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1. Introduction

Let R be an integral domain. Recall that an R-algebra A is called A! if A = R[X] (polynomial algebra in one variable over
R) and is called A* if A = R[X, X~'] (Laurent polynomial algebra in one variable over R). Generalising this notion of A*, we
call an R-algebra A to be quasi A* if A = R[X, (aX + b)~!] for some X transcendental over R,a € R\ 0 and b € R with
(a, b)R = R. Note that if a € R*, then A is A* over R. This notion of quasi A* arises naturally in the study of algebras whose
generic fibres are A*. To see an example, consider a discrete valuation ring (V, =) with quotient field K and a faithfully flat,
finitely generated V-algebra A such that 7 A is a prime ideal of A and V /7 V is algebraically closed in A/ A. Under these
hypotheses, if A[1/7] is a polynomial algebra K[Y], then A is a polynomial algebra V[X] by [5, Theorem 2.3.1]; on the other
hand, if A[1/m] is a Laurent polynomial algebra K[Y, Y], then it can be shown (using similar methods) that A is a quasi
A*-algebra of the form V[X, (aX 4 b)~'] for some X in A transcendental over V,a € V \ 0 and b € V with (a, b)V = V.

Now let R be a Noetherian normal domain. In [2], an integral domain B containing R has been called “locally A' in
codimension-one” if, for every height one prime ideal P of R, Bp (= B ®z Rp) is A! over Rp. Such an algebra B has been
studied extensively in [2] when B is faithfully flat over R. In a similar fashion, we call an integral domain A containing R to
be “locally quasi A* in codimension-one” if, for every height one prime ideal P of R, Ap (= A ®g Rp) is quasi A* over Rp.

In this paper we investigate properties of a faithfully flat algebra A over a Noetherian normal domain R which is locally
quasi A* in codimension-one. We first explore a general structure of A and show that A has an R-subalgebra B which is
faithfully flat and locally A! in codimension-one over R such that A = B[Q ~'] for some invertible ideal Q of B (Theorems 4.6
and 5.2). As a consequence, if R is factorial then it follows (from known results about B) that A is a direct limit of quasi
A* algebras over R (Corollary 4.5) and hence, if A is finitely generated over R then A is quasi A* over R. It will also be seen
(Proposition 5.4) that at each point P of Spec R, PA € Spec A, and that either A, is quasi A* over R, or the fibre ring
A ®g k(P) = k(). As a consequence, we show that when R is local, then A is quasi A* under a mild hypothesis on the
closed fibre. More precisely, we prove (Theorems 5.9 and 5.10):
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Theorem A. Let (R, m) be a Noetherian normal local domain and A a faithfully flat R-algebra which is locally quasi A* in
codimension-one over R. Then the following are equivalent:

(i) Ais a quasi A* R-algebra.
(ii) Ais a finitely generated R-algebra.
(iii) R/m G A/mA.

Moreover, if R is complete and A is Noetherian, then A is indeed quasi A*.

However if R is not complete, there exist examples of Noetherian faithfully flat R-algebras which are locally quasi A* in
codimension-one but which are not finitely generated over R (Example 6.3). Surprisingly, if we assume that A is locally A* in
codimension-one then A is actually finitely generated over R without any additional hypothesis. We prove (Theorem 4.8):

Theorem B. Let R be a Noetherian normal domain and A be a faithfully flat R-algebra which is locally A* in codimension-one

over R. Then A = @, _, I"u" for an invertible ideal I of R. In particular, A is finitely generated over R.

Theorem B was proved earlier in [ 1] under the additional assumption that A is finitely generated over R (cf. Remark 4.9(2)).

However, even if R is complete, there exists a faithfully flat R-algebra which is locally quasi A* in codimension-one but
not finitely generated (Example 6.4).

We now give a layout of the paper. Sections 1-3 are introductory — Section 2 is on preliminaries; in Section 3, we recall
results from [2] on algebras which are locally A' in codimension-one over R and prove some results on the consequences
of faithful flatness of such algebras. The main results of this paper are presented in Sections 4 and 5 — Theorem B, which
requires less technical properties, will be proved in Section 4 and Theorem A in Section 5. In Section 4, we first discuss basic
properties of a faithfully flat algebra A over a Noetherian normal domain R which is locally quasi A* in codimension-one over
R and establish the existence of an R-subalgebra B of A which is locally A' in codimension-one such that A = B[Q '] for a
suitable invertible ideal Q of B. With the help of this presentation we prove Theorem B. In Section 5, we discuss properties of
the above ring B; in particular, we show that B is a faithfully flat R-algebra and deduce some results on the fibres of the map
SpecA — Spec R. We also prove that B is Noetherian (respectively finitely generated over R) if and only if A is so. Finally we
prove Theorem A. In Section 6, we discuss a few examples.

2. Preliminaries

We recall some standard notation to be used throughout the paper. For a ring R, R* will denote the multiplicative group
of units of R. For a prime ideal P of R, and an R-algebra A, Ap denotes the ring S~'A, where S = R\ P and k(P) denotes
the residue field Rp /PRp. The notation A = RI['! will mean that A is isomorphic, as an R-algebra, to a polynomial ring in one
variable over R.

For an R-module M, we denote the tensor algebra of M over R by Tr(M) and the symmetric algebra by Symg(M). Note
that if R is a domain and M is a flat R-module of rank one, then Tg(M) = Symg (M).

We compile below the notions mentioned in the introduction which are central to this paper.

Definition 2.1. (1) An R-algebra A is said to be A* if there exists an element X in A which is transcendental over R such that
A=R[X,X .
(2) We shall call an R-algebra A to be “quasi A*” if there exists an element X in A which is transcendental over R such that

A=R[X, (@X +b)1,

for some a € R\ 0, b € Rsatisfying (a, b)R = R. Note that R[X, (aX + b)~!]is A* over Rif and only if a € R*.

(3) We shall call an R-algebra A to be “locally quasi A* in codimension-one” over R if Ap is quasi A* over Rp for every
height one prime ideal P in R.

(4) We shall call an R-algebra B to be “locally A' in codimension-one” if B» = Rp!!! for every height one prime ideal P in
R.If Ris an integral domain with quotient field K and X is an element of B transcendental over R such that R[X] C B C K[X],
then we say that X is a “generic variable” for B.

As mentioned in the introduction, we shall discuss properties of algebras which are locally A! in codimension-one in
Section 3 and results on algebras which are locally quasi A* in codimension-one in Sections 4 and 5.

We now mention two results on flat R-modules lying between the integral domain R and its quotient field K. The first
result is on the flatness of the R-subalgebra R[M] of K generated by a flat R-submodule M of K.

Lemma 2.2. LetR be an integral domain with quotient field K and M a flat R-module such thatR € M C K. Then the R-subalgebra
R[M] of K is flat over R.

Proof. Since M C K and M is flat over R, we can identify Tg(M) as a graded subring of the polynomial algebra K[W] with
M ®g - - - Qg M (n times) corresponding to M"W" (C KW"). Thus

Te(M) = {ag + ;W +--- +a,W"|n>0anda; € M' for0 < i < n}.
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Note that since R C M, W € Tz(M); a homogeneous element of degree one. We first show that T(M) N (W — 1)K[W] =
(W — 1)Tr(M). Let

h=by+bW+---+bW" € TotM) N (W — DK[W], (2.1)
with b; € Mi, 0 <i < £.Write h = (W — 1)g, where
g=do+d\W+-- +d_ W e KIW]. (2.2)

From (2.1) and (2.2), it follows that dy € R, (d; — dg) € M, ..., (d¢—1 — d¢—3) € M 1.SinceRC M € M? € M?---, we
have g € Tr(M).

Let ¢ be the restriction of the R-linear map 55 : K[W] — K sending W — 1. Then ¢(Tx(M)) = R[M] and hence we have
the short exact sequence

0— (W —-1DTr(M) — Tr(M) N R[M] — 0. (2.3)

Let I be an ideal of R. Since M is a flat R-module, Tz (M) is a flat R-algebra. Thus Tor’l2 (Tr(M), R/I) = 0. Hence, tensoring (2.3)
with R/I, we have the exact sequence

0— Tor’f(R[M], R/I) = (W — 1DTr(M) ®g R/I — Tr(M) ®g R/I — R[M] &g R/l — 0.
Let h € Tr(M) be such that (W — 1)h € ITzx(M). Since W is a homogeneous element of degree one and ITz(M) is a
homogeneous ideal of the graded ring Tz (M), it follows that h € ITg(M). Thus the map
(W — DTr(M) ® R/l — Tr(M) @z R/I
is injective. Hence Tor’f (R[M], R/I) = 0.Thus R[M] is a flat R-algebra. O
The next result is on the Noetherian property of flat R-subalgebras of the quotient field of R.

Lemma 2.3. Let R be a Noetherian domain with quotient field K, and D a flat R-algebra such that R € D C K. Then D is a
Noetherian ring.

Proof. To show that D is Noetherian it is enough to show that every prime ideal of D is finitely generated. Let Q be a prime
ideal of D and P = Q NR. Now Dy, is faithfully flat over Rp and since Rp € Dy € K, we have Dy = Rp and hence D € Rp. We
show Q = PD. For this it is enough to show that PD is a prime ideal of D. Now D/PD is flat R/PR-module and hence every
element of R \ P is a non-zero divisor in D/PD. Thus D/PD < Rp/PRp which is a field and hence PD is a prime ideal of D. O

Finally, we recall an elementary result which will be used in the paper. (See the argument in [3, Lemma 2.8].)
Lemma 2.4. Let R be a Noetherian normal domain with quotient field K and let A be the set of all height one prime ideals of R.
For a torsion free R-module M, the following conditions are equivalent:

(i) M = ﬂpeA Mp, where M and Mp = M ®g Rp are identified with their images in M Qg K.
(ii) If a and b are elements of R such that b is (R/aR)-regular, then b is (M /aM)-regular.

In particular, if either M is R-flat or a direct limit of finitely generated reflexive R-modules, then M = (), Mp.

3. Locally A! algebras in codimension-one: some old and some new results

Throughout this section, R will denote a Noetherian normal domain with quotient field K and A the set of all prime ideals
in R of height one.
As in [2], we call an integral domain B containing R to be “semi-faithfully flat over R” if

(1) B= ﬁpeA Bp.
(2) IBNR =1, for every ideal I of R.

In[2], properties of semi-faithfully flat algebras, which are locally A! in codimension-one over R, were investigated. A general
structure of such an R-algebra B was described ([2, Theorem 7.2]). Further, when B is faithfully flat over R, conditions for B
to be finitely generated were given ([2, Corollary 2.7, Theorems 2.11 and 7.12]). In this section, we shall recall some of these
results and investigate some consequences (Proposition 3.10 and Lemma 3.14) when B is faithfully flat over R.
Throughout this section, B will denote a semi-faithfully flat R-algebra which is locally A! in codimension-one. We recall
from [2], some objects associated with B and a generic variable X of B, (i.e., an element X € B for which B ®y K = K[X]).
Foreach P € A, fix Xp € Bp such that

Bp = Rp[Xp]. ThenX = apXp + bp for some ap, bp € Rp.
Now set

ex(P) := vp(ap), where vp(ap) is the valuation of ap in Rp and
Ao(X) = {P € A|Rp[X]  Bp}.
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We fix a generic variable X and write A in place of A¢(X) and e(P) in place of ex (P). Note that foreach P € Ag,ap ¢ Rp*
and hence e(P) > 0. Thus

A():{PEAlRp[X]ng}={P€A|ap¢Rp*}={P€A|€(P)>O}

Let Xy be the set of all finite subsets of Ag. For I' = {Py, ..., P;} € Xy, set
Rr:= (1) Re.
PeA\l

Br :=Sr 'BNRr[X], whereSy :=R\ (U P) and

per
Iy = pl(e(Pl)) n---N Pn(e(Pn))~

Remark 3.1. (1)S-"'B =S, 'B.
(2) I is a divisorial ideal of R ([4, Corollary 5.5]). Hence Homg (I, R) = I ~! and Homg(I7 "', R) = I-.
(3)ForP € (Ao \ I'), (Br)p = Rp[X] # Bp and hence if I" is a proper subset of A, then B is a proper subring of B.
(4) The rings B, together with the inclusion maps, form a direct system {B; | I" € Xy} ([2, Lemma 2.1]).

The following technical result is proved in ([2, Theorem 7.2]).

Theorem 3.2. For each I" € X, there exists c € R such that

Br =EPurH™ X —cp)", (3.1)

n>0
and forany I'y, I € Xy, with I1 C Iy, we have I, D I, and ¢, — ¢y € Iy Moreover,

r'exy

To a generic variable X we associate the set Ag and the families {I;-} ;e x,, {Br}rex, and {c;} rcx, as above. We abbreviate
this as {Ao, 11", BF, Cr}.

Lemma 3.3. B is flat over R if and only if I is an invertible ideal of R. As a consequence, if B is flat over R then B is a finitely
generated R-algebra.

Proof. If I~ is an invertible ideal of R then I-" is an invertible ideal and hence (I")~! = (I-~")" is a (finitely generated)
projective R-module and hence a flat R-module for every n > 0. Hence B is flat over R. Moreover, B is finitely generated
over R as I~ is a finitely generated flat R-module and B;- is generated by I~ over R.

Now suppose that B- is flat over R. Then I is flat over R. As R is Noetherian, it follows that I~ is a finitely generated
projective R-module (of rank one). Hence I is a finitely generated projective R-module (cf. Remark 3.1(2)). Thus I is
invertible. O

The following result occurs in [2, Corollary 2.7] but for the sake of convenience we record a proof here.

Proposition 3.4. Suppose that B is faithfully flat over R. Then B is finitely generated over R if and only if Ay is a finite (possibly
empty) set.

Proof. Note that Ay = @ if and only if RX] = B. We now assume that R[X] # B. By Theorem 3.2,
B = ll_r)rl B[‘
r'exy

and hence, if B is finitely generated over R then, there exists a finite subset I’ of Ay such that B» = B. Therefore, by
Remark 3.1(3), I’ = Ao.

Now suppose Ay is a finite set. Taking I" to be Ay, we see that B = B. Since B = B is flat, B is finitely generated over R
by Lemma 3.3. O

The following result on the R-algebra B was stated in [3, Theorem 4.6] under the hypothesis that B is faithfully flat over
R, but the proof uses only semi-faithful flatness of B (cf. [2, Remark 7.3(2)]).

Theorem 3.5. Let R be a factorial domain. Then B is a direct limit of polynomial algebras in one variable over R.

The next theorem, proved in [2, Theorem 3.7], gives a necessary and sufficient condition for B to be finitely generated
when R is complete local.

Theorem 3.6. Let R be a complete Noetherian normal local domain. Suppose that B is a faithfully flat R-algebra. Then B is
Noetherian if and only if it is finitely generated over R.
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We now introduce some more notation to be used for the rest of this section. Choose an element T of B ®g K such that
B ®r K = K[T] (T need not be in B). Note that B C B ®z K = K[T]. Forn > —1, set

Vo :={g € K[T]| degr(g) <n} and B,:=V,NB. (33)
Let
Gr(B) = €D Bu/Bn-1 C P Va/ Va1 (34)
n>0 n>0

Note that Gr(B) is independent of the choice of T. In fact, we observe the following:

Remark 3.7. (1) B = |, ¢Bn-

(2) The K-vector space V,, and the R-module By, and hence the graded K -algebra P
Gr(B) are independent of the choice of T.

(3) Given T, if W denotes the image of T in V;/V, then P
R-algebras.

(4)For T € B, we have RlW] C Gr(B) C K[W] as graded R-algebras and hence for every n > 0, RW" C B,,/B,_1 C KW™".
Moreover, RlW] = Gr(B) if and only if B = R[T].

(5) (Bn/Bu—1)p = Rp for every height one prime ideal P of R.

V,/Vy—1 and the graded R-algebra

n>0

Vn/Va—1 = K[W] and hence Gr(B) C K[W] as graded

n>0

We shall now relate faithful flatness of B with that of Gr(B).
Lemma 3.8. If Gr(B) is flat over R then B is faithfully flat over R.

Proof. By Remark 3.7(1), it is enough to show that for each n > 0, B, is faithfully flat over R. Since Gr(B) is R-flat, B, /B,_1 is
R-flat for every n > 0. Moreover, we have the short exact sequence

0 — By_1 — By =% By/By_1 — 0 (3.5)

where p, is the projection map. Since By = R, flatness of B; /By implies B is faithfully flat. This in turn implies that B, is
faithfully flat. Repeating this argument we see that B, is faithfully flat for every n > 0. Hence B is faithfully flat over R. O

Remark 3.9. We can define (3.3) and (3.4) for any arbitrary integral domain R (not necessarily Noetherian normal) and any
integral domain B containing R (not necessary semi-faithfully flat locally A! in codimension-one) such that B ® K = K[T].
It is easy to see that (1)-(4) of Remark 3.7 and Lemma 3.8 hold in this more general setup and that (5) of Remark 3.7 also
holds when B is locally A! in codimension-one.

We shall now see that the converse of Lemma 3.8 holds in our setup (R is a Noetherian normal domain and B is a
semi-faithfully flat R-algebra which is locally A' in codimension-one). This result was proved in [2, Corollary 3.8] under
the additional hypothesis that R is an analytically irreducible local domain, i.e., the completion of R is an integral domain.

Proposition 3.10. Suppose that B is faithfully flat over R. Then:
(1) By is flat over R, for every n > 0.
(2)JB, N B,_1 = JB,_1, for every ideal ] of R.
(3) Gr(B) is faithfully flat over R.
(4) Gr(B) = R[L], where L = B{/R.
(5)B=RI[B1].
Proof. (1) To show that B, is flat over R, it is enough to show that given ), a;x; = 0, with a; € R and x; € B, there exist
cj € Randy; € By such that ), aicj = 0 foreachjand x; = >, ¢y for eachi.

Since B is faithfully flat over R, there exist ¢; € Rand z; € B such that } ; aic; = 0 for eachjand x; = ), ¢;z; for each

i. By (3.2), we have B = lim B, and hence we can choose I" such that x;, z; € B for each i, j. Now by (3.1), Bj- has a
—TreX

graded structure: B = @, ,(r")~! (X — ¢r)". Note that

r>0
Br(n) :=B, NBr = {g € B | degx(e) <n}= @ ()" X —cr)".
0<r<n
Hence, x; € B, N B = Br(n). Let z; = y; + wj, where
e @D X—c) and wie arHT X -
0<r<n t>n+1

Now it is easy to see that the equality x; = Zj cjizi implies x; = Zj ¢;iy;. Thus B, is flat over R for every n > 0.

(2)Since Br(n) = B, NBr = @0<r<n(1[‘r)_l (X —cr)", for any ideal J of R, JB-(n) N By (n — 1) = JBr(n — 1). Therefore,
since B is a direct limit of B, it follows that JB, N B,_1 = JB._1.
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(3) Since by (1) B, is R-flat and by (2) for every ideal J of R we have JB, N B,_; = JB,_1, the short exact sequence

0 — By_1 — By -2 By/Bu_1 — 0 (3.6)

shows that Tor¥(B,,/B,_1, R/J) = O for every ideal J of R and for every n > 0. Therefore B,/B,_; is R-flat (of rank one) for
every n and hence Gr(B) = @, , Bn/Bn—1 is R-flat. Since R is a direct summand of Gr(B), it follows that Gr(B) is faithfully
flat over R.

(4)Set L(n) := B,/B,_1.Then L" C L(n). Since Bp = Rp[Xp] for every prime ideal P € A, we have Gr(B), = Rp[Yp], where
Yp denotes the image of Xp in V;/Vy and Lp = RpYp. Therefore, (L"), = RpYp" = L(n)p. By (3), L(n) and L" are flat R-modules
of rank one. Hence, by Lemma 2.4, L" = L(n) for n > 0. Thus Gr(B) = R[L].

(5) Since Gr(B) = R[L] by (4), it is now easy to see that B = R[B{]. O

n>0

The following result was proved in [2, Theorem 3.10] under the additional hypothesis that R is a local domain which
is analytically irreducible. In view of Proposition 3.10, we now show that the hypothesis “analytically irreducible” can be
dropped.

Corollary 3.11. Suppose that R is local with maximal ideal m and B is faithfully flat over R. Then either B is A! over R or
R/m = B/mB.

Proof. By Proposition 3.10(3)—(4), L is a flat R-module of rank one and hence by a result of Vasconcelos [6, Theorem 3.1],
eitherL=RorL = mlL.
If mL = L then By = R + mBjy. Since B = R[B;] by Proposition 3.10(5), it follows that B = R + mB. Hence R/m = B/mB.
If L = R then choose T € Bg such that L = RW, where W is the image of T in L = B;/R € V;/K. This shows that
R[T] € B C K[T] and Gr(B) = R[W]. Therefore R[T] = B (cf, Remark 3.7(4)). O

Remark 3.12. Suppose that B is a faithfully flat R-algebra.

(1) As a consequence of Corollary 3.11, we see that P B € Spec B for every prime ideal ? of R. In fact, for each prime ideal
P of R, either B, is A! over R, or the fibre ring A ® k(?) = k() which implies that 2 B, is a prime ideal of B, and hence
P Bis a prime ideal of B because B/ B — B, /P B, by flatness of B over R.

(2) If R is factorial and B is a Krull domain, then B is factorial. Indeed, by (1), every prime element of R remains a prime
element of B. Let S be the multiplicative closed set generated by all prime elements of R. Then S"!R = K, and hence
S~1B = K™, a factorial domain. Hence B is factorial by Nagata’s criterion [4, Corollary 7.3].

For an integer n > 0, recall the notation
L(n) := B,/Bp—1. (3.7)

Let Y denote the image of generic variable X € Bin V;/Vy and M, := {» € K|AY" € L(n)}. Then, since RY" C L(n) C KY"
(cf. Remark 3.7(4)), R € M,, € K. In fact

My =lim (7! (= U (h")l) (38)

—
reXxy res,

and L(n) = M, Y" (see [2, Remark 2.12]). Set M := M;. If B is faithfully flat over R then by Proposition 3.10(3)-(4), it follows
that M, is flat over R and M;, = M" for n > 1 and hence Gr(B) = Symi (M) = Tz (M).

Corollary 3.13. Suppose that B is a faithfully flat R-algebra. Set M = M. Then the R-subalgebra R[M] of K is flat over R.

Proof. By Proposition 3.10(3), Gr(B) is flat over R and so L = By /R is flat over R which implies that M is flat over R since
MY = L. By Remark 3.7(4), RY € L C KY and hence,R € M C K. Thus, by Lemma 2.2, R[M] is flat over R. 0O

Lemma 3.14. Let Ay = {P € A|Rp[X] = Bp} and letR = ﬂpeﬂlRp. If Bis a faithfully flat R-algebra, then R' has the following
properties:

(1) R’ is flat over R.
(2) R’ is a Noetherian normal domain.

Proof. (1) By Corollary 3.13, it is enough to show that R[M] = R'. Note that A; = A \ Ay. By (3.8), we see that R € M and
Rp = Mp if and only if P € A;. Therefore R[M]p, = Rp if P € A1 and R[M], = K for P € Ay. Since R[M] is R-flat, we have
R[M] = (pe RIM]p by Lemma 2.4. Hence R’ = R[M].

(2) R' is normal because it is given by intersection of normal domains. By Lemma 2.3 and (1), it follows that R’ is
Noetherian. O
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4. Locally quasi A* algebras in codimension-one I: basic concepts and results; Theorem B

We first prove an elementary result on quasi A* algebras over an integral domain.

Lemma 4.1. Let R be an integral domain with quotient field K and A be an R-algebra which is quasi A* over R. Let T € A ®g K be
such that A ®g K = K[T, T~'] and B = AN K[T]. Then there exist W € B,a’ € R\ 0,b' € Rand f = W + b'(€ B) such that
(@,b)R =R B=R[W]and A = R[W, f~']. As a consequence,

RIf,fTUCACKIf,f 1=K[T, T
and
ANKT" =Rf" and ANKT™=Rf™ V¥n=>0.

Proof. Since A is a quasi A* R-algebra, there exists X € A, transcendental over R, such that A = R[X, (aX + b)~!] for some
a € R\ 0,b € Rsatisfying (a, b)R = R.Letg = aX + b. Then K[T, T™!'] = A®z K = K[g, g']. Hence, either K[g] = K[T]
orK[g] =K[T™"].

Suppose K[g] = K[T]. Then K[T](= K[g]) = K[X] and R[X] € B C R[X,g~!] = A. Since (a, b))R = R, g is a prime
element of R[X] which implies gK[X] N R[X] = gR[X]. Thus gB N R[X] = gR[X] and since R[X, g~ '](= A) = B[g '], we have
B=R[X].SetW := X and f := g.Then A = R[W, f~'] and B = R[W].

Now suppose K[g] = K[T~'].Since aR+bR = R, there existc, d € Rsuch thatad—bc = 1.SetW := (cX+d)/(aX+b) and
fi:=aW —c.Thenf = 1/(aX +b) = 1/g,X = (d — bW)/f and K[W] = K[f] = K[T]. Hence A(= R[X, g~ ']) = R[W, f~']
and arguing as before, we see that B = R[W].

Now since A = R[W, f~!] and f is linear in W, we have R[f,f~'] € A C K[f,f~!] = K[T, T~'] and hence f = AT for
some A € K*.SinceR C ANK C ANKJ[T] = B = R[W], it follows that AN K = R.If u € K be such that uf" € A, then as
f € A*, wehave u € (AN K =)R. Therefore, ANKT" = Rf*andANKT™ =Rf "forn>0. O

Let R be an integral domain with quotient field K and A a faithfully flat R-algebra such that A @z K = K[T, T~1]. Let
B = A N K[T]. The above lemma shows that if A is locally quasi A* in codimension-one over R then B is locally A' in
codimension-one over R. One would like to know a relation between A and B. For example, one might ask whether A is (in
some sense) a localisation of B.

Our first goal in this section is to show that if R is Noetherian and normal then indeed such is the case (Theorem 4.6). We
first fix some notation.

Notation

Throughout this section, R will denote a Noetherian normal domain with quotient field K, A the set of prime ideals in R of
height one and A a faithfully flat R-algebra which is locally quasi A* in codimension-one.

FixT € A ®g K such that A ®g K = K[T, T~']. For an integer n > 0, set

C, :=ANKT".
D, :=ANKT™".

We now prove a technical lemma on the submodules C,, D,,.

Lemma 4.2. The canonical maps C, g A — C,A and D, ®g A — D,A are isomorphisms of A-modules and C,A = A = D,A for
eachn > 0. As a consequence, C, and D, are finitely generated projective R-modules of rank one.

Proof. We show that the canonical map C, ® A — C,A is an isomorphism and C,A = A. The results for D,, will follow in a
similar way.

Since C, < KT" and A is R-flat, we have C, ®g A — KT" ®z A = K[T, T™'], so that C, ®x A is a torsion free A-module of
rank one. Hence the map C;, ® A — C,A is an isomorphism.

Since G, = AN KT" and A is R-flat, it follows that G; = (. ,(Ca)p by Lemma 2.4. Therefore, again by Lemma 2.4, if
X,y € Rbe such that (xR : y) = xR then (xC, : y) = xC,. In particular, since R is normal, if (x, y) is an ideal of R of height > 2
then (xG, : y) = xC,. Since A is R-flat and C;, ¢ A = C,A, we see that (xC,A : y) = xC,A for x, y € R such that ht(x, y) > 2.

Forg € G, h € D,, we see that gh € AN K = R. Therefore we get an R-linear map ¢ : C, ®r D, — R defined by
Y (g ® h) = gh. Let ], be the image of .

Since A is locally quasi A* in codimension-one, by Lemma 4.1, (J,)p = Rp for every P € A. This shows that J, is an ideal
of R of height > 2. Therefore, there exist x, y € J, such that ht(x, y) > 2.

Since DA C A, J,A C C,Aand so (x,y) € J,A € C,A. Now since (xC,A : y) = xGyA, the fact xy € xC,A implies that
x € XCyA, hence C,A = A. Since G, ®; A = C,A = A and A is faithfully flat over R, G, is a finitely generated projective
R-module of rank one. Thus the lemma is proved. O

It follows from Lemma 4.2 that J, = C,D, is a locally principal ideal in R of height at least two. We thus obtain the
following corollary.
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Corollary 4.3. Set B := AN K|[T] and let C be the R-subalgebra C = 5
(1)Jn = R for each integer n > 0.
(2) The canonical map 6, : C; ® C; ® - - - @ C; — C, is an isomorphism of R-modules.
(3) C = Symg (Cy) as R-algebras.

C, of B. Then we have:

n>0

Proof. (1) Since C, and D, are finitely generated projective R-modules of rank one, so is G, ®x D,. Therefore the surjective
map ¥ : C, ®g Dy — J, is an isomorphism. Thus J;, is R-projective of rank one, i.e., an invertible ideal of R. Since ht(J,,) > 2,
we see thatJ, = R.

(2) For the sake of simplicity we denote 6, (C; ®C;®- - -QCy) (n-times) by C(n). Since A is locally quasi A* in codimension-
one, by Lemma 4.1, for every P € A, we have (C;)p = Rpfp for some fp € Ap and (C,)p = Rpfp" for every n > 0. Thus
C(n)p = (Cy)p forevery P € A.Thisimplies that 6, is injective. Now using the fact that C(n) and G, are projective R-modules,
by Lemma 2.4, we have C(n) = ﬂ,,eA C(n)pand G, = ﬂpeA (Cy)p and hence C(n) = C,. Thus 8, is an isomorphism for
everyn > 0.

(3) Follows from (2). O

Corollary 4.4. The following statements hold:
(1) B(= ANKI[T)) is a semi-faithfully flat R-algebra which is locally A' in codimension-one.
(2)R* G A* if and only if there exists n > 0 such that C, is free.
(3)IfC; = Rf, then R[f] € B € K[f] = K[T],A = B[f '] and BN TK[T] = fB and hence fB € Spec B.

Proof. (1) By Lemma 4.1, it is enough to show that B is semi-faithfully flat over R. Since A is faithfully flat over R, by
Lemma 2.4, we have

B=ANK[T] = (ﬂ Ap> NKIT] = ()@ NKIT]) = (") Br
PeA PeaA PeA

and
IBNRCIANR=1, foranyideallofR.

Thus B is semi-faithfully flat over R.

(2) Suppose that C, = Rh for some n > 0 and h € A. Since J, = R by Corollary 4.3(1), it follows that D,, = Rh~'. Hence
h € A* \ R*. Conversely, suppose that R* G A* and leth € A" \ R*.Since A — A ®g K = K|[T, T~1], h € KT" for some
n € Z.Replacing h by h~! if necessary, we may assume thath € C, (= AN KT") and h~! € D, for some integer n > 0.
Note that Kh = KT" and Kh~! = KT~". We now show that C, = Rh.Letg € C,, theng = Ah for some A € K. Hence
gh™' =X € ANK = R.Thus C, = Rh.

(3) Since Rf = C; C KT, K[T] = K|[f] and TK[T] = fK[f]. Moreover, by (2), f~' € A and hence R[f,f"!] C
A C K[f,f~'1 = K[T,T~']. Hence, as K[T] = K[f],RIf] € B € K[f].Ifg € A, then there exists k > 0 such that
fkg € ANK[f] (= B) and hence A = B[f~].

Leth € fK[f] N B.Then h € A and, since f € A*, we have h/f € ANK[f] = B.Thus TK[T]NB(=fK[f]NB) =fB. O

The following result, on factorial domain, is the quasi A* analogue of Theorem 3.5.
Corollary 4.5. Suppose that R is a factorial domain. Then A is a direct limit of quasi A* algebras.

Proof. By Lemma 4.2, C; is finitely generated projective R-module and since R is factorial, we have C; = Rf for some f € C;.
Hence, by Corollary 4.4, B is a semi-faithfully flat R-algebra which is locally A! in codimension-one such that f is a generic
variable of Band A = B[f~']. By Theorem 3.5, B is a direct limit of polynomial algebras in one variable over R and hence,
A(= B[f~]) is a direct limit of quasi A* algebras over R. O

The following theorem shows that A is a localisation of B.

Theorem 4.6. Let R be a Noetherian normal domain with quotient field K and A a faithfully flat R-algebra such that A @ K =
K[T, T~1] for some T transcendental over K. Suppose that A is locally quasi A* in codimension-one over R. Let C; = A N KT,
B=ANK[T]and Q = BN TK[T]. Then Q = C;B. As a consequence, Q is an invertible ideal of Band A = B[Q ~'].

Proof. It is easy to see that C; = ANKT C ANTK[T] = BN TK[T] = Q. Therefore C;B C Q. Let m be a maximal ideal
of Rand S = R\ m.By Lemma 4.2, C; is a finitely generated projective R-module of rank one, hence S~!C; is a free S™'R-
module of rank one and so S~!C; = R,.f,, for some f,, € S”!C;. Therefore, by Corollary 4.4(3), C1B,, = f.B,» = QB,, and
Aw =B,lfn '1=B,[(QB,) '].Hence C;B=QandA=B[Q~']. O

Corollary 4.7. The following statements hold for the ring A:
(1) If Bis a Noetherian ring, then so is A.
(2) If Bis a finitely generated R-algebra, then so is A.

Proof. Follows from the fact that A = B[Q ~'] where Q is an invertible ideal of B. O
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In Section 5, we shall prove the converse of Corollary 4.7 (cf. Theorems 5.6 and 5.7).
In the special case of A being locally A* in codimension-one over R, we have Theorem B which shows that A is always
finitely generated over R. In fact its proof shows that B is finitely generated over R.

Theorem 4.8. Let R be a Noetherian normal domain and A a faithfully flat R-algebra such that A is locally A* in codimension-one.
Then A = P, ., I" for an invertible ideal I of R. In particular, A is finitely generated over R.

Proof. Let K be the quotient field of R and A ®; K = K[T, T~!] for some T transcendental over K. Let B = A N K[T],
C,=ANKTMMandC = P,.,C, € B.NowA = B[(C;B)~ '] by Theorem 4.6 and C = Symg (C;) by Lemma 4.3(2), with
being isomorphic to an invertible ideal of R by Lemma 4.2. Thus it suffices to show that C = B.

Since C is flat over R, C = (), Cp by Lemma 2.4. By Corollary 4.4(1), B = (\p, Bp. Therefore it is enough to prove that
Cp = Bp forevery P € A.

Let P € A. Since A is locally quasi A* in codimension-one over R, (C;)p = Rpf for some f € (C;)p by Lemma 4.1.
Hence G, = Rp[f] € Bp C KI[f] = KIT] and fK[T] = TK[T]. By Theorem 4.6, B N TK[T] = Qp = fBp, hence
fBp N Cp(= TK[T] N Cp) = fCp and Rp[f,f~'] € Bp[f~!] = Ap. Therefore, to show that Cp, = Bp, it is enough to show
that Cp[f_l] = Bp[f_l].

Since A is locally A* in codimension-one, Ap = Rp[W, W~!] for some W transcendental over Rp. Thus Rp[f,f™'] €
Rp[W, W11 C K[f,f']. Therefore, Co[f 1] = Rp[f,f '] = Rp[W, W] = Ap = Bp[f'].

Thus the result follows. O

nez

Remark 4.9. (1) Our proofs show that in all results of this section the hypothesis “R is a Noetherian normal domain” may
be replaced by the weaker hypothesis “R is a Krull domain”.

(2) From Theorem 4.8, one can deduce that the hypothesis of finite generation on A in Theorem 3.4, Corollary 3.9 and
Theorem 3.11 of [1] can be dropped. (There is an error in Example 3.6 of [1].)

5. Locally quasi A* algebras in codimension-one II: Theorem A

As in Section 4, R is a Noetherian normal domain with quotient field K, A a faithfully flat R-algebra which is locally quasi
A* algebra in codimension-one, T € A ®; K is such that A®g K = K[T,T"'],B = ANK[T]and Q = B N TK[T]. We
have seen (Theorem 4.6) that Q is an invertible ideal of Band A = B[Q ~!]. Hence, if B is Noetherian (respectively finitely
generated over R) then so is A. In this section, we prove a converse of this result (Theorems 5.6 and 5.7): we show that if A
is Noetherian then B is Noetherian and if A is finitely generated over R then so is B. Finally we prove Theorem A.

To begin with we shall show (Theorem 5.2) that, in the above set-up, B is faithfully flat over R. We first give below
(Lemma 5.1) a sufficient condition for B to be faithfully flat over R. For this we can assume that R is a local ring with maximal
ideal m. Since, by Lemma 4.2, C; is a finitely generated projective R-module and R is local, there exists f € C; such that
C; = Rf. By Corollary 4.4, B is a semi-faithfully flat R-algebra which is locally A! in codimension-one over R such that
RIf] € B € K[f]and A = B[f~']. Note that f is a generic variable of B. Let {Aq, I}, By, ¢} be the data associated to the
generic variable f of B.

With the hypothesis that R is local and notation as above, we prove

Lemma 5.1. Suppose A # ) and ¢ € R* forevery I' € Xy. Then B is faithfully flat over R.

Proof. Bis R-flat if and only ifTor'f (B, R/I) = Oforeveryideall of R.LetI be anideal of Rand @ € Tor'f (B, R/I). We show that
a = 0. Since B[f ~'](= A) is a faithfully flat R-algebra, there exists r > 0 such that f'a = 0 in Tor’f(B, R/I). By Theorem 3.2,
B= li_rr)lre)r B and hence

0

Tor% (B, R/I) = Tor®( lim Br,R/I) = lim TorX(Br, R/I).
rexy rexy

Thus, there exists I" € Xy such thata € Tor’f(Bp, R/I) and ffa = 0in Tor’f(Bp, R/I). Again by Theorem 3.2, B is graded
R-algebra:

Br = @En (5.1)

n>0
where E, = (I-™)~" (f — c¢,)". Therefore,

Tor{(Br, R/I) = @D Tor{ (Ex, R/I)

n>0
is a graded Br-module. We write @ € Tor’f(Bp, R/I) as
a=og+a;+---+oa withg; € Tor}f(E,-, R/D,0<i<t.
Note that X := f — cr is a homogeneous element of degree one in B and by hypothesis ¢ € R*. Now f"« = 0 implies

CrrO[o =0, C]"rOll + TCFr71(X0X1" =0, PR Olter =0
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and since ¢ € R*, we have
wp=o;=--=00a =0
showing that « = 0in Tor’f (Br, R/I). Thus B s R-flat. Since, B C A and A is faithfully flat over R, B is faithfully flatover R. O
We now prove faithful flatness of B by showing that either B satisfies the hypothesis of Lemma 5.1 or B = Rl

Theorem 5.2. Let R be a Noetherian normal domain with quotient field K and A a faithfully flat R-algebra such that A @ K =
K[T, T~1] for some T transcendental over K. Suppose that A is locally quasi A* in codimension-one over R. Then B = AN K[T] is
a faithfully flat R-algebra.

Proof. Since faithful flatness is a local property, we assume R to be a local domain. We prove faithful flatness of B by induction
on the dimension of the ring R.

If dimR = 1, then there is nothing to prove since A is a faithfully flat locally quasi A* algebra in codimension-one over R
and hence B = R by Lemma 4.1.

Now consider dimR > 1. Let the notation be as before Lemma 5.1. If Ag = ¢, then B = R[f] and hence a faithfully flat
R-module. Now assume that Ay # . We show that ¢ € R* for every I' € X. Then the result will follow by Lemma 5.1.

Suppose, if possible, that there exists I € Xj such that ¢, € m. We show that this leads to a contradiction. Since
dimR.. < dimR, by applying induction hypothesis to local rings of R.., we get that B,. is faithfully flat over R, .. Also since
By (= A) is faithfully flat over R, we have B;_,. is flat over R.

Set i := (B : f — cr). Since SFlR is a PID, I]"SF]R is a principal ideal, say generated by d, and hence if y, =
(f —cr)/dr, then SFlB = SFlRD/r] by Theorem 3.2. This shows that f — cf € IpS;lB. Therefore we have leSFlB = S;lB
and hence there exists s € Sy such thats € 4 so that I, ; dr N R. Further IrBs_. (= 4rBf_c;) # Br—c-. If it were so,
then there would exist £ € N such that (f — ¢;-)¢ € IB C mB.Since ¢ € m, this would imply that f¢ € mB.But f* ¢ mB
as B[f ~!] is a faithfully flat R-algebra. Thus Bi_c,/1rBf_c,- is anon-zero ring and the image of s in By_. /I Bf_. is zero. But
this contradicts the fact that Bf_.,. /IrBy_. is flat over R/l and the image of s in R/I is not a zero-divisor. Hence ¢ € R*
forevery I' € Xy. O

Remark 5.3. (1) The proof of Theorem 5.2 shows that if R is local then either Ay = ¥ and B = R™ or for each I' € X,
cr € R*. Hence for R which need not be local, if A is a faithfully flat R-algebra which is locally quasi A* in codimension-one
over R such that A = B[f '], where B = A N K[f], then for each I" € Xy, I + Rc; = R, where {Ay, I, By, cr} is the data
associated to the generic variable f of B.

(2)Foreach I' € Xy, f — cr € IrB. In fact, from the proof of Theorem 5.2, we have f — ¢ € IrS/~'B N B, where
IrSr~'B N B = I;-B since B is faithfully flat over R.

We now prove an analogue of Theorem 3.10 of [2] for fibre rings of algebras which are locally quasi A* in codimension-
one.

Proposition 5.4. Let R be a Noetherian normal domain and A a faithfully flat R-algebra which is locally quasi A* in codimension-
one. Then P A € Spec A for every prime ideal P of R. In fact, for each prime ideal P of R, either A, is quasi A* over R, or the fibre
ring A Qg k(P) = k(P).

Proof. Let P € Spec R. Since A is faithfully flat over R, to show that A € Spec A it is enough to show that PA, € Spec Ap.
Therefore, we can assume that R is a local domain with maximal ideal m and show that either A is quasi A* over R or the
fibre ring A/mA = R/m.

Since R is local, by Theorem 4.6, there exists f € A such that R[f,f™'] ¢ A C K[f,f ']and A = B[f~!], where
B = AN KJ[f]. By Theorem 5.2, B is a faithfully flat R-algebra which is locally A! in codimension-one over R. Therefore,
by Corollary 3.11, B is either R[T] for some T € B which is transcendental over R or B/mB = R/m.If B = R[T] then
A = B[f~'] = R[T,f~"] and hence quasi A* over R. In the other case, since A is faithfully flat over R, f ¢mB and hence
R/m =B/mB=A/mA. O

We shall now show that if A is Noetherian then B is Noetherian and if A is finitely generated over R then so is B. For this
we make the following reduction.

Remark 5.5. To prove that A is Noetherian (resp. finitely generated over R) implies B is Noetherian (resp. finitely generated
over R), it suffices to assume that C; is a free R-module of rank one. To see this, first note that, by Lemma 4.2, C; is a
finitely generated projective R-module of rank one. Hence there exist a;, a;,...,a, € Rand f1,f>...,f; € Cy such that
(ai,...,a)R = Rand (Cy),; = Ryfiis a free R;-module for 1 < i < r. Thus, if By, is Noetherian (resp. finitely generated
over R) foreach i, 1 <i < r, then it will follow that B is Noetherian (resp. finitely generated over R).

Theorem 5.6. Let R be a Noetherian normal domain with quotient field K and A a Noetherian faithfully flat locally quasi A*-
algebra in codimension-one over R. Let B = ANK[T], where T € A ®gK is such that AQg K = K[T, T~']. Then B is Noetherian.
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Proof. By Remark 5.5, we may assume that C; (= ANKT) is a free R-module, say C; = Rf for some f € R. By Corollary 4.4(3),
f is a generic variable of Band A = B[f~'].

Let S = 1 + fB. By hypothesis B[f '](= A) is a Noetherian ring. So B is Noetherian if and only if S~'B is Noetherian. By
Theorem 5.2, B is faithfully flat over R and hence S~'B is a flat R-module. Therefore, by Lemma 2.4, S™'B = (), , (S'B)p,
where (S™!B); is the localisation of S~'B by the multiplicatively closed set R \ P. Note that (S~'B), = S™'(Bp).

Recall that Ag(f) = {P € A|Rp[f] & Bp} and {cr}res, is the family associated with the generic variable f of B. Then, for
P € A\ Ay, Bp = Rp[f] and hence (S™'B)p = S™'Rp[f].

Note that, by Remark 5.3, for P € Ay, (cpy, P) = Rand f — cjp; € PB and hence fB + PB = B. Therefore S N PB # (.
Moreover, Rp is a local PID with maximal ideal PRp and Bp = Rp[W] for some W € Bp which is transcendental over Rp.
Putting these facts together we see that S™'B, = ST'K[W] = SIK[f].

Thus S~'B = S!R'[f], where R’ = ﬂpeA\AO Rp. Now by Lemma 3.14(2), R’ is Noetherian and hence B is Noetherian. O

Theorem 5.7. Let R be a Noetherian normal domain and A a finitely generated faithfully flat locally quasi A*-algebra in
codimension-one over R. Let B = ANK[T], where T € A®gK is such that A®g K = K[T, T~']. Then B s finitely generated over
R. In particular, if R is a local domain then A is quasi A* over R.

Proof. To show that B is finitely generated over R, we may assume, by Remark 5.5, that C; = Rf for some f € R. By
Corollary 4.4(3), f is a generic variable of Band A = B[f~']. Let {Aq, Ir, By, cr} be the data associated to the generic
variable f of B.

By Theorem 3.2, B = lim Br. Since B[f~!] = lim Br[f~'] is a finitely generated R-algebra, there exists
—I'eXy —leXy

Iy € X such that B[f '] = Bpo[f”]. We now show that I; = Ay. Suppose that there exists P € (Ag \ Ip). Then
(Bry)p = Relf1 # Bp = Rp[Xp]. Since f is a generic variable, f = a,Xp + bp, for some ap, bp € Rp with ap € PRp. This shows
that (Bry)),lf ~'1 = Rplf,f'1#Bplf '] contradicting the fact that B[f ~'] = B [f']. Thus Iy = Ag and hence B = By,
which is finitely generated over R by Proposition 3.4.

If R is a local domain then, since B = Br, = @, (Ipon)fl (f — cry)" is R-flat (cf. Theorem 5.2) and R is Noetherian, I

is a finitely generated projective R-module. Thus I, is a free R-module, say I, = Rdp,. Hence B(= Br)) = R [f;;ro] and
0
f_

A=B[f']1= R[ d:"o ,f”] is quasi A* overR. O
0

Corollary 5.8. Suppose there exists (0 #)a € R such that A[1/a] is finitely generated over R. Then A is finitely generated over R.

Proof. Since A[1/a] is finitely generated over R, by Theorem 5.7, we have that B[1/a] is a finitely generated R[1/a]-algebra.
Fix a generic variable X € Band let Ap = {P € A|Rp[X] & Bp}. Let Ay = {P € Ap|ag¢P}. Then, since R is Noetherian,
Ag \ A1 is a finite set. Since B[1/a] is finitely generated over R[1/a], by Proposition 3.4, A is a finite set and hence Ag
is finite. Therefore, again by Proposition 3.4, B is finitely generated over R and hence A is finitely generated over R by
Corollary 4.7(2). O

We now obtain Theorem A. We state it in two parts: Theorems 5.9 and 5.10.

Theorem 5.9. Let (R, m) be a Noetherian normal local domain and A a faithfully flat R-algebra which is locally quasi A* in
codimension-one over R. Then the following are equivalent:

(i) Ais quasi A* over R.
(ii) Ais a finitely generated R-algebra.
(iii) R/m G A/mA.

Proof. (i) = (ii) and (i) = (iii) are trivial.
(ii) = (i) follows from Theorem 5.7.
(iii) = (i) follows from Proposition 5.4. O

The next result, on complete local domain, is the quasi A* analogue of Theorem 3.6.

Theorem 5.10. Let R be a complete local Noetherian normal domain and A be a faithfully flat R-algebra which is locally quasi A*
in codimension-one over R. Then the following conditions are equivalent:

(i) Ais Noetherian.
(ii) A'is finitely generated over R.
(iii) Ais quasi A* over R.

Proof. Clearly (iii) = (ii) = (i). For (i) = (iii), we have by Theorem 5.6, B is Noetherian. Hence, by Theorem 3.6, B = R[W].
Thus the result follows from Theorem 4.6. O

In Section 6, Example 6.3 shows that Theorem 5.10 does not hold if R is not complete.



S.M. Bhatwadekar, N. Gupta / Journal of Pure and Applied Algebra 215 (2011) 2242-2256 2253

6. Examples

Let R be a Noetherian factorial domain with quotient field K. Let A be a faithfully flat R-algebra which is locally quasi A*
in codimension-one, A @z K = K[T, T~!] and B = AN K[T]. We have seen (Theorems 4.6 and 5.2) that B is a faithfully flat
R-algebra which is locally A in codimension-one, BN TK[T] = Bf,A = B[f ~'] and the prime element f is a generic variable
of B.

Therefore it is natural to ask the following:

Question 1. Let R be a Noetherian factorial domain and B a faithfully flat R-algebra which is locally A! in codimension-one.
Can we find a generic variable f € B such that B[f ~] is faithfully flat over R?

Note that if A = B[f~!] is faithfully flat over R then A is locally quasi A* in codimension-one over R.

We give below an example of a factorial domain B, which is faithfully flat locally A! in codimension-one over k[X, Y] (k:
field) such that for any generic variable f € B, there exists a maximal ideal z of k[X, Y] such that f € #B and hence B[f ']
is not faithfully flat over R.

Example 6.1. Let k denote the algebraic closure of Q, R = k[X, Y] and A the set of all height one prime ideals of R. k, being
countable, can be indexed as k = {1, @2, ..., an, ... }. Letp; =Y + ;X and P; = p;R,i > 1. Set Ag = {P;}i>1.

Let xo be an indeterminate over R. Set ¢cp = 1,

cth=14+p1+---+pib2--Pn

and

Xno1— 1 Xo—Cpq
Xy = =

Pn P1P2 - Pn

forn > 1. Now set

B := R[xg, X1, X2, .. ., Xn, . . .],

a direct limit of the R-algebras R[x,](= R™).

Clearly, Bo = Rp!"'V P € A and B s faithfully flat over R since it is a direct limit of polynomial algebras over R. Note that
ex,(P) = 1forP € Agand ey, (P) =0forP € A\ Ay (see Section 3 for definition of ey,). Since x,..1 ¢ R[x,], B is not finitely
generated over R. We show that:

(1) Bis a factorial domain.

(2) For every generic variable f of B, there exists a maximal ideal n of R such that f € nB.

(1) By Remark 3.12(2), it suffices to show that B is a Krull domain. Since B is faithfully flat over R, by Lemma 2.4, we have

B=()Br= (ﬂ Vp> NK[x],

PeA PeA

where K is the quotient field of R and Vp := Bpp is a discrete valuation ring of K(xq) for each P € A. Thus, since K[xq] is a
Krull domain, B is an intersection of discrete valuation rings. Hence, to show that B is a Krull domain, it suffices to show that,
for any h € B, there exist only finitely many P € A such that h € PB. Now

B:ﬂspz(ﬂ Bp>m< N Bp):<ﬂ Bp>ﬁR’[xO],

PeA PeAg PeA\Ag PeAg

where R" = (4, Re- R’ is @ Noetherian normal domain by Lemma 3.14. Hence, it suffices to show that for any h € B,
there exists an integer m such that h ¢ P,BY n > m.Let h € B = R[xo, X1, . .. ]. Multiplying h by a suitable element from R,
we may assume h € R[xg]. Let

h=¢Xx)=a +axo+---+ax', aeRr

Let d; denote the degree of g; in X and Y. Choose m > 1 large enough so that

(i) for n > m, the leading coefficient a, ¢ p,R, and

({iym>144d;Vi,0<i<r-—1.
We show that h ¢ P,Bforn > m.If r = 0, then clearly h ¢ P,B for n > m since R/P,R — B/P,B and a; ¢ p,R. Suppose that
r > 0andh € P,B for some n > m. Then ¢(c,—1) € PyR since R/P,R — B/P,Band Xy = ¢,—1+ P1 - - - PnXn. Now, identifying
R/P,R with k[X], the image of the product p; - - - pp—; in R/P,Ris AX"~!, where A = (a; — ) - - - (@q—1 — ) € k* and hence
the image of c,_1 in R/P,R is a polynomial of degree n — 1. Therefore, sincem — 1 > d; V i < r — 1, the image of ¢(cp,—1)
in R/P,R is a polynomial in R/P,R(= k[X]) of degree at least (n — 1)r > 1 contradicting the fact that ¢(c,—1) € P,R. Thus
h € PB for only finitely many P € A.

(2) Let f be a generic variable of B. Then f = a + bx, for some a, b € Rand n > 0 and hence for ¢ > 0,

f=a+b(+pug1+ - +DPnr1-- Pnre + Pnt1- - Pnres1Xntes1)-
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Choose ¢ such that, £ > max{dega, 0} and p; does not divide b for j = £ 4+ n + 1. It is then easy to see that the image of the
element

fer=a+b(A+ppp1+ -+ Pugi1 - Degn)

inR/Pyyn+1 (identified with k[X]) is a non-constant polynomial. In fact, the X-degree of the image of f; in R/Py ;11 (= k[X])
is at least £(> 0) and hence it has a root in k, say 8. Then f € nB, where n = (Y 4+ ag4n11X, X — B)R.

It is therefore not possible to obtain a faithfully flat locally quasi A* algebra in codimension-one over R by inverting some
generic variable of B.

We now show that if R is local or R is a retract of B (equivalently B is a graded R-algebra), then one can indeed find a
generic variable f such that A = B[f ~!] is a faithfully flat R-algebra which is locally quasi A* in codimension-one.

Lemma 6.2. Let R be a Noetherian normal domain and B a faithfully flat R-algebra which is locally A! in codimension-one over
R. Then there exists a generic variable f € B such that A := B[f ] is faithfully flat locally quasi A* in codimension-one over R, if
either

(1) R is local with maximal ideal m, or

(2)Ris aretract of B.

Proof. It is enough to show that there exists a generic variable f such that B[f '] is faithfully flat over R.
(1) Suppose that R is local with maximal ideal = . Let X be a generic variable of B. Then taking

X ifX ¢ mB.

We see that B[1/f] is faithfully flat over R.

(2) Now suppose that R is a retract of B. Let 6 : B — R be the retraction map. Let X be a generic variable for B, c = 6(X)
andsetf = X —c + 1.Then 6(f) = 1 and hence f ¢ m B for any maximal ideal m of R. Therefore, A = B[f '] is faithfully
flatoverR. O

X—1 ifX emB.
r-

We now show the existence of a Noetherian ring A which is locally quasi A* algebra in codimension-one over a Noetherian
normal local domain R but which is not finitely generated over R.

Example 6.3. Example 6.2 in [2] gives us an example of a Noetherian ring B which is faithfully flat locally A' algebra in
codimension-one over a Noetherian normal local domain R but which is not finitely generated over R. By Lemma 6.2, we can
get a generic variable f such that A = B[f '] is a faithfully flat locally quasi A* algebra in codimension-one over R. Now A is
a Noetherian ring but A is not finitely generated over R by Theorem 5.7.

The following example shows that over a complete local domain, there exists a faithfully flat locally quasi A* algebra in
codimension-one which is not finitely generated.

Example 6.4. Let R = Q[[X, Y]] be a Noetherian factorial complete local domain. Let p, = X + nY and let W be an
indeterminate over R. Set W, = W/p, forn > 1and B = R[W, Wy, ..., W,,...]. Then B is a faithfully flat R-algebra
which is locally A! in codimension-one over R but B is not finitely generated over R. Hence, A = B[(W — 1)~!] is a faithfully
flat R-algebra which is locally quasi A* in codimension-one over R (cf. Lemma 6.2) but A is not finitely generated over R by
Theorem 5.7.
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Appendix

We now discuss the construction of algebras which are locally quasi A* in codimension-one. In [2], a recipe for the
construction of an R-algebra B which is semi-faithfully flat and locally A' in codimension-one was given; in a sense, the
construction characterises all such algebras. Using such a B, and a finitely generated projective R-submodule C; of rank one
such that C; € By and C; NR = (0), one gets an R-algebra A = B[(C;B) '] which is locally quasi A*-algebra in codimension-
one over R. Note that if B is faithfully flat over R, then A is flat over R. However, Example 6.1 shows that it is possible to
construct B as above such that B[(C;B) '] is not faithfully flat for any choice of C;. This leads to:

Question 2. Let B be a faithfully flat algebra which is locally A! in codimension-one over a Noetherian normal domain R.
Let C; be a finitely generated projective R-module of rank one such that C; € B; and C; N R = (0) and let A = B[(C;B)'].
When is A a faithfully flat locally quasi A* algebra in codimension-one over R?

In this section we investigate Question 2.
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Let the setup be as in Question 2. Set L = By /R where By is as in (3.3). Since C; € B; and C; N R = (0), C; is isomorphic
to its image C; in L. Let A denote the set of all height one prime ideals of R. For each P € A, we define an integer e(P) by

e(P) := £g, (L/Ci ®g Rp),
the length of the Rp-module (L/C; ®g Rp). Let
Ag:={P € Ale(P) >0} and
X := the set of all finite subsets of Ag.
For I' € Xy, let

Ir = Pl(f(l’l)) N---N Pn(e(P”)),
Er:=1;7'C; CL and

Dy := p "(E;), where p : B — B;/R = Lis a canonical projection.

Lemma A.1. Foreach I' € X, there exists a retraction 6 : Dr — Rand hence Dr =R ® E.

Proof. Since C; is a finitely generated projective R-module of rank one, Ej- (= I,ila) is a finitely generated torsion-free
R-module of rank one. Hence there exists a sequence X, y € R such that (E;)y = FRy and (Er), = GR, for some F, G € E.
Now F € GRy(= (Er),). Hence there exist a € Rand n > 0 such that

F = aG/y".

Letf, g € Dy be such that p(f) = F and p(g) = G. Thus c := y"f — ag € Ker(p) = R. Since, B is faithfully flat over R and
c € (y",a)BNR,we have c € (y", a)R. Let c = y"c; + ac, where ¢y, ¢; € R.Theny"(f —c¢;) = a(g + ¢;).Letf' = f — ¢y and
g’ =g+ ¢y, sothaty"f’ = ag’. Then (Dr)x = Ry ® R«f" and (D), = R, ® R,g’. We now show that we can give an R-linear

, Ve,
map from Dy — R.Leth € Dr.Thenh = mt%f = r";# for some ro, r1, 1}, 7 € Rand £, m > 0. Now
ot nf _rotngyy o an , ntng
XZ X[ x( x‘y” ym

Now rg/x¢ = ro/¥™ € R¢N Ry and hence in R since x, y is a sequence in R. It is easy to see that the map 6, : D — R defined
by 6 (h) = ry/x% is an R-linear map. Clearly 6 (r) = r for r € R. Hence 6 is an R-retraction. O

Note that, since R C Ir~',R @ C; C Dr. Using the canonical retraction 87 : D — R defined by Lemma A.1, we now
define an R-linear automorphism

r :R®C; > RO G (A1)
by 6r(r) =rforr € Rand 0,(c) = c — 6r(c) for c € C;. Set

Nr := 0r(Cy)
and

Hr :=0r(Cy).

Note that N;- and H- are finitely generated flat R-modules such that N < Dy and H- < R.Infact D = R@® I~ Ny and
foreachP € I', (Dr)p = (By)pand forP ¢ I, (Dr)p = Rp & (N1 )p.

Remark A.2. Set B := (P, I-"Nr". Then one can show that B, = Sr~'B N Rr[C1], where Sy := R\ (Up- P) and

B=1lim  Bp.Moreoverif Iy and I’; are finite subsets of Ao with I'y € I3, then (O, — 01,)(C1) = (Or, — 0r,)(C1) € Iy.
—rex
This is an analogue of Theorem 3.2 giving the structure of B in terms of a finitely generated projective R-module C; such that

Ci1 C By and C; N R = (0) in place of a generic variable.

Proposition A.3. With notation as above, the following are equivalent:
(i) A = B[(C1B)~']is a faithfully flat R-algebra which is locally quasi A* in codimension-one.
(ii)Ir +Hr = Rforeach I"' € X.
As a consequence, if A = B[(C;B) "] is a faithfully flat R-algebra then C;/11-C; is a free R/I-module for each I' € X.

Proof. (i) = (ii) follows from Remark 5.3(1) by reducing to the local case.

(ii) = (i): Let m be a maximal ideal of R. Since C; is a finitely generated projective R-module of rank one, (C;),, = R,.f
for some f € C; and for each I' € Xy, HrR,, = R, cr for some ¢ € R. IfI-R,, = R,, foreach I € Xy, then B,, = R, [f]
and hence A,, = B,,[f~']1 = R, [f, f~']is faithfully flat over R,,. Suppose that there exists a I" € X, such thatIR,, C R,,,
then ¢ € R,,* by hypothesis. Since B,, is faithfully flat over R,,, we have f — ¢ € IS-~'B,, N B,, = IrB,, and hence
f ¢ mB,, ascr € R,*. Thus A,, = B,,[f~'] is faithfully flat over R,, and hence, since faithful flatness is a local property,
A(= B[(C;B)~1]) is faithfully flat over R. O
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