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Abstract

Given a producK: K x £ — M between triangulated categories with duality, we show that under
some conditions there exist naturally two different pairifigkC) x W/ (£) — Wit/ (M), where
W* denotes the triangulated Witt functor of Balmer [P. Balmer, K-theory 19 (2000) 311-363]. Our
main example of such a situation is the case fiat £ = M is the bounded derived category of
vector bundles over a schemeandX is the (derived) tensor product. The derived Witt groups of
this schemeW™*(X) := @,y Wi(X) become a graded skew-commutative ring with two different
product structures which are both equally natural. In the last section we prove then a projection
formula for our product and show as an application that a Springer-type theorem is true for the
derived Witt groups, too.
0 2003 Elsevier Science (USA). All rights reserved.

0. Introduction

Witt theory for triangulated categories with duality was introduced recently by
Balmer [1]. In this theory, we can shift the duality structure on a triangulated caté&gory
and obtain an infinite series of Witt groufi& () (i € Z), which proves to be 4-periodic:
Wi(K) ~ Wit4(K) naturally. The triangulated categories environment—as opposed to
the Witt theory of exact categories with duality introduced earlier—enables one to prove
some fundamental properties of the Witt groups of schemes as, e.g., localization [1].
We want to introduce in this paper further structures on this triangular Witt groups; in
particular we want to prove that under some circumstances there exists a product on
W*(K) =B,z Wi (K) making this a graded algebra.
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We consider in this paper the following situation. L€t £ and M be triangulated
categories with duality and : IC x £ — M a bi-exact functor. If we can make the functors
— X L andK X — in a coherent way duality preserving we get a left “actionVof ()
which sendsW*(L£) into W*(M) and an analogous right “action”. In the special case
K =L =M we get a left and a right product di*(KC). All the axioms we need are
satisfied by the main example we have in mind, namély- D?(P (X)) the bounded
derived category of vector bundles over a schexheBoth the left and right product
make the derived Witt groups of a scheme a graded, associative and skew-commutative
algebra with unit. We prove in our last section a projection formula for this product. As an
application we get using a trick of Bayer-Fluckiger and Lenstra [4] a Springer-type theorem
for the derived Witt groups. Other interesting applications of this product structure will be
found in a forthcoming paper of Balmer [3]. E.g., he generalizes and re-proves there a
result of Knebusch [8] about the kernel of the natural mi&E<) — W (funct. field of X)

(X an integral scheme).

Now a short review of the content of this paper. In Sections 1 and 2 we give conditions
under which a bi-exact functdg: KC x £L — M between triangulated categories with
duality induces a pairingV” (K) x W*(£) — W'+ (M) between the triangulated Witt
groups. Our point of departure is thatX — and— X B for A € K and B € £ should
become duality preserving functors with the aid of forms on them. A feature of this
approach is that we easily can prove that the connecting homomorphism in the localization
sequence for triangular Witt groups [1] is compatible with our product (Theorem 2.11).
After that we take a closer look at the pairing/product which gives the (derived) tensor
product on the derived and coherent Witt groups.

We have tried to make the first two sections as self contained as possible (exceptin the
examples), in particular we explain all the relevant facts concerning triangular Witt theory,
but in the sections about coherent and derived Witt groups of a scheme we assume some
familiarity of the reader with the papers [2,6].

Notation and conventions.We denote the translation functor in a triangulated categfory
by Ty or justT if not specified otherwise.
We assume throughout that the morphism groups in all the categories under considera-
tion are (uniquely) 2-divisible. In particular we assume th& is in the global section of
all the schemes we consider.

1. Duality, productsand triangulated categories
1.1. Products

We start with the notion of &-exact functor § = +1). This is an additive co-
variant (respectively contravariant) functéi: X — £ between the triangulated cate-
gories £ and £ equipped with an isomorphism of functofs F Ty 5 T,/ F (respec-
tively TglF 3 FTy) such that for every exact triangl@d, B, C,«, 8,y) in K the
triangle (FA, FB, FC, F(a), F(B), 304 F(y)) (respectivel(FC, FB, FA, F(B), F(x),
8T F(y)Tr(64)))is exactinl.
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Remark 1.1. AssumeF is covariant. We then have iterated version® dthey exists in
the contravariant case, too, but we do not need this), namely isomorphisms of functors
6@ FTy — T, F foralli € Z. They are defined as follows.

We set)© :=id, 6@ := 6 andg "V := (1;(6,-1))~*. For|i| > 1 we set:
K

) . SONE) (5 (i —sgni (sgri))
9@ .— TL (9(1 Qf(l))) . QT’igsgm),

where sgi) =1 if i > 0 and= —1if i < 0. By induction, we see that

60 — i-%aMD (p(sgri) .9;’;2};“"” for |i| > 1.
K

Clearly we could also take this equation for an inductive definition. Noteahat) =
< k ;
TA0) 'G(T,g) forall j, k € Z.

We define now a product between triangulated categories.

Definition 1.2. Let I, £ and M be triangulated categories. A product betwééand £
with codomainM is a bi-covariant functor

MX:xL—>M

which is 1-exact in both variables and satisfies the following condition: the functorial
isomorphisms

vap AR (TzB) > TMm(ARB) and [4.5:(TcA) R B> Ta(AKR B)
associated with the 1-exact functot&! — and— X B make the diagram

(a1, B
(TcA) R (TgB) ——=— TA(AR T2 B)

T A,B Tam(ta,B)
T (TxAXB) —— > T2 (AKX B
Mm(Tx ) Tonm) M ( )
skew-commutative for anyd € £ and B € L, i.e., Taq(va,B) - la,7.8 = —Tpm(la,B) -

trea,B. If K= £ = M we say that the paiilC, X) is a triangulated category with product.

The functorial isomorphismsand!( involved in the definition above have also shifted
versionst® and [V, which are defined as in Remark 1.1. They satisfy the following
relation.
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Lemma 1.3. For all i,j € Z, A € K and B € L, the following diagram is(—1)"-
commutative

(@
ATLB

(T}-A) R (TLB) ———— Ti (AR T.B)

()}
TLAB TM (t(])

K<
(T’ AXB) — T’*’(A@B)

TM([(' 2

) ) [(l) _(_1)1]TI ((1) ) t(j)

l
ie. TM(t AT’B TiAB

Proof. By induction (cf. Remark 1.1 above).0

Example 1.4. The main example we have in mind is the following one. Létbe

a noetherian scheme with structure shéaf. We setf = M = Db o (M(X)) the
bounded derived category of quasi coherént-modules with coherent homology and
K = DP(P(X)) the bounded derived category of locally free (of finite raék)-modules.
Then the (derived) tensor product

Q—:KXL—>L=M

is a product ofC and £ with codomainZ.

To fix our sign convention we recall the definition of the tensor product of two
complexes(P,,d") e K and (M,,d™) € £. The complexP, ® M, is given in degree
n by:

(Pe® My)= @) Pi®0y M;
i+j=n

and the differentiad "®" by d” ®idy, + (~1)'idp, ®d}' on P; ®o, M. For this choice
of signs the natural isomorphistg, s, is essentially the identity anek, , is given by
(-D'onP®---

Note that/C becomes a triangulated category with product if we restrict the tensor
product to the full triangulated subcategdtyof L.

1.2. Duality

Definition 1.5. Let K be a triangulated categoryx = +1, Dx:K — K a §x-exact

contravariant functor satisfying the strict conditid@ Tyc = Tc'Dx and @ :id =
Dy D an isomorphism of functors.
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(1) (Balmer [1].) The quadrupléC, Dx, 8, w ) is called a triangulated category with
Sxc-exact dualityDy, if Txw jj =@, and

D;C(wﬁ) . wD’C,CM = idD,CM.

(2) We say that a paifA, ¢) is a j-symmetric form on(C, Di, §x, o) if A ek and
¢ is an isomorphismt — Tj- Dxc A such that

(~) V2L TL D)) = ¢,

Two j-symmetric forms(A, ¢) and (B, ) are called isometric, if there exists an
isomorphismy : A = B, such that

¢=TLDc(y) V7.

Notation 1.6. It is an easy exercise to show tH&tD is then a(—1)!§x--exact duality on
K making

KD = (K, T' D, (-1 81, (—1)/+V/250 k)
a triangulated category with duality. Clead§f® = (K, Dx, 8xc, @ ’©).
Example1.7. 1. (Cf.[2].) LetX be a scheme arf{d = D’ (P(X)). Then the derived functor
Dy of the exact functoi{omp, (—, Ox) is a 1-exact functor on this triangulated category
making it a triangulated category with duality.

2. (Cf. [6].) Assume moreover that is Gorenstein and has finite Krull dimension. Then
the derived functor of<omp, (—, Ox) makesD”g(M(X)) a triangulated category with
1-exact duality. Following [6] we call this duality the canonical duality and denote it by
Xrg-

It is clear that an exact functar between triangulated categories with duality does
in general not care about the duality structure on this category. In particular if the pair
(A, ¢) is a j-symmetric form there is no reason that the im&g&) carries a form at all.
Therefore we introduce duality preserving functors.

Definition 1.8. A duality preserving functor between triangulated categories with duality
(A, Da,54,@") and (B, Dg,sp =P)
is a pair(F, p), whereF is a 1-exact covariant functot — B and

p:FD4— DgF

is an isomorphism of functors, such that the diagrams
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1.
F(@#)
F—————> FDsD4
@B LPD.A
DpDpF —— > DFD 4
Dpp
and
2.

pT
FTADg — > DgFT*

-1

(84388)0p 4 L L D TgleT;‘l

IsFDjy —— TgDpF
Tpp

commute, wheré : FT4 = TgF.
The isomorphism of functorg is called a duality transformation fdf.

Remark 1.9. Fori € Z, we define theéth shifted duality transformation af:
p D = (8.488) - T(p) - 93’1\ : FTyD A — T;DgF.

We leave it to the reader to check that thén 0V is a duality preserving functor for the
shifted duality:(F, pV): AD — B©,

We easily verify the following

Lemma 1.10. Let in the situation of Definitiorl.8 above(A, ¢) be a j-symmetric form
onA. Then

(F, p)s(A, ) := (F(A), p - F(9))
is a j-symmetric form onB.

It should be pointed out that the duality transformatipnis not forced by the
functor F. Moreover there exists functors which could be made in many different
ways duality preserving. One example for this comes form the following situation. Let
(K, Dic, 8ic, o), (L, Dz, 82, £y and(M, Dy, 84, w’™) be triangulated categories
with duality and assume that we have a prod¥iciC x £ — M. In this situation we have
exact functorsA X — and — X B for every A € K and B € L. We want to make these
functors duality preserving in a way which depends on the form&,aespectivelyB. For
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this we need isomorphismg g : Dx AKX D,/ B S D (AKX B) satisfying some properties
given by the following

Definition 1.11. In the situation above, we say that the proditt/C x £ — M is a
dualizing pairing between the triangulated categories with dudli§ and £© with
codomainM @ if there are isomorphisms

na.p:DxAR DB — Dy (AKX B)

functorial in A and in B which make the following two diagrams commutative:

1.
o R £
AR B L~ DZAXDZB
e NDjcA.Dp B
(A X B) —— Dap(DxAX DgB)
Da(na.B)
2.
D TicA.D.B DicA.DLTr B

Tm(DxTxAXDpB) <—— DxAX DB ——— T\(DxAX D,T,B)
©Gicdpr)- | Tm (T a.B) NA.B ©Szdam): | TM(Ma,T,B)

TrmDm (T A) X B)

DUARB) — ~ T Dy (AR TrB
Dt M ) Toioitons, MPMANTLE) .

If KO =20 = MO we saythakt© = (K, Dx, §x, o’ , X) is a triangulated category
with duality and product.

We will need the following iterated version of diagram 2 above.
Lemma1l.12. Forall A € K, B € £ and alli € Z the following diagram commutes

(@ @
i i
DTy -A.Dp B Dic A, DL:TE

T (DxTLARD.B) < DxAR DB — > T (DK AR D.TLB)
Gredpn)’- | Thaliri g p) Az Geor) | T gip)

TiDM(TLARB) <————— Dp(ARB) ————— T\ DA(ARTLB) .
Th D1 ) Th D (e} p)
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Proof. By induction (cf. Remark 1.1). O

Example1.13.1. LetX be any scheme arld= D?(P(X)). This category is a triangulated
category with dualityDy = Homp, (—, Ox) (cf. Example 1.7). As we have seen this
is also a category with product, given by the (derived) tensor progggt. The reader
will easily verify that the natural identificatioRx (P.) ®0, Dx(Qs) = Dx (Pe ®0, Q)
makes it a triangulated category with duality and product.

2. Assume now thak is Gorenstein of finite Krull dimension. Lét be as above and
L=M= D (M(X)) We have oriC the usual duality structure and @hthe canonical

duality X's,. Agaln the canonical isomorphisi (P,) ®, XreMe 5 Xio(Pe®0y My)
makes this a dualizing product.

1.3. MakingA X — and —X B duality preserving

Assume now that we have a dualizing pairlRg/C x £ — M as in Definition 1.11.
Let (A, ¢) be ai-symmetric form orfC and(B, ) a j-symmetric form onZ. We want to
use¢ andys to make the 1-exact functorsX —, respectively— X B duality preserving.
We do this in the following way:

1. A duality transformatiorL(A, ¢) for A X — is defined by:

¢Xidp 1 [(rs) AD/L

AR DL ———> T} DxAR DL — = T} (DxAR DcL)

TM(nA L)
s T DM(AR L)

foranyL € L.
2. A duality transformatiofR(B, vr) for — X B is defined by:

idpexk Xy t(1),)Cl< DpB
DxKXB ——— DK X T} DL;B — =7/ ‘M (DkK X DrB)

TM(UK B)
7/ DMK K B)

foranyK € K.
Lemma 1.14. The pairs
(AR—, £(A,9): L9 > MD and (-KB,R(B,¥)):LO - MWD

are duality preserving functors.



300 S. Gille, A. Nenashev / Journal of Algebra 261 (2003) 292—-309

Proof. We prove this fofA X —, £(A, ¢)), the proof for(— X B, R(B, v)) is analogous.
We have to verify the commutativity of the two diagrams in Definition 1.8. The first of
them commutes for the following reasons:
ThDm(L(A, §)1) - 8y (1) D2l
=8 (D' VTY D (¢ Ridp,r)  ThyDam () 4 por) - Dimnar) - o,
=8 (D V2T D (@ Ridp, 1) T}\ADM([%LA,DLL)
Npgea.nsL - TN Rk  (Definition 1.11)
= 55\4(_1)i(i+1)/2T/iVlDM([gl)giA,DﬁL) Mrciaper T,iCD/C(fiS) X idD%L
. wj\c X ZD'L'C (n, (@ pat.)
=35 - ThyDm ([%)Eif\,DﬁL) Npzigper OB ofF (¢ isi-form)

=Th(a,n.1) - [&A!D%L pRwf (Lemmal.l2)

=LA, ¢)p,r-ids Kl

Consider the second diagram in the definition. We have:

TA DMty 7o1y) - (A @)y

= BT A1) ThyCpeaner) g, ppr - @ Ridrener
(Definition 1.11)

= (D' G0 T L) - Tm (B a ppr) ¥ s per - ¢ Bidren,e
(Lemma 1.3)

= (D' G8pOTa aL) T pp, 1) - TM@Bidp, L) - taneL
(v nat.)

= (=D G TMm (LA, ®)L) - tan L
So this diagram commutes, too, and we are dorne.
Observe now the following fact, which follows easily from Lemma 1.3.

Lemma 1.15. The identityid 45 IS an isometry between

(AR —, £(A.¢)),(B.y) and (—K B, R(B, ), (A, (—D7 Gxdrm) (cor)'d).
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2. Triangular Witt theory
2.1. Triangular Witt groups

In the following (K, Dy, 8, @ °) is a triangulated category withc-exact duality. We
start by recalling Balmer’s definition of the Witt groups fof(cf. [1]). For this we have
first to specify which spaces are regarded as trivial. The definition is the following one.

Definition 2.1 (Balmer). Let(V, ¢) be a 0-symmetric form ofC. It is called neutral, if
there exists an exact triangle

D
TcDeL L -5 v LW el

in K with Tc'Dic (v) = (@ )* - v). In this caseL — V is called a Lagrangian of the
0-symmetric form(V, ¢).

The isometry classes of 0-symmetric forms/onvith the orthogonal sum as operation
form a monoidM W (K, Dxc, 8, w ). Itis easy to check that the sum of two neutral forms
is again neutral, hence the isometry claste® (K, Dy, 8x, @) of neutral forms are a
submonoid.

Definition 2.2 (Balmer). We set

MWK, Dx, 8, @)
Ky._
W(K, Di, 8, ™) := NW(K, D, 8xc, wh)”

and define fot € Z theith triangular Witt group of IC, D, k., @) as:
wi(K) == w(K®)
(cf. Notation 1.6 for the definition o ®). Clearly WO(K) = W (K, D, 8k, w ).

The monoidW! (K) is in fact a group, since the'orthogonal s, @) L (V,—g) is
neutral. The class of ansymmetric form(V, ¢) in W*(K) will be denoted by V, ¢].

Remark 2.3. Note thatw* (K@) = wsti (£©).
Example 2.4. We use the notation of ExamNpIe 1WH(X) .= WD (P(X)), Dx) is the
ith derived Witt group of the schemé and W' (X) := Wi (D%, (M(X)), X,) is theith

coherent Witt group of the Gorenstein scheme (of finite Krull dimension)

We have then the following
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Theorem 2.5. 1. [2, Theorem 4.3]Let W(X) and W~ (X) be the(usual) Witt groups of
symmetric, respectively skew-symmetric, spaces of the schi€niefor the definitior]8]
or [9]). Then the functoP(X) — D’(P(X)) induces isomorphisms

WX) > wWoX) and W (X)> W2(X).

2.[6, Corollary 2.17]If X is a regular scheme of finite Krull dimension, then the natural
functor D? (P (X)) — D’}g (M(X)) is duality preserving and inducésf. Theoren®2.6)an
isomorphisms

WS (X) > W*(X)
forall s € Z.

As one could expect, duality preserving functors between triangulated categories induce
homomorphisms between the triangulated Witt groups.

Theorem 2.6. Let (F, p) : (K, Dx, 8, ) — (L, Dz, 8., @) be a duality preserving
functor. ThenF induces a homomorphism

Wi(F, p): W () — WL, [A, ¢l [F(A), pY - F(9)] = [(F. p)(A, )]

(cf. Lemmal.10)for all i € Z, where(A, ¢) is ani-symmetric form oiiC. Moreover, ifF
is an equivalence of categories, th&fi (F, p) is an isomorphism for all € Z.

Proof. By Remark 1.9 it is enough to prove this foe= 0. We leave the straightforward
verifications to the reader with the hint to use [1, Theorem 3.5] to show that the homo-
morphismW! (F, p) is injective if F is an equivalence. O

Remark 2.7. Itis important to note that the homomorphism induced by a duality preserving
functor on the Witt groups depends on the duality transformatidh.g., assume we have

a finite dimensional vector spadé over a field endowed with two bilinear forms which

are not Witt equivalent. Then the exact functorR — can be made in two different ways
duality preserving such that the induced maps on the Witt groups are not the same (cf.
Lemma 1.14).

Example 2.8. (T2,id): (K, Di., 8, ™) — (K, T¢ Dy, i, @) is a duality preserving

functor. It induces isomorphism@” (KC) it W"t4(K) for all n € Z, which proves the
4-periodicity of the Witt groups.

2.2. The pairing on the Witt groups

LetnowlX: K x £ — M be a dualizing pairing between the triangulated categories with
duality (K, D, 8, @) and(L, D, 87, w~) with codomain M, Dy, S, ™). Let
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further (A, ¢) be ani-symmetric form onC and (B, ¢) a j-symmetric form onc..
Because

(AR — £(A,9): L9 > MDD and (-XB,RB,¥)):KO - MV

are duality preserving functors (Lemma 1.14) we get by Theorem 2.6 well defined homo-
morphisms

W (LO) - wm(MD),  [L,Bl— WM (AR —, £(A, 9))(L, B)
and
W (KQ) - wm(MD),  [K,al> W™ (=K B, R(B, ) (K, a).

From Lemma 1.15 we deduce th&@t” (A X —, £(A, ¢)) and W"(— X B,R(B, ¥))
depend only on the Witt class of the formig, ¢) respectively (B, ¢), hence we
have
Theorem 2.9. In the situation above we have a left pairing

* W) x WH(L) - W (M), ([K,al [L,B])—> W"(KK—, &K, a))(L, B)
and a right pairing

* i WIK) x WH(L) - W (M), ([K,al, [L,B]) —> W" (=R L, R(L, B))(K,a)
for anyr, s € Z. These pairings are related by the following formula

kxl = (=1 xS a) (88 00) k %, [,

wherek € W (K) andl € W*(£). In particular if K@ = £©@ = M© then

W*(K) = @ W™ (K)

mez

is a graded algebra with a left product and a right product.
2.3. The pairing and the localization sequence

We discuss here only the left pairing. Clearly we have analogous results for the right
pairing.

We start by recalling the localization sequence. For this we assume that our triangulated
categoryL satisfies the enriched octahedron axiom (e.g., [1, Section 1]). This axiom is
true in all the triangulated categories of our interest such as the derived categories of exact
categories or their full subcategories and localizations.
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Let S € Mor L be a localizing class of morphisms compatible with the triangulated
structure ofZ (cf. [5, p. 251]). Thens—1£ is also a triangulated category and we have an
exact sequence of triangulated categories

Ls—5 L 571,

whereLy is the kernel of the quotient functgr: £ — S~1£, i.e., the full subcategory of
L of objectsM with ¢ M =~ 0.

If (C, Dg, 8z, w’)is atriangulated category with duality adiy- S = S the categories
Ls and S~1£ are also triangulated categories with-exact duality. Their dualities are
induced byD  and we denote them (following the convention in [1]) By, too. We have
then a long exact sequence

ce > W (Ls) M W™ (L) M W’"(S—lﬁ) N Wt Le) — .-

(the functors andg become in a canonical way duality preserving, hence we suppress the
corresponding duality transformation). From the functorial properties of this localization
sequence (e.g., [6, Theorem 2.9]) we get:

Theorem 2.10. Assume we have a dualizing pairig: C x £ — M as above and
localizing classes of morphisn$sC Mor £ and 7' € Mor M which are compatible with
the dualities. Let(A, ¢) be ani-symmetric form orkC and assumédy X s € T for all
s € S. Then we have a commutative diagram with exact rows

il
W™ (L) N Wm(S_lﬁ) > Wm+l(£5) > ...
lW"’(AlZ—,E(A,rp)) LW’"(AlZ—,E(A,rp)) WL (AR -, £(A,4))
Wm—',—i(M) - o Wm+i(TflM) - o Wm+l+i(MT) -

where M7 and T~ M have the obvious meaning afid*(A X —, £(A, ¢)) denotes the
induced duality preserving functors aly, respectivelys—1£.

It follows from Lemma 1.15 that the homomorphism
W (AR —, £(A, $)): W™ (S71L) — wmH (T~ M)

depends on the Witt class of the space ¢) only. We want to show that the same is
true for the restricted homomorphisw™ (Zs) — W+ (M7). For this it is enough to
show that if(A, ¢) is neutral, i.e.[A, ¢] = 0 in W (L), the induced morphisri¥* (A X
—, L(A,9): W™ (Zs) — Wi (Mr) is the zero map (note that by [1, Theorem 3.6] a
form represents zero in the Witt group if and only if it is neutral).

ForletL = A be a Lagrangian i€ of the neutral form(A, ¢) and (X, ¢) anm-sym-
metric form inLg. Then(X, ¢) is also an-symmetric form inl and(— X X, R(X, ¢)) a
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duality preserving functa©@ — M (Lemma 1.14). We leave it to the reader to check

Ki . .
thatZ K X 2%, A ® X is a Lagrangian for

RX, 9)+(A, ) = (=)™ S8 M)" (B£5m) £(A, $)(X, ¢)  (Lemma 1.15)
in M. But by the assumption of Theorem 2.10 ab@v® X is in M7 and so this is also a
Lagrangian inM . Our claim follows.
Summarizing we have shown that there are (left) pairings
W) x W' (Ls) — W™ (Mp) and W (K) x W"(S71L) — Wt (171 M),

We denote these (left) pairings alsokhy With this notation we can formulate

Theorem 2.11. We have for al, j € Z a commutative diagram

Wi(K) x Wi (S~1L) — = Witi (T-1 M)
idxd 9
Wi(K) x With(Lg) — = WititL(My)

Proof. Follows from Theorem 2.10.0

3. Thepairing between derived and coherent Witt groups
3.1. The product structures on the derived Witt groups

Let X be a noetherian scheme with structure si@gf From Example 1.13 we know
that the bounded derived categdd§ (P (X)) of locally free@x-modules (of finite rank) is
a triangulated category with product and duality. Hence Theorem 2.9 tells us that we have
a left and right product, denoted Byrespectively,, on

W*(X) = EB Wi(X)

ieZ

making this a graded algebra. We see at once that the class of the symmetric space

Ox '—d> Oy is an unit in this ring and that the natural funct®(X) — D?(P(X)) (cf.
Theorem 2.5) induces a ring homomorphiniX) — W*(X).

As well known we have natural isomorphish® o, (Q ®0, R) =~ (P ®p, Q) ®0, R
and P ®p, 0~ 0 ®p, P, where P, Q and R are complexes i’ (P(X)) and ®0y
means the derived tensor product/ii(P(X)). We leave the straightforward verification
to the reader that these induce isometries
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[P, 1% (10, V1% [R,E]) > ([P, ¢l % [Q, ¥]) % [R, €] and
[P, ¢l % [Q, V] = (=D)Y[Q, Y% [P, }]

(and also for the right produet), where( P, ¢) is ani-symmetric form{Q, v) is aj-sym-
metric form and(R, &) is ak-symmetric form onD?(P(X)). Altogether we have:

Theorem 3.1. The leftx; and right productx, make W*(X) a graded, associative and

skew-commutative algebra with one, such that the natural identificaiiQx) it wo(Xx)
is an algebra isomorphism for both the left and right product which coincid&8ax).

This product structure is functorial in the following way:

Theorem 3.2. Let f: X — Y be a morphism between noetherian schemes. Then the
induced homomorphism

WH(f*) W5 (Y) — WH(X)

is an algebra homomorphism for the left and the right product, whgreD? (P(Y)) —
D" (P(X)).

Proof. Recall first that f* becomes in a natural way duality preserving, hence the
suppressing of a duality transformation. We denote the map on forms (cf. Lemma 1.10)

just by f*, too.
Let (P, ¢) be ani-symmetric form andQ, v) a j-symmetric form onD?(P(Y)). As

well known, we have a natural isomorphisfii(P) ®c, f*(Q) 3 f*(P ®p, Q). The
reader will see at once that this isomorphism induces an isometry

(fF*(P)®0y — £(f*(P.9)),(f*(0.¥)) > f*((P ®0o, —, L(P,$)) (0. V).
hence our result. O
3.2. The pairingW” (X) x VT/S(X) — VT/’“(X) for a Gorenstein schemg

We now turn to the situation of Example 1.13. LDétbe a Gorenstein scheme of finite
Krull dimension. The derived tensor product

®0y 1 D*(P(X)) x D}, (M(X)) - D}, (M(X))

is a dualizing pairing, and hence we get from Theorem 2.9 the existence of a left- and a
right pairing

x  respectively .1 W’ (X) x W (X) > W5 (X).
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We observe thal©Ox - Ox] € WO(X) acts as identity ofV*(X) := @,z W (X) and
that the canonical isomorphis@, ®o, Q.) ®0, Me = Ps ®0, (Qe R0, M.), Where
P., Qe € D’ (P(X)) andM, € D’}g(M(X)), gives (by isometry) the equations

(axB)xt=ax(Bx1) and (ax B)* T=a* (B* T)
in W*(X), wherea, 8 € W*(X) andt € W*(X). Hence:

Theorem 3.3. Both the left and right pairingv” (X) x W*(X) — W'+ (X) makeW*(X)
a graded unital left module over the algebi&* (X).

Let now f:X — Y be a flat morphism between two Gorenstein schemes of finite
Krull dimension. As well known (cf., e.g., [7]) the pull back functéf : D?g(M(Y)) —

D?g(M(X)) can be made in a canonical way duality preserving and induces so a

homomorphismiV*(£*): W*(Y) — W*(X). Using the same arguments as in the proof
of Theorem 3.2 we get the following result (we formulate this only for the left pairing
which anyway seems to be more natural in this situation).

Theorem 3.4. The mapW*(f*): W*(Y) — W*(X) is a graded module homomorphism,
ie.,

W (f*) st B) = W (f*) (@) 51 W (f*)(B)
fora e W (Y) andg € WS (Y).
Remark 3.5. We have analogous results for the Witt groups with support, e.g., a pairing
W’ (X) x W5 (X) — W5 (X),

whereZ C X is a closed subscheme of the Gorenstein scheme of finite Krull dime&sion
We leave this to the reader.

4. A projection formula

Let R be a commutative noetherian ring (with 1) afiéin R-algebra which is a finite
projectiveR-module. We assume that there exists Homg (S, R) such that

§~Homg(S, S) > HOMg(S,R), g—r1-g

is an isomorphism oR-modules. Then for alp € P(S) (i.e., Q is a finitely generated
projectiveS-module) the natural morphism HaiQ, S) — Homg(Q, R), g+ 7 - gis an
isomorphism of projectiv&-modules. Clearly this functorial bijection induces a functorial
isomorphism of complexes;, :Homg(Q.,, S) = Homg(Q., R), whereQ, € D?(P(S)).
Now S is a projective and inite’-module, hence we have a well defined push forward
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functor Trs/g : DY(P(S)) — DP(P(R)). The pair(Trs/g, p*) is then a duality preserving
functor which induces homomorphisms

Trg k. WH(S) > W (R)

forall i € Z, by Theorem 2.6.
Let now X be a noetherian scheme owr Xs =S xg X andx : Xs — X the projec-
tion. The canonical morphisngs — S andX — R give pullback functorsD? (P(S)) —
Db (P(X5s)) respectivelyD? (P(R)) — D’(P(X)). We use them to get dualizing pairings
Db (P(S)) x D*(P(Xs)) = D’ (P(Xs)) and D’ (P(R)) x D*(P(X)) — D’ (P(X)) (we
leave here the obvious details to the reader). The by now well known arguments give left
pairings

W'(S) x W3 (Xs) = WH(Xs) and W'(R) x W (X) —> W' (X),

which we also denote; (we hope this will cause no confusion). Cleamy*(Xs) and
W*(X) become in this way grade@*(S)- respectivelyW*(R)-modules. TheR-lin-
ear mapr induces also a morphism @x-modulesOx, ~ Hom@XS (Ox,, Ox) —
Homp, (m+Ox,, Ox). Sinces is flat overR this is an isomorphism. The arguments above
give then for alli € Z transfer homomorphisms

Tri x . W (Xs) > W' (X).
Theorem 4.1 (Projection formula)Letx € Wi (X) ands € W/(S). Then
TI‘}}S/X*(S */ JT*()C)) =Trg/R*(S) *] X.

Proof. It is easy to check that any element W' (X) can be represented by arsym-

metric form (Q., ¥) on D?(P(X)), such thatQ, 1—/@ T!(Dx Q,) is an isomorphism of
complexes, i.e., not a fraction (heR is the canonical duality ilD? (P(X)) andT the
translation functor in this derived category). Let furthet [P,, 9] € W/ (S).

Then the left side of the equation can be represented om,thecomponentf +s = n)

by:
Py ®r Qr = HOMoy (Pt ® Q—r+i, Ox),
p®q > {dc (=) t(p(p)(d) - ¥(g) (o)}
The reader checks at once that this form represents also the right side of the equation.
We conclude with a nice application. The proof is just an adaption of the verification

of the analogous result for the classical Witt groups given by Bayer-Fluckiger and Lenstra
in [4].
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Theorem 4.2. Let X be a scheme over a field and L a finite extension ok of odd
degree. Then the natural homomorphism

Wi(X) > WX xg L)
is injective for alli € Z.

Proof. It is enough to show this for a simple extensibpK. SinceL is of odd degree

over K there exists & -linear mapL 5 K, so that the corresponding transfer morphism
Tryk , satisfies Tf . (IL,id]) = [K,id] (e.g., [9, proof of I, Proposition 10.3.1]). Our
result follows from the projection formula.o
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