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Abstract

The (dual) Dold–Kan correspondence says that there is an equivalence of categories K : Ch¿0

→Ab� between nonnegatively graded cochain complexes and cosimplicial abelian groups, which
is inverse to the normalization functor. We show that the restriction of K to DG-rings can be
equipped with an associative product and that the resulting functor DGR∗ →Rings�, although
not itself an equivalence, does induce one at the level of homotopy categories. In other words
both DGR∗ and Rings� are Quillen closed model categories and the total left derived functor of
K is an equivalence:

LK : Ho DGR∗ ∼→Ho Rings�:

The dual of this result for chain DG and simplicial rings was obtained independently by
Schwede and Shipley, Algebraic and Geometric Topology 3 (2003) 287, through di?erent meth-
ods. Our proof is based on a functor Q : DGR∗ →Rings�, naturally homotopy equivalent to K ,
and which preserves the closed model structure. It also has other interesting applications. For
example, we use Q to prove a noncommutative version of the Hochschild–Kostant–Rosenberg
and Loday–Quillen theorems. Our version applies to the cyclic module [n] �→ ∐n

R S that arises
from a homomorphism R→ S of not necessarily commutative rings, using the coproduct

∐
R

of associative R-algebras. As another application of the properties of Q, we obtain a simple,
braid-free description of a product on the tensor power S⊗

n
R originally deDned by Nuss K-theory

12 (1997) 23, using braids.
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1. Introduction

The (dual) Dold–Kan correspondence is an equivalence between the category Ch¿0

of nonnegatively graded cochain complexes of abelian groups and the category Ab� of
cosimplicial abelian groups. This equivalence is deDned by a pair of inverse functors

N : Ab� � Ch¿0 :K: (1)

Here N is the normalized or Moore complex (see (24) below). The functor K is
described in [17], 8.4.4; if A= (A; d)∈Ch¿0 and n¿ 0, then

KnA=
n⊕
i=0

(
n

i

)
Ai ∼=

n⊕
i=0

Ai ⊗ �iZn: (2)

If in addition A happens to be a DG-ring, then KnA can be equipped with a product,
namely that coming from the tensor product of rings A⊗ �Zn:

(a⊗ x)(b⊗ y) = ab⊗ x ∧ y: (3)

This product actually makes [n] �→ KnA into a cosimplicial ring (see 5.3). Thus K
can be viewed as a functor from DG- to cosimplicial rings:

K :DGR∗ →Rings�; A �→ KA: (4)

Note that for all n, KnA is a nilpotent extension of A0. As there are cosimplicial
rings which are not codimensionwise nilpotent extensions of constant cosimplicial rings,
A �→ KA is not a category equivalence. However we prove (Theorem 9.8) that it induces
one upon inverting weak equivalences. Precisely, K carries quasi-isomorphisms to maps
inducing an isomorphism at the cohomotopy level, and therefore induces a functor LK
between the localizations HoDGR∗ and HoRings� obtained by formally inverting such
maps, and we prove that LK is an equivalence:

LK : HoDGR∗ ∼→HoRings�: (5)

The dual of this result, that is, the equivalence between the homotopy categories of
chain DG and simplicial rings, was obtained independently by Schwede and Shipley
through di?erent methods (see [15] and also Remark 9.4 below).

To prove (5) we use Quillen’s formalism of closed model categories [14]. We con-
sider in each of DGR∗ and Rings� a closed model structure, in which weak equivalences
are as above, Dbrations are surjective maps and coDbrations are appropriately deDned
to Dt Quillen’s axioms. There is a technical problem in that the functor K does not
preserve coDbrations. To get around this, we replace K by a certain functor Q. As is
the case of the Dold–Kan functor, Q too is deDned for all cochain complexes A, even
if they may not be DG-rings. If A∈Ch¿0 then

QnA=
∞⊕
i=0

Ai ⊗ T i(Zn): (6)

We show that any set map � : [n]→ [m] induces a group homomorphism QnA→QmA,
so that [n] �→ QnA is not only a functor on � but on the larger category Fin with the
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same objects, where a homomorphism [n]→ [m] is just any set map. The projection
TZn→�Zn induces a homomorphism

p̂ :QA ∼→KA: (7)

We show p̂ induces an isomorphism of cohomotopy groups. If moreover A is a
DG-ring, QnA has an obvious product coming from A⊗ TZn; however this product is
not well-behaved with respect to the Fin nor the cosimplicial structure. In order to get
a Fin-ring we perturb the product by a Hochschild 2-cocycle f :A∗ ⊗ T ∗V →A∗+1 ⊗
T ∗+1V . We obtain a product ◦ of the form

(a⊗ x) ◦ (b⊗ y) = ab⊗ xy + f(a⊗ x; b⊗ y): (8)

For a deDnition of f see (48) below. It turns out that the map p̂ is a ring homo-
morphism (see 5.3). This implies that the derived functors of K and of the functor Q̃
obtained from Q by restriction of its Fin-structure to a cosimplicial one, are isomorphic
(see 9.3):

LQ̃ ∼= LK: (9)

We show further that LQ̃ is an equivalence. We deduce this from the stronger result
(Theorem 9.6) that Q̃ is the left adjoint of a Quillen equivalence (as deDned in Hovey’s
book [7, 1.3.12]).

Next we review other results obtained in this paper. As mentioned above, for A∈Ch¿0,
QA is not only a cosimplicial group but a Fin-group. In particular the cyclic permutation
tn := (0 · · · n) : [n]→ [n] acts on QnA, and we may view QA as a cyclic module in the
sense of [17, 9.6.1]. Consider the associated normalized mixed complex (NQA; �; B).
We show that there is a weak equivalence of mixed complexes

(A; 0; d) ∼→ (NQA; �; B): (10)

In particular these two mixed complexes have the same Hochschild homology:

A∗ ∼= H∗(NQA; �): (11)

If A happens to be a DG-ring then the shuRe product induces a graded ring structure
on H∗(NQA; �); we show in 6.1 that (11) is a ring isomorphism for the product of A
and the shuRe product of H∗(NQA; �).

A specially interesting case is that of the DG-ring of noncommutative di?erential
forms �RS relative to a ring homomorphism R→ S (as deDned in [3]). We show in
7.6 that Q�RS is the coproduct Fin-ring:

Q�RS ∼=
∐

R
S : [n] �→

n∐
i=0

R S: (12)

In particular, by (11), there is an isomorphism of graded rings

�RS
∼=→H∗

(
N
∐

R
S; �
)
: (13)

The particular case of (13) when R is commutative and R→ S is central and Sat was
proved in 1994 by Guccione et al. [6]. More generally, by (10) we have a mixed
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complex equivalence

(�RS; 0; d) ∼→
(
N
∐

R
S; �; B

)
: (14)

We view (13) and (14) as noncommutative versions of the Hochschild–Kostant–
Rosenberg and Loday–Quillen theorems [17, 9.4.13, 9.8.7].

As another application, we give a simple formulation for a product structure deDned
by Nuss [13] on each term of the Amitsur complex associated to a homomorphism
R→ S of not necessarily commutative rings R and S

⊗
R

S : [n] �→
n⊗
i=0

R S: (15)

Nuss constructs his product using tools from the theory of quantum groups. We show
here (see Section 8) that the canonical Dold–Kan isomorphism maps product (3) to
that deDned by Nuss. Thus

K�RS = KN
(⊗

R
S
) ∼=

⊗
R
S (16)

is an isomorphism of cosimplicial rings.
The remainder of this paper is organized as follows. Basic notations are Dxed in Sec-

tion 2. In Section 3 the functor Q is deDned. The homotopy equivalence of the cosim-
plicial groups KA and QA as well as that of the mixed complexes (10) is proved in
Section 4. In Section 5 we show that the functor Q : Ch¿0 →AbFin is strong monoidal
(5.2). We use this to introduce, for A∈DGR∗, the product (8) on QA (5.3). The graded
ring isomorphism (11) is proved in Section 6. Isomorphism (12) and its corollaries
(13) and (14) are proved in Section 7. The reformulation of Nuss’ product is the
subject of Section 8. In Section 5 we prove that Q̃ is the left adjoint of a Quillen
equivalence (Theorem 9.6) and deduce from this that LK is a category equivalence
(Corollary 9.8).

2. Cochain complexes and cosimplicial abelian groups

We write � for the simplicial category, and Fin for the category with the same
objects as �, but where the homomorphisms [n]→ [m] are just the set maps. The
inclusion

hom�([n]; [m]) ⊂ Map([n]; [m]) = homFin([n]; [m])

gives a faithful embedding � ⊂ Fin. If I and C are categories, we shall write CI to
denote the category of functors I→C, to which we refer as I -objects of C. If C : I→C
is an I -object, we write Ci for C(i). We use the same letter for a map � : [n]→ [m]∈ I
as for its image under C. The canonical embedding � ⊂ Fin mentioned above makes
[n] �→ [n] into a cosimplicial object of Fin. We write @i : [n]→ [n+ 1], i= 0; : : : ; n+ 1
and �j : [n]→ [n− 1], j= 0; : : : ; n− 1, for the coface and codegeneracy maps. We also
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consider the map �n : [n]→ [n− 1] deDned by

�n(i) =

{
i if i¡n;

0 if i = n:
(17)

One checks that di := �i : [n]→ [n − 1], i = 0; : : : ; n and sj = @j+1 : [n]→ [n + 1], j =
0; : : : ; n satisfy the simplicial identities, with the di as faces and the si as degeneracies.
Thus there is a functor �op→Fin, [n] �→ [n]. Moreover the cyclic permutation tn =
(0 · · · n) : [n]→ [n] extends this simplicial structure to a cyclic one (see [17, 9.6.3]).
Composing with these functors and with the inclusion � ⊂ Fin mentioned above
we have a canonical way of regarding any Fin-object in a category C as either a
cosimplicial, a simplicial, or a cyclic object.

If C is a category with Dnite coproducts, and A∈C, we write
∐
A for the functor∐

A : Fin→C; [n] �→
n∐
i=0

A: (18)

Here
∐

may be replaced by whatever sign denotes the coproduct of C; for example if
C is abelian, we write ⊕A for

∐
A.

If A= ⊕∞
n=0An and B= ⊕∞

n=0Bn are graded abelian groups, we write

A� B :=
∞⊕
n=0

An ⊗ Bn: (19)

If A; B are graded I -abelian groups, we put A� B for the graded I -abelian group
i �→ Ai� Bi.

3. The functor Q

We are going to deDne a functor Q :Ch¿0 →AbFin; Drst we need some auxiliary
constructions. Write V := ker(⊕Z→Z) for the kernel of the canonical map to the
constant Fin-abelian group, and {ei : 06 i6 n} for the canonical basis of ⊕n

i=0Z. Put
vi = ei − e0, 06 i6 n. Note v0 = 0 and {v1; : : : ; vn} is a basis of Vn. The action of a
map � : [n]→ [m]∈Fin on V is given by

�vi = v�(i) − v�(0) (06 i6 n): (20)

Applying to V the tensor algebra functor T in each codimension yields a graded
Fin-ring TV . If A= (A; d)∈Ch¿0, we put

QnA := A� TV n: (21)

If � : [n]→ [m]∈Fin, we set

�(a⊗ x) = a⊗ �x + da⊗ v�(0)�x: (22)

If ) : [m]→ [p]∈Fin, then

)(�(a⊗ x)) = a⊗ )�x + da⊗ v)(0))�x + da⊗ )(v�(0)))�x;

= ()�)(a⊗ x):
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Thus QA is a Fin-abelian group, and Q : Ch¿0 →AbFin a functor. We have a Dltration
on QA by Fin-subgroups, given by

FnQA=
∞⊕
i=n

Ai ⊗ T iV: (23)

The associated graded Fin-abelian group is GFQA= A� TV .

4. Comparison between Q and the Dold–Kan functor K

The Dold–Kan correspondence is a pair of inverse functors (see [17, 8.4]):

K : Ch¿0 � Ab� :N:

If C ∈Ab� then NC can be equivalently described as the normalized complex or as
the Moore complex

NnC = Cn
/

n∑
i=1

@iCn−1 ∼=
n−1⋂
i=0

ker(�i : Cn→Cn−1): (24)

In either version the coboundary map NnC→Nn+1C is induced by

@=
n∑
i=0

(−1)i@i: (25)

In the Drst version this is the same map as that induced by @0. A description of the
inverse functor K (in the simplicial case) is given in [17, 8.4.4], and another in [9,
1.5]. Here is yet another. Let �V be the exterior algebra, p :TV →�V the canonical
projection. One checks that ker(1 ⊗ p) ⊂ QA is a Fin-subgroup. Thus

K∗A := A� �V ∗ (26)

inherits a Fin-structure. Moreover,

p̂ := 1 ⊗ p :QA� KA (27)

is a natural surjection of Fin-abelian groups. To see that the resulting cosimplicial
abelian group KA is indeed the same as (i.e. is naturally isomorphic to) that of [17],
it suTces to show that NKA= A. Put

Vn
j =

⊕
i �=j
Zvi ⊂

n⊕
i=1

Zvi = Vn:

We have

NKnA= A� �Vn

/
n∑
i=1

A� @i(�Vn)

= A�

(
�Vn

/
n∑
i=1

�(Vn
i )

)

= An ⊗ v1 ∧ · · · ∧ vn ∼= An:



J.L. Castiglioni, G. Cortiñas / Journal of Pure and Applied Algebra 191 (2004) 119–142 125

Furthermore it is clear that the coboundary map induced by @0 is d :A∗ →A∗+1. Thus
our KA is the same cosimplicial abelian group as that of [17]. But since in our con-
struction KA has a Fin-structure, we may also regard it as a simplicial or cyclic abelian
group. From our deDnition of faces and degeneracies, it is clear that the normalized
complex of KA considered as a simplicial group has the abelian group NnKA= An in
each dimension. One checks that the alternating sum � of the faces induces the trivial
boundary. Thus the normalized chain complex of the simplicial group KA is (A; 0).
Consider the Connes operator B :NQ∗A→NQ∗+1A,

B= @0 ◦
n∑
i=0

(−1)nitin: (28)

We show in 4.2 below that p̂B= Dp̂, where D := (n+ 1)d on An. Hence we have a
map of mixed complexes

p̂ : (NQA; �; B)→ (A; 0; D): (29)

We shall see in 4.2 below that (29) is a rational equivalence of mixed complexes. We
recall that a map of mixed complexes is an equivalence if it induces an isomorphism
at the level of Hochschild homology; this automatically implies it also induces an
isomorphism at the level of cyclic, periodic cyclic and negative cyclic homologies. In
4.2 we also consider the map

l :A→NQA; l(a) = a⊗
∑
+∈Sn

sign(+)v+1 · · · v+n: (30)

We show in Theorem 4.2 below that l is an integral equivalence

l : (A; 0; d) ∼→ (NQA; �; B):

Remark 4.1. Note that if A is a complex of Q-vectorspaces, then p̂ can be rescaled
as (1=n!)p̂ on NQnA to give a mixed complex map (NQA; �; B)→ (A; 0; d) which is
left inverse to l.

Theorem 4.2. Let A be a cochain complex of abelian groups, p̂ :QA� KA the map
of Fin-abelian groups de5ned in (27) above. Then:

(i) There are a natural cochain map j : (A; d)→ (NQA; @) such that p̂j = 1A and a
natural cochain homotopy h :N ∗QA→N ∗−1QA such that [h; @] = 1 − jp̂.

(ii) Map (29) is a rational equivalence of mixed complexes. On the other hand map
(30) is a natural integral equivalence l : (A; 0; d)→ (NQA; �; B).

Proof. First we compute NQA. A similar argument as that given in Section 4 to
compute NKA, shows that

NnQA= A�

(
TV n

/
n∑
i=1

TVn
i

)
: (31)
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On the other hand, we have a canonical identiDcation between the rth tensor power of
Vn = Zn and the free abelian group on the set of all maps {1; : : : ; r}→{1; : : : ; n}:

T rV n ∼= Z[Map({1; : : : ; r}; {1; : : : ; n})]: (32)

Using (32), T rV n=
∑n

j=1 T
rV n

j becomes the free module on all surjective maps {1; : : : ; r}
→{1; : : : ; n}; we get

NnQA= A� Z
[
Sur∗; n

]
=

∞⊕
r=n

Ar ⊗ Z [Surr;n
]
: (33)

Here Surp;q is the set of all surjections {1; : : : ; p}→{1; : : : ; q}. Note that in particular
Surn;n = Sn, the symmetric group on n letters. To prove (i), regard NQA as a cochain
complex. We may view NQA as the direct sum total complex of a second quadrant
double complex

Cp;q =

{
A if p= q= 0;

Aq ⊗ Z[Surq;q+p] if (p; q) �= (0; 0):

Here 1 ⊗ @0 and d⊗ v1@0 are, respectively, the horizontal and the vertical coboundary
operators. Filtration (23) is the row Dltration. If we regard A=NKA as a double cochain
complex concentrated in the zero column, then p̂ becomes a map of double complexes.
By deDnition, p̂= 1 ⊗ p; at the nth row, p is a map:

p :Z
[
Surn;∗

]
� Z[n]: (34)

The only nonzero component of p is p(+) = sign(+). We claim (34) is a cochain
homotopy equivalence. To prove this note Drst that because both Z[Surn;∗] and Z[n]
are complexes of free abelian groups, to show p is a homotopy equivalence it suTces
to check it is a quasi-isomorphism. Next note that

H∗ (Z [Surn;∗
])

=H∗(NTnV ) = /∗(TnV )

= Tn/∗(V )

= TnH∗(NV )

= TnH∗(Z[1]) = Z[n]: (35)

Thus, to prove p is a cochain equivalence it suTces to show that

ker(p :Z[Sn]→Z) = @0
(
Z
[
Surn;n−1

])
: (36)

The inclusion ⊃ of (36) holds because p is a cochain map. To prove the other inclu-
sion, proceed as follows. First note the identiDcation

Z[Sn] ∼=
⊕
+∈Sn

Zv+1 · · · v+n:

Next, observe that the kernel of p is generated by elements of the form

· · · v1 · · · vi · · · + · · · vi · · · v1 · · · ≡ −@0(· · · vi−1 · · · vi−1 · · ·) (i¿ 1):
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Here congruence is taken modulo
∑

j¿1 @jTV . Thus p is a surjective homotopy equiv-
alence, as claimed. Therefore, we may choose a cochain map j′ :Z[n]→Z[Surn;∗] such
that pj′ = 1 and a cochain homotopy h′ :Z[Surn;∗]→Z[Surn;∗−1] such that [h′; @0] =
1−pj′. One checks that the following maps satisfy the requirements of part (i) of the
theorem:

j := 1 ⊗ j′ + (1 ⊗ h′)((1 ⊗ j′)d− d⊗ v1@0j′);

h := (1 ⊗ h′ − (1 ⊗ h′)(d⊗ v1@0)(1 ⊗ h′))(1 ⊗ j′p− 1):

Next we prove part (ii). Observe the face maps of NQA are of the form 1⊗�i, where �i
is the face map in TV . Hence we have a direct sum decomposition of chain complexes

(NQA; �) =
∞⊕
n=0

An ⊗ (Z [Surn;∗
]
; �
)
: (37)

The homology version of the argument used in (35) shows that

H∗
(
Z
[
Surn;∗

])
= Z[n]:

In particular Ln := ker(� :Z[Sn]→Z[Surn;n−1]) is free of rank one. By deDnition,
to prove p̂ is a rational mixed complex equivalence, we must prove that p̂� = 0,
which is straightforward, that p̂B = Dp̂, which we leave for later, and Dnally that
p̂= 1 ⊗ p : (NQA; �)→ (A; 0) is a rational chain equivalence, which in turn reduces to
proving p(Ln) �= 0 for n¿ 1. Consider the element

2n :=
∑
+∈Sn

sign(+)+∈Z[Sn]: (38)

We have p(2n)=n!; one checks further that 2n ∈Ln. It follows that p̂ : (NQA; �)→ (A; 0)
is a rational equivalence, as we had to prove. Moreover, as every coeTcient of
2n is invertible, and Ln has rank one, we have Ln = Z2n. It follows that the map
l′ :Z[n]→ (Z[Surn;∗]; �) which sends 1∈Z to 2n is a quasi-isomorphism, whence a
homotopy equivalence. To Dnish the proof, we must show that ld= Bl and p̂B=Dp̂.
Both of these follow once one has proven formula (39) below, which in turn is
derived from identities (40), which are proved by induction. The inclusion {1} ⊆
{1; : : : ; n + 1} together with the map {1; : : : ; n}→{1; : : : ; n + 1}, i �→ i + 1, deDne a
bijection {1}∐{1; : : : ; n}→{1; : : : ; n+1}. We identify {1}∐{1; : : : ; n}={1; : : : ; n+1}
using this bijection. If +∈ Sn, we denote by 1

∐
+ the coproduct map.

B(a⊗ +) = da⊗
n∑
i=0

(−1)in(1; : : : ; n+ 1)i
(

1
∐

+
)
;

tin(vj) =

{
vi+j − vi; if i6 n− j;

vp−1 − vi; if i = n− j + p j¿p¿ 1;

tin(a⊗ x) = a⊗ tinx + da⊗ vitinx; (39)

B(a⊗ x) = da⊗
n∑
i=0

(−1)invi+1@0tix: (40)
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Notation 4.3. Let B = (B; d)∈Ch¿0. Put PBn = Bn ⊕ Bn−1 ⊕ Bn. Equip PB with the
coboundary operator @ :PB∗ →PB∗+1 given by the matrix

@=



d 0 0

1 −d −1

0 0 d


 :

We note PB comes equipped with a natural map 2 = (20; 21) :PB→B ⊕ B, and that
two maps f0; f1 :A→B are cochain homotopic if and only if there exists a cochain
homomorphism H :A→PB such that 2H = (f0; f1).

The next corollary says that, for A; B∈Ch¿0, every cosimplicial map f :QA→QB
has a canonically associated cochain map Vf, such that NQ Vf and Nf are naturally
homotopic. Moreover, if f = Qg, then Vf = g.

Corollary 4.4. Let A; B∈Ch¿0. Consider the functors

(Ch¿0)op × Ch¿0 →Ab

(A; B) �→ homAb�(QA;QB)

(A; B) �→ homCh¿0 (NQA; PNQB):

There are two natural transformations
− : homAb�(QA;QB)→ homCh¿0 (A; B);

H : homAb�(QA;QB)→ homCh¿0 (NQA; PNQB):

These are such that Qg= g and that the following diagram commutes:
homCh > 0 (NQA, PNQB)

homAb� (QA, QB) homCh >0 (NQA, NQB ⊕  NQB)

H

(Nf, NQ f )f (41)

Proof. Let f∈ homAb�(QA;QB) and j; p̂ and h be as in the theorem. DeDne Vf :=
p̂N (f)j. Because p̂j= 1, Qg= g. Using the naturality of j and p̂, one checks further
that f �→ Vf is natural. Let 5= N (f) − NQ( Vf) and put

6 = 6f := h5+ 5h− [h5; @]h:

One checks that [6; @] = 5, whence Hf := (Nf; 6; NQ Vf) is a homomorphism NQA
→PNQB with 2Hf = (Nf;NQ Vf). The naturality of H :f �→ Hf follows from that
of h.

Simplicial powers and cosimplicial homotopies 4.5. Let A∈Ab�, X ∈Sets�
op

. Put

(AX )n :=
∏
x∈Xn

An: (42)
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If �∈ hom�([n]; [m]) and a∈ (AX )n, deDne �(a)x = �(a�x) (x∈Xm). The dual Z[X ]∨ :
[n] �→ homZ(Z[Xn];Z) of the simplicial free abelian group Z[X ] is a cosimplicial
group. Consider the cosimplicial tensor product A⊗Z[X ]∨ : [n] �→ An ⊗Z[Xn]∨. There
is a natural homomorphism

8 :A⊗ Z[X ]∨ →AX 8(a⊗ 9)x = a9(x): (43)

In case each Xn is Dnite, 8 is an isomorphism. Dualizing the statement in [12]—next af-
ter 8.9—we get that the composite of the normalized shuRe map NA⊗NZ[X ]∨ →N (A⊗
Z[X ]∨) with Alexander–Whitney map N (A ⊗ Z[X ]∨)→NA ⊗ NZ[X ]∨ is the iden-
tity. Thus NA ⊗ NZ[X ]∨ is a deformation retract of N (A ⊗ Z[X ]∨). In particular
PNA= NA⊗ NZ[�[1]]∨ is a deformation retract of N (A�[1]). Recall two cosimplicial
maps f0; f1 :A→B are called homotopic if (f0; f1) :A→B × B = B�[0]

∐
�[0] can be

lifted to a map H :A→B�[1]. From what we have just seen it is clear that f0; f1 are
homotopic in this sense if and only if Nf0, Nf1 are cochain homotopic. (The dual of
this assertion is proved in [5].) Let C be either of Ch¿0, Ab�. We write [C] for the
category with the same objects as C, but where the homomorphisms are the homotopy
classes of maps in C.

Proposition 4.6. The functor Q induces an equivalence of categories [Ch¿0]→ [Ab�].

Proof. If A∈Ab�, then A = KNA. By Theorem 4.2, NA is homotopy equivalent to
NQA. Thus A is homotopy equivalent to KNQA = QA. It remains to show that the
following map is a bijection

[Q] : hom[Ch¿0](A; B)→ hom[Ab�](QA;QB):

It is clear from the previous corollary that the composite of Q with

[N ] : hom[Ab�](QA;QB)→ hom[Ch¿0](NQA; NQB) (44)

is a bijection. But (44) is bijective by 4.5.

De)nition 4.7. Give Ch¿0 the closed model category structure in which a map is
a 5bration if it is surjective codimensionwise, a weak equivalence if it is a quasi-
isomorphism, and a coDbration if it has Quillen’s left lifting property (LLP, see [14])
with respect to those Dbrations which are also weak equivalences (trivial 5brations).
All this structure carries over to Ab� using the category equivalence N : Ab�→Ch¿0.
In the lemma below RLP stands for right lifting property in the sense of [14].

Notation 4.8. In the next lemma and further below, we use the following notation. If
n¿ 0, we write Z〈n; n+ 1〉 for the mapping cone of the identity map Z[n]→Z[n].

Lemma 4.9. Let f :E→B be a homomorphism of cosimplicial abelian groups. We
have:

(i) f is a 5bration if and only if for all n¿ 1 f has the RLP with respect to
0→QZ〈n− 1; n〉.
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(ii) f is a trivial 5bration if and only if for all n¿ 1 f has the RLP with respect to
the natural inclusion QZ[n] ,→ QZ〈n− 1; n〉.

Proof. Let f :C→D be a cochain map. By the theorem, Kf is a retract of Qf. Thus
every map having the RLP with respect to Qf also has it with respect to Kf. The
lemma follows from this applied to the cochain maps 0→Z〈n − 1; n〉 and Z[n] ,→
Z〈n− 1; n〉.

5. Monoidal structure

Consider the map < :TV ∗ →TV ∗,

<(vi) = v2
i ; <(xy) = <(x)y + (−1)|x|x<(y): (45)

The second identity says that < is a homogeneous derivation of degree +1. Note it
follows from (45) that < 2 = 0.

Lemma 5.1. For every �∈Map([n]; [m]) and x∈TV n, [�; <](x) = [v�(0); �(x)].

Proof. Both sides of the identity we have to prove are derivations. Thus it suTces to
show they agree on the generators vi, and this is straightforward.

Theorem 5.2. Let A; B∈Ch¿0 and < as de5ned in (45) above. Consider the ten-
sor product of Fin-abelian groups QA ⊗ QB : [n]→QnA ⊗ QnB. The map > :QA ⊗
QB→Q(A ⊗ B) given by the following formula is an isomorphism in AbFin, and
makes Q : Ch¿0 →AbFin a strong monoidal functor

>((a⊗ x) ⊗ (b⊗ y)) = a⊗ b⊗ xy + (−1)|a|a⊗ db⊗ <(x)y:

Proof. It is clear that the following map is an isomorphism of abelian groups:

g : (a⊗ x) ⊗ (b⊗ y) �→ (a⊗ x) · (b⊗ y) : = a⊗ b⊗ xy:

Because h := >−g is homogeneous of degree +1 and h2 =0, > is a group isomorphism.
That > is a homomorphism in AbFin follows straightforwardly using Lemma 5.1. In
order to see that Q is strong monoidal, we must check that the two diagrams involv-
ing the unit object of AbFin commute, which is immediate, and also the following
associativity condition for �∈QA, )∈QB and ?∈QC

>(>(�⊗ )) ⊗ ?) = >(�⊗ >() ⊗ ?)): (46)

Writing this in terms of g and h, and because g is associative, we obtain

h(h(�⊗ )) ⊗ ?) − h(�⊗ h() ⊗ ?)) = � · h() ⊗ ?) − h(� · ) ⊗ ?)

+ h(�⊗ ) · ?) − h(�⊗ )) · ?: (47)

For �= a⊗ x, ) = b⊗ y and ?= c ⊗ z, the left-hand side of (47) is

(−1)|y|+1adbdc ⊗ <(<(x)y)z + (−1)|x|+|y|+1adbdc ⊗ <(x)<(y)z = 0:
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This is zero because < is a square-zero derivation. Thus (47) says that h is a Hochschild
2-cocycle, which follows from the fact that both d and < are derivations.

Product structure 5.3. Let A∈DGR∗, m :A⊗ A→A the multiplication map. Consider
the composite

◦ :QA⊗ QA >−→Q(A⊗ A)
Qm−→QA:

We have

(!⊗ x) ◦ (8⊗ y) := !8⊗ xy + (−1)|x|!d8⊗ <(x)y: (48)

By construction, (QA; ◦) is a Fin-ring. Note that each term FnQA of the Dltration (23)
is a Fin-ideal. The associated graded Fin-ring is A� TV equipped with the product
inherited from A�TV ⊂ A⊗TV . Thus we may view QA as a deformation of A�TV .
One checks that the kernel of the map p̂ :QA� KA of (27) is an ideal for ◦. Hence
KA inherits a Fin-ring structure; using the deDnition of < we get that the induced
product on KA= A� �V is just that coming from A⊗ �V :

(a⊗ x)(b⊗ y) = ab⊗ xy: (49)

6. Comparison with the shu/e product

Let R be a simplicial ring. Consider the direct sum of its homotopy groups

/R :=
∞⊕
n=0

/nR: (50)

Recall that the shuRe product ? makes /R into a graded ring. If moreover R is
a Fin-ring, then the Connes operator B : /∗R→ /∗+1R is a derivation, so that /R =
(/R;?; B) becomes in fact a DG-ring. This follows from the version of [10, 4.3.3]. for
cyclic modules, the same which is used without further proof in [10, 4.3.7-8]. Hence
we have a functor

RingsFin →DGR∗; R �→ /R: (51)

Proposition 6.1. Let A∈DGR∗. Consider the natural isomorphism of graded abelian
groups induced by the map l of 4.2(ii).

l :A ∼→ /QA: (52)

Map (52) is an isomorphism of DG-rings. In particular functor (51) is a left inverse
of Q.

Proof. By 4.2, l induces a cochain isomorphism (A; d) ∼= (/QA; B). It remains to
show that the induced map is a ring homomorphism. Recall the formula for the shuRe
product ? involves degeneracies and shuRes. Keeping in mind that the degeneracies
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in QA are of the form si = 1 ⊗ @i+1 with @j the coface of TV , we get the following
identity for a∈An, b∈Am:

l(a)? l(b) = (a⊗ 2n)? (b⊗ 2m);

≡ ab⊗ 2n ? 2m modNFn+m+1Qn+mA;

= ab⊗ 2n+m = l(ab):

This Dnishes the proof, since /n+mNFn+m+1QA= 0 by the proof of 4.2.

7. Noncommutative Hochschild–Kostant–Rosenberg and Loday–Quillen theorems

Recall from [17] that for every algebra S over a commutative ring R which is
central in S there is deDned a cyclic R-module C∗(S=R). Recall also that the nor-
malization of C∗(S=R) is the mixed complex of noncommutative di?erential forms [4]
NC∗(S=R) = �RS. The Hochschild–Kostant–Rosenberg theorem ([17], Ex. 9.4.2) says
that if R and S are commutative, R noetherian, and R→ S an essentially of Dnite type,
smooth homomorphism, then the canonical map from commutative di?erential forms
to Hochschild homology induced by the shuRe product is an isomorphism:

�∗
S=R = �∗HH1(S=R) ∼→HH∗(S=R): (53)

If R ⊃ Q the inverse of (53) is induced by the homomorphism

�RS→�S=R a0da1 · · ·dan �→ 1
n!
a0da1 ∧ · · · ∧ dan: (54)

Here the boundary operators are the Hochschild boundary b on �RS and the trivial
boundary on �S=R. Moreover, as (54) maps B to d, it is in fact a mixed complex
equivalence

(�RS; b; B) ∼→ (�S=R; 0; d):

We will prove an analogue of this which holds for not necessarily commutative R
and S. Note that if R and S are commutative then C∗(S=R) is just the coproduct
Fin-algebra ⊗RS considered as a cyclic module. The analogue concerns the coprod-
uct Fin-ring

∐
R S which arises from a ring homomorphism R→ S of not necessarily

commutative rings. We show in 7.7 below that there is an equivalence of mixed com-
plexes (�RS; 0; d)→ (N

∐
R S; �; B), valid without restrictions on the characteristic. We

deduce this from 4.2 and from 7.6 below, where we show that
∐

R S =Q�RS. In par-
ticular the isomorphism �∗

RS ∼= HH∗(N
∐

R S; �; B) = /∗
∐

R S is (52), which is a ring
homomorphism for the product of forms and the shuRe product (by 6.1) just like the
Hochschild–Kostant–Rosenberg isomorphism (53). Note further the analogy between
(54) and the rescaled map p̂ of 4.1.

To prove the isomorphism Q�RS ∼= ∐
R S we show Drst that Q has a right ad-

joint (7.4). In the next lemma we use the symbol T for both the tensor Fin- and
DG-rings.
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Lemma 7.1. Let (U; d)∈Ch¿0. Then there is a natural isomorphism of Fin-rings
TQU

∼=→QTU .

Proof. This is a formal consequence of Theorem 5.2.

Notation 7.2. The following DG-rings shall be considered often in what follows:

D(n) := TZ〈n; n+ 1〉 ⊃ S(n) := TZ[n]: (55)

Corollary 7.3. Let I be a set, ni¿ 0. Then

Q

(∐
i∈I

D(ni)

)
=
∐
i∈I

QD(ni):

Proof.

Q

(∐
i∈I

D(ni)

)
=Q

(∐
i∈I

T (Z〈ni; ni+1〉)
)
;

=QT

(⊕
i∈I
Z〈ni; ni+1〉

)
;

= TQ

(⊕
i∈I
Z〈ni; ni+1〉

)
= T

(⊕
i∈I

QZ〈ni; ni+1〉
)
;

=
∐
i∈I

TQZ〈ni; ni+1〉 =
∐
i∈I

QD(ni):

Proposition 7.4. Let Rings be the category of associative unital rings and DGR∗ that
of cochain di>erential graded rings. The functor Q :DGR∗ →RingsFin has a right
adjoint.

Proof. This is an adaptation of the proof of the dual of Freyd’s Special Adjoint The-
orem [11, Chapter V, Section 8, Theorem 2]. Let B∈RingsFin. Put

DB :=
∐
n¿0

∐
hom(QD(n);B)

D(n): (56)

If s∈ hom(QD(n); B), write js :D(n)→DB for the corresponding inclusion. DeDne
� :QDB→B by �js = s. Consider the two-sided Fin-ideal

DB . K :=
∑

{I / DB : �(QI) = 0}: (57)
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Set PB := DB=K . Because Q : Ch¿0 →AbFin is exact, we have a natural map �̂ making
the following diagram commute

(58)

Hence (PB; �̂) is an object of the category Q ↑ B (notation is as in [11]). We shall
see it is Dnal, which proves that P is right adjoint to Q. Let (R; f)∈Q ↑ B. Put

ER :=
∐
n¿0

∐
hom(D(n);R)

D(n):

If r :D(n)→R is a homomorphism, write ir :D(n)→ER for the corresponding inclu-
sion. Consider the homomorphisms / :ER→R, /ir =r and g :ER→DB, gir = jfQr . We
claim that the following diagram commutes:

QER
Qg−−−−−→ QDB

Q/

�
� �

QR −−−−−→
f

B

(59)

Indeed by 7.3, commutativity can be checked at each “cell” Q(D(n)), where it is clear.
Using (59) together with the exactness of Q, we get that g(ker /) ⊂ K . Thus g induces
a map ĝ making the following diagram commute:

ER
g−−−−−→ DB

/

�
�

R −−−−−→
g̃

PB

(60)

It follows that also the following commutes:

(61)

Putting together the latter diagram with (58) and (59) we get that fQ(/)= �̂Q(ĝ)Q(/).
Because / is surjective and Q exact, we conclude f = �̂Q(ĝ); in other words ĝ is a
homomorphism (R; f)→ (PB; �̂) in Q ↑ B. Let h : (R; f)→ (PB; �̂) be another. Lift ĥ
to a map h :ER→DB. Then by (61),

�Q(h) = �̂Q(ĥ/) = fQ(/) = �Q(g):

Hence the image of g− h lands in K , and therefore ĝ= ĥ.
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Remark 7.5. Essentially, the same proof as that of the theorem above shows that also
Q : Ch¿0 →AbFin has a right adjoint. One just has to replace

∐
and D(n) for ⊕ and

Z〈n; n+ 1〉.

Theorem 7.6. Let R→ S be a ring homomorphism, R ↑ Rings the category of R-
algebras,

∐
R the coproduct in R ↑ Rings,

∐
R S the Fin-ring of Section 2 above and

�RS the R-DG-algebra of relative noncommutative di>erential forms of [3]. Then
Q(�RS) =

∐
R S.

Proof. The Fin-ring
∐

R S is characterized by the following property

hom(R↑Rings)Fin

(∐
R
S; C

)
= homR↑Rings(S; C0): (62)

We must show Q�RS has the same property. On the other hand we have

homR↑DGR∗ (�RS; X ) = homR↑Rings (S; X 0): (63)

Here we identify R with the DGR∗ concentrated in codimension 0 with trivial deriva-
tion. Let P be the right adjoint of Q :DGR∗ →RingsFin; its existence is guaranteed by
Proposition 7.4. Identifying R with the constant Fin-ring, noting that QR=R and using
(63), we obtain

homR↑(RingsFin) (Q(�RS); C) = homR↑DGR∗ (�RS; PC)

= homR↑Rings (S; PC0):

Therefore to prove the corollary it suTces to show that PC0 = C0. We have

PC0 = homCh¿0 (Z〈0; 1〉; PC)

= homDGR∗ (D(0); PC)

= homRingsFin (QD(0); C)

= homRingsFin (TQZ〈0; 1〉; C) (by 7:1)

= homAbFin (QZ〈0; 1〉; C): (64)

By deDnition

QnZ〈0; 1〉 = Z〈0; 1〉� TV n = Z(1 ⊗ 1) ⊕
n⊕
i=1

Z(1 ⊗ vi): (65)

Put e0 = 1⊗ 1, ei = 1⊗ vi + e0 16 i6 n. It follows from (20) that �(ei) = e�(i) for all
� : [n]→ [m]∈Fin. Therefore, QZ〈0; 1〉 = ⊕Z, whence (64) equals

= hom
AbFin

(⊕
Z; C

)
= C0:
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Corollary 7.7. View the Fin-ring
∐

R S as a cyclic module by restriction, and consider
its associated normalized mixed complex (N

∐
R S; �; B). Then the map l of Theorem

4.2 is a mixed complex equivalence l : (�RS; 0; d)→ (N
∐

R S; �; B).

Remark 7.8. As a particular case of Theorem 7.6 we get a ring isomorphism

S
∐

R
S ∼= Q1�RS = �RS� TV 1 ∼= �RS: (66)

Here �RS is equipped with the product ◦ of (48). A similar isomorphism but with
a di?erent choice of ◦ was proved by Cuntz and Quillen [3, Proposition 1.3], under
the stated assumption that R = C. Their choice of ◦ actually works whenever 2 is
invertible in R, and the rings which arise from �RS with our product and that of [3]
are isomorphic in that case. Hence 7.6 may be viewed as a strong generalization of
Cuntz–Quillen’s result.

8. Comparison with Nuss’ product

In [13], Nuss considers the “twist”

G : S ⊗R S→ S ⊗R S; G(s⊗ t) = st ⊗ 1 + 1 ⊗ st − s⊗ t:

It is clear that G2 = 1 and that, for the multiplication map �0 : S ⊗R S→ S, we have
�0G= �0. He shows further [13, 1.3] that G satisDes the Yang–Baxter equation. Using
G, he introduces a ring structure on the n+ 1 fold tensor power S ⊗R · · · ⊗R S for all
n¿ 1, by a standard procedure (use Proposition 2.3 of [2] and induction). We want to
reinterpret this product in a di?erent way. For this consider the (Amitsur) cosimplicial
R-bimodule

⊗
R
S : [n] �→

n⊗
i=0

R Sl:

By deDnition of �RS, we have N (⊗RS) = �RS. Hence the Dold–Kan correspondence
gives an isomorphism of cosimplicial R-bimodules⊗

R
S ∼= K�RS: (67)

On the right hand side we also have product (49). It is noted in [13] that (67) is a
ring isomorphism in codimension 6 1. The next Proposition shows it is actually a ring
isomorphism in all codimensions.

Proposition 8.1. Equip ⊗RS with the product de5ned in [13] and K�RS with that
given by (49). Then (67) is an isomorphism of Fin-rings.

Proof. Write • for Nuss’ product. Consider the following map

5i = @n−ii+1@
i
0 ∈ hom� ([0]; [n]) (06 i6 n):
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One checks the following identities hold in ⊗n
RS, for a; b∈ S:

5i(a) • 5j(b) =



@n−jj+1@

j−i−1
i+1 @i0(a⊗ b); i ¡ j;

5i(ab); i = j;

−5j(a) • 5i(b) + 5i(ab) + 5j(ab); i ¿ j:

(68)

In particular 5i : S→ ⊗n
R S is a ring homomorphism for •. By the universal property

of
∐n

R S, we have a unique ring homomorphism �n :
∐n

R S→ ⊗n
R S satisfying �n5i = 5i

for all i. By (69),

s0 ⊗ · · · ⊗ sn = 50(s0) • · · · • 5n(sn)
= �(50(s0) · · · 5n(sn)):

Thus � is surjective. On the other hand the composite of � with the isomorphism
Q�RS

∼→ ∐
R S sends ds⊗ vi to qi(s) := 5i(s) − 50(s). But it follows from (68) that

qi(a) • qj(b) =

{−qj(a) • qi(b) (i �= j);

0 (i = j):
(69)

Thus � descends to a ring homomorphism V� :K�RS→ ⊗R S. On the other hand, we
have an R-linear map ) : ⊗R S→K�RS, )(s0 ⊗ · · · ⊗ sn) = 50(s0) · · · 5n(sn). Clearly
�) = 1. To Dnish the proof it suTces to show that ) is surjective. But we have

a0da1 · · ·dar ⊗ vi1 ∧ · · · ∧ vir
= 50(a0)(51(a1) − 50(a1)) · · · (5r(ar) − 50(ar))

≡ 50(a0) · · · 5r(ar) mod
r−1⊕
i=0

�iRS ⊗ �iV

= )(a0 ⊗ · · · ⊗ ar ⊗ 1 ⊗ · · · ⊗ 1):

Hence it follows by induction on r, that �rRS⊗�rV is included in the image of ).

9. Dold–Kan equivalence for rings

De)nition 9.1. Let f :R→ S be a homomorphism in DGR∗. We say that f is a weak
equivalence if it induces an isomorphism in cohomology. We call f a 5bration if
each fn :Rn→ Sn is surjective, and a co5bration if it has the left lifting property
(LLP) of [14] with respect to those Dbrations which are also weak equivalences (trivial
Dbrations). Similarly, a map g :A→B of cosimplicial rings is a weak equivalence if it
induces an isomorphism in cohomotopy, a 5bration if each gn :An � Bn is surjective
and a co5bration if it has the LLP with respect to trivial Dbrations. It is proved in [8]
that the structure just deDned makes DGR∗ closed model. The next proposition shows
that the same is valid for cosimplicial rings.
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Proposition 9.2. With the notions of 5bration, co5bration and weak equivalence de-
5ned in 9.1, Rings� is a closed model category.

Proof. A commutative version of this is given in [16], Theorem 2.1.2. Essentially
the same proof works in the noncommutative case; simply substitute the coproduct∐

of Rings for ⊗, which is the coproduct in the category Comm of commutative
rings. One only has to check that for all n¿ 0, the structure maps Z→D(n) :=
TKZ〈n; n+ 1〉 ∈Rings� induce weak equivalences

A ∼→A
∐

D(n) (A∈Rings�): (70)

For this we imitate Jardine’s argument [8]. We observe that if A∈Rings� and we write
C(n) = KZ〈n; n+ 1〉 then there is an isomorphism of cosimplicial groups

A
∐

D(n) = A[C(n)]

:= A⊕ (A⊗ C(n) ⊗ A) ⊕ (A⊗ C(n) ⊗ A⊗ C(n) ⊗ A) ⊕ · · ·
with the product deDned by

(a1 ⊗ c1 ⊗ a2 ⊗ · · · ⊗ ck ⊗ ak+1)(a′1 ⊗ c′1 ⊗ a′2 ⊗ · · · ⊗ c′l ⊗ a′l+1)

=(a1 ⊗ c1 ⊗ · · · ⊗ ck ⊗ ak+1a′1 ⊗ · · · ⊗ c′l ⊗ a′l+1)

and cofaces and codegeneracies induced by those of A and C(n). Thus to prove (70)
it suTces to show that if C and D are cosimplicial groups and D is contractible, then
the inclusion – :C→C[D] is a quasi-isomorphism. But coker– is a sum of cosimplicial
groups each of which is isomorphic to one of the form C ⊗D⊗ · · · ⊗D⊗C. Hence it
suTces to show that D⊗D′ is contractible if D is. This latter statement follows from
the following property of the cosimplicial path functor (see [16, p. 30]):

D�[1] ⊗ D′ = (D ⊗ D′)�[1]:

Lemma 9.3. (i) The functor Q̃ :DGR∗ Q→RingsFin forget−−−−−→Rings� preserves colimits,
5nite limits, co5brations, 5brations, and weak equivalences.

(ii) Let K :DGR∗ →Rings� be the functor sending A �→ KA where KA is equipped
with the product (49). Then there is a natural isomorphism of left derived functors
LQ̃

∼=→ LK .

Proof. Limits and colimits in Rings� are computed codimensionwise, and the same
is true in RingsFin. In particular the forgetful functor preserves limits and colimits.
The functor Q :DGR∗ →RingsFin preserves colimits by Proposition 7.4. Thus Q̃ pre-
serves colimits. On the other hand limits in RingsFin can be computed in AbFin. As
Q : Ch¿0 →AbFin is exact and preserves direct sums, it follows that Q̃ preserves Dnite
limits. Similarly, as the forgetful functors DGR∗ →Ch¿0 and Rings�→Ab� as well as
Q : Ch¿0 →AbFin preserve Dbrations and weak equivalences, it follows that Q̃ does.
One checks, using Lemma 7.1, that Q̃ preserves the basic coDbrations S(m)→D(m),
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Z→D(m). Because it also preserves colimits it follows that if mi; i∈ I is a family of
positive integers and ei : S(mi)→X (i∈ I) a family of maps, then the following maps
are coDbrations:

Q̃

(
X � X

∐∐
i∈I S(mi)

∐
i∈I

D(mi)

)

Q̃

(
X � X

∐∐
i∈I

D(mi)

)
:

But by the proof of 9.2 and the remark [1, p. 23], every coDbration in DGR∗ is a retract
of one obtained as a colimit of such coDbrations. Hence Q̃ preserves all coDbrations.
Thus (i) is proved. As shown in Section 5, the natural weak equivalence p̂ : Q̃A→KA
of 4.2 is a homomorphism of cosimplicial rings. This proves (ii).

Remark 9.4. A functor L∗ with properties similar to those proved for Q̃ in Lemma
9.3 is considered in [15] for the dual situation of chain DG- and simplicial rings. The
authors use the shuRe product to make the normalized chain complex of a simpli-
cial ring into a chain DG-ring, thus obtaining a functor N∗ : Rings�

op →DGR∗. The
functor L∗ is deDned as the left adjoint of N∗. Dually, one can equip the normal-
ized complex of a cosimplicial ring with the shuRe product, consider the resulting
functor Ñ : Rings�→DGR∗ and take its left adjoint L∗. However we point out that
L∗ and Q̃ are not isomorphic. In other words Q̃ is not left adjoint to Ñ . To see
this, note that, by 7.1, if A∈Ch¿0, then homRings�(Q̃TA; R) = homAb� (QA; R), while
homDGR∗ (TA; ÑR) = homCh¿0 (A; NR) = homAb� (KA; R). Hence if Q̃ were left adjoint
to Ñ , then K and Q should be isomorphic as functors Ch¿0 →Ab�, which is clearly
false.

Remark 9.5. We have seen in Proposition 7.4 that Q has a right adjoint P. Since
the forgetful functor U : RingsFin →Rings� also has a right adjoint ([11], X.3.2), and
Q̃ = UQ, it follows that Q̃ is the left adjoint of an adjoint pair (Q̃; P̃). On the other
hand, by Lemma 9.3(i), we know that Q̃ preserves coDbrations and weak equivalences,
and thus it is the left adjoint of a Quillen adjoint functor pair [7, DeDnition 1.3.1].

Theorem 9.6. The adjoint functors Q̃ :DGR∗ � Rings� : P̃ of 9.3 i) and 9.5 form a
Quillen equivalence in the sense of [7] 1.3.12.

Proof. Let g :R := P̃(S)c
∼
�P̃(S) be the functorial coDbrant replacement obtained by

the small object argument. Since the functor Q̃ reSects weak equivalences, it suTces to
show that the adjoint map f : Q̃R→ S is a weak equivalence ([7, Theorem 1.3.16]). We
note for future use that by the small object argument and because Q̃ and P̃ are adjoint,
the dotted arrow in the diagram below exists whenever the top horizontal arrow is
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in the image of Q̃ : homDGR∗ (S(m); R)→ homRings� (Q̃S(m); Q̃R).

(71)

To prove that f is a weak equivalence, we must show that the following map is an
isomorphism for all m

f :HmNQ̃R
∼=→HmNS: (72)

We Drst prove that (73) is surjective. If x∈HmNS is an element, call x the map
Z→HmNS, 1 �→ x. Choose a cochain homomorphism x̂ :Z[m]→NS inducing x. We
have an exact sequence

0−→Z[m+ 1]−→Z〈m;m+ 1〉−→Z[m]−→ 0

Because both N and Q are exact, we have a solid line commutative diagram

(73)

To prove that the dotted arrow exists, apply the functor K to obtain a commutative
diagram:

(74)

Next use Lemma 7.1 to obtain a diagram of the form (71) in which the top row is in
the image of Q, whence the dotted arrow exists in (71), whence also in (74) and (73).
Call y the arrow NQZ[m]→NQR induced by h. Then the image of 1 through Vy :Z=
Hm(NQZ[m])→HmNQ̃R maps to x under (72). This proves that (72) is surjective.
To show it is also injective, let x :Z[m]→NQ̃R represent an element in the kernel of
(72). Then fx :Z[m]→NS factors through a map x′ :Z〈m− 1; m〉→NS. Because p̂ is
natural we have a commutative diagram

NQZ[m]
xp̂−−−−−→ NQ̃R�

� f

NQZ〈m− 1; m〉 −−−−−→
x′p̂

NS



J.L. Castiglioni, G. Cortiñas / Journal of Pure and Applied Algebra 191 (2004) 119–142 141

Because p̂ is an equivalence, it suTces to show that xp̂ induces the zero map in
cohomology. Next, by virtue of 4.2 there is a homotopy fxp̂→fNQ(xp̂). Because
QZ[m] � QZ〈m − 1; m〉 is a coDbration this homotopy extends to one between x′p̂
and some map y which Dts into the following commutative diagram:

(75)

The same argument used during the course of the proof of the surjectivity of (72)
shows that the dotted arrow exists. Hence xp̂ induces the zero map in cohomology,
since it is homotopic to NQ(xp̂), and the latter induces zero by (75).

Corollary 9.7. The functor LQ̃ : HoDGR∗ →HoRings� of 9.3 is an equivalence of
categories.

Proof. Immediate from 9.6 and [7, 1.3.13].

Corollary 9.8. Let K : Ch¿0 →Ab� be the Dold–Kan functor. If A∈DGR∗, equip KA
with the product (49). Then the left derived functor LK of DGR∗ →Rings�, A �→ KA
is a category equivalence HoDGR∗ ∼→HoRings�.

Proof. Immediate from 9.7 and 9.3(ii).
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