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a b s t r a c t

Let R be Noetherian normal domain.We shall call an R-algebra A quasiA∗ if A = R[X, (aX+

b)−1
] where X ∈ A is a transcendental element over R, a ∈ R \ 0, b ∈ R and (a, b)R = R.

In this paper we shall describe a general structure for any faithfully flat R-algebra A which
is locally quasi A∗ in codimension-one over R. We shall also investigate minimal sufficient
conditions for such an algebra to be finitely generated.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Let R be an integral domain. Recall that an R-algebra A is called A1 if A ∼= R[X] (polynomial algebra in one variable over
R) and is called A∗ if A ∼= R[X, X−1

] (Laurent polynomial algebra in one variable over R). Generalising this notion of A∗, we
call an R-algebra A to be quasi A∗ if A ∼= R[X, (aX + b)−1

] for some X transcendental over R, a ∈ R \ 0 and b ∈ R with
(a, b)R = R. Note that if a ∈ R∗, then A is A∗ over R. This notion of quasi A∗ arises naturally in the study of algebras whose
generic fibres are A∗. To see an example, consider a discrete valuation ring (V , π)with quotient field K and a faithfully flat,
finitely generated V -algebra A such that πA is a prime ideal of A and V/πV is algebraically closed in A/πA. Under these
hypotheses, if A[1/π ] is a polynomial algebra K [Y ], then A is a polynomial algebra V [X] by [5, Theorem 2.3.1]; on the other
hand, if A[1/π ] is a Laurent polynomial algebra K [Y , Y−1

], then it can be shown (using similar methods) that A is a quasi
A∗-algebra of the form V [X, (aX + b)−1

] for some X in A transcendental over V , a ∈ V \ 0 and b ∈ V with (a, b)V = V .
Now let R be a Noetherian normal domain. In [2], an integral domain B containing R has been called ‘‘locally A1 in

codimension-one’’ if, for every height one prime ideal P of R, BP (= B ⊗R RP) is A1 over RP . Such an algebra B has been
studied extensively in [2] when B is faithfully flat over R. In a similar fashion, we call an integral domain A containing R to
be ‘‘locally quasi A∗ in codimension-one’’ if, for every height one prime ideal P of R, AP (= A ⊗R RP) is quasi A∗ over RP .

In this paper we investigate properties of a faithfully flat algebra A over a Noetherian normal domain R which is locally
quasi A∗ in codimension-one. We first explore a general structure of A and show that A has an R-subalgebra B which is
faithfully flat and locally A1 in codimension-one over R such that A = B[Q−1

] for some invertible ideal Q of B (Theorems 4.6
and 5.2). As a consequence, if R is factorial then it follows (from known results about B) that A is a direct limit of quasi
A∗ algebras over R (Corollary 4.5) and hence, if A is finitely generated over R then A is quasi A∗ over R. It will also be seen
(Proposition 5.4) that at each point P of Spec R, PA ∈ Spec A, and that either AP is quasi A∗ over RP or the fibre ring
A ⊗R k(P ) = k(P ). As a consequence, we show that when R is local, then A is quasi A∗ under a mild hypothesis on the
closed fibre. More precisely, we prove (Theorems 5.9 and 5.10):
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Theorem A. Let (R,m) be a Noetherian normal local domain and A a faithfully flat R-algebra which is locally quasi A∗ in
codimension-one over R. Then the following are equivalent:

(i) A is a quasi A∗ R-algebra.
(ii) A is a finitely generated R-algebra.
(iii) R/m $ A/mA.

Moreover, if R is complete and A is Noetherian, then A is indeed quasi A∗.

However if R is not complete, there exist examples of Noetherian faithfully flat R-algebras which are locally quasi A∗ in
codimension-one but which are not finitely generated over R (Example 6.3). Surprisingly, if we assume that A is locally A∗ in
codimension-one then A is actually finitely generated over R without any additional hypothesis. We prove (Theorem 4.8):

Theorem B. Let R be a Noetherian normal domain and A be a faithfully flat R-algebra which is locally A∗ in codimension-one
over R. Then A =


n∈Z Inun for an invertible ideal I of R. In particular, A is finitely generated over R.

TheoremBwas proved earlier in [1] under the additional assumption thatA is finitely generated overR (cf. Remark 4.9(2)).
However, even if R is complete, there exists a faithfully flat R-algebra which is locally quasi A∗ in codimension-one but

not finitely generated (Example 6.4).
We now give a layout of the paper. Sections 1–3 are introductory — Section 2 is on preliminaries; in Section 3, we recall

results from [2] on algebras which are locally A1 in codimension-one over R and prove some results on the consequences
of faithful flatness of such algebras. The main results of this paper are presented in Sections 4 and 5 — Theorem B, which
requires less technical properties, will be proved in Section 4 and Theorem A in Section 5. In Section 4, we first discuss basic
properties of a faithfully flat algebra A over a Noetherian normal domain Rwhich is locally quasiA∗ in codimension-one over
R and establish the existence of an R-subalgebra B of A which is locally A1 in codimension-one such that A = B[Q−1

] for a
suitable invertible ideal Q of B. With the help of this presentationwe prove Theorem B. In Section 5, we discuss properties of
the above ring B; in particular, we show that B is a faithfully flat R-algebra and deduce some results on the fibres of the map
Spec A → Spec R. We also prove that B is Noetherian (respectively finitely generated over R) if and only if A is so. Finally we
prove Theorem A. In Section 6, we discuss a few examples.

2. Preliminaries

We recall some standard notation to be used throughout the paper. For a ring R, R∗ will denote the multiplicative group
of units of R. For a prime ideal P of R, and an R-algebra A, AP denotes the ring S−1A, where S = R \ P and k(P) denotes
the residue field RP/PRP . The notation A = R[1] will mean that A is isomorphic, as an R-algebra, to a polynomial ring in one
variable over R.

For an R-module M , we denote the tensor algebra of M over R by TR(M) and the symmetric algebra by SymR(M). Note
that if R is a domain andM is a flat R-module of rank one, then TR(M) = SymR (M).

We compile below the notions mentioned in the introduction which are central to this paper.

Definition 2.1. (1) An R-algebra A is said to be A∗ if there exists an element X in Awhich is transcendental over R such that
A = R[X, X−1

].
(2)We shall call an R-algebra A to be ‘‘quasi A∗’’ if there exists an element X in Awhich is transcendental over R such that

A = R[X, (aX + b)−1
],

for some a ∈ R \ 0, b ∈ R satisfying (a, b)R = R. Note that R[X, (aX + b)−1
] is A∗ over R if and only if a ∈ R∗.

(3) We shall call an R-algebra A to be ‘‘locally quasi A∗ in codimension-one’’ over R if AP is quasi A∗ over RP for every
height one prime ideal P in R.

(4) We shall call an R-algebra B to be ‘‘locally A1 in codimension-one’’ if BP = RP
[1] for every height one prime ideal P in

R. If R is an integral domain with quotient field K and X is an element of B transcendental over R such that R[X] ⊆ B ⊆ K [X],
then we say that X is a ‘‘generic variable’’ for B.

As mentioned in the introduction, we shall discuss properties of algebras which are locally A1 in codimension-one in
Section 3 and results on algebras which are locally quasi A∗ in codimension-one in Sections 4 and 5.

We now mention two results on flat R-modules lying between the integral domain R and its quotient field K . The first
result is on the flatness of the R-subalgebra R[M] of K generated by a flat R-submoduleM of K .

Lemma 2.2. Let R be an integral domainwith quotient field K andM a flat R-module such that R ⊆ M ⊆ K . Then the R-subalgebra
R[M] of K is flat over R.

Proof. Since M ⊆ K and M is flat over R, we can identify TR(M) as a graded subring of the polynomial algebra K [W ] with
M ⊗R · · · ⊗R M (n times) corresponding toMnW n (⊆ KW n). Thus

TR(M) = {a0 + a1W + · · · + anW n
| n ≥ 0 and ai ∈ M i for 0 ≤ i ≤ n}.
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Note that since R ⊂ M , W ∈ TR(M); a homogeneous element of degree one. We first show that TR(M) ∩ (W − 1)K [W ] =

(W − 1)TR(M). Let

h = b0 + b1W + · · · + bℓW ℓ
∈ TR(M) ∩ (W − 1)K [W ], (2.1)

with bi ∈ M i, 0 ≤ i ≤ ℓ. Write h = (W − 1)g , where

g = d0 + d1W + · · · + dℓ−1W ℓ−1
∈ K [W ]. (2.2)

From (2.1) and (2.2), it follows that d0 ∈ R, (d1 − d0) ∈ M, . . . , (dℓ−1 − dℓ−2) ∈ Mℓ−1. Since R ⊆ M ⊆ M2
⊆ M3

· · · , we
have g ∈ TR(M).

Let φ be the restriction of the R-linear map φ̃ : K [W ] → K sendingW → 1. Then φ(TR(M)) = R[M] and hence we have
the short exact sequence

0 → (W − 1)TR(M) → TR(M)
φ

−→ R[M] → 0. (2.3)

Let I be an ideal of R. SinceM is a flat R-module, TR(M) is a flat R-algebra. Thus TorR1 (TR(M), R/I) = 0. Hence, tensoring (2.3)
with R/I , we have the exact sequence

0 → TorR1(R[M], R/I) → (W − 1)TR(M)⊗R R/I → TR(M)⊗R R/I → R[M] ⊗R R/I → 0.

Let h ∈ TR(M) be such that (W − 1)h ∈ ITR(M). Since W is a homogeneous element of degree one and ITR(M) is a
homogeneous ideal of the graded ring TR(M), it follows that h ∈ ITR(M). Thus the map

(W − 1)TR(M)⊗R R/I → TR(M)⊗R R/I

is injective. Hence TorR1 (R[M], R/I) = 0. Thus R[M] is a flat R-algebra. �

The next result is on the Noetherian property of flat R-subalgebras of the quotient field of R.

Lemma 2.3. Let R be a Noetherian domain with quotient field K , and D a flat R-algebra such that R ⊆ D ⊆ K. Then D is a
Noetherian ring.

Proof. To show that D is Noetherian it is enough to show that every prime ideal of D is finitely generated. Let Q be a prime
ideal of D and P = Q ∩ R. Now DQ is faithfully flat over RP and since RP ⊆ DQ ⊆ K , we have DQ = RP and hence D ⊆ RP . We
show Q = PD. For this it is enough to show that PD is a prime ideal of D. Now D/PD is flat R/PR-module and hence every
element of R \ P is a non-zero divisor in D/PD. Thus D/PD ↩→ RP/PRP which is a field and hence PD is a prime ideal of D. �

Finally, we recall an elementary result which will be used in the paper. (See the argument in [3, Lemma 2.8].)

Lemma 2.4. Let R be a Noetherian normal domain with quotient field K and let ∆ be the set of all height one prime ideals of R.
For a torsion free R-module M, the following conditions are equivalent:

(i) M =


P∈∆MP , where M and MP = M ⊗R RP are identified with their images in M ⊗R K.
(ii) If a and b are elements of R such that b is (R/aR)-regular, then b is (M/aM)-regular.

In particular, if either M is R-flat or a direct limit of finitely generated reflexive R-modules, then M =


P∈∆MP .

3. Locally A1 algebras in codimension-one: some old and some new results

Throughout this section, R will denote a Noetherian normal domain with quotient field K and ∆ the set of all prime ideals
in R of height one.

As in [2], we call an integral domain B containing R to be ‘‘semi-faithfully flat over R’’ if

(1) B =


P∈∆ BP .
(2) IB ∩ R = I , for every ideal I of R.

In [2], properties of semi-faithfully flat algebras,which are locallyA1 in codimension-one overR, were investigated. A general
structure of such an R-algebra B was described ([2, Theorem 7.2]). Further, when B is faithfully flat over R, conditions for B
to be finitely generated were given ([2, Corollary 2.7, Theorems 2.11 and 7.12]). In this section, we shall recall some of these
results and investigate some consequences (Proposition 3.10 and Lemma 3.14) when B is faithfully flat over R.

Throughout this section, B will denote a semi-faithfully flat R-algebra which is locally A1 in codimension-one. We recall
from [2], some objects associated with B and a generic variable X of B, (i.e., an element X ∈ B for which B ⊗R K = K [X]).

For each P ∈ ∆, fix XP ∈ BP such that

BP = RP [XP ]. Then X = aPXP + bP for some aP , bP ∈ RP .

Now set

eX (P) := vP(aP), where vP(aP) is the valuation of aP in RP and
∆0(X) := {P ∈ ∆ | RP [X] $ BP}.
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We fix a generic variable X and write∆0 in place of∆0(X) and e(P) in place of eX (P). Note that for each P ∈ ∆0, aP /∈ RP
∗

and hence e(P) > 0. Thus

∆0 = {P ∈ ∆ | RP [X] $ BP} = {P ∈ ∆ | aP /∈ RP
∗
} = {P ∈ ∆ | e(P) > 0}.

LetΣ0 be the set of all finite subsets of∆0. For Γ = {P1, . . . , Pn} ∈ Σ0, set

RΓ :=


P∈∆\Γ

RP ,

BΓ := SΓ −1B ∩ RΓ [X], where SΓ := R \


P∈Γ

P


and

IΓ := P1(e(P1)) ∩ · · · ∩ Pn(e(Pn)).

Remark 3.1. (1) SΓ −1B = SΓ −1BΓ .
(2) IΓ is a divisorial ideal of R ([4, Corollary 5.5]). Hence HomR(IΓ , R) = IΓ −1 and HomR(IΓ −1, R) = IΓ .
(3) For P ∈ (∆0 \ Γ ), (BΓ )P = RP [X] ≠ BP and hence if Γ is a proper subset of∆0 then BΓ is a proper subring of B.
(4) The rings BΓ , together with the inclusion maps, form a direct system {BΓ | Γ ∈ Σ0} ([2, Lemma 2.1]).

The following technical result is proved in ([2, Theorem 7.2]).

Theorem 3.2. For each Γ ∈ Σ0, there exists cΓ ∈ R such that

BΓ =


n≥0

(IΓ n)−1 (X − cΓ )n, (3.1)

and for any Γ1,Γ2 ∈ Σ0, with Γ1 ⊆ Γ2, we have IΓ1 ⊇ IΓ2 and cΓ2 − cΓ1 ∈ IΓ1 . Moreover,

B = lim
−→
Γ ∈Σ0

BΓ . (3.2)

To a generic variable X we associate the set∆0 and the families {IΓ }Γ ∈Σ0 , {BΓ }Γ ∈Σ0 and {cΓ }Γ ∈Σ0 as above.We abbreviate
this as {∆0, IΓ , BΓ , cΓ }.

Lemma 3.3. BΓ is flat over R if and only if IΓ is an invertible ideal of R. As a consequence, if BΓ is flat over R then BΓ is a finitely
generated R-algebra.

Proof. If IΓ is an invertible ideal of R then IΓ n is an invertible ideal and hence (IΓ n)−1
= (IΓ −1)n is a (finitely generated)

projective R-module and hence a flat R-module for every n ≥ 0. Hence BΓ is flat over R. Moreover, BΓ is finitely generated
over R as IΓ −1 is a finitely generated flat R-module and BΓ is generated by IΓ −1 over R.

Now suppose that BΓ is flat over R. Then IΓ −1 is flat over R. As R is Noetherian, it follows that IΓ −1 is a finitely generated
projective R-module (of rank one). Hence IΓ is a finitely generated projective R-module (cf. Remark 3.1(2)). Thus IΓ is
invertible. �

The following result occurs in [2, Corollary 2.7] but for the sake of convenience we record a proof here.

Proposition 3.4. Suppose that B is faithfully flat over R. Then B is finitely generated over R if and only if ∆0 is a finite (possibly
empty) set.

Proof. Note that∆0 = ∅ if and only if R[X] = B. We now assume that R[X] ≠ B. By Theorem 3.2,

B = lim
−→
Γ ∈Σ0

BΓ

and hence, if B is finitely generated over R then, there exists a finite subset Γ ′ of ∆0 such that BΓ ′ = B. Therefore, by
Remark 3.1(3), Γ ′

= ∆0.
Now suppose∆0 is a finite set. Taking Γ to be∆0, we see that BΓ = B. Since B = BΓ is flat, B is finitely generated over R

by Lemma 3.3. �

The following result on the R-algebra B was stated in [3, Theorem 4.6] under the hypothesis that B is faithfully flat over
R, but the proof uses only semi-faithful flatness of B (cf. [2, Remark 7.3(2)]).

Theorem 3.5. Let R be a factorial domain. Then B is a direct limit of polynomial algebras in one variable over R.

The next theorem, proved in [2, Theorem 3.7], gives a necessary and sufficient condition for B to be finitely generated
when R is complete local.

Theorem 3.6. Let R be a complete Noetherian normal local domain. Suppose that B is a faithfully flat R-algebra. Then B is
Noetherian if and only if it is finitely generated over R.
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We now introduce some more notation to be used for the rest of this section. Choose an element T of B ⊗R K such that
B ⊗R K = K [T ] (T need not be in B). Note that B ⊂ B ⊗R K = K [T ]. For n ≥ −1, set

Vn := {g ∈ K [T ] | degT (g) ≤ n} and Bn := Vn ∩ B. (3.3)

Let

Gr(B) =


n≥0

Bn/Bn−1 ⊂


n≥0

Vn/Vn−1. (3.4)

Note that Gr(B) is independent of the choice of T . In fact, we observe the following:

Remark 3.7. (1) B =


n≥0Bn.
(2) The K -vector space Vn and the R-module Bn, and hence the graded K -algebra


n≥0 Vn/Vn−1 and the graded R-algebra

Gr(B) are independent of the choice of T .
(3) Given T , if W denotes the image of T in V1/V0 then


n≥0 Vn/Vn−1 = K [W ] and hence Gr(B) ⊂ K [W ] as graded

R-algebras.
(4) For T ∈ B, we have R[W ] ⊂ Gr(B) ⊂ K [W ] as graded R-algebras and hence for every n ≥ 0, RW n

⊂ Bn/Bn−1 ⊂ KW n.
Moreover, R[W ] = Gr(B) if and only if B = R[T ].

(5) (Bn/Bn−1)P ∼= RP for every height one prime ideal P of R.

We shall now relate faithful flatness of Bwith that of Gr(B).

Lemma 3.8. If Gr(B) is flat over R then B is faithfully flat over R.

Proof. By Remark 3.7(1), it is enough to show that for each n ≥ 0, Bn is faithfully flat over R. Since Gr(B) is R-flat, Bn/Bn−1 is
R-flat for every n ≥ 0. Moreover, we have the short exact sequence

0 → Bn−1 → Bn
ρn

−→ Bn/Bn−1 → 0 (3.5)

where ρn is the projection map. Since B0 = R, flatness of B1/B0 implies B1 is faithfully flat. This in turn implies that B2 is
faithfully flat. Repeating this argument we see that Bn is faithfully flat for every n ≥ 0. Hence B is faithfully flat over R. �

Remark 3.9. We can define (3.3) and (3.4) for any arbitrary integral domain R (not necessarily Noetherian normal) and any
integral domain B containing R (not necessary semi-faithfully flat locally A1 in codimension-one) such that B ⊗R K = K [T ].
It is easy to see that (1)–(4) of Remark 3.7 and Lemma 3.8 hold in this more general setup and that (5) of Remark 3.7 also
holds when B is locally A1 in codimension-one.

We shall now see that the converse of Lemma 3.8 holds in our setup (R is a Noetherian normal domain and B is a
semi-faithfully flat R-algebra which is locally A1 in codimension-one). This result was proved in [2, Corollary 3.8] under
the additional hypothesis that R is an analytically irreducible local domain, i.e., the completion of R is an integral domain.

Proposition 3.10. Suppose that B is faithfully flat over R. Then:
(1) Bn is flat over R, for every n ≥ 0.
(2) JBn ∩ Bn−1 = JBn−1, for every ideal J of R.
(3) Gr(B) is faithfully flat over R.
(4) Gr(B) = R[L], where L = B1/R.
(5) B = R[B1].

Proof. (1) To show that Bn is flat over R, it is enough to show that given
∑

i aixi = 0, with ai ∈ R and xi ∈ Bn, there exist
cij ∈ R and yj ∈ Bn such that

∑
i aicij = 0 for each j and xi =

∑
j cijyj for each i.

Since B is faithfully flat over R, there exist cij ∈ R and zj ∈ B such that
∑

i aicij = 0 for each j and xi =
∑

j cijzj for each
i. By (3.2), we have B = lim

−→Γ ∈Σ0
BΓ , and hence we can choose Γ such that xi, zj ∈ BΓ for each i, j. Now by (3.1), BΓ has a

graded structure: BΓ =


r≥0(IΓ
r)−1 (X − cΓ )r . Note that

BΓ (n) := Bn ∩ BΓ = {g ∈ BΓ | degX (g) ≤ n} =


0≤r≤n

(IΓ r)−1 (X − cΓ )r .

Hence, xi ∈ Bn ∩ BΓ = BΓ (n). Let zj = yj + wj, where

yj ∈


0≤r≤n

(IΓ r)−1 (X − cΓ )r and wj ∈


t≥n+1

(IΓ t)−1 (X − cΓ )t .

Now it is easy to see that the equality xi =
∑

j cijzj implies xi =
∑

j cijyj. Thus Bn is flat over R for every n ≥ 0.
(2) Since BΓ (n) = Bn ∩ BΓ =


0≤r≤n(IΓ

r)−1 (X − cΓ )r , for any ideal J of R, JBΓ (n)∩ BΓ (n− 1) = JBΓ (n− 1). Therefore,
since B is a direct limit of BΓ , it follows that JBn ∩ Bn−1 = JBn−1.
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(3) Since by (1) Bn is R-flat and by (2) for every ideal J of R we have JBn ∩ Bn−1 = JBn−1, the short exact sequence

0 → Bn−1 → Bn
ρn

−→ Bn/Bn−1 → 0 (3.6)

shows that TorR1(Bn/Bn−1, R/J) = 0 for every ideal J of R and for every n ≥ 0. Therefore Bn/Bn−1 is R-flat (of rank one) for
every n and hence Gr(B) =


n≥0 Bn/Bn−1 is R-flat. Since R is a direct summand of Gr(B), it follows that Gr(B) is faithfully

flat over R.
(4) Set L(n) := Bn/Bn−1. Then Ln ⊆ L(n). Since BP = RP [XP ] for every prime ideal P ∈ ∆, we have Gr(B)P = RP [YP ], where

YP denotes the image of XP in V1/V0 and LP = RPYP . Therefore, (Ln)P = RPYP
n

= L(n)P . By (3), L(n) and Ln are flat R-modules
of rank one. Hence, by Lemma 2.4, Ln = L(n) for n ≥ 0. Thus Gr(B) = R[L].

(5) Since Gr(B) = R[L] by (4), it is now easy to see that B = R[B1]. �

The following result was proved in [2, Theorem 3.10] under the additional hypothesis that R is a local domain which
is analytically irreducible. In view of Proposition 3.10, we now show that the hypothesis ‘‘analytically irreducible’’ can be
dropped.

Corollary 3.11. Suppose that R is local with maximal ideal m and B is faithfully flat over R. Then either B is A1 over R or
R/m = B/mB.

Proof. By Proposition 3.10(3)–(4), L is a flat R-module of rank one and hence by a result of Vasconcelos [6, Theorem 3.1],
either L ∼= R or L = mL.

IfmL = L then B1 = R +mB1. Since B = R[B1] by Proposition 3.10(5), it follows that B = R +mB. Hence R/m = B/mB.
If L ∼= R then choose T ∈ B1 such that L = RW , where W is the image of T in L = B1/R ⊆ V1/K . This shows that

R[T ] ⊆ B ⊆ K [T ] and Gr(B) = R[W ]. Therefore R[T ] = B (cf, Remark 3.7(4)). �

Remark 3.12. Suppose that B is a faithfully flat R-algebra.
(1) As a consequence of Corollary 3.11, we see thatPB ∈ Spec B for every prime idealP of R. In fact, for each prime ideal
P of R, either BP is A1 over RP or the fibre ring A⊗R k(P ) = k(P )which implies thatPBP is a prime ideal of BP and hence
PB is a prime ideal of B because B/PB ↩→ BP /PBP by flatness of B over R.

(2) If R is factorial and B is a Krull domain, then B is factorial. Indeed, by (1), every prime element of R remains a prime
element of B. Let S be the multiplicative closed set generated by all prime elements of R. Then S−1R = K , and hence
S−1B = K [1], a factorial domain. Hence B is factorial by Nagata’s criterion [4, Corollary 7.3].

For an integer n ≥ 0, recall the notation

L(n) := Bn/Bn−1. (3.7)

Let Y denote the image of generic variable X ∈ B in V1/V0 and Mn := {λ ∈ K | λY n
∈ L(n)}. Then, since RY n

⊆ L(n) ⊆ KY n

(cf. Remark 3.7(4)), R ⊆ Mn ⊆ K . In fact

Mn = lim
−→Γ ∈Σ0

(IΓ n)−1


=


Γ ∈Σ0

(IΓ n)−1


(3.8)

and L(n) = MnY n (see [2, Remark 2.12]). SetM := M1. If B is faithfully flat over R then by Proposition 3.10(3)–(4), it follows
thatMn is flat over R andMn = Mn for n ≥ 1 and hence Gr(B) ∼= SymR (M) = TR (M).

Corollary 3.13. Suppose that B is a faithfully flat R-algebra. Set M = M1. Then the R-subalgebra R[M] of K is flat over R.

Proof. By Proposition 3.10(3), Gr(B) is flat over R and so L = B1/R is flat over R which implies that M is flat over R since
MY = L. By Remark 3.7(4), RY ⊆ L ⊆ KY and hence, R ⊆ M ⊆ K . Thus, by Lemma 2.2, R[M] is flat over R. �

Lemma 3.14. Let∆1 = {P ∈ ∆ | RP [X] = BP} and let R′
=


P∈∆1
RP . If B is a faithfully flat R-algebra, then R′ has the following

properties:

(1) R′ is flat over R.
(2) R′ is a Noetherian normal domain.

Proof. (1) By Corollary 3.13, it is enough to show that R[M] = R′. Note that∆1 = ∆ \∆0. By (3.8), we see that R ⊆ M and
RP = MP if and only if P ∈ ∆1. Therefore R[M]P = RP if P ∈ ∆1 and R[M]P = K for P ∈ ∆0. Since R[M] is R-flat, we have
R[M] =


P∈∆ R[M]P by Lemma 2.4. Hence R′

= R[M].
(2) R′ is normal because it is given by intersection of normal domains. By Lemma 2.3 and (1), it follows that R′ is

Noetherian. �
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4. Locally quasi A∗ algebras in codimension-one I: basic concepts and results; Theorem B

We first prove an elementary result on quasi A∗ algebras over an integral domain.

Lemma 4.1. Let R be an integral domain with quotient field K and A be an R-algebra which is quasi A∗ over R. Let T ∈ A⊗R K be
such that A ⊗R K = K [T , T−1

] and B = A ∩ K [T ]. Then there exist W ∈ B, a′
∈ R \ 0, b′

∈ R and f = a′W + b′(∈ B) such that
(a′, b′)R = R, B = R[W ] and A = R[W , f −1

]. As a consequence,

R[f , f −1
] ⊆ A ⊆ K [f , f −1

] = K [T , T−1
]

and

A ∩ KT n
= Rf n and A ∩ KT−n

= Rf −n
∀ n ≥ 0.

Proof. Since A is a quasi A∗ R-algebra, there exists X ∈ A, transcendental over R, such that A = R[X, (aX + b)−1
] for some

a ∈ R \ 0, b ∈ R satisfying (a, b)R = R. Let g = aX + b. Then K [T , T−1
] = A ⊗R K = K [g, g−1

]. Hence, either K [g] = K [T ]

or K [g] = K [T−1
].

Suppose K [g] = K [T ]. Then K [T ](= K [g]) = K [X] and R[X] ⊆ B ⊆ R[X, g−1
] = A. Since (a, b)R = R, g is a prime

element of R[X] which implies gK [X] ∩ R[X] = gR[X]. Thus gB∩ R[X] = gR[X] and since R[X, g−1
](= A) = B[g−1

], we have
B = R[X]. SetW := X and f := g . Then A = R[W , f −1

] and B = R[W ].
Now supposeK [g] = K [T−1

]. Since aR+bR = R, there exist c, d ∈ R such that ad−bc = 1. SetW := (cX+d)/(aX+b) and
f := aW − c. Then f = 1/(aX + b) = 1/g , X = (d− bW )/f and K [W ] = K [f ] = K [T ]. Hence A(= R[X, g−1

]) = R[W , f −1
]

and arguing as before, we see that B = R[W ].
Now since A = R[W , f −1

] and f is linear in W , we have R[f , f −1
] ⊆ A ⊆ K [f , f −1

] = K [T , T−1
] and hence f = λT for

some λ ∈ K ∗. Since R ⊂ A ∩ K ⊂ A ∩ K [T ] = B = R[W ], it follows that A ∩ K = R. If µ ∈ K be such that µf n ∈ A, then as
f ∈ A∗, we have µ ∈ (A ∩ K =)R. Therefore, A ∩ KT n

= Rf n and A ∩ KT−n
= Rf −n for n ≥ 0. �

Let R be an integral domain with quotient field K and A a faithfully flat R-algebra such that A ⊗R K = K [T , T−1
]. Let

B = A ∩ K [T ]. The above lemma shows that if A is locally quasi A∗ in codimension-one over R then B is locally A1 in
codimension-one over R. One would like to know a relation between A and B. For example, one might ask whether A is (in
some sense) a localisation of B.

Our first goal in this section is to show that if R is Noetherian and normal then indeed such is the case (Theorem 4.6). We
first fix some notation.

Notation
Throughout this section, R will denote a Noetherian normal domain with quotient field K , ∆ the set of prime ideals in R of

height one and A a faithfully flat R-algebra which is locally quasi A∗ in codimension-one.
Fix T ∈ A ⊗R K such that A ⊗R K = K [T , T−1

]. For an integer n ≥ 0, set

Cn := A ∩ KT n.

Dn := A ∩ KT−n.

We now prove a technical lemma on the submodules Cn, Dn.

Lemma 4.2. The canonical maps Cn ⊗R A → CnA and Dn ⊗R A → DnA are isomorphisms of A-modules and CnA = A = DnA for
each n ≥ 0. As a consequence, Cn and Dn are finitely generated projective R-modules of rank one.

Proof. We show that the canonical map Cn ⊗R A → CnA is an isomorphism and CnA = A. The results for Dn will follow in a
similar way.

Since Cn ↩→ KT n and A is R-flat, we have Cn ⊗R A ↩→ KT n
⊗R A ∼= K [T , T−1

], so that Cn ⊗R A is a torsion free A-module of
rank one. Hence the map Cn ⊗R A → CnA is an isomorphism.

Since Cn = A ∩ KT n and A is R-flat, it follows that Cn =


P∈∆(Cn)P by Lemma 2.4. Therefore, again by Lemma 2.4, if
x, y ∈ R be such that (xR : y) = xR then (xCn : y) = xCn. In particular, since R is normal, if (x, y) is an ideal of R of height ≥ 2
then (xCn : y) = xCn. Since A is R-flat and Cn ⊗R A ∼= CnA, we see that (xCnA : y) = xCnA for x, y ∈ R such that ht(x, y) ≥ 2.

For g ∈ Cn, h ∈ Dn, we see that gh ∈ A ∩ K = R. Therefore we get an R-linear map ψ : Cn ⊗R Dn → R defined by
ψ(g ⊗ h) = gh. Let Jn be the image of ψ .

Since A is locally quasi A∗ in codimension-one, by Lemma 4.1, (Jn)P = RP for every P ∈ ∆. This shows that Jn is an ideal
of R of height ≥ 2. Therefore, there exist x, y ∈ Jn such that ht(x, y) ≥ 2.

Since DnA ⊆ A, JnA ⊆ CnA and so (x, y) ⊆ JnA ⊆ CnA. Now since (xCnA : y) = xCnA, the fact xy ∈ xCnA implies that
x ∈ xCnA, hence CnA = A. Since Cn ⊗R A ∼= CnA = A and A is faithfully flat over R, Cn is a finitely generated projective
R-module of rank one. Thus the lemma is proved. �

It follows from Lemma 4.2 that Jn = CnDn is a locally principal ideal in R of height at least two. We thus obtain the
following corollary.
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Corollary 4.3. Set B := A ∩ K [T ] and let C be the R-subalgebra C =


n≥0 Cn of B. Then we have:
(1) Jn = R for each integer n ≥ 0.
(2) The canonical map θn : C1 ⊗ C1 ⊗ · · · ⊗ C1 → Cn is an isomorphism of R-modules.
(3) C = SymR (C1) as R-algebras.

Proof. (1) Since Cn and Dn are finitely generated projective R-modules of rank one, so is Cn ⊗R Dn. Therefore the surjective
map ψ : Cn ⊗R Dn → Jn is an isomorphism. Thus Jn is R-projective of rank one, i.e., an invertible ideal of R. Since ht(Jn) ≥ 2,
we see that Jn = R.

(2) For the sake of simplicitywe denote θn(C1⊗C1⊗· · ·⊗C1) (n-times) by C(n). Since A is locally quasiA∗ in codimension-
one, by Lemma 4.1, for every P ∈ ∆, we have (C1)P = RP fP for some fP ∈ AP and (Cn)P = RP fP n for every n ≥ 0. Thus
C(n)P = (Cn)P for every P ∈ ∆. This implies that θn is injective. Nowusing the fact that C(n) and Cn are projective R-modules,
by Lemma 2.4, we have C(n) =


P∈∆ C(n)P and Cn =


P∈∆ (Cn)P and hence C(n) = Cn. Thus θn is an isomorphism for

every n ≥ 0.
(3) Follows from (2). �

Corollary 4.4. The following statements hold:
(1) B (= A ∩ K [T ]) is a semi-faithfully flat R-algebra which is locally A1 in codimension-one.
(2) R∗ $ A∗ if and only if there exists n > 0 such that Cn is free.
(3) If C1 = Rf , then R[f ] ⊆ B ⊆ K [f ] = K [T ], A = B[f −1

] and B ∩ TK [T ] = fB and hence fB ∈ Spec B.

Proof. (1) By Lemma 4.1, it is enough to show that B is semi-faithfully flat over R. Since A is faithfully flat over R, by
Lemma 2.4, we have

B = A ∩ K [T ] =


P∈∆

AP


∩ K [T ] =


P∈∆

(AP ∩ K [T ]) =


P∈∆

BP

and

IB ∩ R ⊆ IA ∩ R = I, for any ideal I of R.

Thus B is semi-faithfully flat over R.
(2) Suppose that Cn = Rh for some n > 0 and h ∈ A. Since Jn = R by Corollary 4.3(1), it follows that Dn = Rh−1. Hence

h ∈ A∗
\ R∗. Conversely, suppose that R∗ $ A∗ and let h ∈ A∗

\ R∗. Since A ↩→ A ⊗R K = K [T , T−1
], h ∈ KT n for some

n ∈ Z. Replacing h by h−1 if necessary, we may assume that h ∈ Cn (= A ∩ KT n) and h−1
∈ Dn for some integer n > 0.

Note that Kh = KT n and Kh−1
= KT−n. We now show that Cn = Rh. Let g ∈ Cn, then g = λh for some λ ∈ K . Hence

gh−1
= λ ∈ A ∩ K = R. Thus Cn = Rh.

(3) Since Rf = C1 ⊆ KT , K [T ] = K [f ] and TK [T ] = fK [f ]. Moreover, by (2), f −1
∈ A and hence R[f , f −1

] ⊆

A ⊆ K [f , f −1
] = K [T , T−1

]. Hence, as K [T ] = K [f ], R[f ] ⊆ B ⊆ K [f ]. If g ∈ A, then there exists k ≥ 0 such that
f kg ∈ A ∩ K [f ] (= B) and hence A = B[f −1

].
Let h ∈ fK [f ] ∩ B. Then h ∈ A and, since f ∈ A∗, we have h/f ∈ A ∩ K [f ] = B. Thus TK [T ] ∩ B(= fK [f ] ∩ B) = fB. �

The following result, on factorial domain, is the quasi A∗ analogue of Theorem 3.5.

Corollary 4.5. Suppose that R is a factorial domain. Then A is a direct limit of quasi A∗ algebras.

Proof. By Lemma 4.2, C1 is finitely generated projective R-module and since R is factorial, we have C1 = Rf for some f ∈ C1.
Hence, by Corollary 4.4, B is a semi-faithfully flat R-algebra which is locally A1 in codimension-one such that f is a generic
variable of B and A = B[f −1

]. By Theorem 3.5, B is a direct limit of polynomial algebras in one variable over R and hence,
A(= B[f −1

]) is a direct limit of quasi A∗ algebras over R. �

The following theorem shows that A is a localisation of B.

Theorem 4.6. Let R be a Noetherian normal domain with quotient field K and A a faithfully flat R-algebra such that A ⊗R K =

K [T , T−1
] for some T transcendental over K . Suppose that A is locally quasi A∗ in codimension-one over R. Let C1 = A ∩ KT ,

B = A ∩ K [T ] and Q = B ∩ TK [T ]. Then Q = C1B. As a consequence, Q is an invertible ideal of B and A = B[Q−1
].

Proof. It is easy to see that C1 = A ∩ KT ⊂ A ∩ TK [T ] = B ∩ TK [T ] = Q . Therefore C1B ⊆ Q . Let m be a maximal ideal
of R and S = R \ m . By Lemma 4.2, C1 is a finitely generated projective R-module of rank one, hence S−1C1 is a free S−1R-
module of rank one and so S−1C1 = Rm fm for some fm ∈ S−1C1. Therefore, by Corollary 4.4(3), C1Bm = fmBm = QBm and
Am = Bm [fm−1

] = Bm [(QBm )−1
]. Hence C1B = Q and A = B[Q−1

]. �

Corollary 4.7. The following statements hold for the ring A:
(1) If B is a Noetherian ring, then so is A.
(2) If B is a finitely generated R-algebra, then so is A.

Proof. Follows from the fact that A = B[Q−1
] where Q is an invertible ideal of B. �



2250 S.M. Bhatwadekar, N. Gupta / Journal of Pure and Applied Algebra 215 (2011) 2242–2256

In Section 5, we shall prove the converse of Corollary 4.7 (cf. Theorems 5.6 and 5.7).
In the special case of A being locally A∗ in codimension-one over R, we have Theorem B which shows that A is always

finitely generated over R. In fact its proof shows that B is finitely generated over R.

Theorem 4.8. Let R be a Noetherian normal domain and A a faithfully flat R-algebra such that A is locally A∗ in codimension-one.
Then A ∼=


n∈Z In for an invertible ideal I of R. In particular, A is finitely generated over R.

Proof. Let K be the quotient field of R and A ⊗R K = K [T , T−1
] for some T transcendental over K . Let B = A ∩ K [T ],

Cn = A ∩ KT n and C =


n≥0 Cn ⊆ B. Now A = B[(C1B)−1
] by Theorem 4.6 and C = SymR (C1) by Lemma 4.3(2), with C1

being isomorphic to an invertible ideal of R by Lemma 4.2. Thus it suffices to show that C = B.
Since C is flat over R, C =


P∈∆ CP by Lemma 2.4. By Corollary 4.4(1), B =


P∈∆ BP . Therefore it is enough to prove that

CP = BP for every P ∈ ∆.
Let P ∈ ∆. Since A is locally quasi A∗ in codimension-one over R, (C1)P = RP f for some f ∈ (C1)P by Lemma 4.1.

Hence CP = RP [f ] ⊆ BP ⊆ K [f ] = K [T ] and fK [T ] = TK [T ]. By Theorem 4.6, BP ∩ TK [T ] = QP = fBP , hence
fBP ∩ CP(= TK [T ] ∩ CP) = fCP and RP [f , f −1

] ⊆ BP [f −1
] = AP . Therefore, to show that CP = BP , it is enough to show

that CP [f −1
] = BP [f −1

].
Since A is locally A∗ in codimension-one, AP = RP [W ,W−1

] for some W transcendental over RP . Thus RP [f , f −1
] ⊆

RP [W ,W−1
] ⊆ K [f , f −1

]. Therefore, CP [f −1
] = RP [f , f −1

] = RP [W ,W−1
] = AP = BP [f −1

].
Thus the result follows. �

Remark 4.9. (1) Our proofs show that in all results of this section the hypothesis ‘‘R is a Noetherian normal domain’’ may
be replaced by the weaker hypothesis ‘‘R is a Krull domain’’.

(2) From Theorem 4.8, one can deduce that the hypothesis of finite generation on A in Theorem 3.4, Corollary 3.9 and
Theorem 3.11 of [1] can be dropped. (There is an error in Example 3.6 of [1].)

5. Locally quasi A∗ algebras in codimension-one II: Theorem A

As in Section 4, R is aNoetherian normal domainwith quotient field K , A a faithfully flat R-algebra which is locally quasi
A∗ algebra in codimension-one, T ∈ A ⊗R K is such that A ⊗R K = K [T , T−1

], B = A ∩ K [T ] and Q = B ∩ TK [T ]. We
have seen (Theorem 4.6) that Q is an invertible ideal of B and A = B[Q−1

]. Hence, if B is Noetherian (respectively finitely
generated over R) then so is A. In this section, we prove a converse of this result (Theorems 5.6 and 5.7): we show that if A
is Noetherian then B is Noetherian and if A is finitely generated over R then so is B. Finally we prove Theorem A.

To begin with we shall show (Theorem 5.2) that, in the above set-up, B is faithfully flat over R. We first give below
(Lemma 5.1) a sufficient condition for B to be faithfully flat over R. For this we can assume that R is a local ring withmaximal
ideal m . Since, by Lemma 4.2, C1 is a finitely generated projective R-module and R is local, there exists f ∈ C1 such that
C1 = Rf . By Corollary 4.4, B is a semi-faithfully flat R-algebra which is locally A1 in codimension-one over R such that
R[f ] ⊆ B ⊆ K [f ] and A = B[f −1

]. Note that f is a generic variable of B. Let {∆0, IΓ , BΓ , cΓ } be the data associated to the
generic variable f of B.

With the hypothesis that R is local and notation as above, we prove

Lemma 5.1. Suppose∆0 ≠ ∅ and cΓ ∈ R∗ for every Γ ∈ Σ0. Then B is faithfully flat over R.

Proof. B is R-flat if and only if TorR1(B, R/I) = 0 for every ideal I of R. Let I be an ideal of R and α ∈ TorR1(B, R/I). We show that
α = 0. Since B[f −1

](= A) is a faithfully flat R-algebra, there exists r ≥ 0 such that f rα = 0 in TorR1(B, R/I). By Theorem 3.2,
B = lim

−→Γ ∈Σ0
BΓ and hence

TorR1(B, R/I) = TorR1( lim−→
Γ ∈Σ0

BΓ , R/I) = lim
−→
Γ ∈Σ0

TorR1(BΓ , R/I).

Thus, there exists Γ ∈ Σ0 such that α ∈ TorR1(BΓ , R/I) and f rα = 0 in TorR1(BΓ , R/I). Again by Theorem 3.2, BΓ is graded
R-algebra:

BΓ =


n≥0

En (5.1)

where En = (IΓ n)−1 (f − cΓ )n. Therefore,

TorR1(BΓ , R/I) =


n≥0

TorR1(En, R/I)

is a graded BΓ -module. We write α ∈ TorR1(BΓ , R/I) as

α = α0 + α1 + · · · + αt with αi ∈ TorR1(Ei, R/I), 0 ≤ i ≤ t.

Note that xΓ := f − cΓ is a homogeneous element of degree one in BΓ and by hypothesis cΓ ∈ R∗. Now f rα = 0 implies

cΓ rα0 = 0, cΓ rα1 + rcΓ r−1α0xΓ = 0, . . . , αtxΓ r
= 0
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and since cΓ ∈ R∗, we have

α0 = α1 = · · · = αt = 0

showing that α = 0 in TorR1(BΓ , R/I). Thus B is R-flat. Since, B ⊆ A and A is faithfully flat over R, B is faithfully flat over R. �

We now prove faithful flatness of B by showing that either B satisfies the hypothesis of Lemma 5.1 or B = R[1].

Theorem 5.2. Let R be a Noetherian normal domain with quotient field K and A a faithfully flat R-algebra such that A ⊗R K =

K [T , T−1
] for some T transcendental over K . Suppose that A is locally quasi A∗ in codimension-one over R. Then B = A ∩ K [T ] is

a faithfully flat R-algebra.

Proof. Since faithful flatness is a local property,we assumeR to be a local domain.Weprove faithful flatness ofBby induction
on the dimension of the ring R.

If dim R = 1, then there is nothing to prove since A is a faithfully flat locally quasi A∗ algebra in codimension-one over R
and hence B = R[1] by Lemma 4.1.

Now consider dim R > 1. Let the notation be as before Lemma 5.1. If ∆0 = ∅, then B = R[f ] and hence a faithfully flat
R-module. Now assume that∆0 ≠ ∅. We show that cΓ ∈ R∗ for every Γ ∈ Σ0. Then the result will follow by Lemma 5.1.

Suppose, if possible, that there exists Γ ∈ Σ0 such that cΓ ∈ m . We show that this leads to a contradiction. Since
dim RcΓ < dim R, by applying induction hypothesis to local rings of RcΓ , we get that BcΓ is faithfully flat over RcΓ . Also since
Bf (= A) is faithfully flat over R, we have Bf−cΓ is flat over R.

Set IΓ := (IΓ B : f − cΓ ). Since S−1
Γ R is a PID, IΓ S−1

Γ R is a principal ideal, say generated by dΓ , and hence if yΓ =

(f − cΓ )/dΓ , then S−1
Γ B = S−1

Γ R[yΓ ] by Theorem 3.2. This shows that f − cΓ ∈ IΓ S−1
Γ B. Therefore we have IΓ S−1

Γ B = S−1
Γ B

and hence there exists s ∈ SΓ such that s ∈ IΓ so that IΓ $ IΓ ∩ R. Further IΓ Bf−cΓ (= IΓ Bf−cΓ ) ≠ Bf−cΓ . If it were so,
then there would exist ℓ ∈ N such that (f − cΓ )ℓ ∈ IΓ B ⊆ mB. Since cΓ ∈ m , this would imply that f ℓ ∈ mB. But f ℓ /∈ mB
as B[f −1

] is a faithfully flat R-algebra. Thus Bf−cΓ /IΓ Bf−cΓ is a non-zero ring and the image of s in Bf−cΓ /IΓ Bf−cΓ is zero. But
this contradicts the fact that Bf−cΓ /IΓ Bf−cΓ is flat over R/IΓ and the image of s in R/IΓ is not a zero-divisor. Hence cΓ ∈ R∗

for every Γ ∈ Σ0. �

Remark 5.3. (1) The proof of Theorem 5.2 shows that if R is local then either ∆0 = ∅ and B = R[1] or for each Γ ∈ Σ0,
cΓ ∈ R∗. Hence for R which need not be local, if A is a faithfully flat R-algebra which is locally quasi A∗ in codimension-one
over R such that A = B[f −1

], where B = A ∩ K [f ], then for each Γ ∈ Σ0, IΓ + RcΓ = R, where {∆0, IΓ , BΓ , cΓ } is the data
associated to the generic variable f of B.

(2) For each Γ ∈ Σ0, f − cΓ ∈ IΓ B. In fact, from the proof of Theorem 5.2, we have f − cΓ ∈ IΓ SΓ −1B ∩ B, where
IΓ SΓ −1B ∩ B = IΓ B since B is faithfully flat over R.

We now prove an analogue of Theorem 3.10 of [2] for fibre rings of algebras which are locally quasi A∗ in codimension-
one.

Proposition 5.4. Let R be a Noetherian normal domain and A a faithfully flat R-algebra which is locally quasi A∗ in codimension-
one. ThenPA ∈ Spec A for every prime idealP of R. In fact, for each prime idealP of R, either AP is quasi A∗ over RP or the fibre
ring A ⊗R k(P ) = k(P ).
Proof. LetP ∈ Spec R. Since A is faithfully flat over R, to show thatPA ∈ Spec A it is enough to show thatPAP ∈ Spec AP .
Therefore, we can assume that R is a local domain with maximal ideal m and show that either A is quasi A∗ over R or the
fibre ring A/mA = R/m .

Since R is local, by Theorem 4.6, there exists f ∈ A such that R[f , f −1
] ⊂ A ⊂ K [f , f −1

] and A = B[f −1
], where

B = A ∩ K [f ]. By Theorem 5.2, B is a faithfully flat R-algebra which is locally A1 in codimension-one over R. Therefore,
by Corollary 3.11, B is either R[T ] for some T ∈ B which is transcendental over R or B/mB = R/m . If B = R[T ] then
A = B[f −1

] = R[T , f −1
] and hence quasi A∗ over R. In the other case, since A is faithfully flat over R, f ∉mB and hence

R/m = B/mB = A/mA. �

We shall now show that if A is Noetherian then B is Noetherian and if A is finitely generated over R then so is B. For this
we make the following reduction.

Remark 5.5. To prove that A is Noetherian (resp. finitely generated over R) implies B is Noetherian (resp. finitely generated
over R), it suffices to assume that C1 is a free R-module of rank one. To see this, first note that, by Lemma 4.2, C1 is a
finitely generated projective R-module of rank one. Hence there exist a1, a2, . . . , ar ∈ R and f1, f2 . . . , fr ∈ C1 such that
(a1, . . . , ar)R = R and (C1)ai = Rai fi is a free Rai-module for 1 ≤ i ≤ r . Thus, if Bai is Noetherian (resp. finitely generated
over R) for each i, 1 ≤ i ≤ r , then it will follow that B is Noetherian (resp. finitely generated over R).

Theorem 5.6. Let R be a Noetherian normal domain with quotient field K and A a Noetherian faithfully flat locally quasi A∗-
algebra in codimension-one over R. Let B = A∩ K [T ], where T ∈ A⊗R K is such that A⊗R K = K [T , T−1

]. Then B is Noetherian.
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Proof. By Remark 5.5, wemay assume that C1(= A∩KT ) is a free R-module, say C1 = Rf for some f ∈ R. By Corollary 4.4(3),
f is a generic variable of B and A = B[f −1

].
Let S = 1 + fB. By hypothesis B[f −1

](= A) is a Noetherian ring. So B is Noetherian if and only if S−1B is Noetherian. By
Theorem 5.2, B is faithfully flat over R and hence S−1B is a flat R-module. Therefore, by Lemma 2.4, S−1B =


P∈∆ (S

−1B)P ,
where (S−1B)P is the localisation of S−1B by the multiplicatively closed set R \ P . Note that (S−1B)P = S−1(BP).

Recall that∆0(f ) = {P ∈ ∆ | RP [f ] $ BP} and {cΓ }Γ ∈Σ0 is the family associated with the generic variable f of B. Then, for
P ∈ ∆ \∆0, BP = RP [f ] and hence (S−1B)P = S−1RP [f ].

Note that, by Remark 5.3, for P ∈ ∆0, (c{P}, P) = R and f − c{P} ∈ PB and hence fB + PB = B. Therefore S ∩ PB ≠ ∅.
Moreover, RP is a local PID with maximal ideal PRP and BP = RP [W ] for some W ∈ BP which is transcendental over RP .
Putting these facts together we see that S−1BP = S−1K [W ] = S−1K [f ].

Thus S−1B = S−1R′
[f ], where R′

=


P∈∆\∆0
RP . Now by Lemma 3.14(2), R′ is Noetherian and hence B is Noetherian. �

Theorem 5.7. Let R be a Noetherian normal domain and A a finitely generated faithfully flat locally quasi A∗-algebra in
codimension-one over R. Let B = A∩ K [T ], where T ∈ A⊗R K is such that A⊗R K = K [T , T−1

]. Then B is finitely generated over
R. In particular, if R is a local domain then A is quasi A∗ over R.

Proof. To show that B is finitely generated over R, we may assume, by Remark 5.5, that C1 = Rf for some f ∈ R. By
Corollary 4.4(3), f is a generic variable of B and A = B[f −1

]. Let {∆0, IΓ , BΓ , cΓ } be the data associated to the generic
variable f of B.

By Theorem 3.2, B = lim
−→Γ ∈Σ0

BΓ . Since B[f −1
] = lim

−→Γ ∈Σ0
BΓ [f −1

] is a finitely generated R-algebra, there exists

Γ0 ∈ Σ0 such that B[f −1
] = BΓ0 [f

−1
]. We now show that Γ0 = ∆0. Suppose that there exists P ∈ (∆0 \ Γ0). Then

(BΓ0)P = RP [f ] ≠ BP = RP [XP ]. Since f is a generic variable, f = apXP + bP , for some aP , bP ∈ RP with aP ∈ PRP . This shows
that (BΓ0)P [f

−1
] = RP [f , f −1

]≠BP [f −1
] contradicting the fact that B[f −1

] = BΓ0 [f
−1

]. Thus Γ0 = ∆0 and hence B = BΓ0
which is finitely generated over R by Proposition 3.4.

If R is a local domain then, since B = BΓ0 =


n≥0 (IΓ0
n)

−1
(f − cΓ0)

n is R-flat (cf. Theorem 5.2) and R is Noetherian, IΓ0
is a finitely generated projective R-module. Thus IΓ0 is a free R-module, say IΓ0 = RdΓ0 . Hence B(= BΓ0) = R


f−cΓ0
dΓ0


and

A = B[f −1
] = R


f−cΓ0
dΓ0

, f −1

is quasi A∗ over R. �

Corollary 5.8. Suppose there exists (0 ≠)a ∈ R such that A[1/a] is finitely generated over R. Then A is finitely generated over R.

Proof. Since A[1/a] is finitely generated over R, by Theorem 5.7, we have that B[1/a] is a finitely generated R[1/a]-algebra.
Fix a generic variable X ∈ B and let ∆0 = {P ∈ ∆ | RP [X] $ BP}. Let ∆1 = {P ∈ ∆0 | a∉P}. Then, since R is Noetherian,
∆0 \ ∆1 is a finite set. Since B[1/a] is finitely generated over R[1/a], by Proposition 3.4, ∆1 is a finite set and hence ∆0
is finite. Therefore, again by Proposition 3.4, B is finitely generated over R and hence A is finitely generated over R by
Corollary 4.7(2). �

We now obtain Theorem A. We state it in two parts: Theorems 5.9 and 5.10.

Theorem 5.9. Let (R,m) be a Noetherian normal local domain and A a faithfully flat R-algebra which is locally quasi A∗ in
codimension-one over R. Then the following are equivalent:

(i) A is quasi A∗ over R.
(ii) A is a finitely generated R-algebra.
(iii) R/m $ A/mA.

Proof. (i) ⇒ (ii) and (i) ⇒ (iii) are trivial.
(ii) ⇒ (i) follows from Theorem 5.7.
(iii) ⇒ (i) follows from Proposition 5.4. �

The next result, on complete local domain, is the quasi A∗ analogue of Theorem 3.6.

Theorem 5.10. Let R be a complete local Noetherian normal domain and A be a faithfully flat R-algebra which is locally quasi A∗

in codimension-one over R. Then the following conditions are equivalent:

(i) A is Noetherian.
(ii) A is finitely generated over R.
(iii) A is quasi A∗ over R.

Proof. Clearly (iii) ⇒ (ii) ⇒ (i). For (i) ⇒ (iii), we have by Theorem 5.6, B is Noetherian. Hence, by Theorem 3.6, B = R[W ].
Thus the result follows from Theorem 4.6. �

In Section 6, Example 6.3 shows that Theorem 5.10 does not hold if R is not complete.
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6. Examples

Let R be a Noetherian factorial domain with quotient field K . Let A be a faithfully flat R-algebra which is locally quasi A∗

in codimension-one, A ⊗R K = K [T , T−1
] and B = A ∩ K [T ]. We have seen (Theorems 4.6 and 5.2) that B is a faithfully flat

R-algebra which is locally A1 in codimension-one, B∩ TK [T ] = Bf , A = B[f −1
] and the prime element f is a generic variable

of B.
Therefore it is natural to ask the following:

Question 1. Let R be a Noetherian factorial domain and B a faithfully flat R-algebra which is locally A1 in codimension-one.
Can we find a generic variable f ∈ B such that B[f −1

] is faithfully flat over R?

Note that if A = B[f −1
] is faithfully flat over R then A is locally quasi A∗ in codimension-one over R.

We give below an example of a factorial domain B, which is faithfully flat locally A1 in codimension-one over k[X, Y ] (k:
field) such that for any generic variable f ∈ B, there exists a maximal ideal n of k[X, Y ] such that f ∈ nB and hence B[f −1

]

is not faithfully flat over R.

Example 6.1. Let k denote the algebraic closure of Q, R = k[X, Y ] and∆ the set of all height one prime ideals of R. k, being
countable, can be indexed as k = {α1, α2, . . . , αn, . . . }. Let pi = Y + αiX and Pi = piR, i ≥ 1. Set∆0 = {Pi}i≥1.

Let x0 be an indeterminate over R. Set c0 = 1,

cn = 1 + p1 + · · · + p1p2 · · · pn

and

xn :=
xn−1 − 1

pn
=

x0 − cn−1

p1p2 · · · pn
for n ≥ 1. Now set

B := R[x0, x1, x2, . . . , xn, . . .],

a direct limit of the R-algebras R[xn](= R[1]).
Clearly, BP = RP

[1]
∀ P ∈ ∆ and B is faithfully flat over R since it is a direct limit of polynomial algebras over R. Note that

ex0(P) = 1 for P ∈ ∆0 and ex0(P) = 0 for P ∈ ∆ \∆0 (see Section 3 for definition of ex0 ). Since xn+1 /∈ R[xn], B is not finitely
generated over R. We show that:

(1) B is a factorial domain.
(2) For every generic variable f of B, there exists a maximal ideal n of R such that f ∈ nB.
(1) By Remark 3.12(2), it suffices to show that B is a Krull domain. Since B is faithfully flat over R, by Lemma 2.4, we have

B =


P∈∆

BP =


P∈∆

VP


∩ K [x0],

where K is the quotient field of R and VP := BPB is a discrete valuation ring of K(x0) for each P ∈ ∆. Thus, since K [x0] is a
Krull domain, B is an intersection of discrete valuation rings. Hence, to show that B is a Krull domain, it suffices to show that,
for any h ∈ B, there exist only finitely many P ∈ ∆ such that h ∈ PB. Now

B =


P∈∆

BP =


P∈∆0

BP


∩

 
P∈∆\∆0

BP


=


P∈∆0

BP


∩ R′

[x0],

where R′
=


P∈∆\∆0
RP . R′ is a Noetherian normal domain by Lemma 3.14. Hence, it suffices to show that for any h ∈ B,

there exists an integer m such that h /∈ PnB ∀ n ≥ m. Let h ∈ B = R[x0, x1, . . . ]. Multiplying h by a suitable element from R,
we may assume h ∈ R[x0]. Let

h = φ(x0) = a0 + a1x0 + · · · + arx0r , ai ∈ R.

Let di denote the degree of ai in X and Y . Choosem > 1 large enough so that
(i) for n ≥ m, the leading coefficient ar /∈ pnR, and
(ii)m > 1 + di ∀ i, 0 ≤ i ≤ r − 1.

We show that h /∈ PnB for n ≥ m. If r = 0, then clearly h /∈ PnB for n ≥ m since R/PnR ↩→ B/PnB and ar /∈ pnR. Suppose that
r > 0 and h ∈ PnB for some n ≥ m. Then φ(cn−1) ∈ PnR since R/PnR ↩→ B/PnB and x0 = cn−1 + p1 · · · pnxn. Now, identifying
R/PnRwith k[X], the image of the product p1 · · · pn−1 in R/PnR is λXn−1, where λ = (α1 −αn) · · · (αn−1 −αn) ∈ k∗ and hence
the image of cn−1 in R/PnR is a polynomial of degree n − 1. Therefore, since m − 1 > di ∀ i ≤ r − 1, the image of φ(cn−1)
in R/PnR is a polynomial in R/PnR(= k[X]) of degree at least (n − 1)r > 1 contradicting the fact that φ(cn−1) ∈ PnR. Thus
h ∈ PB for only finitely many P ∈ ∆.

(2) Let f be a generic variable of B. Then f = a + bxn for some a, b ∈ R and n ≥ 0 and hence for ℓ > 0,

f = a + b(1 + pn+1 + · · · + pn+1 . . . pn+ℓ + pn+1 . . . pn+ℓ+1xn+ℓ+1).
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Choose ℓ such that, ℓ > max{deg a, 0} and pj does not divide b for j = ℓ+ n + 1. It is then easy to see that the image of the
element

fℓ := a + b(1 + pn+1 + · · · + pn+1 . . . pℓ+n)

in R/Pℓ+n+1 (identified with k[X]) is a non-constant polynomial. In fact, the X-degree of the image of fℓ in R/Pℓ+n+1 (= k[X])
is at least ℓ(> 0) and hence it has a root in k, say β . Then f ∈ nB, where n = (Y + αℓ+n+1X, X − β)R.

It is therefore not possible to obtain a faithfully flat locally quasi A∗ algebra in codimension-one over R by inverting some
generic variable of B.

We now show that if R is local or R is a retract of B (equivalently B is a graded R-algebra), then one can indeed find a
generic variable f such that A = B[f −1

] is a faithfully flat R-algebra which is locally quasi A∗ in codimension-one.

Lemma 6.2. Let R be a Noetherian normal domain and B a faithfully flat R-algebra which is locally A1 in codimension-one over
R. Then there exists a generic variable f ∈ B such that A := B[f −1

] is faithfully flat locally quasi A∗ in codimension-one over R, if
either

(1) R is local with maximal idealm , or
(2) R is a retract of B.

Proof. It is enough to show that there exists a generic variable f such that B[f −1
] is faithfully flat over R.

(1) Suppose that R is local with maximal idealm . Let X be a generic variable of B. Then taking

f =


X − 1 if X ∈ mB.
X if X /∈ mB.

We see that B[1/f ] is faithfully flat over R.
(2) Now suppose that R is a retract of B. Let θ : B → R be the retraction map. Let X be a generic variable for B, c = θ(X)

and set f = X − c + 1. Then θ(f ) = 1 and hence f /∈ mB for any maximal idealm of R. Therefore, A = B[f −1
] is faithfully

flat over R. �

Wenow show the existence of aNoetherian ring Awhich is locally quasiA∗ algebra in codimension-one over a Noetherian
normal local domain R but which is not finitely generated over R.

Example 6.3. Example 6.2 in [2] gives us an example of a Noetherian ring B which is faithfully flat locally A1 algebra in
codimension-one over a Noetherian normal local domain R but which is not finitely generated over R. By Lemma 6.2, we can
get a generic variable f such that A = B[f −1

] is a faithfully flat locally quasi A∗ algebra in codimension-one over R. Now A is
a Noetherian ring but A is not finitely generated over R by Theorem 5.7.

The following example shows that over a complete local domain, there exists a faithfully flat locally quasi A∗ algebra in
codimension-one which is not finitely generated.

Example 6.4. Let R = Q[[X, Y ]] be a Noetherian factorial complete local domain. Let pn = X + nY and let W be an
indeterminate over R. Set Wn = W/pn for n ≥ 1 and B = R[W ,W1, . . . ,Wn, . . .]. Then B is a faithfully flat R-algebra
which is locally A1 in codimension-one over R but B is not finitely generated over R. Hence, A = B[(W − 1)−1

] is a faithfully
flat R-algebra which is locally quasi A∗ in codimension-one over R (cf. Lemma 6.2) but A is not finitely generated over R by
Theorem 5.7.
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Appendix

We now discuss the construction of algebras which are locally quasi A∗ in codimension-one. In [2], a recipe for the
construction of an R-algebra B which is semi-faithfully flat and locally A1 in codimension-one was given; in a sense, the
construction characterises all such algebras. Using such a B, and a finitely generated projective R-submodule C1 of rank one
such that C1 ⊆ B1 and C1 ∩R = (0), one gets an R-algebra A = B[(C1B)−1

]which is locally quasi A∗-algebra in codimension-
one over R. Note that if B is faithfully flat over R, then A is flat over R. However, Example 6.1 shows that it is possible to
construct B as above such that B[(C1B)−1

] is not faithfully flat for any choice of C1. This leads to:

Question 2. Let B be a faithfully flat algebra which is locally A1 in codimension-one over a Noetherian normal domain R.
Let C1 be a finitely generated projective R-module of rank one such that C1 ⊆ B1 and C1 ∩ R = (0) and let A = B[(C1B)−1

].
When is A a faithfully flat locally quasi A∗ algebra in codimension-one over R?

In this section we investigate Question 2.
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Let the setup be as in Question 2. Set L = B1/R where B1 is as in (3.3). Since C1 ⊆ B1 and C1 ∩ R = (0), C1 is isomorphic
to its image C1 in L. Let∆ denote the set of all height one prime ideals of R. For each P ∈ ∆, we define an integer e(P) by

e(P) := ℓRP (L/C1 ⊗R RP),

the length of the RP -module (L/C1 ⊗R RP). Let

∆0 := {P ∈ ∆ | e(P) > 0} and
Σ0 := the set of all finite subsets of∆0.

For Γ ∈ Σ0, let

IΓ := P1(e(P1)) ∩ · · · ∩ Pn(e(Pn)),
EΓ := I−1

Γ C1 ⊂ L and

DΓ := ρ−1(EΓ ), where ρ : B1 → B1/R = L is a canonical projection.

Lemma A.1. For each Γ ∈ Σ0, there exists a retraction θΓ : DΓ → R and hence DΓ ∼= R ⊕ EΓ .

Proof. Since C1 is a finitely generated projective R-module of rank one, EΓ (= I−1
Γ C1) is a finitely generated torsion-free

R-module of rank one. Hence there exists a sequence x, y ∈ R such that (EΓ )x = FRx and (EΓ )y = GRy for some F ,G ∈ EΓ .
Now F ∈ GRy(= (EΓ )y). Hence there exist a ∈ R and n ≥ 0 such that

F = aG/yn.

Let f , g ∈ DΓ be such that ρ(f ) = F and ρ(g) = G. Thus c := ynf − ag ∈ Ker(ρ) = R. Since, B is faithfully flat over R and
c ∈ (yn, a)B∩ R, we have c ∈ (yn, a)R. Let c = ync1 + ac2 where c1, c2 ∈ R. Then yn(f − c1) = a(g + c2). Let f ′

= f − c1 and
g ′

= g + c2, so that ynf ′
= ag ′. Then (DΓ )x = Rx ⊕ Rxf ′ and (DΓ )y = Ry ⊕ Ryg ′. We now show that we can give an R-linear

map from DΓ → R. Let h ∈ DΓ . Then h =
r0+r1f ′

xℓ
=

r ′0+r ′1g
′

ym for some r0, r1, r ′

0, r
′

1 ∈ R and ℓ,m ≥ 0. Now

r0 + r1f ′

xℓ
=

r0 + r1(ag ′/yn)
xℓ

=
r0
xℓ

+
ar1
xℓyn

g ′
=

r ′

0 + r ′

1g
′

ym
.

Now r0/xℓ = r ′

0/y
m

∈ Rx ∩ Ry and hence in R since x, y is a sequence in R. It is easy to see that the map θΓ : DΓ → R defined
by θΓ (h) = r0/xℓ is an R-linear map. Clearly θΓ (r) = r for r ∈ R. Hence θΓ is an R-retraction. �

Note that, since R ⊂ IΓ −1, R ⊕ C1 ⊂ DΓ . Using the canonical retraction θΓ : DΓ → R defined by Lemma A.1, we now
define an R-linear automorphism

θ̄Γ : R ⊕ C1 → R ⊕ C1 (A.1)

by θ̄Γ (r) = r for r ∈ R and θ̄Γ (c) = c − θΓ (c) for c ∈ C1. Set

NΓ := θ̄Γ (C1)

and

HΓ := θΓ (C1).

Note that NΓ and HΓ are finitely generated flat R-modules such that NΓ ↩→ DΓ and HΓ ↩→ R. In fact DΓ = R⊕ IΓ −1NΓ and
for each P ∈ Γ , (DΓ )P = (B1)P and for P /∈ Γ , (DΓ )P = RP ⊕ (NΓ )P .

Remark A.2. Set BΓ :=


n≥0 I
−n
Γ NΓ n. Then one can show that BΓ = SΓ −1B ∩ RΓ [C1], where SΓ := R \ (


P∈Γ P) and

B = lim
−→Γ ∈Σ

BΓ . Moreover if Γ1 and Γ2 are finite subsets of∆0 with Γ1 ⊆ Γ2, then (θ̄Γ1 − θ̄Γ2)(C1) = (θΓ1 − θΓ2)(C1) ⊆ IΓ1 .

This is an analogue of Theorem 3.2 giving the structure of B in terms of a finitely generated projective R-module C1 such that
C1 ⊂ B1 and C1 ∩ R = (0) in place of a generic variable.

Proposition A.3. With notation as above, the following are equivalent:
(i) A = B[(C1B)−1

] is a faithfully flat R-algebra which is locally quasi A∗ in codimension-one.
(ii) IΓ + HΓ = R for each Γ ∈ Σ0.
As a consequence, if A = B[(C1B)−1

] is a faithfully flat R-algebra then C1/IΓ C1 is a free R/IΓ -module for each Γ ∈ Σ0.

Proof. (i) ⇒ (ii) follows from Remark 5.3(1) by reducing to the local case.
(ii) ⇒ (i): Let m be a maximal ideal of R. Since C1 is a finitely generated projective R-module of rank one, (C1)m = Rm f

for some f ∈ C1 and for each Γ ∈ Σ0, HΓ Rm = Rm cΓ for some cΓ ∈ R. If IΓ Rm = Rm for each Γ ∈ Σ0, then Bm = Rm [f ]
and hence Am = Bm [f −1

] = Rm [f , f −1
] is faithfully flat over Rm . Suppose that there exists a Γ ∈ Σ0 such that IΓ Rm ⊆ Rm ,

then cΓ ∈ Rm ∗ by hypothesis. Since Bm is faithfully flat over Rm , we have f − cΓ ∈ IΓ SΓ −1Bm ∩ Bm = IΓ Bm and hence
f /∈ mBm as cΓ ∈ Rm ∗. Thus Am = Bm [f −1

] is faithfully flat over Rm and hence, since faithful flatness is a local property,
A(= B[(C1B)−1

]) is faithfully flat over R. �
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