Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

journal homepage: www.elsevier.com/locate/jpaa

On locally quasi \mathbb{A}^* algebras in codimension-one over a Noetherian normal domain

S.M. Bhatwadekar^a, Neena Gupta^{b,*}

^a School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India ^b Stat-Math Unit, Indian Statistical Institute, 203 B.T. Road, Kolkata 700 108, India

ARTICLE INFO

Article history: Received 10 August 2010 Received in revised form 31 December 2010 Available online 8 March 2011 Communicated by R. Parimala

MSC: Primary: 14R25; 13F20 Secondary: 13E15

1. Introduction

ABSTRACT

Let *R* be Noetherian normal domain. We shall call an *R*-algebra *A* quasi \mathbb{A}^* if $A = R[X, (aX + b)^{-1}]$ where $X \in A$ is a transcendental element over *R*, $a \in R \setminus 0$, $b \in R$ and (a, b)R = R. In this paper we shall describe a general structure for any faithfully flat *R*-algebra *A* which is locally quasi \mathbb{A}^* in codimension-one over *R*. We shall also investigate minimal sufficient conditions for such an algebra to be finitely generated.

© 2011 Elsevier B.V. All rights reserved.

Let *R* be an integral domain. Recall that an *R*-algebra *A* is called \mathbb{A}^1 if $A \cong R[X]$ (polynomial algebra in one variable over *R*) and is called \mathbb{A}^* if $A \cong R[X, X^{-1}]$ (Laurent polynomial algebra in one variable over *R*). Generalising this notion of \mathbb{A}^* , we call an *R*-algebra *A* to be quasi \mathbb{A}^* if $A \cong R[X, (aX + b)^{-1}]$ for some *X* transcendental over *R*, $a \in R \setminus 0$ and $b \in R$ with (a, b)R = R. Note that if $a \in R^*$, then *A* is \mathbb{A}^* over *R*. This notion of quasi \mathbb{A}^* arises naturally in the study of algebras whose generic fibres are \mathbb{A}^* . To see an example, consider a discrete valuation ring (V, π) with quotient field *K* and a faithfully flat, finitely generated *V*-algebra *A* such that πA is a prime ideal of *A* and $V/\pi V$ is algebraically closed in $A/\pi A$. Under these hypotheses, if $A[1/\pi]$ is a polynomial algebra K[Y], then *A* is a polynomial algebra V[X] by [5, Theorem 2.3.1]; on the other hand, if $A[1/\pi]$ is a Laurent polynomial algebra $K[Y, Y^{-1}]$, then it can be shown (using similar methods) that *A* is a quasi \mathbb{A}^* -algebra of the form $V[X, (aX + b)^{-1}]$ for some *X* in *A* transcendental over *V*, $a \in V \setminus 0$ and $b \in V$ with (a, b)V = V.

Now let *R* be a Noetherian normal domain. In [2], an integral domain *B* containing *R* has been called "locally \mathbb{A}^1 in codimension-one" if, for every height one prime ideal *P* of *R*, $B_P (= B \otimes_R R_P)$ is \mathbb{A}^1 over R_P . Such an algebra *B* has been studied extensively in [2] when *B* is faithfully flat over *R*. In a similar fashion, we call an integral domain *A* containing *R* to be "locally quasi \mathbb{A}^* in codimension-one" if, for every height one prime ideal *P* of *R*, $A_P (= A \otimes_R R_P)$ is quasi \mathbb{A}^* over R_P .

In this paper we investigate properties of a faithfully flat algebra *A* over a Noetherian normal domain *R* which is locally quasi \mathbb{A}^* in codimension-one. We first explore a general structure of *A* and show that *A* has an *R*-subalgebra *B* which is faithfully flat and locally \mathbb{A}^1 in codimension-one over *R* such that $A = B[Q^{-1}]$ for some invertible ideal *Q* of *B* (Theorems 4.6 and 5.2). As a consequence, if *R* is factorial then it follows (from known results about *B*) that *A* is a direct limit of quasi \mathbb{A}^* algebras over *R* (Corollary 4.5) and hence, if *A* is finitely generated over *R* then *A* is quasi \mathbb{A}^* over *R*. It will also be seen (Proposition 5.4) that at each point \mathcal{P} of Spec *R*, $\mathcal{P}A \in$ Spec *A*, and that either $A_{\mathcal{P}}$ is quasi \mathbb{A}^* over $R_{\mathcal{P}}$ or the fibre ring $A \otimes_R k(\mathcal{P}) = k(\mathcal{P})$. As a consequence, we show that when *R* is local, then *A* is quasi \mathbb{A}^* under a mild hypothesis on the closed fibre. More precisely, we prove (Theorems 5.9 and 5.10):

* Corresponding author. E-mail addresses: smb@math.tifr.res.in (S.M. Bhatwadekar), neena_r@isical.ac.in (N. Gupta).

^{0022-4049/\$ –} see front matter 0 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.jpaa.2011.02.013

Theorem A. Let (R, m) be a Noetherian normal local domain and A a faithfully flat R-algebra which is locally quasi \mathbb{A}^* in codimension-one over R. Then the following are equivalent:

- (i) A is a quasi \mathbb{A}^* R-algebra.
- (ii) A is a finitely generated R-algebra.

(iii) $R/m \subseteq A/mA$.

Moreover, if R is complete and A is Noetherian, then A is indeed quasi \mathbb{A}^* .

However if *R* is not complete, there exist examples of Noetherian faithfully flat *R*-algebras which are locally quasi \mathbb{A}^* in codimension-one but which are not finitely generated over *R* (Example 6.3). Surprisingly, if we assume that *A* is locally \mathbb{A}^* in codimension-one then *A* is actually finitely generated over *R* without any additional hypothesis. We prove (Theorem 4.8):

Theorem B. Let *R* be a Noetherian normal domain and *A* be a faithfully flat *R*-algebra which is locally \mathbb{A}^* in codimension-one over *R*. Then $A = \bigoplus_{n \in \mathbb{Z}} I^n u^n$ for an invertible ideal *I* of *R*. In particular, *A* is finitely generated over *R*.

Theorem B was proved earlier in [1] under the additional assumption that *A* is finitely generated over *R* (cf. Remark 4.9(2)). However, even if *R* is complete, there exists a faithfully flat *R*-algebra which is locally quasi \mathbb{A}^* in codimension-one but not finitely generated (Example 6.4).

We now give a layout of the paper. Sections 1–3 are introductory – Section 2 is on preliminaries; in Section 3, we recall results from [2] on algebras which are locally \mathbb{A}^1 in codimension-one over *R* and prove some results on the consequences of faithful flatness of such algebras. The main results of this paper are presented in Sections 4 and 5 – Theorem B, which requires less technical properties, will be proved in Section 4 and Theorem A in Section 5. In Section 4, we first discuss basic properties of a faithfully flat algebra *A* over a Noetherian normal domain *R* which is locally quasi \mathbb{A}^* in codimension-one over *R* and establish the existence of an *R*-subalgebra *B* of *A* which is locally \mathbb{A}^1 in codimension-one such that $A = B[Q^{-1}]$ for a suitable invertible ideal *Q* of *B*. With the help of this presentation we prove Theorem B. In Section 5, we discuss properties of the above ring *B*; in particular, we show that *B* is a faithfully flat *R*-algebra and deduce some results on the fibres of the map Spec $A \rightarrow$ Spec *R*. We also prove that *B* is Noetherian (respectively finitely generated over *R*) if and only if *A* is so. Finally we prove Theorem A. In Section 6, we discuss a few examples.

2. Preliminaries

We recall some standard notation to be used throughout the paper. For a ring *R*, R^* will denote the multiplicative group of units of *R*. For a prime ideal *P* of *R*, and an *R*-algebra *A*, A_P denotes the ring $S^{-1}A$, where $S = R \setminus P$ and k(P) denotes the residue field R_P/PR_P . The notation $A = R^{[1]}$ will mean that *A* is isomorphic, as an *R*-algebra, to a polynomial ring in one variable over *R*.

For an *R*-module *M*, we denote the tensor algebra of *M* over *R* by $T_R(M)$ and the symmetric algebra by $Sym_R(M)$. Note that if *R* is a domain and *M* is a flat *R*-module of rank one, then $T_R(M) = Sym_R(M)$.

We compile below the notions mentioned in the introduction which are central to this paper.

Definition 2.1. (1) An *R*-algebra *A* is said to be \mathbb{A}^* if there exists an element *X* in *A* which is transcendental over *R* such that $A = R[X, X^{-1}]$.

(2) We shall call an *R*-algebra *A* to be "quasi A*" if there exists an element *X* in *A* which is transcendental over *R* such that

$$A = R[X, (aX + b)^{-1}],$$

for some $a \in R \setminus 0$, $b \in R$ satisfying (a, b)R = R. Note that $R[X, (aX + b)^{-1}]$ is \mathbb{A}^* over R if and only if $a \in R^*$.

(3) We shall call an *R*-algebra *A* to be "locally quasi \mathbb{A}^* in codimension-one" over *R* if A_P is quasi \mathbb{A}^* over R_P for every height one prime ideal *P* in *R*.

(4) We shall call an *R*-algebra *B* to be "locally \mathbb{A}^1 in codimension-one" if $B_P = R_P^{[1]}$ for every height one prime ideal *P* in *R*. If *R* is an integral domain with quotient field *K* and *X* is an element of *B* transcendental over *R* such that $R[X] \subseteq B \subseteq K[X]$, then we say that *X* is a "generic variable" for *B*.

As mentioned in the introduction, we shall discuss properties of algebras which are locally \mathbb{A}^1 in codimension-one in Section 3 and results on algebras which are locally quasi \mathbb{A}^* in codimension-one in Sections 4 and 5.

We now mention two results on flat *R*-modules lying between the integral domain *R* and its quotient field *K*. The first result is on the flatness of the *R*-subalgebra R[M] of *K* generated by a flat *R*-submodule *M* of *K*.

Lemma 2.2. Let *R* be an integral domain with quotient field *K* and *M* a flat *R*-module such that $R \subseteq M \subseteq K$. Then the *R*-subalgebra *R*[*M*] of *K* is flat over *R*.

Proof. Since $M \subseteq K$ and M is flat over R, we can identify $T_R(M)$ as a graded subring of the polynomial algebra K[W] with $M \otimes_R \cdots \otimes_R M$ (n times) corresponding to $M^n W^n \subseteq KW^n$). Thus

 $T_R(M) = \{a_0 + a_1W + \dots + a_nW^n \mid n \ge 0 \text{ and } a_i \in M^i \text{ for } 0 \le i \le n\}.$

Note that since $R \subset M, W \in T_R(M)$; a homogeneous element of degree one. We first show that $T_R(M) \cap (W-1)K[W] =$ $(W-1)T_R(M)$. Let

$$h = b_0 + b_1 W + \dots + b_\ell W^\ell \in T_R(M) \cap (W - 1) K[W],$$
(2.1)

with $b_i \in M^i$, $0 < i < \ell$. Write h = (W - 1)g, where

$$g = d_0 + d_1 W + \dots + d_{\ell-1} W^{\ell-1} \in K[W].$$
(2.2)

From (2.1) and (2.2), it follows that $d_0 \in R$, $(d_1 - d_0) \in M, \ldots, (d_{\ell-1} - d_{\ell-2}) \in M^{\ell-1}$. Since $R \subseteq M \subseteq M^2 \subseteq M^3 \cdots$, we have $g \in T_R(M)$.

Let ϕ be the restriction of the *R*-linear map $\tilde{\phi}$: $K[W] \to K$ sending $W \to 1$. Then $\phi(T_R(M)) = R[M]$ and hence we have the short exact sequence

$$0 \to (W-1)T_R(M) \to T_R(M) \xrightarrow{\phi} R[M] \to 0.$$
(2.3)

Let *I* be an ideal of *R*. Since *M* is a flat *R*-module, $T_R(M)$ is a flat *R*-algebra. Thus Tor_1^R ($T_R(M)$, R/I) = 0. Hence, tensoring (2.3) with R/I, we have the exact sequence

$$0 \to \operatorname{Tor}_1^R(R[M], R/I) \to (W-1)T_R(M) \otimes_R R/I \to T_R(M) \otimes_R R/I \to R[M] \otimes_R R/I \to 0.$$

Let $h \in T_R(M)$ be such that $(W - 1)h \in IT_R(M)$. Since W is a homogeneous element of degree one and $IT_R(M)$ is a homogeneous ideal of the graded ring $T_R(M)$, it follows that $h \in IT_R(M)$. Thus the map

$$(W-1)T_R(M)\otimes_R R/I \to T_R(M)\otimes_R R/I$$

is injective. Hence $\operatorname{Tor}_{1}^{R}(R[M], R/I) = 0$. Thus R[M] is a flat R-algebra. \Box

The next result is on the Noetherian property of flat *R*-subalgebras of the quotient field of *R*.

Lemma 2.3. Let R be a Noetherian domain with quotient field K, and D a flat R-algebra such that $R \subseteq D \subseteq K$. Then D is a Noetherian ring.

Proof. To show that D is Noetherian it is enough to show that every prime ideal of D is finitely generated. Let Q be a prime ideal of *D* and $P = Q \cap R$. Now D_Q is faithfully flat over R_P and since $R_P \subseteq D_Q \subseteq K$, we have $D_Q = R_P$ and hence $D \subseteq R_P$. We show Q = PD. For this it is enough to show that PD is a prime ideal of D. Now D/PD is flat R/PR-module and hence every element of $R \setminus P$ is a non-zero divisor in D/PD. Thus $D/PD \hookrightarrow R_P/PR_P$ which is a field and hence PD is a prime ideal of D.

Finally, we recall an elementary result which will be used in the paper. (See the argument in [3, Lemma 2.8].)

Lemma 2.4. Let R be a Noetherian normal domain with quotient field K and let Δ be the set of all height one prime ideals of R. For a torsion free R-module M, the following conditions are equivalent:

(i) $M = \bigcap_{P \in \Delta} M_P$, where M and $M_P = M \otimes_R R_P$ are identified with their images in $M \otimes_R K$.

(ii) If a and b are elements of R such that b is (R/aR)-regular, then b is (M/aM)-regular.

In particular, if either M is R-flat or a direct limit of finitely generated reflexive R-modules, then $M = \bigcap_{P \in A} M_{P}$.

3. Locally A¹ algebras in codimension-one: some old and some new results

Throughout this section, R will denote a **Noetherian normal domain** with quotient field K and Δ the set of all prime ideals in R of height one.

As in [2], we call an integral domain *B* containing *R* to be "semi-faithfully flat over *R*" if

(1) $B = \bigcap_{P \in \Delta} B_P$. (2) $IB \cap R = I$, for every ideal *I* of *R*.

In [2], properties of semi-faithfully flat algebras, which are locally \mathbb{A}^1 in codimension-one over R, were investigated. A general structure of such an *R*-algebra *B* was described ([2, Theorem 7.2]). Further, when *B* is faithfully flat over *R*, conditions for *B* to be finitely generated were given ([2, Corollary 2.7, Theorems 2.11 and 7.12]). In this section, we shall recall some of these results and investigate some consequences (Proposition 3.10 and Lemma 3.14) when B is faithfully flat over R.

Throughout this section, B will denote a semi-faithfully flat R-algebra which is locally \mathbb{A}^1 in codimension-one. We recall from [2], some objects associated with B and a generic variable X of B, (i.e., an element $X \in B$ for which $B \otimes_{R} K = K[X]$). For each $P \in \Delta$, fix $X_P \in B_P$ such that

$$B_P = R_P[X_P]$$
. Then $X = a_P X_P + b_P$ for some $a_P, b_P \in R_P$.

Now set

 $e_X(P) := v_P(a_P)$, where $v_P(a_P)$ is the valuation of a_P in R_P and $\Delta_0(X) := \{ P \in \Delta \mid R_P[X] \subsetneq B_P \}.$

We fix a generic variable X and write Δ_0 in place of $\Delta_0(X)$ and e(P) in place of $e_X(P)$. Note that for each $P \in \Delta_0$, $a_P \notin R_P^*$ and hence e(P) > 0. Thus

$$\Delta_0 = \{P \in \Delta \mid R_P[X] \subseteq B_P\} = \{P \in \Delta \mid a_P \notin R_P^*\} = \{P \in \Delta \mid e(P) > 0\}.$$

Let Σ_0 be the set of all finite subsets of Δ_0 . For $\Gamma = \{P_1, \ldots, P_n\} \in \Sigma_0$, set

$$R_{\Gamma} := \bigcap_{P \in \Delta \setminus \Gamma} R_{P},$$

$$B_{\Gamma} := S_{\Gamma}^{-1} B \cap R_{\Gamma}[X], \text{ where } S_{\Gamma} := R \setminus \left(\bigcup_{P \in \Gamma} P \right) \text{ and }$$

$$I_{\Gamma} := P_{1}^{(e(P_{1}))} \cap \dots \cap P_{n}^{(e(P_{n}))}.$$

Remark 3.1. (1) $S_{\Gamma}^{-1}B = S_{\Gamma}^{-1}B_{\Gamma}$.

(2) I_{Γ} is a divisorial ideal of R([4, Corollary 5.5]). Hence $\text{Hom}_{R}(I_{\Gamma}, R) = I_{\Gamma}^{-1}$ and $\text{Hom}_{R}(I_{\Gamma}^{-1}, R) = I_{\Gamma}$. (3) For $P \in (\Delta_{0} \setminus \Gamma)$, $(B_{\Gamma})_{P} = R_{P}[X] \neq B_{P}$ and hence if Γ is a proper subset of Δ_{0} then B_{Γ} is a proper subring of B.

(4) The rings B_{Γ} , together with the inclusion maps, form a direct system $\{B_{\Gamma} \mid \Gamma \in \Sigma_0\}$ ([2, Lemma 2.1]).

The following technical result is proved in ([2, Theorem 7.2]).

Theorem 3.2. For each $\Gamma \in \Sigma_0$, there exists $c_{\Gamma} \in R$ such that

$$B_{\Gamma} = \bigoplus_{n \ge 0} (I_{\Gamma}^{n})^{-1} (X - c_{\Gamma})^{n},$$
(3.1)

and for any $\Gamma_1, \Gamma_2 \in \Sigma_0$, with $\Gamma_1 \subseteq \Gamma_2$, we have $I_{\Gamma_1} \supseteq I_{\Gamma_2}$ and $c_{\Gamma_2} - c_{\Gamma_1} \in I_{\Gamma_1}$. Moreover,

$$B = \lim_{\Gamma \in \Sigma_0} B_{\Gamma}.$$
(3.2)

To a generic variable *X* we associate the set Δ_0 and the families $\{I_{\Gamma}\}_{\Gamma \in \Sigma_0}$, $\{B_{\Gamma}\}_{\Gamma \in \Sigma_0}$ and $\{c_{\Gamma}\}_{\Gamma \in \Sigma_0}$ as above. We abbreviate this as $\{\Delta_0, I_{\Gamma}, B_{\Gamma}, c_{\Gamma}\}$.

Lemma 3.3. B_{Γ} is flat over R if and only if I_{Γ} is an invertible ideal of R. As a consequence, if B_{Γ} is flat over R then B_{Γ} is a finitely generated R-algebra.

Proof. If I_{Γ} is an invertible ideal of R then I_{Γ}^{n} is an invertible ideal and hence $(I_{\Gamma}^{n})^{-1} = (I_{\Gamma}^{-1})^{n}$ is a (finitely generated) projective R-module and hence a flat R-module for every $n \ge 0$. Hence B_{Γ} is flat over R. Moreover, B_{Γ} is finitely generated over R as I_{Γ}^{-1} is a finitely generated flat R-module and B_{Γ} is generated by I_{Γ}^{-1} over R.

Now suppose that B_{Γ} is flat over R. Then I_{Γ}^{-1} is flat over R. As R is Noetherian, it follows that I_{Γ}^{-1} is a finitely generated projective R-module (of rank one). Hence I_{Γ} is a finitely generated projective R-module (cf. Remark 3.1(2)). Thus I_{Γ} is invertible. \Box

The following result occurs in [2, Corollary 2.7] but for the sake of convenience we record a proof here.

Proposition 3.4. Suppose that *B* is faithfully flat over *R*. Then *B* is finitely generated over *R* if and only if Δ_0 is a finite (possibly empty) set.

Proof. Note that $\Delta_0 = \emptyset$ if and only if R[X] = B. We now assume that $R[X] \neq B$. By Theorem 3.2,

$$B = \lim_{\Gamma \in \Sigma_0} B_{\Gamma}$$

and hence, if *B* is finitely generated over *R* then, there exists a finite subset Γ' of Δ_0 such that $B_{\Gamma'} = B$. Therefore, by Remark 3.1(3), $\Gamma' = \Delta_0$.

Now suppose Δ_0 is a finite set. Taking Γ to be Δ_0 , we see that $B_{\Gamma} = B$. Since $B = B_{\Gamma}$ is flat, B is finitely generated over R by Lemma 3.3. \Box

The following result on the *R*-algebra *B* was stated in [3, Theorem 4.6] under the hypothesis that *B* is faithfully flat over *R*, but the proof uses only semi-faithful flatness of *B* (cf. [2, Remark 7.3(2)]).

Theorem 3.5. Let R be a factorial domain. Then B is a direct limit of polynomial algebras in one variable over R.

The next theorem, proved in [2, Theorem 3.7], gives a necessary and sufficient condition for *B* to be finitely generated when *R* is complete local.

Theorem 3.6. Let *R* be a complete Noetherian normal local domain. Suppose that *B* is a faithfully flat *R*-algebra. Then *B* is Noetherian if and only if it is finitely generated over *R*.

We now introduce some more notation to be used for the rest of this section. Choose an element *T* of $B \otimes_R K$ such that $B \otimes_R K = K[T]$ (*T* need not be in *B*). Note that $B \subset B \otimes_R K = K[T]$. For $n \ge -1$, set

$$V_n := \{ g \in K[T] \mid \deg_T(g) \le n \} \text{ and } B_n := V_n \cap B.$$
(3.3)

Let

$$\operatorname{Gr}(B) = \bigoplus_{n \ge 0} B_n / B_{n-1} \subset \bigoplus_{n \ge 0} V_n / V_{n-1}.$$
(3.4)

Note that Gr(B) is independent of the choice of *T*. In fact, we observe the following:

Remark 3.7. (1) $B = \bigcup_{n>0} B_n$.

(2) The *K*-vector space V_n and the *R*-module B_n , and hence the graded *K*-algebra $\bigoplus_{n\geq 0} V_n/V_{n-1}$ and the graded *R*-algebra Gr(B) are independent of the choice of *T*.

(3) Given *T*, if *W* denotes the image of *T* in V_1/V_0 then $\bigoplus_{n\geq 0} V_n/V_{n-1} = K[W]$ and hence $Gr(B) \subset K[W]$ as graded *R*-algebras.

(4) For $T \in B$, we have $R[W] \subset Gr(B) \subset K[W]$ as graded *R*-algebras and hence for every $n \ge 0$, $RW^n \subset B_n/B_{n-1} \subset KW^n$. Moreover, R[W] = Gr(B) if and only if B = R[T].

(5) $(B_n/B_{n-1})_P \cong R_P$ for every height one prime ideal *P* of *R*.

We shall now relate faithful flatness of B with that of Gr(B).

Lemma 3.8. If Gr(*B*) is flat over *R* then *B* is faithfully flat over *R*.

Proof. By Remark 3.7(1), it is enough to show that for each $n \ge 0$, B_n is faithfully flat over R. Since Gr(B) is R-flat, B_n/B_{n-1} is R-flat for every $n \ge 0$. Moreover, we have the short exact sequence

$$0 \to B_{n-1} \to B_n \xrightarrow{\rho_n} B_n/B_{n-1} \to 0 \tag{3.5}$$

where ρ_n is the projection map. Since $B_0 = R$, flatness of B_1/B_0 implies B_1 is faithfully flat. This in turn implies that B_2 is faithfully flat. Repeating this argument we see that B_n is faithfully flat for every $n \ge 0$. Hence *B* is faithfully flat over *R*. \Box

Remark 3.9. We can define (3.3) and (3.4) for any arbitrary integral domain *R* (not necessarily Noetherian normal) and any integral domain *B* containing *R* (not necessary semi-faithfully flat locally \mathbb{A}^1 in codimension-one) such that $B \otimes_R K = K[T]$. It is easy to see that (1)–(4) of Remark 3.7 and Lemma 3.8 hold in this more general setup and that (5) of Remark 3.7 also holds when *B* is locally \mathbb{A}^1 in codimension-one.

We shall now see that the converse of Lemma 3.8 holds in our setup (R is a Noetherian normal domain and B is a semi-faithfully flat R-algebra which is locally \mathbb{A}^1 in codimension-one). This result was proved in [2, Corollary 3.8] under the additional hypothesis that R is an analytically irreducible local domain, i.e., the completion of R is an integral domain.

Proposition 3.10. Suppose that B is faithfully flat over R. Then:

(1) B_n is flat over R, for every $n \ge 0$. (2) $JB_n \cap B_{n-1} = JB_{n-1}$, for every ideal J of R. (3) Gr(B) is faithfully flat over R. (4) Gr(B) = R[L], where $L = B_1/R$. (5) $B = R[B_1]$.

Proof. (1) To show that B_n is flat over R, it is enough to show that given $\sum_i a_i x_i = 0$, with $a_i \in R$ and $x_i \in B_n$, there exist $c_{ij} \in R$ and $y_j \in B_n$ such that $\sum_i a_i c_{ij} = 0$ for each j and $x_i = \sum_j c_{ij} y_j$ for each i.

Since *B* is faithfully flat over *R*, there exist $c_{ij} \in R$ and $z_j \in B$ such that $\sum_i a_i c_{ij} = 0$ for each *j* and $x_i = \sum_j c_{ij} z_j$ for each *i*. By (3.2), we have $B = \lim_{\substack{\longrightarrow \\ \Gamma \in \Sigma_0}} B_{\Gamma}$, and hence we can choose Γ such that $x_i, z_j \in B_{\Gamma}$ for each *i*, *j*. Now by (3.1), B_{Γ} has a graded structure: $B_{\Gamma} = \bigoplus_{r>0} (I_{\Gamma}^r)^{-1} (X - c_{\Gamma})^r$. Note that

$$B_{\Gamma}(n) := B_n \cap B_{\Gamma} = \{g \in B_{\Gamma} \mid \deg_X(g) \le n\} = \bigoplus_{0 \le r \le n} (I_{\Gamma}^{r})^{-1} (X - c_{\Gamma})^{r}.$$

Hence, $x_i \in B_n \cap B_{\Gamma} = B_{\Gamma}(n)$. Let $z_j = y_j + w_j$, where

$$y_j \in \bigoplus_{0 \le r \le n} (I_{\Gamma}^{r})^{-1} (X - c_{\Gamma})^r$$
 and $w_j \in \bigoplus_{t \ge n+1} (I_{\Gamma}^{t})^{-1} (X - c_{\Gamma})^t$.

Now it is easy to see that the equality $x_i = \sum_j c_{ij} z_j$ implies $x_i = \sum_j c_{ij} y_j$. Thus B_n is flat over R for every $n \ge 0$.

(2) Since $B_{\Gamma}(n) = B_n \cap B_{\Gamma} = \bigoplus_{0 \le r \le n} (I_{\Gamma}^r)^{-1} (X - c_{\Gamma})^r$, for any ideal J of $R, JB_{\Gamma}(n) \cap B_{\Gamma}(n-1) = JB_{\Gamma}(n-1)$. Therefore, since B is a direct limit of B_{Γ} , it follows that $JB_n \cap B_{n-1} = JB_{n-1}$.

2246

(3) Since by (1) B_n is *R*-flat and by (2) for every ideal *J* of *R* we have $JB_n \cap B_{n-1} = JB_{n-1}$, the short exact sequence

$$0 \to B_{n-1} \to B_n \xrightarrow{\rho_n} B_n/B_{n-1} \to 0 \tag{3.6}$$

shows that $\operatorname{Tor}_1^R(B_n/B_{n-1}, R/J) = 0$ for every ideal J of R and for every $n \ge 0$. Therefore B_n/B_{n-1} is R-flat (of rank one) for every n and hence $\operatorname{Gr}(B) = \bigoplus_{n\ge 0} B_n/B_{n-1}$ is R-flat. Since R is a direct summand of $\operatorname{Gr}(B)$, it follows that $\operatorname{Gr}(B)$ is faithfully flat over R.

(4) Set $L(n) := B_n/B_{n-1}$. Then $L^n \subseteq L(n)$. Since $B_P = R_P[X_P]$ for every prime ideal $P \in \Delta$, we have $Gr(B)_P = R_P[Y_P]$, where Y_P denotes the image of X_P in V_1/V_0 and $L_P = R_PY_P$. Therefore, $(L^n)_P = R_PY_P^n = L(n)_P$. By (3), L(n) and L^n are flat *R*-modules of rank one. Hence, by Lemma 2.4, $L^n = L(n)$ for $n \ge 0$. Thus Gr(B) = R[L].

(5) Since Gr(B) = R[L] by (4), it is now easy to see that $B = R[B_1]$. \Box

The following result was proved in [2, Theorem 3.10] under the additional hypothesis that *R* is a local domain which is analytically irreducible. In view of Proposition 3.10, we now show that the hypothesis "analytically irreducible" can be dropped.

Corollary 3.11. Suppose that *R* is local with maximal ideal *m* and *B* is faithfully flat over *R*. Then either *B* is \mathbb{A}^1 over *R* or R/m = B/mB.

Proof. By Proposition 3.10(3)–(4), *L* is a flat *R*-module of rank one and hence by a result of Vasconcelos [6, Theorem 3.1], either $L \cong R$ or L = mL.

If mL = L then $B_1 = R + mB_1$. Since $B = R[B_1]$ by Proposition 3.10(5), it follows that B = R + mB. Hence R/m = B/mB. If $L \cong R$ then choose $T \in B_1$ such that L = RW, where W is the image of T in $L = B_1/R \subseteq V_1/K$. This shows that $R[T] \subseteq B \subseteq K[T]$ and Gr(B) = R[W]. Therefore R[T] = B (cf, Remark 3.7(4)). \Box

Remark 3.12. Suppose that *B* is a faithfully flat *R*-algebra.

(1) As a consequence of Corollary 3.11, we see that $\mathcal{P}B \in \text{Spec } B$ for every prime ideal \mathcal{P} of R. In fact, for each prime ideal \mathcal{P} of R, either $B_{\mathcal{P}}$ is \mathbb{A}^1 over $R_{\mathcal{P}}$ or the fibre ring $A \otimes_R k(\mathcal{P}) = k(\mathcal{P})$ which implies that $\mathcal{P}B_{\mathcal{P}}$ is a prime ideal of $B_{\mathcal{P}}$ and hence $\mathcal{P}B$ is a prime ideal of B because $B/\mathcal{P}B \hookrightarrow B_{\mathcal{P}}/\mathcal{P}B_{\mathcal{P}}$ by flatness of B over R.

(2) If *R* is factorial and *B* is a Krull domain, then *B* is factorial. Indeed, by (1), every prime element of *R* remains a prime element of *B*. Let *S* be the multiplicative closed set generated by all prime elements of *R*. Then $S^{-1}R = K$, and hence $S^{-1}B = K^{[1]}$, a factorial domain. Hence *B* is factorial by Nagata's criterion [4, Corollary 7.3].

For an integer $n \ge 0$, recall the notation

$$L(n) := B_n / B_{n-1}. \tag{3.7}$$

Let Y denote the image of generic variable $X \in B$ in V_1/V_0 and $M_n := \{\lambda \in K \mid \lambda Y^n \in L(n)\}$. Then, since $RY^n \subseteq L(n) \subseteq KY^n$ (cf. Remark 3.7(4)), $R \subseteq M_n \subseteq K$. In fact

$$M_n = \lim_{\longrightarrow \Gamma \in \Sigma_0} (I_{\Gamma}^{n})^{-1} \left(= \bigcup_{\Gamma \in \Sigma_0} (I_{\Gamma}^{n})^{-1} \right)$$
(3.8)

and $L(n) = M_n Y^n$ (see [2, Remark 2.12]). Set $M := M_1$. If B is faithfully flat over R then by Proposition 3.10(3)–(4), it follows that M_n is flat over R and $M_n = M^n$ for $n \ge 1$ and hence $Gr(B) \cong Sym_R(M) = T_R(M)$.

Corollary 3.13. Suppose that B is a faithfully flat R-algebra. Set $M = M_1$. Then the R-subalgebra R[M] of K is flat over R.

Proof. By Proposition 3.10(3), Gr(*B*) is flat over *R* and so $L = B_1/R$ is flat over *R* which implies that *M* is flat over *R* since MY = L. By Remark 3.7(4), $RY \subseteq L \subseteq KY$ and hence, $R \subseteq M \subseteq K$. Thus, by Lemma 2.2, R[M] is flat over *R*. \Box

Lemma 3.14. Let $\Delta_1 = \{P \in \Delta \mid R_P[X] = B_P\}$ and let $R' = \bigcap_{P \in \Delta_1} R_P$. If *B* is a faithfully flat *R*-algebra, then *R'* has the following properties:

(1) R' is flat over R.

(2) R' is a Noetherian normal domain.

Proof. (1) By Corollary 3.13, it is enough to show that R[M] = R'. Note that $\Delta_1 = \Delta \setminus \Delta_0$. By (3.8), we see that $R \subseteq M$ and $R_P = M_P$ if and only if $P \in \Delta_1$. Therefore $R[M]_P = R_P$ if $P \in \Delta_1$ and $R[M]_P = K$ for $P \in \Delta_0$. Since R[M] is R-flat, we have $R[M] = \bigcap_{P \in \Delta} R[M]_P$ by Lemma 2.4. Hence R' = R[M].

(2) R' is normal because it is given by intersection of normal domains. By Lemma 2.3 and (1), it follows that R' is Noetherian. \Box

4. Locally quasi A* algebras in codimension-one I: basic concepts and results; Theorem B

We first prove an elementary result on quasi \mathbb{A}^* algebras over an integral domain.

Lemma 4.1. Let *R* be an integral domain with quotient field *K* and *A* be an *R*-algebra which is quasi \mathbb{A}^* over *R*. Let $T \in A \otimes_R K$ be such that $A \otimes_R K = K[T, T^{-1}]$ and $B = A \cap K[T]$. Then there exist $W \in B$, $a' \in R \setminus 0$, $b' \in R$ and $f = a'W + b'(\in B)$ such that (a', b')R = R, B = R[W] and $A = R[W, f^{-1}]$. As a consequence,

$$R[f, f^{-1}] \subseteq A \subseteq K[f, f^{-1}] = K[T, T^{-1}]$$

and

$$A \cap KT^n = Rf^n$$
 and $A \cap KT^{-n} = Rf^{-n} \quad \forall n \ge 0.$

Proof. Since *A* is a quasi $\mathbb{A}^* R$ -algebra, there exists $X \in A$, transcendental over *R*, such that $A = R[X, (aX + b)^{-1}]$ for some $a \in R \setminus 0, b \in R$ satisfying (a, b)R = R. Let g = aX + b. Then $K[T, T^{-1}] = A \otimes_R K = K[g, g^{-1}]$. Hence, either K[g] = K[T] or $K[g] = K[T^{-1}]$.

Suppose K[g] = K[T]. Then K[T](= K[g]) = K[X] and $R[X] \subseteq B \subseteq R[X, g^{-1}] = A$. Since (a, b)R = R, g is a prime element of R[X] which implies $gK[X] \cap R[X] = gR[X]$. Thus $gB \cap R[X] = gR[X]$ and since $R[X, g^{-1}](=A) = B[g^{-1}]$, we have B = R[X]. Set W := X and f := g. Then $A = R[W, f^{-1}]$ and B = R[W].

Now suppose $K[g] = K[T^{-1}]$. Since aR+bR = R, there exist $c, d \in R$ such that ad-bc = 1. Set W := (cX+d)/(aX+b) and f := aW - c. Then f = 1/(aX + b) = 1/g, X = (d - bW)/f and K[W] = K[f] = K[T]. Hence $A(= R[X, g^{-1}]) = R[W, f^{-1}]$ and arguing as before, we see that B = R[W].

Now since $A = R[W, f^{-1}]$ and f is linear in W, we have $R[f, f^{-1}] \subseteq A \subseteq K[f, f^{-1}] = K[T, T^{-1}]$ and hence $f = \lambda T$ for some $\lambda \in K^*$. Since $R \subset A \cap K \subset A \cap K[T] = B = R[W]$, it follows that $A \cap K = R$. If $\mu \in K$ be such that $\mu f^n \in A$, then as $f \in A^*$, we have $\mu \in (A \cap K =)R$. Therefore, $A \cap KT^n = Rf^n$ and $A \cap KT^{-n} = Rf^{-n}$ for $n \ge 0$. \Box

Let *R* be an integral domain with quotient field *K* and *A* a faithfully flat *R*-algebra such that $A \otimes_R K = K[T, T^{-1}]$. Let $B = A \cap K[T]$. The above lemma shows that if *A* is locally quasi \mathbb{A}^* in codimension-one over *R* then *B* is locally \mathbb{A}^1 in codimension-one over *R*. One would like to know a relation between *A* and *B*. For example, one might ask whether *A* is (in some sense) a localisation of *B*.

Our first goal in this section is to show that if *R* is Noetherian and normal then indeed such is the case (Theorem 4.6). We first fix some notation.

Notation

Throughout this section, R will denote a **Noetherian normal domain** with quotient field K, Δ the set of prime ideals in R of height one and A a **faithfully flat** R-algebra which is **locally quasi** \mathbb{A}^* **in codimension-one**.

Fix $T \in A \otimes_R K$ such that $A \otimes_R K = K[T, T^{-1}]$. For an integer $n \ge 0$, set

 $C_n := A \cap KT^n.$ $D_n := A \cap KT^{-n}.$

We now prove a technical lemma on the submodules C_n , D_n .

Lemma 4.2. The canonical maps $C_n \otimes_R A \to C_n A$ and $D_n \otimes_R A \to D_n A$ are isomorphisms of A-modules and $C_n A = A = D_n A$ for each $n \ge 0$. As a consequence, C_n and D_n are finitely generated projective R-modules of rank one.

Proof. We show that the canonical map $C_n \otimes_R A \to C_n A$ is an isomorphism and $C_n A = A$. The results for D_n will follow in a similar way.

Since $C_n \hookrightarrow KT^n$ and A is R-flat, we have $C_n \otimes_R A \hookrightarrow KT^n \otimes_R A \cong K[T, T^{-1}]$, so that $C_n \otimes_R A$ is a torsion free A-module of rank one. Hence the map $C_n \otimes_R A \to C_n A$ is an isomorphism.

Since $C_n = A \cap KT^n$ and A is R-flat, it follows that $C_n = \bigcap_{P \in \Delta} (C_n)_P$ by Lemma 2.4. Therefore, again by Lemma 2.4, if $x, y \in R$ be such that (xR : y) = xR then $(xC_n : y) = xC_n$. In particular, since R is normal, if (x, y) is an ideal of R of height ≥ 2 then $(xC_n : y) = xC_n$. Since A is R-flat and $C_n \otimes_R A \cong C_nA$, we see that $(xC_nA : y) = xC_nA$ for $x, y \in R$ such that $ht(x, y) \geq 2$.

For $g \in C_n$, $h \in D_n$, we see that $gh \in A \cap K = R$. Therefore we get an *R*-linear map $\psi : C_n \otimes_R D_n \to R$ defined by $\psi(g \otimes h) = gh$. Let J_n be the image of ψ .

Since *A* is locally quasi \mathbb{A}^* in codimension-one, by Lemma 4.1, $(J_n)_P = R_P$ for every $P \in \Delta$. This shows that J_n is an ideal of *R* of height ≥ 2 . Therefore, there exist $x, y \in J_n$ such that $ht(x, y) \geq 2$.

Since $D_nA \subseteq A$, $J_nA \subseteq C_nA$ and so $(x, y) \subseteq J_nA \subseteq C_nA$. Now since $(xC_nA : y) = xC_nA$, the fact $xy \in xC_nA$ implies that $x \in xC_nA$, hence $C_nA = A$. Since $C_n \otimes_R A \cong C_nA = A$ and A is faithfully flat over R, C_n is a finitely generated projective R-module of rank one. Thus the lemma is proved. \Box

It follows from Lemma 4.2 that $J_n = C_n D_n$ is a locally principal ideal in *R* of height at least two. We thus obtain the following corollary.

Corollary 4.3. Set $B := A \cap K[T]$ and let C be the R-subalgebra $C = \bigoplus_{n \ge 0} C_n$ of B. Then we have:

 $(1)J_n = R$ for each integer $n \ge 0$.

(2) The canonical map $\theta_n : C_1 \otimes C_1 \otimes \cdots \otimes C_1 \to C_n$ is an isomorphism of *R*-modules.

(3) $C = Sym_R(C_1)$ as *R*-algebras.

Proof. (1) Since C_n and D_n are finitely generated projective *R*-modules of rank one, so is $C_n \otimes_R D_n$. Therefore the surjective map $\psi : C_n \otimes_R D_n \rightarrow J_n$ is an isomorphism. Thus J_n is *R*-projective of rank one, i.e., an invertible ideal of *R*. Since ht $(J_n) \ge 2$, we see that $J_n = R$.

(2) For the sake of simplicity we denote $\theta_n(C_1 \otimes C_1 \otimes \cdots \otimes C_1)$ (*n*-times) by C(n). Since *A* is locally quasi \mathbb{A}^* in codimensionone, by Lemma 4.1, for every $P \in \Delta$, we have $(C_1)_P = R_P f_P$ for some $f_P \in A_P$ and $(C_n)_P = R_P f_P^n$ for every $n \ge 0$. Thus $C(n)_P = (C_n)_P$ for every $P \in \Delta$. This implies that θ_n is injective. Now using the fact that C(n) and C_n are projective *R*-modules, by Lemma 2.4, we have $C(n) = \bigcap_{P \in \Delta} C(n)_P$ and $C_n = \bigcap_{P \in \Delta} (C_n)_P$ and hence $C(n) = C_n$. Thus θ_n is an isomorphism for every $n \ge 0$.

(3) Follows from (2). \Box

Corollary 4.4. The following statements hold:

(1) B (= A \cap K[T]) is a semi-faithfully flat R-algebra which is locally \mathbb{A}^1 in codimension-one.

(2) $R^* \subseteq A^*$ if and only if there exists n > 0 such that C_n is free.

(3) If $C_1 = Rf$, then $R[f] \subseteq B \subseteq K[f] = K[T]$, $A = B[f^{-1}]$ and $B \cap TK[T] = fB$ and hence $fB \in Spec B$.

Proof. (1) By Lemma 4.1, it is enough to show that *B* is semi-faithfully flat over *R*. Since *A* is faithfully flat over *R*, by Lemma 2.4, we have

$$B = A \cap K[T] = \left(\bigcap_{P \in \Delta} A_P\right) \cap K[T] = \bigcap_{P \in \Delta} (A_P \cap K[T]) = \bigcap_{P \in \Delta} B_P$$

and

 $IB \cap R \subseteq IA \cap R = I$, for any ideal *I* of *R*.

Thus *B* is semi-faithfully flat over *R*.

(2) Suppose that $C_n = Rh$ for some n > 0 and $h \in A$. Since $J_n = R$ by Corollary 4.3(1), it follows that $D_n = Rh^{-1}$. Hence $h \in A^* \setminus R^*$. Conversely, suppose that $R^* \subsetneq A^*$ and let $h \in A^* \setminus R^*$. Since $A \hookrightarrow A \otimes_R K = K[T, T^{-1}]$, $h \in KT^n$ for some $n \in \mathbb{Z}$. Replacing h by h^{-1} if necessary, we may assume that $h \in C_n (= A \cap KT^n)$ and $h^{-1} \in D_n$ for some integer n > 0. Note that $Kh = KT^n$ and $Kh^{-1} = KT^{-n}$. We now show that $C_n = Rh$. Let $g \in C_n$, then $g = \lambda h$ for some $\lambda \in K$. Hence $gh^{-1} = \lambda \in A \cap K = R$. Thus $C_n = Rh$.

(3) Since $Rf = C_1 \subseteq KT$, K[T] = K[f] and TK[T] = fK[f]. Moreover, by (2), $f^{-1} \in A$ and hence $R[f, f^{-1}] \subseteq A \subseteq K[f, f^{-1}] = K[T, T^{-1}]$. Hence, as K[T] = K[f], $R[f] \subseteq B \subseteq K[f]$. If $g \in A$, then there exists $k \ge 0$ such that $f^kg \in A \cap K[f] (= B)$ and hence $A = B[f^{-1}]$.

Let $h \in fK[f] \cap B$. Then $h \in A$ and, since $f \in A^*$, we have $h/f \in A \cap K[f] = B$. Thus $TK[T] \cap B(=fK[f] \cap B) = fB$. \Box

The following result, on factorial domain, is the quasi \mathbb{A}^* analogue of Theorem 3.5.

Corollary 4.5. Suppose that R is a factorial domain. Then A is a direct limit of quasi \mathbb{A}^* algebras.

Proof. By Lemma 4.2, C_1 is finitely generated projective *R*-module and since *R* is factorial, we have $C_1 = Rf$ for some $f \in C_1$. Hence, by Corollary 4.4, *B* is a semi-faithfully flat *R*-algebra which is locally \mathbb{A}^1 in codimension-one such that *f* is a generic variable of *B* and $A = B[f^{-1}]$. By Theorem 3.5, *B* is a direct limit of polynomial algebras in one variable over *R* and hence, $A(=B[f^{-1}])$ is a direct limit of quasi \mathbb{A}^* algebras over *R*. \Box

The following theorem shows that A is a localisation of B.

Theorem 4.6. Let *R* be a Noetherian normal domain with quotient field *K* and *A* a faithfully flat *R*-algebra such that $A \otimes_R K = K[T, T^{-1}]$ for some *T* transcendental over *K*. Suppose that *A* is locally quasi \mathbb{A}^* in codimension-one over *R*. Let $C_1 = A \cap KT$, $B = A \cap K[T]$ and $Q = B \cap TK[T]$. Then $Q = C_1B$. As a consequence, *Q* is an invertible ideal of *B* and $A = B[Q^{-1}]$.

Proof. It is easy to see that $C_1 = A \cap KT \subset A \cap TK[T] = B \cap TK[T] = Q$. Therefore $C_1B \subseteq Q$. Let *m* be a maximal ideal of *R* and $S = R \setminus m$. By Lemma 4.2, C_1 is a finitely generated projective *R*-module of rank one, hence $S^{-1}C_1$ is a free $S^{-1}R$ -module of rank one and so $S^{-1}C_1 = R_m f_m$ for some $f_m \in S^{-1}C_1$. Therefore, by Corollary 4.4(3), $C_1B_m = f_m B_m = QB_m$ and $A_m = B_m [f_m^{-1}] = B_m [(QB_m)^{-1}]$. Hence $C_1B = Q$ and $A = B[Q^{-1}]$. \Box

Corollary 4.7. The following statements hold for the ring A:

- (1) If B is a Noetherian ring, then so is A.
- (2) If B is a finitely generated R-algebra, then so is A.

Proof. Follows from the fact that $A = B[Q^{-1}]$ where Q is an invertible ideal of B.

In Section 5, we shall prove the converse of Corollary 4.7 (cf. Theorems 5.6 and 5.7).

In the special case of *A* being locally \mathbb{A}^* in codimension-one over *R*, we have Theorem B which shows that *A* is always finitely generated over *R*. In fact its proof shows that *B* is finitely generated over *R*.

Theorem 4.8. Let R be a Noetherian normal domain and A a faithfully flat R-algebra such that A is locally \mathbb{A}^* in codimension-one. Then $A \cong \bigoplus_{n \in \mathbb{Z}} I^n$ for an invertible ideal I of R. In particular, A is finitely generated over R.

Proof. Let *K* be the quotient field of *R* and $A \otimes_R K = K[T, T^{-1}]$ for some *T* transcendental over *K*. Let $B = A \cap K[T]$, $C_n = A \cap KT^n$ and $C = \bigoplus_{n \ge 0} C_n \subseteq B$. Now $A = B[(C_1B)^{-1}]$ by Theorem 4.6 and $C = Sym_R(C_1)$ by Lemma 4.3(2), with C_1 being isomorphic to an invertible ideal of *R* by Lemma 4.2. Thus it suffices to show that C = B.

Since *C* is flat over *R*, $C = \bigcap_{P \in \Delta} C_P$ by Lemma 2.4. By Corollary 4.4(1), $B = \bigcap_{P \in \Delta} B_P$. Therefore it is enough to prove that $C_P = B_P$ for every $P \in \Delta$.

Let $P \in \Delta$. Since A is locally quasi \mathbb{A}^* in codimension-one over R, $(C_1)_P = R_P f$ for some $f \in (C_1)_P$ by Lemma 4.1. Hence $C_P = R_P[f] \subseteq B_P \subseteq K[f] = K[T]$ and fK[T] = TK[T]. By Theorem 4.6, $B_P \cap TK[T] = Q_P = fB_P$, hence $fB_P \cap C_P(=TK[T] \cap C_P) = fC_P$ and $R_P[f, f^{-1}] \subseteq B_P[f^{-1}] = A_P$. Therefore, to show that $C_P = B_P$, it is enough to show that $C_P[f^{-1}] = B_P[f^{-1}]$.

Since *A* is locally \mathbb{A}^* in codimension-one, $A_P = R_P[W, W^{-1}]$ for some *W* transcendental over R_P . Thus $R_P[f, f^{-1}] \subseteq R_P[W, W^{-1}] \subseteq K[f, f^{-1}]$. Therefore, $C_P[f^{-1}] = R_P[f, f^{-1}] = R_P[W, W^{-1}] = A_P = B_P[f^{-1}]$. Thus the result follows. \Box

Remark 4.9. (1) Our proofs show that in all results of this section the hypothesis "*R* is a Noetherian normal domain" may be replaced by the weaker hypothesis "*R* is a Krull domain".

(2) From Theorem 4.8, one can deduce that the hypothesis of finite generation on *A* in Theorem 3.4, Corollary 3.9 and Theorem 3.11 of [1] can be dropped. (There is an error in Example 3.6 of [1].)

5. Locally quasi A* algebras in codimension-one II: Theorem A

As in Section 4, *R* is a **Noetherian normal domain** with quotient field *K*, *A* a **faithfully flat** *R*-algebra which is **locally quasi** \mathbb{A}^* **algebra in codimension-one**, $T \in A \otimes_R K$ is such that $A \otimes_R K = K[T, T^{-1}]$, $B = A \cap K[T]$ and $Q = B \cap TK[T]$. We have seen (Theorem 4.6) that *Q* is an invertible ideal of *B* and $A = B[Q^{-1}]$. Hence, if *B* is Noetherian (respectively finitely generated over *R*) then so is *A*. In this section, we prove a converse of this result (Theorems 5.6 and 5.7): we show that if *A* is Noetherian then *B* is Noetherian and if *A* is finitely generated over *R* then so is *B*. Finally we prove Theorem A.

To begin with we shall show (Theorem 5.2) that, in the above set-up, *B* is faithfully flat over *R*. We first give below (Lemma 5.1) a sufficient condition for *B* to be faithfully flat over *R*. For this we can assume that *R* is a local ring with maximal ideal *m*. Since, by Lemma 4.2, C_1 is a finitely generated projective *R*-module and *R* is local, there exists $f \in C_1$ such that $C_1 = Rf$. By Corollary 4.4, *B* is a semi-faithfully flat *R*-algebra which is locally \mathbb{A}^1 in codimension-one over *R* such that $R[f] \subseteq B \subseteq K[f]$ and $A = B[f^{-1}]$. Note that *f* is a generic variable of *B*. Let $\{\Delta_0, I_{\Gamma}, B_{\Gamma}, c_{\Gamma}\}$ be the data associated to the generic variable *f* of *B*.

With the hypothesis that R is local and notation as above, we prove

Lemma 5.1. Suppose $\Delta_0 \neq \emptyset$ and $c_{\Gamma} \in \mathbb{R}^*$ for every $\Gamma \in \Sigma_0$. Then B is faithfully flat over R.

Proof. *B* is *R*-flat if and only if $\operatorname{Tor}_{1}^{R}(B, R/I) = 0$ for every ideal *I* of *R*. Let *I* be an ideal of *R* and $\alpha \in \operatorname{Tor}_{1}^{R}(B, R/I)$. We show that $\alpha = 0$. Since $B[f^{-1}](=A)$ is a faithfully flat *R*-algebra, there exists $r \ge 0$ such that $f^{r}\alpha = 0$ in $\operatorname{Tor}_{1}^{R}(B, R/I)$. By Theorem 3.2, $B = \lim_{T \in \Sigma_{0}} B_{T}$ and hence

$$\operatorname{Tor}_{1}^{R}(B, R/I) = \operatorname{Tor}_{1}^{R}(\varinjlim_{\Gamma \in \Sigma_{0}} B_{\Gamma}, R/I) = \varinjlim_{\Gamma \in \Sigma_{0}} \operatorname{Tor}_{1}^{R}(B_{\Gamma}, R/I)$$

Thus, there exists $\Gamma \in \Sigma_0$ such that $\alpha \in \text{Tor}_1^R(B_{\Gamma}, R/I)$ and $f^r \alpha = 0$ in $\text{Tor}_1^R(B_{\Gamma}, R/I)$. Again by Theorem 3.2, B_{Γ} is graded *R*-algebra:

$$B_{\Gamma} = \bigoplus_{n \ge 0} E_n \tag{5.1}$$

where $E_n = (I_{\Gamma}^n)^{-1} (f - c_{\Gamma})^n$. Therefore,

$$\operatorname{Tor}_{1}^{R}(B_{\Gamma}, R/I) = \bigoplus_{n \ge 0} \operatorname{Tor}_{1}^{R}(E_{n}, R/I)$$

is a graded B_{Γ} -module. We write $\alpha \in \text{Tor}_{1}^{R}(B_{\Gamma}, R/I)$ as

$$\alpha = \alpha_0 + \alpha_1 + \dots + \alpha_t$$
 with $\alpha_i \in \operatorname{Tor}_1^R(E_i, R/I), 0 \le i \le t$.

Note that $x_{\Gamma} := f - c_{\Gamma}$ is a homogeneous element of degree one in B_{Γ} and by hypothesis $c_{\Gamma} \in R^*$. Now $f^r \alpha = 0$ implies

$$c_{\Gamma}{}^{r}\alpha_{0}=0,$$
 $c_{\Gamma}{}^{r}\alpha_{1}+rc_{\Gamma}{}^{r-1}\alpha_{0}x_{\Gamma}=0,$..., $\alpha_{t}x_{\Gamma}{}^{r}=0$

and since $c_{\Gamma} \in R^*$, we have

$$\alpha_0 = \alpha_1 = \cdots = \alpha_t = 0$$

showing that $\alpha = 0$ in Tor₁^{*R*}(B_{Γ} , R/I). Thus *B* is *R*-flat. Since, $B \subseteq A$ and *A* is faithfully flat over *R*, *B* is faithfully flat over *R*. \Box

We now prove faithful flatness of *B* by showing that either *B* satisfies the hypothesis of Lemma 5.1 or $B = R^{[1]}$.

Theorem 5.2. Let *R* be a Noetherian normal domain with quotient field *K* and *A* a faithfully flat *R*-algebra such that $A \otimes_R K = K[T, T^{-1}]$ for some *T* transcendental over *K*. Suppose that *A* is locally quasi \mathbb{A}^* in codimension-one over *R*. Then $B = A \cap K[T]$ is a faithfully flat *R*-algebra.

Proof. Since faithful flatness is a local property, we assume *R* to be a local domain. We prove faithful flatness of *B* by induction on the dimension of the ring *R*.

If dim R = 1, then there is nothing to prove since A is a faithfully flat locally quasi \mathbb{A}^* algebra in codimension-one over R and hence $B = R^{[1]}$ by Lemma 4.1.

Now consider dim R > 1. Let the notation be as before Lemma 5.1. If $\Delta_0 = \emptyset$, then B = R[f] and hence a faithfully flat R-module. Now assume that $\Delta_0 \neq \emptyset$. We show that $c_{\Gamma} \in R^*$ for every $\Gamma \in \Sigma_0$. Then the result will follow by Lemma 5.1.

Suppose, if possible, that there exists $\Gamma \in \Sigma_0$ such that $c_{\Gamma} \in m$. We show that this leads to a contradiction. Since $\dim R_{c_{\Gamma}} < \dim R$, by applying induction hypothesis to local rings of $R_{c_{\Gamma}}$, we get that $B_{c_{\Gamma}}$ is faithfully flat over $R_{c_{\Gamma}}$. Also since $B_f(=A)$ is faithfully flat over R, we have $B_{f-c_{\Gamma}}$ is flat over R.

Set $\mathcal{I}_{\Gamma} := (I_{\Gamma}B : f - c_{\Gamma})$. Since $S_{\Gamma}^{-1}R$ is a PID, $I_{\Gamma}S_{\Gamma}^{-1}R$ is a principal ideal, say generated by d_{Γ} , and hence if $y_{\Gamma} = (f - c_{\Gamma})/d_{\Gamma}$, then $S_{\Gamma}^{-1}B = S_{\Gamma}^{-1}R[y_{\Gamma}]$ by Theorem 3.2. This shows that $f - c_{\Gamma} \in I_{\Gamma}S_{\Gamma}^{-1}B$. Therefore we have $\mathcal{I}_{\Gamma}S_{\Gamma}^{-1}B = S_{\Gamma}^{-1}B$ and hence there exists $s \in S_{\Gamma}$ such that $s \in \mathcal{I}_{\Gamma}$ so that $I_{\Gamma} \subsetneq \mathcal{I}_{\Gamma} \cap R$. Further $I_{\Gamma}B_{f-c_{\Gamma}} (= \mathcal{I}_{\Gamma}B_{f-c_{\Gamma}}) \neq B_{f-c_{\Gamma}}$. If it were so, then there would exist $\ell \in \mathbb{N}$ such that $(f - c_{\Gamma})^{\ell} \in I_{\Gamma}B \subseteq mB$. Since $c_{\Gamma} \in m$, this would imply that $f^{\ell} \in mB$. But $f^{\ell} \notin mB$ as $B[f^{-1}]$ is a faithfully flat *R*-algebra. Thus $B_{f-c_{\Gamma}}/I_{\Gamma}B_{f-c_{\Gamma}}$ is a non-zero ring and the image of *s* in $B_{f-c_{\Gamma}}/I_{\Gamma}B_{f-c_{\Gamma}}$ is flat over R/I_{Γ} and the image of *s* in R/I_{Γ} is not a zero-divisor. Hence $c_{\Gamma} \in R^*$ for every $\Gamma \in \Sigma_0$. \Box

Remark 5.3. (1) The proof of Theorem 5.2 shows that if *R* is local then either $\Delta_0 = \emptyset$ and $B = R^{[1]}$ or for each $\Gamma \in \Sigma_0$, $c_{\Gamma} \in R^*$. Hence for *R* which need not be local, if *A* is a faithfully flat *R*-algebra which is locally quasi \mathbb{A}^* in codimension-one over *R* such that $A = B[f^{-1}]$, where $B = A \cap K[f]$, then for each $\Gamma \in \Sigma_0$, $I_{\Gamma} + Rc_{\Gamma} = R$, where $\{\Delta_0, I_{\Gamma}, B_{\Gamma}, c_{\Gamma}\}$ is the data associated to the generic variable *f* of *B*.

(2) For each $\Gamma \in \Sigma_0$, $f - c_{\Gamma} \in I_{\Gamma}B$. In fact, from the proof of Theorem 5.2, we have $f - c_{\Gamma} \in I_{\Gamma}S_{\Gamma}^{-1}B \cap B$, where $I_{\Gamma}S_{\Gamma}^{-1}B \cap B = I_{\Gamma}B$ since *B* is faithfully flat over *R*.

We now prove an analogue of Theorem 3.10 of [2] for fibre rings of algebras which are locally quasi \mathbb{A}^* in codimension-one.

Proposition 5.4. Let *R* be a Noetherian normal domain and *A* a faithfully flat *R*-algebra which is locally quasi \mathbb{A}^* in codimensionone. Then $\mathcal{P}A \in$ Spec *A* for every prime ideal \mathcal{P} of *R*. In fact, for each prime ideal \mathcal{P} of *R*, either $A_{\mathcal{P}}$ is quasi \mathbb{A}^* over $R_{\mathcal{P}}$ or the fibre ring $A \otimes_R k(\mathcal{P}) = k(\mathcal{P})$.

Proof. Let $\mathcal{P} \in \text{Spec } R$. Since A is faithfully flat over R, to show that $\mathcal{P}A \in \text{Spec } A$ it is enough to show that $\mathcal{P}A_{\mathcal{P}} \in \text{Spec } A_{\mathcal{P}}$. Therefore, we can assume that R is a local domain with maximal ideal m and show that either A is quasi \mathbb{A}^* over R or the fibre ring A/mA = R/m.

Since *R* is local, by Theorem 4.6, there exists $f \in A$ such that $R[f, f^{-1}] \subset A \subset K[f, f^{-1}]$ and $A = B[f^{-1}]$, where $B = A \cap K[f]$. By Theorem 5.2, *B* is a faithfully flat *R*-algebra which is locally \mathbb{A}^1 in codimension-one over *R*. Therefore, by Corollary 3.11, *B* is either R[T] for some $T \in B$ which is transcendental over *R* or B/mB = R/m. If B = R[T] then $A = B[f^{-1}] = R[T, f^{-1}]$ and hence quasi \mathbb{A}^* over *R*. In the other case, since *A* is faithfully flat over *R*, $f \notin mB$ and hence R/m = B/mB = A/mA. \Box

We shall now show that if *A* is Noetherian then *B* is Noetherian and if *A* is finitely generated over *R* then so is *B*. For this we make the following reduction.

Remark 5.5. To prove that *A* is Noetherian (resp. finitely generated over *R*) implies *B* is Noetherian (resp. finitely generated over *R*), it suffices to assume that C_1 is a free *R*-module of rank one. To see this, first note that, by Lemma 4.2, C_1 is a finitely generated projective *R*-module of rank one. Hence there exist $a_1, a_2, \ldots, a_r \in R$ and $f_1, f_2, \ldots, f_r \in C_1$ such that $(a_1, \ldots, a_r)R = R$ and $(C_1)_{a_i} = R_{a_i}f_i$ is a free R_{a_i} -module for $1 \le i \le r$. Thus, if B_{a_i} is Noetherian (resp. finitely generated over *R*) for each $i, 1 \le i \le r$, then it will follow that *B* is Noetherian (resp. finitely generated over *R*).

Theorem 5.6. Let *R* be a Noetherian normal domain with quotient field *K* and *A* a Noetherian faithfully flat locally quasi \mathbb{A}^* -algebra in codimension-one over *R*. Let $B = A \cap K[T]$, where $T \in A \otimes_R K$ is such that $A \otimes_R K = K[T, T^{-1}]$. Then *B* is Noetherian.

Proof. By Remark 5.5, we may assume that $C_1 (= A \cap KT)$ is a free *R*-module, say $C_1 = Rf$ for some $f \in R$. By Corollary 4.4(3), f is a generic variable of B and $A = B[f^{-1}]$.

Let S = 1 + fB. By hypothesis $B[f^{-1}](= A)$ is a Noetherian ring. So B is Noetherian if and only if $S^{-1}B$ is Noetherian. By Theorem 5.2, B is faithfully flat over R and hence $S^{-1}B$ is a flat R-module. Therefore, by Lemma 2.4, $S^{-1}B = \bigcap_{P \in \Delta} (S^{-1}B)_P$, where $(S^{-1}B)_P$ is the localisation of $S^{-1}B$ by the multiplicatively closed set $R \setminus P$. Note that $(S^{-1}B)_P = S^{-1}(B_P)$.

where $(S^{-1}B)_P$ is the localisation of $S^{-1}B$ by the multiplicatively closed set $R \setminus P$. Note that $(S^{-1}B)_P = S^{-1}(B_P)$. Recall that $\Delta_0(f) = \{P \in \Delta \mid R_P[f] \subseteq B_P\}$ and $\{c_{\Gamma}\}_{\Gamma \in \Sigma_0}$ is the family associated with the generic variable f of B. Then, for $P \in \Delta \setminus \Delta_0, B_P = R_P[f]$ and hence $(S^{-1}B)_P = S^{-1}R_P[f]$.

Note that, by Remark 5.3, for $P \in \Delta_0$, $(c_{\{P\}}, P) = R$ and $f - c_{\{P\}} \in PB$ and hence fB + PB = B. Therefore $S \cap PB \neq \emptyset$. Moreover, R_P is a local PID with maximal ideal PR_P and $B_P = R_P[W]$ for some $W \in B_P$ which is transcendental over R_P . Putting these facts together we see that $S^{-1}B_P = S^{-1}K[W] = S^{-1}K[f]$.

Thus $S^{-1}B = S^{-1}R'[f]$, where $R' = \bigcap_{P \in \Delta \setminus \Delta_0} R_P$. Now by Lemma 3.14(2), R' is Noetherian and hence B is Noetherian.

Theorem 5.7. Let *R* be a Noetherian normal domain and *A* a finitely generated faithfully flat locally quasi \mathbb{A}^* -algebra in codimension-one over *R*. Let $B = A \cap K[T]$, where $T \in A \otimes_R K$ is such that $A \otimes_R K = K[T, T^{-1}]$. Then *B* is finitely generated over *R*. In particular, if *R* is a local domain then *A* is quasi \mathbb{A}^* over *R*.

Proof. To show that *B* is finitely generated over *R*, we may assume, by Remark 5.5, that $C_1 = Rf$ for some $f \in R$. By Corollary 4.4(3), *f* is a generic variable of *B* and $A = B[f^{-1}]$. Let $\{\Delta_0, I_{\Gamma}, B_{\Gamma}, c_{\Gamma}\}$ be the data associated to the generic variable *f* of *B*.

By Theorem 3.2, $B = \lim_{\substack{\longrightarrow \Gamma \in \Sigma_0 \\ \Gamma \in \Sigma_0}} B_{\Gamma}$. Since $B[f^{-1}] = \lim_{\substack{\longrightarrow \Gamma \in \Sigma_0 \\ \Gamma \in \Sigma_0}} B_{\Gamma}[f^{-1}]$ is a finitely generated *R*-algebra, there exists $\Gamma_0 \in \Sigma_0$ such that $B[f^{-1}] = B_{\Gamma_0}[f^{-1}]$. We now show that $\Gamma_0 = \Delta_0$. Suppose that there exists $P \in (\Delta_0 \setminus \Gamma_0)$. Then $(B_{\Gamma_0})_p = R_P[f] \neq B_P = R_P[X_P]$. Since *f* is a generic variable, $f = a_p X_P + b_P$, for some $a_P, b_P \in R_P$ with $a_P \in PR_P$. This shows that $(B_{\Gamma_0})_p[f^{-1}] = R_P[f, f^{-1}] \neq B_P[f^{-1}]$ contradicting the fact that $B[f^{-1}] = B_{\Gamma_0}[f^{-1}]$. Thus $\Gamma_0 = \Delta_0$ and hence $B = B_{\Gamma_0}$ which is finitely generated over *R* by Proposition 3.4.

If *R* is a local domain then, since $B = B_{\Gamma_0} = \bigoplus_{n \ge 0} (I_{\Gamma_0}^n)^{-1} (f - c_{\Gamma_0})^n$ is *R*-flat (cf. Theorem 5.2) and *R* is Noetherian, I_{Γ_0} is a finitely generated projective *R*-module. Thus I_{Γ_0} is a free *R*-module, say $I_{\Gamma_0} = Rd_{\Gamma_0}$. Hence $B(=B_{\Gamma_0}) = R\left[\frac{f-c_{\Gamma_0}}{d_{\Gamma_0}}\right]$ and $A = B[f^{-1}] = R\left[\frac{f-c_{\Gamma_0}}{d_{\Gamma_0}}, f^{-1}\right]$ is quasi \mathbb{A}^* over *R*. \Box

Corollary 5.8. Suppose there exists $(0 \neq)a \in R$ such that A[1/a] is finitely generated over R. Then A is finitely generated over R.

Proof. Since A[1/a] is finitely generated over R, by Theorem 5.7, we have that B[1/a] is a finitely generated R[1/a]-algebra. Fix a generic variable $X \in B$ and let $\Delta_0 = \{P \in \Delta | R_P[X] \subseteq B_P\}$. Let $\Delta_1 = \{P \in \Delta_0 | a \notin P\}$. Then, since R is Noetherian, $\Delta_0 \setminus \Delta_1$ is a finite set. Since B[1/a] is finitely generated over R[1/a], by Proposition 3.4, Δ_1 is a finite set and hence Δ_0 is finite. Therefore, again by Proposition 3.4, B is finitely generated over R and hence A is finitely generated over R by Corollary 4.7(2). \Box

We now obtain Theorem A. We state it in two parts: Theorems 5.9 and 5.10.

Theorem 5.9. Let (R, m) be a Noetherian normal local domain and A a faithfully flat R-algebra which is locally quasi \mathbb{A}^* in codimension-one over R. Then the following are equivalent:

(i) A is quasi A^{*} over R.
(ii) A is a finitely generated R-algebra.

(II) A is a finitely generated K-aige

(iii) $R/m \subseteq A/mA$.

Proof. (i) \Rightarrow (ii) and (i) \Rightarrow (iii) are trivial. (ii) \Rightarrow (i) follows from Theorem 5.7.

(iii) \Rightarrow (i) follows from Proposition 5.4. \Box

The next result, on complete local domain, is the quasi \mathbb{A}^* analogue of Theorem 3.6.

Theorem 5.10. Let *R* be a complete local Noetherian normal domain and *A* be a faithfully flat *R*-algebra which is locally quasi \mathbb{A}^* in codimension-one over *R*. Then the following conditions are equivalent:

(i) A is Noetherian.

(ii) A is finitely generated over R.

(iii) A is quasi \mathbb{A}^* over R.

Proof. Clearly (iii) \Rightarrow (i) \Rightarrow (i). For (i) \Rightarrow (iii), we have by Theorem 5.6, *B* is Noetherian. Hence, by Theorem 3.6, B = R[W]. Thus the result follows from Theorem 4.6. \Box

In Section 6, Example 6.3 shows that Theorem 5.10 does not hold if *R* is not complete.

6. Examples

Let *R* be a Noetherian *factorial* domain with quotient field *K*. Let *A* be a faithfully flat *R*-algebra which is locally quasi \mathbb{A}^* in codimension-one, $A \otimes_R K = K[T, T^{-1}]$ and $B = A \cap K[T]$. We have seen (Theorems 4.6 and 5.2) that *B* is a faithfully flat *R*-algebra which is locally \mathbb{A}^1 in codimension-one, $B \cap TK[T] = Bf$, $A = B[f^{-1}]$ and the prime element *f* is a generic variable of *B*.

Therefore it is natural to ask the following:

Question 1. Let *R* be a Noetherian factorial domain and *B* a faithfully flat *R*-algebra which is locally \mathbb{A}^1 in codimension-one. Can we find a generic variable $f \in B$ such that $B[f^{-1}]$ is *faithfully* flat over *R*?

Note that if $A = B[f^{-1}]$ is faithfully flat over *R* then *A* is locally quasi \mathbb{A}^* in codimension-one over *R*.

We give below an example of a factorial domain *B*, which is faithfully flat locally \mathbb{A}^1 in codimension-one over k[X, Y] (*k*: field) such that for any generic variable $f \in B$, there exists a maximal ideal *n* of k[X, Y] such that $f \in nB$ and hence $B[f^{-1}]$ is **not faithfully** flat over *R*.

Example 6.1. Let *k* denote the algebraic closure of \mathbb{Q} , R = k[X, Y] and Δ the set of all height one prime ideals of *R*. *k*, being countable, can be indexed as $k = \{\alpha_1, \alpha_2, \ldots, \alpha_n, \ldots\}$. Let $p_i = Y + \alpha_i X$ and $P_i = p_i R$, $i \ge 1$. Set $\Delta_0 = \{P_i\}_{i \ge 1}$. Let x_0 be an indeterminate over *R*. Set $c_0 = 1$,

$$c_n = 1 + p_1 + \cdots + p_1 p_2 \cdots p_n$$

and

$$x_n := \frac{x_{n-1} - 1}{p_n} = \frac{x_0 - c_{n-1}}{p_1 p_2 \cdots p_n}$$

for $n \ge 1$. Now set

$$B := R[x_0, x_1, x_2, \ldots, x_n, \ldots],$$

a direct limit of the *R*-algebras $R[x_n](=R^{[1]})$.

Clearly, $B_P = R_P^{[1]} \forall P \in \Delta$ and B is faithfully flat over R since it is a direct limit of polynomial algebras over R. Note that $e_{x_0}(P) = 1$ for $P \in \Delta_0$ and $e_{x_0}(P) = 0$ for $P \in \Delta \setminus \Delta_0$ (see Section 3 for definition of e_{x_0}). Since $x_{n+1} \notin R[x_n]$, B is not finitely generated over R. We show that:

(1) *B* is a factorial domain.

- (2) For every generic variable f of B, there exists a maximal ideal n of R such that $f \in nB$.
- (1) By Remark 3.12(2), it suffices to show that B is a Krull domain. Since B is faithfully flat over R, by Lemma 2.4, we have

$$B = \bigcap_{P \in \Delta} B_P = \left(\bigcap_{P \in \Delta} V_P\right) \cap K[x_0],$$

where *K* is the quotient field of *R* and $V_P := B_{PB}$ is a discrete valuation ring of $K(x_0)$ for each $P \in \Delta$. Thus, since $K[x_0]$ is a Krull domain, *B* is an intersection of discrete valuation rings. Hence, to show that *B* is a Krull domain, it suffices to show that, for any $h \in B$, there exist only finitely many $P \in \Delta$ such that $h \in PB$. Now

$$B = \bigcap_{P \in \Delta} B_P = \left(\bigcap_{P \in \Delta_0} B_P\right) \cap \left(\bigcap_{P \in \Delta \setminus \Delta_0} B_P\right) = \left(\bigcap_{P \in \Delta_0} B_P\right) \cap R'[x_0],$$

where $R' = \bigcap_{P \in \Delta \setminus \Delta_0} R_P$. R' is a Noetherian normal domain by Lemma 3.14. Hence, it suffices to show that for any $h \in B$, there exists an integer m such that $h \notin P_n B \forall n \ge m$. Let $h \in B = R[x_0, x_1, ...]$. Multiplying h by a suitable element from R, we may assume $h \in R[x_0]$. Let

 $h = \phi(x_0) = a_0 + a_1 x_0 + \dots + a_r x_0^r, \quad a_i \in \mathbb{R}.$

Let d_i denote the degree of a_i in X and Y. Choose m > 1 large enough so that

(i) for $n \ge m$, the leading coefficient $a_r \notin p_n R$, and

(ii) $m > 1 + d_i \forall i, 0 \le i \le r - 1$.

We show that $h \notin P_n B$ for $n \ge m$. If r = 0, then clearly $h \notin P_n B$ for $n \ge m$ since $R/P_n R \hookrightarrow B/P_n B$ and $a_r \notin p_n R$. Suppose that r > 0 and $h \in P_n B$ for some $n \ge m$. Then $\phi(c_{n-1}) \in P_n R$ since $R/P_n R \hookrightarrow B/P_n B$ and $x_0 = c_{n-1} + p_1 \cdots p_n x_n$. Now, identifying $R/P_n R$ with k[X], the image of the product $p_1 \cdots p_{n-1}$ in $R/P_n R$ is λX^{n-1} , where $\lambda = (\alpha_1 - \alpha_n) \cdots (\alpha_{n-1} - \alpha_n) \in k^*$ and hence the image of c_{n-1} in $R/P_n R$ is a polynomial of degree n - 1. Therefore, since $m - 1 > d_i \forall i \le r - 1$, the image of $\phi(c_{n-1})$ in $R/P_n R$ is a polynomial in $R/P_n R(= k[X])$ of degree at least (n - 1)r > 1 contradicting the fact that $\phi(c_{n-1}) \in P_n R$. Thus $h \in PB$ for only finitely many $P \in \Delta$.

(2) Let *f* be a generic variable of *B*. Then $f = a + bx_n$ for some $a, b \in \mathbb{R}$ and $n \ge 0$ and hence for $\ell > 0$,

$$f = a + b(1 + p_{n+1} + \dots + p_{n+1} \dots p_{n+\ell} + p_{n+1} \dots p_{n+\ell+1} x_{n+\ell+1}).$$

Choose ℓ such that, $\ell > \max\{\deg a, 0\}$ and p_j does not divide b for $j = \ell + n + 1$. It is then easy to see that the image of the element

 $f_{\ell} := a + b(1 + p_{n+1} + \dots + p_{n+1} \dots p_{\ell+n})$

in $R/P_{\ell+n+1}$ (identified with k[X]) is a non-constant polynomial. In fact, the X-degree of the image of f_{ℓ} in $R/P_{\ell+n+1}$ (= k[X]) is at least $\ell(> 0)$ and hence it has a root in k, say β . Then $f \in nB$, where $n = (Y + \alpha_{\ell+n+1}X, X - \beta)R$.

It is therefore not possible to obtain a faithfully flat locally quasi \mathbb{A}^* algebra in codimension-one over *R* by inverting some generic variable of *B*.

We now show that if *R* is local or *R* is a retract of *B* (equivalently *B* is a graded *R*-algebra), then one can indeed find a generic variable *f* such that $A = B[f^{-1}]$ is a faithfully flat *R*-algebra which is locally quasi \mathbb{A}^* in codimension-one.

Lemma 6.2. Let *R* be a Noetherian normal domain and *B* a faithfully flat *R*-algebra which is locally \mathbb{A}^1 in codimension-one over *R*. Then there exists a generic variable $f \in B$ such that $A := B[f^{-1}]$ is faithfully flat locally quasi \mathbb{A}^* in codimension-one over *R*, if either

(1) R is local with maximal ideal m, or

(2) R is a retract of B.

Proof. It is enough to show that there exists a generic variable f such that $B[f^{-1}]$ is faithfully flat over R.

(1) Suppose that R is local with maximal ideal m. Let X be a generic variable of B. Then taking

$$f = \begin{cases} X - 1 & \text{if } X \in mB. \\ X & \text{if } X \notin mB. \end{cases}$$

We see that B[1/f] is faithfully flat over *R*.

(2) Now suppose that *R* is a retract of *B*. Let $\theta : B \to R$ be the retraction map. Let *X* be a generic variable for *B*, $c = \theta(X)$ and set f = X - c + 1. Then $\theta(f) = 1$ and hence $f \notin mB$ for any maximal ideal *m* of *R*. Therefore, $A = B[f^{-1}]$ is faithfully flat over *R*. \Box

We now show the existence of a *Noetherian* ring *A* which is locally quasi \mathbb{A}^* algebra in codimension-one over a Noetherian normal local domain *R* but which is not finitely generated over *R*.

Example 6.3. Example 6.2 in [2] gives us an example of a Noetherian ring *B* which is faithfully flat locally \mathbb{A}^1 algebra in codimension-one over a Noetherian normal local domain *R* but which is not finitely generated over *R*. By Lemma 6.2, we can get a generic variable *f* such that $A = B[f^{-1}]$ is a faithfully flat locally quasi \mathbb{A}^* algebra in codimension-one over *R*. Now *A* is a Noetherian ring but *A* is not finitely generated over *R* by Theorem 5.7.

The following example shows that over a complete local domain, there exists a faithfully flat locally quasi \mathbb{A}^* algebra in codimension-one which is not finitely generated.

Example 6.4. Let $R = \mathbb{Q}[[X, Y]]$ be a Noetherian factorial complete local domain. Let $p_n = X + nY$ and let W be an indeterminate over R. Set $W_n = W/p_n$ for $n \ge 1$ and $B = R[W, W_1, \ldots, W_n, \ldots]$. Then B is a faithfully flat R-algebra which is locally \mathbb{A}^1 in codimension-one over R but B is not finitely generated over R. Hence, $A = B[(W - 1)^{-1}]$ is a faithfully flat R-algebra which is locally quasi \mathbb{A}^* in codimension-one over R (cf. Lemma 6.2) but A is not finitely generated over R by Theorem 5.7.

Acknowledgements

The authors thank Amartya K. Dutta for meticulously going through the draft and suggesting improvements. The second author also thanks CSIR for their Shyama Prasad Mukherjee Fellowship.

Appendix

We now discuss the construction of algebras which are locally quasi \mathbb{A}^* in codimension-one. In [2], a recipe for the construction of an *R*-algebra *B* which is semi-faithfully flat and locally \mathbb{A}^1 in codimension-one was given; in a sense, the construction characterises all such algebras. Using such a *B*, and a finitely generated projective *R*-submodule C_1 of rank one such that $C_1 \subseteq B_1$ and $C_1 \cap R = (0)$, one gets an *R*-algebra $A = B[(C_1B)^{-1}]$ which is locally quasi \mathbb{A}^* -algebra in codimension-one over *R*. Note that if *B* is faithfully flat over *R*, then *A* is flat over *R*. However, Example 6.1 shows that it is possible to construct *B* as above such that $B[(C_1B)^{-1}]$ is not *faithfully* flat for any choice of C_1 . This leads to:

Question 2. Let *B* be a faithfully flat algebra which is locally \mathbb{A}^1 in codimension-one over a Noetherian normal domain *R*. Let C_1 be a finitely generated projective *R*-module of rank one such that $C_1 \subseteq B_1$ and $C_1 \cap R = (0)$ and let $A = B[(C_1B)^{-1}]$. When is *A* a *faithfully* flat locally quasi \mathbb{A}^* algebra in codimension-one over *R*?

In this section we investigate Question 2.

$$e(P) := \ell_{R_P}(L/C_1 \otimes_R R_P),$$

the length of the R_P -module $(L/\overline{C_1} \otimes_R R_P)$. Let

 $\Delta_0 := \{P \in \Delta \mid e(P) > 0\} \text{ and}$ $\Sigma_0 := \text{the set of all finite subsets of } \Delta_0.$

For $\Gamma \in \Sigma_0$, let

$$I_{\Gamma} := P_1^{(e(P_1))} \cap \dots \cap P_n^{(e(P_n))},$$

$$E_{\Gamma} := I_{\Gamma}^{-1} \overline{C_1} \subset L \text{ and}$$

$$D_{\Gamma} := \rho^{-1}(E_{\Gamma}), \text{ where } \rho : B_1 \to B_1/R = L \text{ is a canonical projection.}$$

Lemma A.1. For each $\Gamma \in \Sigma_0$, there exists a retraction $\theta_{\Gamma} : D_{\Gamma} \to R$ and hence $D_{\Gamma} \cong R \oplus E_{\Gamma}$.

Proof. Since C_1 is a finitely generated projective *R*-module of rank one, $E_{\Gamma}(=I_{\Gamma}^{-1}\overline{C_1})$ is a finitely generated torsion-free *R*-module of rank one. Hence there exists a sequence $x, y \in R$ such that $(E_{\Gamma})_x = FR_x$ and $(E_{\Gamma})_y = GR_y$ for some $F, G \in E_{\Gamma}$. Now $F \in GR_y(=(E_{\Gamma})_y)$. Hence there exist $a \in R$ and $n \ge 0$ such that

$$F = aG/y^n$$
.

Let $f, g \in D_{\Gamma}$ be such that $\rho(f) = F$ and $\rho(g) = G$. Thus $c := y^n f - ag \in Ker(\rho) = R$. Since, B is faithfully flat over R and $c \in (y^n, a)B \cap R$, we have $c \in (y^n, a)R$. Let $c = y^nc_1 + ac_2$ where $c_1, c_2 \in R$. Then $y^n(f - c_1) = a(g + c_2)$. Let $f' = f - c_1$ and $g' = g + c_2$, so that $y^n f' = ag'$. Then $(D_{\Gamma})_x = R_x \oplus R_x f'$ and $(D_{\Gamma})_y = R_y \oplus R_y g'$. We now show that we can give an R-linear map from $D_{\Gamma} \to R$. Let $h \in D_{\Gamma}$. Then $h = \frac{r_0 + r_1 f'}{r_\ell} = \frac{r'_0 + r'_1 g'}{r_\ell}$ for some $r_0, r_1, r'_0, r'_1 \in R$ and $\ell, m \ge 0$. Now

$$\frac{r_0 + r_1 f'}{x^{\ell}} = \frac{r_0 + r_1 (ag'/y^n)}{x^{\ell}} = \frac{r_0}{x^{\ell}} + \frac{ar_1}{x^{\ell} y^n} g' = \frac{r'_0 + r'_1 g'}{y^m}$$

Now $r_0/x^{\ell} = r'_0/y^m \in R_x \cap R_y$ and hence in *R* since *x*, *y* is a sequence in *R*. It is easy to see that the map $\theta_{\Gamma} : D_{\Gamma} \to R$ defined by $\theta_{\Gamma}(h) = r_0/x^{\ell}$ is an *R*-linear map. Clearly $\theta_{\Gamma}(r) = r$ for $r \in R$. Hence θ_{Γ} is an *R*-retraction. \Box

Note that, since $R \subset I_{\Gamma}^{-1}$, $R \oplus C_1 \subset D_{\Gamma}$. Using the canonical retraction $\theta_{\Gamma} : D_{\Gamma} \to R$ defined by Lemma A.1, we now define an *R*-linear automorphism

$$\bar{\theta}_{\Gamma} : R \oplus C_1 \to R \oplus C_1$$

$$\bar{\theta}_{\Gamma}(r) = r \text{ for } r \in R \text{ and } \bar{\theta}_{\Gamma}(c) = c - \theta_{\Gamma}(c) \text{ for } c \in C_1. \text{ Set}$$

$$N_{\Gamma} := \bar{\theta}_{\Gamma}(C_1)$$
(A.1)

and

by

 $H_{\Gamma} := \theta_{\Gamma}(C_1).$

Note that N_{Γ} and H_{Γ} are finitely generated flat *R*-modules such that $N_{\Gamma} \hookrightarrow D_{\Gamma}$ and $H_{\Gamma} \hookrightarrow R$. In fact $D_{\Gamma} = R \oplus I_{\Gamma}^{-1}N_{\Gamma}$ and for each $P \in \Gamma$, $(D_{\Gamma})_{P} = (B_{1})_{P}$ and for $P \notin \Gamma$, $(D_{\Gamma})_{P} = R_{P} \oplus (N_{\Gamma})_{P}$.

Remark A.2. Set $B_{\Gamma} := \bigoplus_{n \ge 0} I_{\Gamma}^{-n} N_{\Gamma}^{n}$. Then one can show that $B_{\Gamma} = S_{\Gamma}^{-1} B \cap R_{\Gamma}[C_1]$, where $S_{\Gamma} := R \setminus (\bigcup_{P \in \Gamma} P)$ and $B = \lim_{D \to \Gamma \in \Sigma} B_{\Gamma}$. Moreover if Γ_1 and Γ_2 are finite subsets of Δ_0 with $\Gamma_1 \subseteq \Gamma_2$, then $(\bar{\theta}_{\Gamma_1} - \bar{\theta}_{\Gamma_2})(C_1) = (\theta_{\Gamma_1} - \theta_{\Gamma_2})(C_1) \subseteq I_{\Gamma_1}$. This is an analogue of Theorem 3.2 giving the structure of *B* in terms of a finitely generated projective *R*-module C_1 such that $C_1 \subset B_1$ and $C_1 \cap R = (0)$ in place of a generic variable.

Proposition A.3. With notation as above, the following are equivalent:

(i) $A = B[(C_1B)^{-1}]$ is a faithfully flat R-algebra which is locally quasi \mathbb{A}^* in codimension-one.

(ii)
$$I_{\Gamma} + H_{\Gamma} = R$$
 for each $\Gamma \in \Sigma_0$.

As a consequence, if $A = B[(C_1B)^{-1}]$ is a faithfully flat R-algebra then $C_1/I_{\Gamma}C_1$ is a free R/I_{Γ} -module for each $\Gamma \in \Sigma_0$.

Proof. (i) \Rightarrow (ii) follows from Remark 5.3(1) by reducing to the local case.

(ii) \Rightarrow (i): Let *m* be a maximal ideal of *R*. Since C_1 is a finitely generated projective *R*-module of rank one, $(C_1)_m = R_m f$ for some $f \in C_1$ and for each $\Gamma \in \Sigma_0$, $H_{\Gamma}R_m = R_m c_{\Gamma}$ for some $c_{\Gamma} \in R$. If $I_{\Gamma}R_m = R_m$ for each $\Gamma \in \Sigma_0$, then $B_m = R_m [f]$ and hence $A_m = B_m [f^{-1}] = R_m [f, f^{-1}]$ is faithfully flat over R_m . Suppose that there exists a $\Gamma \in \Sigma_0$ such that $I_{\Gamma}R_m \subseteq R_m$, then $c_{\Gamma} \in R_m^*$ by hypothesis. Since B_m is faithfully flat over R_m , we have $f - c_{\Gamma} \in I_{\Gamma}S_{\Gamma}^{-1}B_m \cap B_m = I_{\Gamma}B_m$ and hence $f \notin mB_m$ as $c_{\Gamma} \in R_m^*$. Thus $A_m = B_m [f^{-1}]$ is faithfully flat over R_m and hence, since faithful flatness is a local property, $A(=B[(C_1B)^{-1}])$ is faithfully flat over R.

References

- S.M. Bhatwadekar, A.K. Dutta, On A*-fibrations, J. Pure Appl. Algebra 149 (2000) 1–14.
 S.M. Bhatwadekar, A.K. Dutta, N. Onoda, On algebras which are locally A¹ in codimension-one, preprint.
 A.K. Dutta, N. Onoda, Some results on codimension-one A¹-fibrations, J. Algebra 313 (2007) 905–921.
 R.M. Fossum, The Divisor Class Group of a Krull Domain, in: Springer Ergebnisse, vol. 74, Springer-Verlag, New York, 1973.
 P. Russell, A. Sathaye, On finding and cancelling variables in k[X, Y, Z], J. Algebra 57 (1979) 151–166.
 W.V. Vasconcelos, Flat modules over commutative Noetherian rings, Trans. Amer. Math. Soc. 152 (1) (1970) 137–143.