
Journal of Computational and Applied Mathematics 231 (2009) 423–433

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Circular spline fitting using an evolution process
Xinghua Song a,b, Martin Aigner b, Falai Chen a, Bert Jüttler b,∗
a Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, PR China
b Johannes Kepler University Linz, Institute of Applied Geometry, Austria

a r t i c l e i n f o

Article history:
Received 12 September 2008
Received in revised form 6 February 2009

Keywords:
Circular spline
Biarc
Organized points
Spatial curve fitting

a b s t r a c t

We propose a new method to approximate a given set of ordered data points by a
spatial circular spline curve. At first an initial circular spline curve is generated by biarc
interpolation. Then an evolution process based on a least-squares approximation is applied
to the curve. During the evolution process, the circular spline curve converges dynamically
to a stable shape. Ourmethod does not need any tangent information. During the evolution
process, the number of arcs is automatically adapted to the data such that the final curve
contains as few arc arcs as possible. We prove that the evolution process is equivalent to a
Gauss–Newton-type method.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

A circular spline curve consists of circular arcs and line segments which are pieced together with G1 continuity. This
simple but powerful class of curves offers a number of remarkable advantages.

• The arc-length function of a segment of a circular spline curve can be evaluated in closed form.Moreover, also the inverse
operation is explicitly available: one can easily find the point on the curve which possesses a given arc-length distance
to a given point, without any need for numerical approximation. Consequently, circular splines are especially useful for
numerically controlled (NC) machining.
The first observation is also valid for the interesting class of Pythagorean-hodograph curves, where the arc-length

function is simply a polynomial, see [1]. The second observation, however, is not true for PH curves, since it requires the
solution of a polynomial root finding problem.
• The offsets of arc splines (i.e., constant radius pipe surfaces generated by them, see e.g. [2]) have simple closed-form
parameterizations, since they consist of segments of tori and cylinders.
• The use of arc splines provides a simple and non-iterativemethod for closest point computation. More precisely, for a set
of given points in space, the associated closest points on the curve can be computed by solving quadratic equations.1 For
polynomial or rational spline curves, the same problem leads to nonlinear optimization problems,which require iterative
solution techniques.
• As observed by Wang and Joe [3], arc spline curves are very useful for sweep surface modeling, since they provide high-
quality approximations of rotation-minimizing frames.
• Circular arcs are useful as geometric primitives for algorithms from computational geometry. They combine simplicity
of elementary operations with a relatively high geometry approximation power, see [4].

∗ Corresponding author.
E-mail addresses: xhsong@mail.ustc.edu.cn (X. Song), martin.aigner@jku.at (M. Aigner), chenfl@ustc.edu.cn (F. Chen), bert.juettler@jku.at (B. Jüttler).

1 The closest point of a given point on a circle in space can be found by intersecting the circle with the plane spanned by the point and by the circle’s
axis. If the circle is described by a rational quadratic parametric representation, then this leads to a quadratic equation.

0377-0427/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2009.03.002

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82698464?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
mailto:xhsong@mail.ustc.edu.cn
mailto:martin.aigner@jku.at
mailto:chenfl@ustc.edu.cn
mailto:bert.juettler@jku.at
http://dx.doi.org/10.1016/j.cam.2009.03.002

424 X. Song et al. / Journal of Computational and Applied Mathematics 231 (2009) 423–433

Various computational methods for constructing circular spline curves in the plane and in three-dimensional space from
givendata (e.g., sequences of points, or a given smooth curve in another representation) have beendescribed in the literature.
Two classical references are a VTO report by Sabin [5] and a textbook by Nutbourne and Martin [6]. In particular, curves
composed of biarcs (i.e.,G1 smooth curve segments consisting of two circular arcs)were used in a large number of algorithms
for approximation or interpolation of given point (and possibly tangent) data.
The problem of approximating scattered points in the plane by circular splines has been discussed by Hoschek [7]. He

presents an approximation algorithm which is based on a nonlinear least-squares method.
Meek and Walton discussed arc splines in a number of publications. In [8], they propose a method that does not make

use of the least-squares approach. Instead, the discrete data are partitioned and then approximated by biarcs using standard
algorithms. In a later paper [9], they partition a smooth planar curve and match the curve segments by biarcs. Since the
curve and the biarcs are bounded by some bounding circular arcs within a given tolerance, the biarcs form an arc spline
that approximates the smooth planar curve within the given tolerance. In another paper [10], they describe a method for
generating planar osculating arc splines, which interpolate, match unit tangents, and match curvatures at the interpolation
points. In [11] they use arc splines to approximate the clothoid.
Yang and Du [12] use techniques from optimization theory to approximate planar digitized curves by arc splines. An arc

spline is constructed such that it exhibits G0 or G1 continuity at each joint point and its maximum approximation error is
not bigger than a given tolerance.
Piegl and Tiller [13] describe an algorithm for data approximationwith biarcs in the plane. They use a specific formulation

of biarcswhich is appropriate for parametric curves in Bézier orNURBS formulation and apply a base curve to obtain tangents
and anchor points for the individual biarcs.
Recently, circular splines have been used for reconstructing pipe surfaces from unorganizedmeasurement data by Bauer

and Polthier [2]. Amoving least-squares-based technique is used to reconstruct the spine curve of a pipe surface from surface
samples and approximate the spine curve by G1 continuous circular arcs and line segments.
In the present paper, we present a novelmethod for approximating spatial point data by an arc spline curve.We interpret

the intermediate solutions generated by a nonlinear optimization method as instances of a continuous evolution process.
This approach to circular spline fitting is motivated by related results from the field of Computer Vision [14,15]. Wang

et al. [16] extended them by using curvature information and used them for curve and surface fitting with B-splines.
In particular, they analyzed the relation to Gauss–Newton-type techniques. These papers describe certain geometrically
motivated nonlinear optimization techniques which generate a sequence of approximate solutions. Recently, Liu et al. [17]
studied various extensions of the Gauss–Newton-type techniques described in [16] to the case of space curves.
In the case of planar curves, the corresponding continuous evolution process which corresponds to the nonlinear

optimization has been studied in [18], and it was also extended to a larger class of curves which can be described as an
arbitrary set of shape parameters. This has been made explicit for the class of Pythagorean-hodograph spline curves.
This paper makes the following contributions. First we derive an independent set of shape parameters, which uniquely

describe a circular spline curve. Second, we formulate an evolution process (governed by a differential equation) for circular
spline curves in three-dimensional space which drives an initial curve towards a limit shape, which approximates a given
sequence of points. This extends the framework of [18] to the case of space curves.We also showhow the discretized version
of the evolution process is related to the Gauss–Newton-type techniques described in [17]. Third, we demonstrate that the
use of circular spline curves for curve fitting has the unique advantage of simple and explicit closest point computation. This
makes them particularly useful for orthogonal distance regression, where one minimizes the shortest distances between
the points and the approximating curve.

2. Shape parameters

We introduce a special representation of an arc spline curve. First we discuss single arcs, and then we use biarcs in order
to extend this to the case of spline curves.

2.1. Single arcs

A circular arc in space has the rational Bézier representation

y(u) =
(1− u)2a+ 2u(1− u)ωc+ u2b
(1− u)2 + 2u(1− u)ω + u2

, u ∈ [0, 1], (1)

with the control points a, b, c, where c lies in the bisector plane of the line segment ab. The weight ω satisfies ω = cosφ,
where

φ =
1
2
(π − 6 (a, c, b)) (2)

is half the sweep angle of the circular arc, see Fig. 1. The representation (1) has 10 free parameters. However, only 8 of these
parameters can be chosen independently, as follows.
The vector
(mx,my,mz, h, k, α, β, γ) (3)

X. Song et al. / Journal of Computational and Applied Mathematics 231 (2009) 423–433 425

Fig. 1. Rational Bézier representation of a circular arc.

Fig. 2. Joining two primary arcs (dashed) by one biarc (dotted).

is said to be the vector of shape parameters of the circular arc. The first three parameters are the coordinates of the midpoint
m = (mx,my,mz) of the line segment ab. The control points a, b, c and the weightw are computed from

a = m+ h2Ue1, b = m− h2Ue1, c = m+ kUe2, ω =
h2

√
h4 + k2

(4)

with the special orthogonal matrix

U(α, β, γ) =

(cos γ sin γ 0
− sin γ cos γ 0
0 0 1

)(1 0 0
0 cosβ sinβ
0 − sinβ cosβ

)(cosα sinα 0
− sinα cosα 0
0 0 1

)
(5)

and the two unit vectors e1 = (1, 0, 0) and e2 = (0, 1, 0).
The vector a−m is restricted to be a positive multiple of Ue1, by using the square of h in (4). We did not apply the same

constraint to c−m, in order to allow the curve to change the orientation of its normal and binormal vectors without having
to perform a complete change of the angles controlling thematrixU. Consequently, there are in general four vectors of shape
parameters which describe the same circular arc.
If k = 0, then Eq. (4) describes the control points of a line segment, which is represented as a degree-elevated linear

curve segment. One of the three angles becomes redundant in this situation, as a line segment does not change the position
of rotation about the axis on which it lies.
In Eq. (5), the special orthogonal matrix U is represented by zxz-Euler angles, i.e. by the composition of three rotations

around the z, the x and the z axis. If β = 0, then this representation has a singularity and other Euler angles should be used
instead. The path and the result which is created by the evolution process described below are independent of the particular
representation of the matrix U, see [19].

2.2. Biarcs connecting two circular arcs

Any two arcs y(t) and ŷ(t) with control points and weights a, b, c, ω and â, b̂, ĉ, ω̂, respectively, which we refer to as
primary arcs, can be joined by one biarc (i.e. two arcswithG1 continuity at the joint point) connecting x(1) = b and x̂(0) = â,
such that the overall curve is G1 smooth, see Fig. 2. Note that the figure shows the planar case, while the method applies to
spatial arcs as well.
More precisely, there exists a one-parameter family of such biarcs. Referring to Fig. 2, the unknown points A, B, C are

sought for. Since A, B, C are collinear, we get

A = b+ `T, C = â− ˆ̀T̂, ‖A− C‖2 = (`+ ˆ̀)2 (6)

where

T =
b− c
‖b− c‖

, T̂ =
ĉ− â
‖ĉ− â‖

. (7)

426 X. Song et al. / Journal of Computational and Applied Mathematics 231 (2009) 423–433

The first three equations imply

V>V+ 2`V>T+ 2 ˆ̀V>T̂+ 2` ˆ̀(T>T̂− 1) = 0 (8)

where V = b − â. The only unknowns in this equation are ` and ˆ̀ . Almost any value of ` uniquely determines a biarc. We
call ` the shape parameter of the biarc.

Remark 1. Negative values of ` or ˆ̀ correspond to the case when the sweep angle of the first or second arc is bigger than π .
Semicircles are excluded, since they require ` or ˆ̀ to take infinite values. In practice, if the number of segments is sufficiently
small, the sweep angles are smaller than π , hence ` and ˆ̀ are both positive.

2.3. Circular splines

Given a sequence of K + 1 primary arcs (y3k)k=0,...,K , every two consecutive arcs can be joined by one biarc. This leads to
a circular spline curve which consists of K + 1 primary arcs and K biarcs. We represent it as a rational Bézier spline curve
with the parameter domain [0, 3K + 1]which is piecewise defined as

x(t, s) = yj(uj, s) for t ∈ [j, j+ 1], j = 0, . . . , 3K , (9)
where uj = t − j and

yj(uj, s) =
(1− uj)2aj(s)+ 2uj(1− uj)ωj(s)cj(s)+ u2j bj(s)

(1− uj)2 + 2uj(1− uj)ωj(s)+ u2j
. (10)

The global shape parameter vector s = (s1, . . . , sm), wherem = 9K + 8, consists of the shape parameters of all arcs and all
biarcs. Each primary arc contributes its 8 parameters of the form (3), while each biarc contributes one additional length `.
This vector of shape parameters uniquely determines the control points and the weights of the Bézier arcs.

3. Evolution-based fitting

We consider the following problem: Given a sequence of points (pi)i=0,...,n, find a circular spline curve which
approximates these points. In order to solve this problem, we generalize the method introduced in [18] to the case of space
curves. The approximate solutions generated by an iterative solution algorithm for the nonlinear fitting problem are seen
as instances of a continuous evolution of an initial curve towards its final position.

3.1. Initial circular spline

We assume that the initial number K + 1 of primary arcs is specified by the user, where K satisfies K ≤ (n − 2)/6. In
order to construct the initial spline curve, we consider the subset

p̂j = pdj·n/(6K+2)e, j = 0, . . . , 6K + 2. (11)

The kth primary arc y3k, where k = 0, . . . , K , is now found as the unique arc connecting p̂6k and p̂6k+2 via p̂6k+1. Next, every
pair of consecutive primary arcs is joined by one biarc as described in the last section, simply by setting ` = ˆ̀ in Eq. (8). We
obtain a circular spline x(t, s0)which is described by an initial vector s0 of shape parameters. The choice of the subset (11)
of points guarantees that each arc corresponds to roughly the same number of points.

Remark 2. In order to obtain a closed circular spline curve, the last primary arc has to be identified with the first one.
Consequently, a circular spline with K primary arcs has 3K segments.

3.2. Defining the evolution

Starting with the initial circular spline, we set up an evolution process which drives the curve towards the given data
points, until they are approximated sufficiently well. More precisely, we assume that the shape parameters s depend on a
time-like parameter τ , which gives us an evolving circular spline curve in space. The final curve is then defined by the shape
parameters

sfinal = lim
τ→∞

s(τ). (12)

If we consider a fixed point x(t∗, s(τ))with parameter t∗ on the curve, then it travels with the velocity

Ev(t∗, s(τ)) = ẋ(t∗, s(τ)) =
m∑
j=1

∂x(t∗, s(τ))
∂sj

ṡj(τ) =
[
∇sx(t∗, s(τ))

]
ṡ(τ), (13)

where ∇s =
(
∂
∂s1
, . . . , ∂

∂sm

)
and the dot˙denotes the derivative with respect to the time variable τ . In order to keep the

notation simple, we shall omit the time parameter τ from now on.

X. Song et al. / Journal of Computational and Applied Mathematics 231 (2009) 423–433 427

Fig. 3. Each data point pi attracts the associated closest point x(ti, s). This is expressed with the help of two auxiliary vectors Emi and Eni .

For each data point pi, we consider the associated closest point x(ti, s) on the curve (or one of them, in case that several
such points exist). The evolution of the curve will be guided by the following principle: The normal component of the velocity
of a curve point x(ti, s) shall be equal to the residual vector pi − x(ti, s).
In order to express this condition, we choose for each closest point x(ti, s) two arbitrary unit vectors Eni and Emi, which

are mutually orthogonal and perpendicular to the tangent vector x′(ti, s), where the prime ′ indicates differentiation with
respect to the curve parameter t . These two vectors form an orthonormal basis of the normal plane of the curve at x(ti, s).
The condition is then equivalent to the two equations

Ev(ti, s)>Eni = (pi − x(ti, s))
>
Eni

Ev(ti, s)> Emi = (pi − x(ti, s))
>
Emi, (14)

see Fig. 3.
In the case of an open curve, some data points pi may have one of the two curve end points as their associated closest

points, i.e., ti = 0 or ti = 3K + 1. If this is the case, then we consider the entire velocity vector and not only its normal
component, by replacing the two equations in (14) with the three equations

Ev(ti, s) = pi − x(ti, s). (15)

In order to keep the presentation simple, we exclude this case from now on.
In general, the number of data points exceeds the degrees of freedom of the curve which is to be fitted to these data.

Hence, Eq. (14) cannot be fulfilled exactly for all data points. We use a least-squares approach to compute ṡ by minimizing

E =
n∑
i=1

(
[(Ev(ti, s)− pi + x(ti, s))

>
Eni]2 ++[(Ev(ti, s)− pi + x(ti, s))

>
Emi]2

)
+ λ‖ṡ‖2 (16)

where λ� 1 is a non-negative weight and ‖ṡ‖2 is a Tikhonov regularization term which ensures the existence of a unique
minimizer of (16). See [20] for more information on regularization techniques.
The value of E does not depend on the choice of the vectors Emi and Eni. These two vectors form an orthogonal basis of

the normal planes. Hence, the contribution of the velocity vector of each closest point is equal to the squared length of the
projection into the normal plane.
Since the velocities Ev(ti, s) depend linearly on the time derivatives ṡ of the shape parameters (see Eq. (13)), this is a

quadratic optimization problemwhich can be solved easily. A short computation shows that the solution is found by solving
the linear system

H(s)ṡ+ r(s) = 0 (17)

with

H(s) = 2
n∑
i=1

∇sR>i (Emi Em
>

i + EniEn
>

i)∇sRi + 2λI (18)

and

r(s) = 2
n∑
i=1

R>i ∇sRi. (19)

where we use the abbreviation

xi = x(ti, s). (20)

The residual vector

Ri = pi − xi = pi − x(ti, s) (21)

lies in the normal plane of the curve at xi. Its gradient with respect to the shape parameters satisfies ∇sRi = −∇sxi.

428 X. Song et al. / Journal of Computational and Applied Mathematics 231 (2009) 423–433

Note that the derivative ∇sxi of the closest point xi with respect to the shape parameters does not take the dependency
of ti on these parameters into account; it is solely the derivative of x(ti, s)with respect to its second argument.
The system (17) is equivalent to the differential equation ṡ = −[H(s)]−1r(s) for the unknowns s(τ). The shape

parameters are updated via

s(τ +1τ) = s(τ)+ ṡ(τ)1τ (22)

by using an explicit Euler step, where ṡ is found by solving the linear system (17). We choose the step size1τ as

1τ = min{1, {D/‖Ev(ti, s)‖}i=1,...,n } (23)

where D is a user defined value. This shall ensure that the traveling distance of each point xi of the curve, which is
approximately equal to

‖Ev(ti, s)1τ‖ (24)

is constrained to be approximately less than or equal to the constantD. This constant can be chosen, e.g., as 5% of the diameter
of the bounding box.

3.3. Closest point computation

In each step of the evolution, we have to find the closest point fi = x(ti, s) on the curve which is associated with every
given point pi. More precisely, we have to find

ti = arg min
t∈[0,3K+2]

‖pi − x(t, s)‖. (25)

The shortest distance from a data point to the curve is the minimum of the shortest distances to all arcs. First, consider a
fixed circular arc yj, and letmj be its center. The parameter ti realizing the shortest distance can be computed as follows.
(1) We project pi orthogonally into the plane which contains the arc yj(t). The projected point is denoted with qi.
(2) If qi lies inside the sweep angle of yj(t), then the candidate values ti of the global curve parameter t = j+ uj are found
by adding j to the root(s) of the quadratic equation

(qi −mj)
>y′j(uj, s) = 0, uj ∈ [0, 1], (26)

where the prime ′ denotes the derivative with respect to the local curve parameter uj. Otherwise, the shortest distance
is not realized by this circular arc (but see the next remark).

In the case of an open spline curve, the closest point of pi can also be one of the two boundary points. Hence, the two end
points have to be checked separately.

Remark 3. In order to keep the algorithm as simple as possible, we compute the closest point by first finding the closest
points in all circular arcs, and then selecting the point with the minimum distance among them. One may improve the
efficiency of the algorithm by using a suitable hierarchy of bounding volumes. Of course, this hierarchy has to be updated
in each time step.

3.4. Adaptive refinement

The evolution drives the circular spline x(t, s) towards a stationary point (see the next section for a theoretical analysis).
However, if the number of arcs is too small, then the curve does not approximate the data points sufficiently well. In order
to improve the quality of the fit, we apply a refinement operation to this curve, as follows:

(1) Compute the error which is associated with every arc yj(t, s) of the circular spline x(t, s),

εj =
∑
i∈Ij

‖pi − fi‖

where Ij = {i | ti ∈ [j, j+ 1] :}. Let ε > 0 be the error threshold of error and hj = |Ij| be the number of elements in the
set Ij.

(2) If the average error εjhj 6 ε for every circular arc yj(t, s), or the number of iterations is larger than a given constant δ,
then terminate the process; Otherwise, choose the three arcs with the largest error εj and subdivide each arc into two
parts at the midpoint.

(3) Since the number of arcs of the circular spline has increased by three, we re-arrange the circular arcs and choose the
arcs with indices 3k as primary circular arcs. The remaining arcs form the biarcs which connect the primary circular arcs.
Thus, the result of the previous evolution step is exactly represented as a circular spline curve with more segments.

(4) Apply the evolution process as described in the last section until the circular arcs converge to a stable curve (if the
average error decreased less than a given threshold after one step iteration) and return to Step (1).

X. Song et al. / Journal of Computational and Applied Mathematics 231 (2009) 423–433 429

4. Relation to Gauss–Newton-type techniques

In the following we analyze the relation of the circular spline evolution to a Gauss–Newton-type method for orthogonal
distance regression.

Proposition 4. The Euler update for the shape parameters s for the curve evolution defined via (22) with λ = 0 is equivalent to
one step of a Gauss–Newton method for the objective function

n∑
i=1

‖pi − x(ti, s)‖
2
→ min, (27)

where the ti are parameter values associated with the closest points, in the sense that the Hessian is simplified by omitting all
second order derivatives.
Proof. We follow the discussion in [17] and compute the Gauss–Newton system directly from

F =
n∑
i=1

‖Ri‖2. (28)

The gradient is found to be

∇sF = 2
n∑
i=1

[R>i ∇sRi +∇stiR
>

i R
′

i] = 2
n∑
i=1

R>i ∇sRi (29)

whereweused thatR>i R
′

i = 0,which is due to the fact that the parameter values ti correspond to the closest points associated
with the given points. Next we obtain the Hessian via

∇s(∇sF>) = 2
n∑
i=1

[(∇sR>i +∇st
>R′i)∇sRi + (∇s(∇sR

>

i)) ◦ Ri +∇st
>Ri∇sR′i], (30)

where [
∇s(∇sR>i) ◦ Ri

]
l,k =

2∑
j=1

[
∂

∂sl

∂

∂sk
[Ri]j

]
[Ri]j. (31)

By omitting the second order derivatives ∇s(∇sR>i) and ∇sR
′

i we arrive at the simplified Hessian

H∗F = 2
n∑
i=1

∇sR>i ∇sRi +∇st
>

i R
′

i∇sRi (32)

An expression for ∇sti is obtained by differentiating the identity R>i R
′

i = 0,

R′>i ∇sRi +∇stiR
′>

i R
′

i +∇stR
′′>

i Ri + R
>

i ∇sR
′

i = 0, (33)

which gives

∇sti = −
R>i ∇sR

′

i + R
′>

i ∇sRi
R′′>i Ri + R

′>

i R
′

i

. (34)

Omitting again second order derivatives and substituting the result into H∗F give

H∗F = 2
n∑
i=1

[
∇sR>i ∇sRi −

∇sR>i R
′

iR
′>

i ∇sRi
R′>i R

′

i

]
. (35)

Finally, we use the identity

EniEn>i + Emi Em
>

i +EtiEt
>

i = E, (36)

where Eti denotes the unit tangent vector at xi and E is the 3× 3 identity matrix. Together with
R′i
‖R′i‖
= ±Eti we get

H∗F = 2
n∑
i=1

[∇sR>i ∇sRi −∇sR
>

i (E− EniEn
>

i − Emi Em
>

i)∇sRi] (37)

= 2
n∑
i=1

∇sR>i (EniEn
>

i + Emi Em
>

i)∇sRi. (38)

430 X. Song et al. / Journal of Computational and Applied Mathematics 231 (2009) 423–433

Fig. 4. Example 1 (‘‘spline’’): 100 data points were sampled from a cubic spline curve. The approximating circular spline was computed in 0.968 s.

Fig. 5. Example 2 (‘‘glasses’’): 174 points were sampled from a space curve which consists of several line segments and quadratic curve segments. The
approximating circular spline was computed in 1.875 s.

Fig. 6. Example 3 (‘‘helix’’): 100 points were sampled from a helix. The approximating circular spline was computed in 1.375 s.

Finally we observe that the system

H∗F (s)1s+∇sF = 0 (39)

which is solved for computing the update vector1s, is equivalent to (17) with λ = 0 and1s = ṡ. �

This result has several important consequences.
• The minimization of (16) provides a direction of descent for the objective function (28). Hence, with a suitable step size
control, the circular spline curve is driven towards a local minimum of this nonlinear objective function.
• In the case of a zero-residual problem, where Ri = 0 in the limit, the approximate HessianH∗F converges to the exact one,
since all omitted terms contain Ri as a factor. Consequently, one obtains quadratic convergence in this case.
• For small residuals, the approximate Hessian is still a fairly accurate approximation of the exact one, which leads to good
convergence properties.

5. Examples

Six figures in this paper (Figs. 4–9) present six examples which demonstrate the performance of our algorithm. All
computationswere done on a PIV-1.73GHz PCwith 1.0 GBRAM. In the figures, thewhite points are the input data points. The
blue and red curve segments are the biarcs and the primary circular arcs, respectively. The error threshold ε and maximum
iteration number δ are specified by 0.001 and 100, respectively.
The error reduction during the evolution is shown in Fig. 10, where the error is scaled with the diameter of the bounding

box.

X. Song et al. / Journal of Computational and Applied Mathematics 231 (2009) 423–433 431

Fig. 7. Example 4 (‘‘knot’’): 150 points were sampled from a closed space curve. The approximating circular arc spline curve was computed in 1.657 s.

Fig. 8. Example 5 (‘‘corner’’): 90 data points were sampled from a curve with two sharp corners. The approximating circular spline was computed in
0.745 s.

Fig. 9. Example 6 (‘‘noisy helix’’): 250 points were sampled from a helix and artificial noise was added. The approximating circular spline was computed
in 4.078 s.

Fig. 10. Reduction of the average error per point during the evolution for the 6 examples in Figs. 4–9. The small boxes indicate the refinement events.

432 X. Song et al. / Journal of Computational and Applied Mathematics 231 (2009) 423–433

Table 1
Computation times in the helix example for increasing number of points but constant number of arcs.

points 100 1000 10,000
Time (s) 1.4 17.7 142.0

Table 2
Computation times in the helix example for increasing number of points and increasing number of arcs.

points 100 200 300 400 500 600 700 800 900 1000
arcs 25 49 76 100 124 151 175 199 226 250
Time (s) 1.4 3.3 6.7 15.1 20.7 28.4 39.1 50.3 58.9 74.6

Finally, we discuss how the computational cost of the algorithm increases with the number of data points and with the
number of arcs.
First, we sample the data points from the helix curve which is used in Example 6, and increase the number of data points

from 100 to 10,000 with roughly the same number of arcs. Given the same control threshold of error, the computation time
depends approximately linearly on the amount of data, see Table 1. This is due to the fact that the computational effort
is dominated by the closest point computation, whose effort grows linearly with the number of points, provided that the
number of arcs remains constant.
Second, we study the effect of an increasing number of arcs, by sampling data from a helix with an increasing number of

turns, sampledwith constant density. The number of arcs grows linearly with the number of data points. The approximation
process becomes slower for a larger number of points, since the closest point computation needs more time, see Table 2.
The computation time grows superlinearly with the number of points.
This is again due to the fact that the computational effort is dominated by the closest point computation. In the current

implementation, in order to compute the closest point associated with a given one, we test all arcs as to whether or not
they contain the closest point. This should be accelerated by using a suitable hierarchy of bounding volumes, which helps
in identifying a smaller number of candidate arcs for each point. This, however, has not yet been implemented, and the
computation is also relatively fast without it.

6. Conclusion

We proposed an evolution method for approximating a given set of organized space points by a circular spline curve.
During the evolution process, the circular spline curve converges dynamically to a stable limit shape. We proved that the
evolution process is in fact a Gauss–Newton-type method. The technique of constructing a closed circular spline curve has
also been discussed.

Acknowledgements

The authors were supported by the Austrian Science Fund (FWF) through the research network S92 ‘‘Industrial
Geometry’’, subproject 2. The work of Xinghua Song was partially supported by the China scholarship council. Falai Chen
was supported by One Hundred Talent Project of CAS and by the 111 Project (No. B07033). The authors are grateful to the
referees for their very helpful comments on the previous version of this paper.

References

[1] R.T. Farouki, Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable, in: Geometry and Computing, vol. 1, Springer, Berlin, 2008.
[2] U. Bauer, K. Polthier, Parametric reconstruction of bent tube surfaces, in: Proc. Cyber World, IEEE Press, 2007, pp. 465–474.
[3] W. Wang, B. Joe, Robust computation of the rotation minimizing frame for sweep surface modeling, Comput. Aided Des. 29 (5) (1997) 379–391.
[4] O. Aichholzer, F. Aurenhammer, T. Hackl, B. Jüttler, M. Oberneder, Z. Šír, Computational and structural advantages of circular boundary representation,
in: F. Dehne, J.-R. Sack, N. Zeh (Eds.), Algorithms and Data Structures, in: Lecture Notes in Computer Science, vol. 4619, Springer, 2007, pp. 374–385.

[5] M.A. Sabin, The use of circular arcs to form curves interpolated through empirical data points, Technical Report VTO/MS/164, British Aircraft
Corporation, 1976.

[6] A.W. Nutbourne, R.R. Martin, Differential Geometry Applied to Curve and Surface Design, Vol. 1, Ellis Horwood, Chichester, 1988.
[7] J. Hoschek, Circular splines, Comput. Aided Des. 24 (1992) 611–618.
[8] D.S. Meek, D.J. Walton, Approximation of discrete data by G1 arc splines, Comput. Aided Des. 24 (1992) 301–306.
[9] D.S. Meek, D.J. Walton, Approximating smooth planar curves by arc splines, J. Comput. Appl. Math. 59 (2) (1995) 221–231.
[10] D.S. Meek, D.J. Walton, Planar osculating arc splines, Comput. Aided Geom. Des. 13 (7) (1996) 653–671.
[11] D.S. Meek, D.J. Walton, An arc spline approximation to a clothoid, J. Comput. Appl. Math. 170 (1) (2004) 59–77.
[12] S.N. Yang,W.C. Du, Numerical methods for approximating digitized curves by piecewise circular arcs, J. Comput. Appl. Math. 66 (1–2) (1996) 557–569.
[13] L.A. Piegl, W. Tiller, Data approximation using biarcs, Eng. Comput. 18 (2002) 59–65.
[14] M. Kass, A. Witkin, D. Terzopoulos, Snakes: Active contour models, Int. J. Comput. Vis. 24 (1987) 321–331.
[15] A. Blake, M. Isard, Active Contours, Springer, New York, 1998.
[16] W. Wang, H. Pottmann, Y. Liu, Fitting B-spline curves to point clouds by curvature-based squared distance minimization, ACM Trans. Graph. 25 (2)

(2006) 214–238.
[17] Y. Liu, W. Wang, A revisit to least squares orthogonal distance fitting of parametric curves and surfaces, in: F. Chen, B. Jüttler (Eds.), Advances in

Geometric Modelling and Processing, in: Lecture Notes in Computer Science, vol. 4975, Springer, 2008, pp. 384–397.

X. Song et al. / Journal of Computational and Applied Mathematics 231 (2009) 423–433 433

[18] M. Aigner, Z. Šír, B. Jüttler, Evolution-based least-squares fitting using Pythagorean hodograph spline curves, Comput. Aided Geom. Des. 24 (6) (2007)
310–322.

[19] M. Aigner, B. Jüttler, Approximation flows in shape manifolds, in: P. Chenin, T. Lyche, L.L. Schumaker (Eds.), Curve and Surface Design: Avignon 2006,
Nashboro Press, 2007, pp. 1–10.

[20] H.W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems, Kluwer, Dordrecht, 1996.

	Circular spline fitting using an evolution process
	Introduction
	Shape parameters
	Single arcs
	Biarcs connecting two circular arcs
	Circular splines

	Evolution-based fitting
	Initial circular spline
	Defining the evolution
	Closest point computation
	Adaptive refinement

	Relation to Gauss--Newton-type techniques
	Examples
	Conclusion
	Acknowledgements
	References

