each of these is uniformly continuous for $t > 0$.

3. DELAY EQUATIONS IN $L^p([-h, 0]; X)$

Throughout this section, we fix a C_0 -semigroup **T** with generator A on a complex Banach space *X*. We also fix $p \in [1, \infty)$ and nonnegative real numbers $0 \leq h_1 < \cdots < h_n = h$.

Given bounded linear operators B_1, \ldots, B_n on *X*, we will study the delay equation

$$
\dot{u}(t) = Au(t) + \sum_{j=1}^{n} B_j u(t - h_j), \qquad t \ge 0,
$$

\n
$$
(DE_{B_1,...,B_n}) \quad u(0) = x,
$$

\n
$$
u(t) = f(t), \qquad t \in [-h, 0).
$$

Here, $x \in X$ is the initial value and $f \in L^p([-h, 0]; X)$ is the "history" function. This equation has been investigated by Nakagiri [14, 15]; see also $[1, 3, 8, 9, 12, 21]$ $[1, 3, 8, 9, 12, 21]$ $[1, 3, 8, 9, 12, 21]$ for related studies.

A *mild solution* of $(DE_{B_1,..., B_n})$ is a function $u(\cdot; x, f) \in L_{loc}^p([-h, \infty); X)$ satisfying

$$
u(t; x, f) = \begin{cases} T(t)x + \int_0^t T(t-s)\sum_{j=1}^n B_j u(s-h_j; x, f) ds, & t \ge 0, \\ f(t), & t \in [-h, 0). \end{cases}
$$

It follows form [14, Theorem 2.1] that for all $x \in X$ and $f \in L^p([-h, 0]; X)$ a unique mild solution $u(\cdot; x, f)$ exists; this solution is continuous on $[0, \infty)$ and exponentially bounded. To study the asymptotic behavior of these solutions by semigroup methods, we introduce the product space $\mathcal{X} = X \times$ $L^p([-h, 0]; X)$ and define bounded linear operators $\mathcal{T}_{B_1,...,B_n}(t)$ on $\mathcal X$ as follows. Given a function $u \in L_{loc}^p([-h, \infty); X)$, for each $t \ge 0$ we define $u_t \in L^p([-h, 0]; X)$ by $u_t(s) := u(t + s)$, $s \in [-h, 0]$. Denoting the uniq mild solution of (DE_{B_1, \ldots, B_n}) by $u(\cdot; x, f)$, we now define

$$
\mathcal{T}_{B_1,\ldots,B_n}(t)(x,f):=(u(t;x,f),u_t(\cdot;x,f)),\qquad t\geq 0.
$$

By $[15,$ Proposition 3.1 we have

PROPOSITION 3.1. *The family* $\mathcal{T}_{B_1,\ldots,B_n} = {\{\mathcal{T}_{B_1,\ldots,B_n}(t)\}}_{t\geq 0}$ *defines a* C_0 *semigroup of linear operators on* \mathcal{X} . Its generator \mathcal{A}_{B} , B *is given by*

$$
\mathscr{D}(\mathscr{A}_{B_1,\ldots,B_n})
$$
\n
$$
= \{(x,f) \in \mathscr{X}: f \in W^{1,p}([h,0];X), f(0) = x \in \mathscr{D}(A)\},
$$
\n
$$
\mathscr{A}_{B_1,\ldots,B_n}(x,f) = \left(Ax + \sum_{j=1}^n B_j f(-h_j), f'\right), \quad (x,f) \in \mathscr{D}(\mathscr{A}_{B_1,\ldots,B_n}).
$$

Here $W^{1, p}([-h, 0]; X)$ is the space of absolutely continuous X-valued functions *f* on $[-h, 0]$ that are strongly differentiable a.e. with derivative $f' \in L^p([-h, 0]; X)$.

Whenever the operators B_1, \ldots, B_n are understood, we will drop them from the notation and simply write *T* and *A*.

The spectrum and resolvent of $\mathcal A$ are described by [15, Theorem 6.1] as follows.

PROPOSITION 3.2. We have $\lambda \in \mathcal{Q}(A)$ if and only if $\lambda \in \mathcal{Q}(A +$ $\sum_{i=1}^{n} e^{-\lambda h_i} B_i$. *In this case the resolvent of A is given by*

$$
R(\lambda, \mathscr{A}) = E_{\lambda} R\left(\lambda, A + \sum_{j=1}^{n} e^{-\lambda h_{j}} B_{j}\right) H_{\lambda} F + T_{\lambda},
$$

where $E_{\lambda} \in \mathcal{L}(X, \mathcal{X})$, $H_{\lambda} \in \mathcal{L}(\mathcal{X}, X)$, $F \in \mathcal{L}(\mathcal{X}, \mathcal{X})$, and $T_{\lambda} \in \mathcal{L}(\mathcal{X}, \mathcal{X})$ are *defined by*

$$
E_{\lambda}x:=\left(x,e^{\lambda x}\right);
$$

$$
H_{\lambda}(x, f) := x + \int_{-h}^{0} e^{\lambda s} f(s) ds;
$$

$$
F(x, f) := \left(x, \sum_{j=1}^{n} \chi_{[-h_j, 0]}(\cdot) B_j f(-h_j - \cdot)\right);
$$

$$
T_{\lambda}(x, f) := \left(0, \int_{-\cdot}^{0} e^{\lambda(\cdot - \xi)} f(\xi) d\xi\right).
$$

Our first result relates the abscissa $s_0(\mathscr{A})$ to $s_0(A)$:

THEOREM 3.3. *Assume that* $s(A) < 0$. If

$$
\sup_{\omega\in\mathbb{R}}\left\|\sum_{j=1}^n e^{i\omega h_j}B_j\right\|<\frac{1}{\sup_{\omega\in\mathbb{R}}\|R(i\omega,A)\|},
$$

then $s_0(\mathcal{A}) < 0$.

Proof. Choose $\delta \in (0, 1)$ such that

$$
\sup_{\omega\in\mathbb{R}}\left\|\sum_{j=1}^n e^{i\omega h_j}B_j\right\|\leq (1-\delta)\frac{1}{\sup_{\omega\in\mathbb{R}}\|R(i\omega,A)\|}.
$$

Recalling that the suprema along vertical lines $\text{Re }\lambda = c$ of bounded analytic functions decrease as *c* increases, for all $\lambda \in \mathbb{C}$ with Re $\lambda > 0$ we have

$$
\left\| \sum_{j=1}^{n} e^{-\lambda h_j} B_j \right\| \le \sup_{\omega \in \mathbb{R}} \left\| \sum_{j=1}^{n} e^{i\omega h_j} B_j \right\| \le (1 - \delta) \frac{1}{\sup_{\omega \in \mathbb{R}} \| R(i\omega, A) \|}
$$

$$
\le (1 - \delta) \frac{1}{\| R(\lambda, A) \|}.
$$

Therefore by Proposition 1.1, $\{ \text{Re } \lambda > 0 \} \subset \varrho(A + \sum_{j=1}^{n} e^{-\lambda h_j} B_j)$, and for all $\lambda \in \mathbb{C}$ with Re $\lambda > 0$ we have

$$
\left\| R\left(\lambda, A + \sum_{j=1}^{n} e^{-\lambda h_j} B_j \right) \right\| \leq \left\| R(\lambda, A) \right\| \left(1 + \frac{1}{\delta} \left\| \sum_{j=1}^{n} e^{-\lambda h_j} B_j R(\lambda, A) \right\| \right)
$$

$$
\leq \left\| R(\lambda, A) \right\| \left(1 + \frac{1 - \delta}{\delta} \right) = \frac{1}{\delta} \left\| R(\lambda, A) \right\|.
$$

Hence by Proposition 3.2, ${Re \lambda > 0} \subset \rho(\mathcal{A})$ and

$$
\|R(\lambda, \mathscr{A})\| = \left\| E_{\lambda} R\left(\lambda, A + \sum_{j=1}^{n} e^{-\lambda h_j} B_j \right) H_{\lambda} F + T_{\lambda} \right\|
$$

$$
\leq \frac{1}{\delta} \|R(\lambda, A)\|(1 + h^{1/p})(1 + h^{1/q})\left(1 + \sum_{j=1}^{n} \|B_j\|\right) + \|T_0\|
$$

for all $\lambda \in \mathbb{C}$ with Re $\lambda > 0$; $1/p + 1/q = 1$. Therefore, $\sup_{Re \lambda > 0} ||R(\lambda, \lambda)||$ \mathscr{A}) $| \langle \infty, \text{ which implies } s_0(\mathscr{A}) \rangle \leq 0.$

Note that by (2.1) in particular we have $\omega_1(\mathscr{A}) < 0$, which means that the semigroup $\mathscr F$ is exponentially stable. This, in turn, implies that there exist $M > 0$ and $\omega > 0$ such that for all $(x, f) \in \mathcal{D}(\mathcal{A}) = \{(x, f) \in X \times$ $W^{1, p}([-h, 0]; X)$; $f(0) = x \in \mathcal{D}(A)$ } we have

$$
||u(t; x, f)|| \le Me^{-\omega t} ||(x, f)||_{\mathscr{D}(\mathscr{A})}.
$$

COROLLARY 3.4. *Suppose p* = 2 *and X is isomorphic to Hilbert space. If* $\omega_0(A) < 0$ and

$$
\sup_{\omega\in\mathbb{R}}\left\|\sum_{j=1}^n e^{i\omega h_j}B_j\right\|<\frac{1}{\sup_{\omega\in\mathbb{R}}\|R(i\omega,A)\|},
$$

then $\omega_0(\mathcal{A}) < 0$.

Another situation in which information about $\omega_0(\mathcal{A})$ may be obtained from $s_0(\mathscr{A})$ is described in the following proposition.

PROPOSITION 3.5. *If the semigroup generated by A is uniformly continuous for t* > 0 , *then the semigroup generated by* $\mathcal A$ *is uniformly continuous for* $t > h$.

Proof. We proceed as in the proof of [15, Proposition 3.1]. For $(x, f) \in$ *X* we define

$$
k(s; x, f) := \sum_{j=1}^{n} B_j u(s - h_j; x, f), \qquad s \ge 0,
$$

where $u(\cdot; x, f)$ is the unique mild solution of $(DE_{B_1,...,B_n})$ with initial value (x, f) . For $t > 0$ set

$$
Q_t(x,f) := \int_0^t T(t-s)k(s;x,f)\,ds, \qquad (x,f) \in \mathcal{X},
$$

and for $\varepsilon \in (0, t]$ set

 \mathbb{R}^2

$$
Q_{t,s}(x,f):=\int_0^{t-s}T(t-s)k(s;x,f)\,ds,\qquad(x,f)\in\mathscr{X}.
$$

The argument in [15] shows that there exist constants $M_t > 0$ and $N_t > 0$, both increasing with *t*, such that

$$
||k(\cdot; x, f)||_{L^p([0, t]; X)} \leq M_t ||(x, f)||_{\mathcal{X}}
$$

and

$$
\|\mathcal{Q}_{t,\,\varepsilon}(x,f)-\mathcal{Q}_t(x,f)\|\leq \varepsilon^{1/q}N_t\|(x,f)\|_{\mathscr{Z}},\qquad \frac{1}{p}+\frac{1}{q}=1.
$$

Define $K_h := \sup_{\sigma \in [0, h]} ||T(\sigma)||$. Fix $h + \varepsilon \le t \le t' \le 2h + \varepsilon$. Then, for all $s \in [-h, 0]$,

$$
\|u(t'+s;x,f) - u(t+s;x,f)\|
$$

\n
$$
\leq \|T(t'+s)x - T(t+s)x\|
$$

\n
$$
+ \left\| \int_{t+s}^{t+s} T(t'+s-\sigma)k(\sigma;x,f) d\sigma \right\|
$$

\n
$$
+ \left\| \int_{t+s-\varepsilon}^{t+s} (T(t'+s-\sigma) - T(t+s-\sigma))k(\sigma;x,f) d\sigma \right\|
$$

\n
$$
+ \left\| \int_{0}^{t+s-\varepsilon} (T(t'+s-\sigma) - T(t+s-\sigma))k(\sigma;x,f) d\sigma \right\|
$$

\n
$$
\leq \|T(t'+s) - T(t+s)\| \|(x,f)\|_{\mathcal{X}}
$$

\n
$$
+ (t'-t)^{1/q} N_{2h+\varepsilon} \|(x,f)\|_{\mathcal{X}}
$$

\n
$$
+ (K_h+1)\varepsilon^{1/q} N_{2h+\varepsilon} \|(x,f)\|_{\mathcal{X}} + (2h)^{1/q} M_{2h} \|(x,f)\|_{\mathcal{X}}
$$

\n
$$
\times \sup_{\sigma \in [0,t+s-\varepsilon]} \|T(t'+s-\sigma) - T(t+s-\sigma)\|.
$$

It follows that

$$
\limsup_{t' \downarrow t} \left(\sup_{\|(x,f)\|_{\mathscr{D}} \le 1} \sup_{s \in [-h,0]} \|u(t'+s;x,f) - u(t+s;x,f) \| \right) \n\le (K_h + 1) \varepsilon^{1/q} N_{2h+\varepsilon},
$$

and therefore,

$$
\limsup_{t' \downarrow t} \left(\sup_{\|(x,f)\|_{\mathscr{D}} \le 1} \|u_{t'}(x,f) - u_t(x,f) \|_{L^p([-h,0];X)} \right)
$$

$$
\le (K_h + 1) \varepsilon^{1/q} h^{1/p} N_{2h+\varepsilon}.
$$

It follows that

$$
\limsup_{t'\downarrow t} \|\mathcal{T}(t') - \mathcal{T}(t)\| \leq (K_h + 1) \varepsilon^{1/q} (1 + h^{1/p}) N_{2h+\varepsilon}.
$$

Since the choice of $\varepsilon > 0$ was arbitrary and $N_{2h+\varepsilon}$ decreases with ε , this proves that $\lim_{t' \downarrow t} ||\mathcal{T}(t') - \mathcal{T}(t)|| = 0$.

COROLLARY 3.6. *Assume that A generates a uniformly exponentially stable C*^{0 -*semigroup that is uniformly continuous for t* > 0. *If*}

$$
\sup_{\omega\in\mathbb{R}}\|\sum_{j=1}^ne^{i\omega h_j}B_j\|<\frac{1}{\sup_{\omega\in\mathbb{R}}\|R(i\omega,A)\|}\,,
$$

then $\omega_0(\mathcal{A}) < 0$, *i.e.*, \mathcal{T} *is uniformly exponentially stable.*

We now consider the case $n = 1$ in more detail and return to the notation \mathcal{T}_B and \mathcal{A}_B to denote the semigroup on $\mathcal X$ and its generator governing the solutions of the problem

$$
\dot{u}(t) = Au(t) + Bu(t - h), \qquad t \ge 0,
$$

$$
u(0) = x,
$$

$$
u(t) = f(t), \qquad t \in [-h, 0).
$$

Assuming that $s_0(\mathscr{A}_0) < 0$ (\mathscr{A}_0 being the generator \mathscr{A}_B corresponding to the zero operator $B = 0$), we define

$$
r_{s_0}(\mathscr{A}_0) := \sup\{r \geq 0: s_0(\mathscr{A}_B) < 0 \text{ for all } B \in \mathscr{L}(X) \text{ with } \|B\| \leq r\}.
$$

With this notation, the case $n = 1$ of Theorem 3.3 says that

$$
r_{s_0}(\mathscr{A}_0) \geq \frac{1}{\sup_{\omega \in \mathbb{R}} \|R(i\omega, A)\|}.
$$

In fact, we have the following more precise result.

THEOREM 3.7. *If* $s_0(A) < 0$, *then*

$$
r_{s_0}(\mathscr{A}_0)=r_{s_0}(A;I,I)=\frac{1}{\sup_{\omega\in\mathbb{R}}\|R(i\omega,A)\|}.
$$

Proof. It only remains to prove the inequality

$$
r_{s_0}(\mathscr{A}_0) \leq \frac{1}{\sup_{\omega \in \mathbb{R}} \|R(i\omega, A)\|}.
$$

Fix $\varepsilon > 0$ and choose $\omega_0 \in \mathbb{R}$ such that

$$
\frac{1}{\|R(i\omega_0,A)\|} \leq \frac{1}{\sup_{\omega \in \mathbb{R}} \|R(i\omega,A)\|} + \varepsilon.
$$

Define operators $E \in \mathcal{L}(\mathcal{D}(\mathcal{A}_0), X)$ and $D \in \mathcal{L}(X, \mathcal{X})$ by

$$
E(x, f) := f(-h), \qquad Dx := (x, 0).
$$

Using Proposition 3.2 it is easily verified that

$$
ER(i\omega_0,\mathscr{A}_0)Dx=e^{-i\omega_0h}R(i\omega_0,A)x, \qquad x\in X,
$$

and therefore $||ER(i\omega_0, \mathcal{A}_0)D|| = ||R(i\omega_0, A)||$. By Theorem 1.2 there exists $B_0 \in \mathcal{L}(X)$ such that

$$
||B_0|| \leq \frac{1}{\|ER(i\omega_0, \mathscr{A}_0)D\|} + \varepsilon
$$

and

$$
i\,\omega_0\in\sigma\big(\mathscr{A}_0+DB_0E\big).
$$

Noting that $\mathscr{A}_{B_0} = \mathscr{A}_0 + DB_0 E$, this means that $i\omega_0 \in \sigma(\mathscr{A}_{B_0})$. Therefore \mathscr{A}_{B_0} cannot have a uniformly bounded resolvent on {Re $\lambda > 0$ }. The estimate

$$
||B_0|| \le \frac{1}{||ER(i\omega_0, \mathscr{A}_0)D||} + \varepsilon = \frac{1}{||R(i\omega_0, A)||} + \varepsilon
$$

$$
\le \frac{1}{\sup_{\omega \in \mathbb{R}} ||R(i\omega, A)||} + 2\varepsilon
$$

then shows that

$$
r_{s_0}(\mathscr{A}_0) \leq \frac{1}{\sup_{\omega \in \mathbb{R}} \|R(i\omega, A)\|} + 2\varepsilon.
$$

П

In particular, if $p = 2$ and *X* is isomorphic to a Hilbert space, or if **T** is uniformly continuous for $t > 0$, it follows that

$$
r_{\omega_0}(\mathscr{A}_0)=r_{\omega_0}(A;I,I)=\frac{1}{\sup_{\omega\in\mathbb{R}}\|R(i\omega,A)\|},
$$

where $r_{\omega_0}(\mathscr{A}_0)$ is defined in the obvious way.

For the generator *A* of a positive semigroup on a Banach lattice *X* we have $s(A) = \omega_1(A) = s_0(A)$; moreover, $\tilde{s}(A) \in \sigma(A)$ whenever $s(A) >$

 $-\infty$ [[16,](#page-18-0) Theorem C-III-1.1]. This will be used to prove the following versions of Theorems 3.3 and 3.7:

THEOREM 3.3'. Let A generate a positive C₀-semigroup on a Banach *lattice X, and assume that the operators B_i are positive,* $j = 1, \ldots, n$ *. Then the semigroup* $\mathcal{T}_{B_1,...,B_n}$ *is positive. If* $s_0(A) < 0$ *and*

$$
\left\| \sum_{j=1}^n B_j \right\| < \frac{1}{\|A^{-1}\|},
$$

then $s_0(\mathcal{A}_{B_1,...,B_n}) < 0$.

Proof. It is an easy consequence of Proposition 3.2 that $R(\lambda, \mathscr{A}_{B_1,...,B_n})$ ≥ 0 for sufficiently large real λ . Then $\mathcal{T}_{B_1,\ldots,B_n}(t) \geq 0$ for all $t \geq 0$ by the exponential formula $[18,$ Theorem 1.8.3].

Since $||R(\lambda, A)|| \leq ||R(\text{Re }\lambda, A)||$ for all $\lambda \in \mathbb{C}$ with Re $\lambda > s(A)$, for some $\delta \in (0, 1)$ and all $\lambda \geq 0$ we have

$$
\left\|\sum_{j=1}^n e^{-\lambda h_j}B_j\right\| \leq \left\|\sum_{j=1}^n B_j\right\| \leq (1-\delta)\frac{1}{\|R(0,A)\|} \leq (1-\delta)\frac{1}{\|R(\lambda,A)\|}.
$$

Hence, $[0, \infty) \subset \varrho(\mathscr{A}_{B_1,\ldots,B_n})$ by Propositions 1.1 and 3.2. Since $\mathscr{A}_{B_1,\ldots,B_n}$ generates a positive semigroup, this implies that

$$
s_0(\mathscr{A}_{B_1,\ldots,B_n})=s(\mathscr{A}_{B_1,\ldots,B_n})<0.
$$

П

If $n = 1$ we have

THEOREM 3.7'. Let A generate a positive C₀-semigroup on a Banach *lattice X with* $s_0(A) < 0$. *Then*

$$
r_{s_0}(\mathscr{A}_0) = r_{s_0}(A; I, I) = \frac{1}{\|A^{-1}\|}.
$$

The identities $r_{s_0}(\mathcal{A}_0) = r_{s_0}(A; I, I)$ in Theorems 3.7 and 3.7' can be interpreted as saying that the stability radius for boundedness of the resolvent for the delay problem is independent of the delay *h* (and equals to stability radius for boundedness of the resolvent for the undelay problem).

In the situation of Theorem $3.7'$, if in addition B is assumed to be positive, then we further have $s_0(A + B) = \omega_1(A + B)$ and $s_0(\mathscr{A}_B) =$

 $\omega_1(\mathscr{A}_R)$, so that we can reformulate this observation in terms of exponential stability of the semigroups involved. In the state space $C([-h,0]; X)$ this is a well known phenomenon (cf. $[16, Corollary B-IV-3.10]$, where different methods are used). For further results on the stability of delay equations in $C([-h, 0]; X)$, the reader might consult [10, 11, 20].

ACKNOWLEDGMENT

We thank Yuri Latushkin for kindly sending us the preprints [2] and [13], and Sjoerd Verduyn Lunel for pointing out to us the work by Nagakiri [14, 15].

REFERENCES

- 1. J. A. Burns, T. L. Herdman, and H. W. Stech, Linear functional-differential equations as semigroups on product spaces, *SIAM J. Math. Anal.* **14** (1983), 98-116.
- 2. S. Clark, Yu. Latushkin, and T. Randolph, Evolution semigroups and stability of timevarying systems on Banach spaces, preprint.
- 3. R. Datko, Representation of solutions and stability of linear differential-difference equation in a Banach space, *J. Differential Equations* **29** (1978), 105-166.
- 4. L. Gearhart, Spectral theory for contraction semigroups on Hilbert spaces, *Trans*. *Amer*. *Math. Soc.* 236 (1978), 385-394.
- 5. D. Hinrichsen and A. J. Pritchard, Stability radius for structured perturbations and the algebraic Riccati equation, *Systems Control Lett*. 8 (1986), 105-113.
- 6. D. Hinrichsen and A. J. Pritchard, Real and complex stability radii: a survey, *in* ''Control of Uncertain Systems" (D. Hinrichsen and B. Martensson, Eds.), pp. 119-162, Birkhäuser, Basel/Boston/Berlin, 1990.
- 7. D. Hinrichsen and A. J. Pritchard, Robust stability of linear evolution operators on Banach spaces, *SIAM J. Control Optim*. **32** (1994), 1503-1541.
- 8. F. Kappel, Semigroups and delay equations, *in* ''Semigroups, Theory and Applications'' (H. Brezis, M. Crandall and F. Kappel, Eds.), Vol. II (Trieste 1984), pp. 136-176, Pitman Research Notes 152, Pitman, London, 1986.
- 9. F. Kappel and K. P. Zhang, Equivalence of functional-differential equations of neutral type and abstract Cauchy problems, *Monatsh. Math.* **101** (1986), 115-133.
- 10. W. Kerscher and R. Nagel, Asymptotic behavior of one-parameter semigroups of positive operators, *Acta Appl. Math.* **2** (1984), 297-309.
- 11. W. Kerscher and R. Nagel, Positivity and stability for Cauchy problems with delay, *in* "Partial Differential Equations" (Rio de Janeiro 1986), pp. 216–235, Lecture Notes in Math, 1324, Springer-Verlag, Berlin/Heidelberg/New York/Tokyo, 1988.
- 12. K. Kunisch and W. Schappacher, Necessary conditions for partial differential equations with delay to generate C_0 -semigroups, *J. Differential Equations* 50 (1983), 49-79.
- 13. Yu. Latushkin, S. Montgomery-Smith, and T. Randolph, Evolution semigroups and robust stability of evolution operators on Banach spaces, preprint.
- 14. S. Nagakiri, Optimal control of linear retarded systems in Banach spaces, *J*. *Math*. *Anal*. *Appl.* **120** (1986), 169-210.
- 15. S. Nagakiri, Structural properties of functional differential equations in Banach spaces, *Osaka J. Math.* **25** (1988), 353-398.
- 16. R. Nagel (Ed.). "One-Parameter Semigroups of Positive Operators." Springer Lecture Notes in Mathematics 1184, Springer-Verlag, Berlin/Heidelberg/New York/Tokyo, 1986.
- 17. J. M. A. M. van Neerven, The asymptotic behavior of semigroups of linear operators, *in* "Operator Theory: Advances and Applications," Vol. 88, Birkhäuser Verlag, Basel/ Boston / Berlin, 1996.
- 18. A. Pazy, ''Semigroups of Linear Operators and Applications to Partial Differential Equations," Springer-Verlag, Berlin / Heidelberg / New York / Tokyo, 1983.
- 19. A. J. Pritchard and S. Townley, Robustness of linear systems, *J*. *Differential Equations* **77** (1989) , $254-286$.
- 20. C. C. Travis and G. F. Webb, Existence and stability for partial functional differential equations, *Trans. Amer. Math. Soc.* **200** (1974), 395-418.
- 21. G. F. Webb, Functional differential equations and nonlinear semigroups in L^p -space, *J. Differential Equations* **20** (1976), 71-89.