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Abstract

Given a product� :K×L → M between triangulated categories with duality, we show that under
some conditions there exist naturally two different pairingsWi(K) ×Wj (L) → Wi+j (M), where
W∗ denotes the triangulated Witt functor of Balmer [P. Balmer, K-theory 19 (2000) 311–363]. Our
main example of such a situation is the case thatK = L = M is the bounded derived category of
vector bundles over a schemeX and� is the (derived) tensor product. The derived Witt groups of
this schemeW∗(X) := ⊕

i∈Z
Wi(X) become a graded skew-commutative ring with two different

product structures which are both equally natural. In the last section we prove then a projection
formula for our product and show as an application that a Springer-type theorem is true for the
derived Witt groups, too.
 2003 Elsevier Science (USA). All rights reserved.

0. Introduction

Witt theory for triangulated categories with duality was introduced recently by
Balmer [1]. In this theory, we can shift the duality structure on a triangulated categoryK
and obtain an infinite series of Witt groupsWi(K) (i ∈ Z), which proves to be 4-periodic:
Wi(K) � Wi+4(K) naturally. The triangulated categories environment—as opposed to
the Witt theory of exact categories with duality introduced earlier—enables one to prove
some fundamental properties of the Witt groups of schemes as, e.g., localization [1].
We want to introduce in this paper further structures on this triangular Witt groups; in
particular we want to prove that under some circumstances there exists a product on
W∗(K) := ⊕

i∈Z
Wi(K) making this a graded algebra.
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We consider in this paper the following situation. LetK, L andM be triangulated
categories with duality and� :K×L→ M a bi-exact functor. If we can make the functors
− � L andK � − in a coherent way duality preserving we get a left “action” ofW∗(K)

which sendsW∗(L) into W∗(M) and an analogous right “action”. In the special case
K = L = M we get a left and a right product onW∗(K). All the axioms we need are
satisfied by the main example we have in mind, namelyK = Db(P(X)) the bounded
derived category of vector bundles over a schemeX. Both the left and right product
make the derived Witt groups of a scheme a graded, associative and skew-commutative
algebra with unit. We prove in our last section a projection formula for this product. As an
application we get using a trick of Bayer-Fluckiger and Lenstra [4] a Springer-type theorem
for the derived Witt groups. Other interesting applications of this product structure will be
found in a forthcoming paper of Balmer [3]. E.g., he generalizes and re-proves there a
result of Knebusch [8] about the kernel of the natural mapW(X) → W(funct. field ofX)

(X an integral scheme).
Now a short review of the content of this paper. In Sections 1 and 2 we give conditions

under which a bi-exact functor� :K × L → M between triangulated categories with
duality induces a pairingWr(K) × Ws(L) → Wr+s (M) between the triangulated Witt
groups. Our point of departure is thatA � − and− � B for A ∈ K andB ∈ L should
become duality preserving functors with the aid of forms on them. A feature of this
approach is that we easily can prove that the connecting homomorphism in the localization
sequence for triangular Witt groups [1] is compatible with our product (Theorem 2.11).
After that we take a closer look at the pairing/product which gives the (derived) tensor
product on the derived and coherent Witt groups.

We have tried to make the first two sections as self contained as possible (except in the
examples), in particular we explain all the relevant facts concerning triangular Witt theory,
but in the sections about coherent and derived Witt groups of a scheme we assume some
familiarity of the reader with the papers [2,6].

Notation and conventions.We denote the translation functor in a triangulated categoryK
by TK or justT if not specified otherwise.

We assume throughout that the morphism groups in all the categories under considera-
tion are (uniquely) 2-divisible. In particular we assume that 1/2 is in the global section of
all the schemes we consider.

1. Duality, products and triangulated categories

1.1. Products

We start with the notion of aδ-exact functor (δ = ±1). This is an additive co-
variant (respectively contravariant) functorF :K → L between the triangulated cate-

goriesK and L equipped with an isomorphism of functorsθ :FTK
�→ TLF (respec-

tively T −1
L F

�→ FTK) such that for every exact triangle(A,B,C,α,β, γ ) in K the
triangle(FA,FB,FC,F(α),F (β), δθAF(γ )) (respectively(FC,FB,FA,F(β),F (α),

δTLF(γ )TL(θA))) is exact inL.
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Remark 1.1. AssumeF is covariant. We then have iterated versions ofθ (they exists in
the contravariant case, too, but we do not need this), namely isomorphisms of functors
θ(i) :FT i

K → T i
LF for all i ∈ Z. They are defined as follows.

We setθ(0) := id, θ(1) := θ andθ(−1) := (T −1
L (θ

T −1
K

))−1. For |i| � 1 we set:

θ(i) := T
sgn(i)
L

(
θ(i−sgn(i))) · θ(sgn(i))

T
i−sgn(i)
K

,

where sgn(i)= 1 if i > 0 and= −1 if i < 0. By induction, we see that

θ(i) = T
i−sgn(i)
L

(
θ(sgn(i))) · θ(i−sgn(i))

T
sgn(i)
K

for |i| � 1.

Clearly we could also take this equation for an inductive definition. Note thatθ(j+k) =
T k
L(θ

(j)) · θ(k)
T
j
K

for all j, k ∈ Z.

We define now a product between triangulated categories.

Definition 1.2. Let K, L andM be triangulated categories. A product betweenK andL
with codomainM is a bi-covariant functor

� :K×L →M

which is 1-exact in both variables and satisfies the following condition: the functorial
isomorphisms

rA,B :A� (TLB)
�→ TM(A�B) and lA,B : (TKA)�B

�→ TM(A�B)

associated with the 1-exact functorsA� − and− �B make the diagram

(TKA)� (TLB)

rTKA,B

lA,TLB

TM(A� TLB)

TM(rA,B )

TM(TKA�B)
TM(lA,B )

T 2
M(A�B)

skew-commutative for anyA ∈ K andB ∈ L, i.e., TM(rA,B) · lA,TLB = −TM(lA,B) ·
rTKA,B . If K = L =M we say that the pair(K,�) is a triangulated category with product.

The functorial isomorphismsr andl involved in the definition above have also shifted
versionsr(i) and l(i), which are defined as in Remark 1.1. They satisfy the following
relation.
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Lemma 1.3. For all i, j ∈ Z, A ∈ K and B ∈ L, the following diagram is(−1)ij -
commutative:

(T i
KA)� (T

j

LB)

r
(j)

T iKA,B

l
(i)

A,T
j
LB

T i
M(A� T

j

LB)

T i
M(r

(j)
A,B )

T
j

M(T i
KA�B)

T
j

M(l
(i)
A,B )

T
i+j

M (A�B)

i.e.,T i
M(r

(j)
A,B) · l(i)

A,T
j

LB
= (−1)ij T j

M(l
(i)
A,B) · r(j)

T i
KA,B

.

Proof. By induction (cf. Remark 1.1 above).✷
Example 1.4. The main example we have in mind is the following one. LetX be
a noetherian scheme with structure sheafOX . We setL = M = Db

fg(M(X)) the
bounded derived category of quasi coherentOX-modules with coherent homology and
K =Db(P(X)) the bounded derived category of locally free (of finite rank)OX-modules.
Then the (derived) tensor product

⊗ :K ×L→ L= M

is a product ofK andL with codomainL.
To fix our sign convention we recall the definition of the tensor product of two

complexes(P•, dP ) ∈ K and (M•, dM) ∈ L. The complexP• ⊗ M• is given in degree
n by:

(P• ⊗M•)n =
⊕

i+j=n

Pi ⊗OX
Mj

and the differentialdP⊗M by dPi ⊗ idMj + (−1)i idPi ⊗dMj onPi ⊗OX
Mj . For this choice

of signs the natural isomorphismlP•,M• is essentially the identity andrP•,M• is given by
(−1)i onPi ⊗ · · · .

Note thatK becomes a triangulated category with product if we restrict the tensor
product to the full triangulated subcategoryK of L.

1.2. Duality

Definition 1.5. Let K be a triangulated category,δK = ±1, DK :K → K a δK-exact

contravariant functor satisfying the strict conditionDKTK = T −1
K DK and #K : id

�→
DKDK an isomorphism of functors.
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(1) (Balmer [1].) The quadruple(K,DK, δK,#K) is called a triangulated category with
δK-exact dualityDK, if TK#K

M =#K
TKM and

DK
(
#K

M

) ·#K
DKM = idDKM.

(2) We say that a pair(A,φ) is a j -symmetric form on(K,DK, δK,#K) if A ∈ K and

φ is an isomorphismA
�→ T

j

KDKA such that

(−1)j (j+1)/2δ
j

K · T j

KDK(φ)#
K
A = φ.

Two j -symmetric forms(A,φ) and (B,ψ) are called isometric, if there exists an

isomorphismγ :A
�→ B, such that

φ = T
j

KDK(γ ) ·ψ · γ.

Notation 1.6. It is an easy exercise to show thatT iDK is then a(−1)iδK-exact duality on
K making

K(i) := (
K, T iDK, (−1)iδK, (−1)i(i+1)/2δiK#

K)

a triangulated category with duality. ClearlyK(0) = (K,DK, δK,#K).

Example 1.7. 1. (Cf. [2].) LetX be a scheme andK = Db(P(X)). Then the derived functor
DX of the exact functorHomOX

(−,OX) is a 1-exact functor on this triangulated category
making it a triangulated category with duality.

2. (Cf. [6].) Assume moreover thatX is Gorenstein and has finite Krull dimension. Then
the derived functor ofHomOX

(−,OX) makesDb
fg(M(X)) a triangulated category with

1-exact duality. Following [6] we call this duality the canonical duality and denote it by
Xfg .

It is clear that an exact functorF between triangulated categories with duality does
in general not care about the duality structure on this category. In particular if the pair
(A,φ) is aj -symmetric form there is no reason that the imageF(A) carries a form at all.
Therefore we introduce duality preserving functors.

Definition 1.8. A duality preserving functor between triangulated categories with duality

(
A,DA, δA,#A)

and
(
B,DB, δB,#

B)

is a pair(F,ρ), whereF is a 1-exact covariant functorA→ B and

ρ :FDA → DBF

is an isomorphism of functors, such that the diagrams
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1.

F
F(#A)

#B

FDADA

ρDA

DBDBF
DBρ

DBFDA

and
2.

FTADA

ρ
T

−1
A

(δAδB)·θDA

DBFT −1
A

DBT −1
B θ

T
−1
A

TBFDA
TBρ

TBDBF

commute, whereθ :FTA
�→ TBF .

The isomorphism of functorsρ is called a duality transformation forF .

Remark 1.9. For i ∈ Z, we define theith shifted duality transformation ofF :

ρ(i) := (δAδB)
i · T i

B(ρ) · θ(i)DA
:FT i

ADA → T i
BDBF.

We leave it to the reader to check that then(F,ρ(i)) is a duality preserving functor for the
shifted duality:(F,ρ(i)) :A(i) → B(i).

We easily verify the following

Lemma 1.10. Let in the situation of Definition1.8 above(A,φ) be aj -symmetric form
onA. Then

(F,ρ)∗(A,φ) := (
F(A),ρ

(j)
A · F(φ)

)

is a j -symmetric form onB.

It should be pointed out that the duality transformationρ is not forced by the
functor F . Moreover there exists functors which could be made in many different
ways duality preserving. One example for this comes form the following situation. Let
(K,DK, δK,#K), (L,DL, δL,#L) and(M,DM, δM,#M) be triangulated categories
with duality and assume that we have a product� :K×L→ M. In this situation we have
exact functorsA � − and− � B for everyA ∈ K andB ∈ L. We want to make these
functors duality preserving in a way which depends on the forms onA, respectivelyB. For
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this we need isomorphismsηA,B :DKA�DLB
�→DM(A�B) satisfying some properties

given by the following

Definition 1.11. In the situation above, we say that the product� :K × L → M is a
dualizing pairing between the triangulated categories with dualityK(0) and L(0) with
codomainM(0), if there are isomorphisms

ηA,B :DKA�DLB → DM(A�B)

functorial inA and inB which make the following two diagrams commutative:

1.

A�B
#K

A �#L
B

#M
A�B

D2
KA�D2

LB

ηDKA,DLB

D2
M(A�B)

DM(ηA,B )
DM(DKA�DLB)

2.

TM(DKTKA�DLB)

(δKδM)· TM(ηTKA,B )

DKA�DLB
lDKTKA,DLB rDKA,DLTLB

ηA,B

TM(DKA�DLTLB)

(δLδM)· TM(ηA,TLB)

TMDM((TKA)�B) DM(A�B)
TMDM(lA,B ) TMDM(rA,B )

TMDM(A� TLB) .

If K(0) = L(0) =M(0), we say thatK(0) = (K,DK, δK,#K,�) is a triangulated category
with duality and product.

We will need the following iterated version of diagram 2 above.

Lemma 1.12. For all A ∈ K, B ∈L and all i ∈ Z the following diagram commutes:

T i
M(DKT i

KA�DLB)

(δKδM)i · T i
M(η

T iKA,B
)

DKA�DLB
l
(i)

DKT iKA,DLB
r
(i)

DKA,DLT iLB

ηA,B

T i
M(DKA�DLT i

LB)

(δLδM)i · T i
M(η

A,T iLB
)

T i
MDM(T i

KA�B) DM(A�B)
T i
MDM(l

(i)
A,B ) T i

MDM(r
(i)
A,B )

T i
MDM(A� T i

LB) .
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Proof. By induction (cf. Remark 1.1). ✷
Example 1.13. 1. LetX be any scheme andK =Db(P(X)). This category is a triangulated
category with dualityDX = HomOX

(−,OX) (cf. Example 1.7). As we have seen this
is also a category with product, given by the (derived) tensor product⊗OX

. The reader

will easily verify that the natural identificationDX(P•)⊗OX
DX(Q•)

�→DX(P• ⊗OX
Q•)

makes it a triangulated category with duality and product.
2. Assume now thatX is Gorenstein of finite Krull dimension. LetK be as above and

L = M = Db
fg(M(X)). We have onK the usual duality structure and onL the canonical

dualityXfg . Again the canonical isomorphismDX(P•)⊗OX
XfgM•

�→ Xfg(P• ⊗OX
M•)

makes this a dualizing product.

1.3. MakingA� – and –�B duality preserving

Assume now that we have a dualizing pairing� :K × L → M as in Definition 1.11.
Let (A,φ) be ai-symmetric form onK and(B,ψ) a j -symmetric form onL. We want to
useφ andψ to make the 1-exact functorsA � −, respectively− � B duality preserving.
We do this in the following way:

1. A duality transformationL(A,φ) for A� − is defined by:

A�DLL
φ� idDLL

T i
KDKA�DLL

l
(i)
DKA,DLL

T i
M(DKA�DLL)

T i
M(ηA,L)

T i
MDM(A�L)

for anyL ∈ L.
2. A duality transformationR(B,ψ) for − �B is defined by:

DKK �B
idDKK�ψ

DKK � T
j

LDLB
r
(j)
DKK,DLB

T
j

M(DKK �DLB)

T
j
M(ηK,B)

T
j

MDM(K �B)

for anyK ∈K.

Lemma 1.14. The pairs

(
A� −,L(A,φ)

)
:L(0) → M(i) and

(− �B,R(B,ψ)
)
:K(0) →M(j)

are duality preserving functors.
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Proof. We prove this for(A� −,L(A,φ)), the proof for(− �B,R(B,ψ)) is analogous.
We have to verify the commutativity of the two diagrams in Definition 1.8. The first of
them commutes for the following reasons:

T i
MDM

(
L(A,φ)L

) · δiM(−1)i(i+1)/2#M
A�L

= δiM(−1)i(i+1)/2T i
MDM(φ � idDLL) · T i

MDM
(
l
(i)
DKA,DLL

) ·DM(ηA,L) ·#M
A�L

= δiM(−1)i(i+1)/2T i
MDM(φ � idDLL) · T i

MDM
(
l
(i)
DKA,DLL

)

· ηDKA,DLL ·#K
A �#L

L (Definition 1.11)

= δiM(−1)i(i+1)/2T i
MDM

(
l
(i)

T −i
K A,DLL

) · η
T −i
K A,DLL

· T i
KDK(φ)� idD2

LL

·#K
A �#L

L (η, l(i) nat.)

= (δKδM)i · T i
MDM

(
l
(i)

T −i
K A,DLL

) · η
T −i
K A,DLL

· φ �#L
L (φ is i-form)

= T i
M(ηA,DLL) · l(i)

DKA,D2
LL

· φ �#L
L (Lemma 1.12)

= L(A,φ)DLL · idA �#L
L .

Consider the second diagram in the definition. We have:

T i+1
M DM(r

A,T −1
L L

) · L(A,φ)
T −1
L L

= (δLδM)T i+1
M (ηA,L) · T i

M(rDKA,DLL) · l(i)DKA,TLDLL · φ � idTLDLL

(Definition 1.11)

= (−1)i(δLδM)T i+1
M (ηA,L) · TM

(
l
(i)
DKA,DLL

) · rT i
KDKA,DLL · φ � idTLDLL

(Lemma 1.3)

= (−1)i(δLδM)T i+1
M (ηA,L) · TM

(
l
(i)
DKA,DLL

) · TM(φ � idDLL) · rA,DLL

(r nat.)

= (−1)i(δLδM)TM
(
L(A,φ)L

) · rA,DLL.

So this diagram commutes, too, and we are done.✷
Observe now the following fact, which follows easily from Lemma 1.3.

Lemma 1.15. The identityidA�B is an isometry between

(
A� −, L(A,φ)

)
∗(B,ψ) and

(− �B, R(B,ψ)
)
∗
(
A, (−1)ij (δKδM)j (δLδM)iφ

)
.
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2. Triangular Witt theory

2.1. Triangular Witt groups

In the following(K,DK, δK,#K) is a triangulated category withδK-exact duality. We
start by recalling Balmer’s definition of the Witt groups ofK (cf. [1]). For this we have
first to specify which spaces are regarded as trivial. The definition is the following one.

Definition 2.1 (Balmer). Let(V ,ϕ) be a 0-symmetric form onK. It is called neutral, if
there exists an exact triangle

T −1
K DKL

ν−→L
ι−→ V

DL(ι)ϕ−−−−→ DKL

in K with T −1
K DK(ν) = δK(#K

L · ν). In this caseL
ι→ V is called a Lagrangian of the

0-symmetric form(V ,ϕ).

The isometry classes of 0-symmetric forms onK with the orthogonal sum as operation
form a monoidMW(K,DK, δK,#K). It is easy to check that the sum of two neutral forms
is again neutral, hence the isometry classesNW(K,DK, δK,#K) of neutral forms are a
submonoid.

Definition 2.2 (Balmer). We set

W
(
K,DK, δK,#

K) := MW(K,DK, δK,#K)

NW(K,DK, δK,#K)
.

and define fori ∈ Z theith triangular Witt group of(K,DK, δK,#K) as:

Wi(K) :=W
(
K(i)

)

(cf. Notation 1.6 for the definition ofK(i)). ClearlyW0(K) =W(K,DK, δK,#K).

The monoidWi(K) is in fact a group, since the orthogonal sum(V ,ϕ) ⊥ (V ,−ϕ) is
neutral. The class of ani-symmetric form(V ,ϕ) in Wi(K) will be denoted by[V,ϕ].

Remark 2.3. Note thatWs(K(i))=Ws+i (K(0)).

Example 2.4. We use the notation of Example 1.7.Wi(X) := Wi(Db(P(X)),DX) is the
ith derived Witt group of the schemeX andW̃ i(X) := Wi(Db

fg(M(X)),Xfg) is theith
coherent Witt group of the Gorenstein scheme (of finite Krull dimension)X.

We have then the following
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Theorem 2.5. 1. [2, Theorem 4.3]. LetW(X) andW−(X) be the(usual) Witt groups of
symmetric, respectively skew-symmetric, spaces of the schemeX (cf. for the definition[8]
or [9]). Then the functorP(X)→ Db(P(X)) induces isomorphisms

W(X)
�→ W0(X) and W−(X)

�→W2(X).

2. [6, Corollary 2.17]. If X is a regular scheme of finite Krull dimension, then the natural
functorDb(P(X))→ Db

fg(M(X)) is duality preserving and induces(cf. Theorem2.6)an
isomorphisms

Ws(X)
�→ W̃ s (X)

for all s ∈ Z.

As one could expect, duality preserving functors between triangulated categories induce
homomorphisms between the triangulated Witt groups.

Theorem 2.6. Let (F,ρ) : (K,DK, δK,#K) → (L,DL, δL,#L) be a duality preserving
functor. ThenF induces a homomorphism

Wi(F,ρ) :Wi(K) → Wi(L), [A,φ] �→ [
F(A),ρ

(i)
A · F(φ)

] = [
(F,ρ)∗(A,φ)

]

(cf. Lemma1.10)for all i ∈ Z, where(A,φ) is an i-symmetric form onK. Moreover, ifF
is an equivalence of categories, thenWi(F,ρ) is an isomorphism for alli ∈ Z.

Proof. By Remark 1.9 it is enough to prove this fori = 0. We leave the straightforward
verifications to the reader with the hint to use [1, Theorem 3.5] to show that the homo-
morphismWi(F,ρ) is injective ifF is an equivalence. ✷
Remark 2.7. It is important to note that the homomorphism induced by a duality preserving
functor on the Witt groups depends on the duality transformationρ. E.g., assume we have
a finite dimensional vector spaceV over a field endowed with two bilinear forms which
are not Witt equivalent. Then the exact functorV ⊗ − can be made in two different ways
duality preserving such that the induced maps on the Witt groups are not the same (cf.
Lemma 1.14).

Example 2.8. (T 2
K, id) : (K,DK, δK,#K) → (K, T 4

KDK, δK,#K) is a duality preserving

functor. It induces isomorphismsWn(K)
�→ Wn+4(K) for all n ∈ Z, which proves the

4-periodicity of the Witt groups.

2.2. The pairing on the Witt groups

Let now� :K×L→ M be a dualizing pairing between the triangulated categories with
duality(K,DK, δK,#K) and(L,DL, δL,#L) with codomain(M,DM, δM,#M). Let
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further (A,φ) be an i-symmetric form onK and (B,ψ) a j -symmetric form onL.
Because

(
A� −,L(A,φ)

)
:L(0) →M(i) and

(− �B,R(B,ψ)
)
:K(0) → M(j)

are duality preserving functors (Lemma 1.14) we get by Theorem 2.6 well defined homo-
morphisms

Wm
(
L(0)) →Wm

(
M(i)

)
, [L,β] �→ Wm

(
A� −,L(A,φ)

)
(L,β)

and

Wm
(
K(0)) → Wm

(
M(j)

)
, [K,α] �→Wm

(− �B,R(B,ψ)
)
(K,α).

From Lemma 1.15 we deduce thatWm(A � −,L(A,φ)) and Wm(− � B,R(B,ψ))

depend only on the Witt class of the forms(A,φ) respectively(B,ψ), hence we
have

Theorem 2.9. In the situation above we have a left pairing

/l :Wr(K)×Ws(L)→ Wr+s (M),
([K,α], [L,β]) �→Wm

(
K � −,L(K,α)

)
(L,β)

and a right pairing

/r :Wr(K)×Ws(L)→ Wr+s (M),
([K,α], [L,β]) �→Wm

(− �L,R(L,β)
)
(K,α)

for anyr, s ∈ Z. These pairings are related by the following formula:

k /l l = (−1)rs(δKδM)s(δLδM)rk /r l,

wherek ∈ Wr(K) andl ∈ Ws(L). In particular if K(0) = L(0) =M(0) then

W∗(K) :=
⊕
m∈Z

Wm(K)

is a graded algebra with a left product and a right product.

2.3. The pairing and the localization sequence

We discuss here only the left pairing. Clearly we have analogous results for the right
pairing.

We start by recalling the localization sequence. For this we assume that our triangulated
categoryL satisfies the enriched octahedron axiom (e.g., [1, Section 1]). This axiom is
true in all the triangulated categories of our interest such as the derived categories of exact
categories or their full subcategories and localizations.



304 S. Gille, A. Nenashev / Journal of Algebra 261 (2003) 292–309

Let S ⊆ MorL be a localizing class of morphisms compatible with the triangulated
structure ofL (cf. [5, p. 251]). ThenS−1L is also a triangulated category and we have an
exact sequence of triangulated categories

LS
ι−−→ L q−−→ S−1L,

whereLS is the kernel of the quotient functorq :L → S−1L, i.e., the full subcategory of
L of objectsM with qM � 0.

If (L,DL, δL,#L) is a triangulated category with duality andDLS = S the categories
LS andS−1L are also triangulated categories withδL-exact duality. Their dualities are
induced byDL and we denote them (following the convention in [1]) byDL, too. We have
then a long exact sequence

· · · → Wm(LS)
Wm(ι)−−−−→ Wm(L) Wm(q)−−−−→ Wm

(
S−1L

) ∂−−→Wm+1(LS)→ ·· ·
(the functorsι andq become in a canonical way duality preserving, hence we suppress the
corresponding duality transformation). From the functorial properties of this localization
sequence (e.g., [6, Theorem 2.9]) we get:

Theorem 2.10. Assume we have a dualizing pairing� :K × L → M as above and
localizing classes of morphismsS ⊆ MorL andT ⊆ MorM which are compatible with
the dualities. Let(A,φ) be ani-symmetric form onK and assumeidA � s ∈ T for all
s ∈ S. Then we have a commutative diagram with exact rows:

· · · Wm(L)

Wm(A�−,L(A,φ))

Wm(S−1L)
∂

Wm(A�−,L(A,φ))

Wm+1(LS)

Wm+1(A�−,L(A,φ))

· · ·

· · · Wm+i (M) Wm+i (T −1M)
∂

Wm+1+i (MT ) · · · ,

whereMT andT −1M have the obvious meaning andW∗(A � −,L(A,φ)) denotes the
induced duality preserving functors onLS , respectivelyS−1L.

It follows from Lemma 1.15 that the homomorphism

Wm
(
A� −,L(A,φ)

)
:Wm

(
S−1L

) → Wm+i
(
T −1M

)

depends on the Witt class of the space(A,φ) only. We want to show that the same is
true for the restricted homomorphismWm(IS) → Wm+i (MT ). For this it is enough to
show that if(A,φ) is neutral, i.e.,[A,φ] = 0 in Wi(L), the induced morphismW∗(A �
−,L(A,φ)) :Wm(IS) → Wm+i (MT ) is the zero map (note that by [1, Theorem 3.6] a
form represents zero in the Witt group if and only if it is neutral).

For letL
ι→ A be a Lagrangian inL of the neutral form(A,φ) and(X,ϕ) anm-sym-

metric form inLS . Then(X,ϕ) is also am-symmetric form inL and(− �X,R(X,ϕ)) a
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duality preserving functorK(0) → M(m) (Lemma 1.14). We leave it to the reader to check

thatL�X
ι� idX−−−−−→ A�X is a Lagrangian for

R(X,ϕ)∗(A,φ)= (−1)im(δKδM)m(δLδM)iL(A,φ)∗(X,ϕ) (Lemma 1.15)

in M. But by the assumption of Theorem 2.10 aboveL�X is inMT and so this is also a
Lagrangian inMT . Our claim follows.

Summarizing we have shown that there are (left) pairings

Wi(K)×Wm(LS)→Wm+i (MT ) and Wi(K)×Wm
(
S−1L

) → Wm+i
(
T −1M

)
.

We denote these (left) pairings also by/l . With this notation we can formulate

Theorem 2.11. We have for alli, j ∈ Z a commutative diagram

Wi(K)×Wj(S−1L)

id×∂

/l
Wi+j (T −1M)

∂

Wi(K)×Wj+1(LS)
/l

Wi+j+1(MT )

Proof. Follows from Theorem 2.10. ✷

3. The pairing between derived and coherent Witt groups

3.1. The product structures on the derived Witt groups

Let X be a noetherian scheme with structure sheafOX . From Example 1.13 we know
that the bounded derived categoryDb(P(X)) of locally freeOX-modules (of finite rank) is
a triangulated category with product and duality. Hence Theorem 2.9 tells us that we have
a left and right product, denoted by/l respectively/r , on

W∗(X) :=
⊕
i∈Z

Wi(X)

making this a graded algebra. We see at once that the class of the symmetric space

OX
id−→ OX is an unit in this ring and that the natural functorP(X) → Db(P(X)) (cf.

Theorem 2.5) induces a ring homomorphismW(X) → W∗(X).
As well known we have natural isomorphismP ⊗OX

(Q⊗OX
R)� (P ⊗OX

Q)⊗OX
R

and P ⊗OX
Q �Q⊗OX

P , whereP,Q andR are complexes inDb(P(X)) and ⊗OX

means the derived tensor product inDb(P(X)). We leave the straightforward verification
to the reader that these induce isometries
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[P,φ] /l
([Q,ψ] /l [R,ξ ]

) �→ ([P,φ] /l [Q,ψ]) /l [R,ξ ] and

[P,φ] /l [Q,ψ] �→ (−1)ij [Q,ψ] /l [P,φ]

(and also for the right product/r ), where(P,φ) is ani-symmetric form,(Q,ψ) is aj -sym-
metric form and(R, ξ) is ak-symmetric form onDb(P(X)). Altogether we have:

Theorem 3.1. The left/l and right product/r makeW∗(X) a graded, associative and

skew-commutative algebra with one, such that the natural identificationW(X)
�→ W0(X)

is an algebra isomorphism for both the left and right product which coincide onW0(X).

This product structure is functorial in the following way:

Theorem 3.2. Let f :X → Y be a morphism between noetherian schemes. Then the
induced homomorphism

W∗(f ∗) :W∗(Y )→ W∗(X)

is an algebra homomorphism for the left and the right product, wheref ∗ :Db(P(Y )) →
Db(P(X)).

Proof. Recall first thatf ∗ becomes in a natural way duality preserving, hence the
suppressing of a duality transformation. We denote the map on forms (cf. Lemma 1.10)
just byf ∗, too.

Let (P,φ) be ani-symmetric form and(Q,ψ) a j -symmetric form onDb(P(Y )). As

well known, we have a natural isomorphismf ∗(P ) ⊗OX
f ∗(Q)

�→ f ∗(P ⊗OY
Q). The

reader will see at once that this isomorphism induces an isometry

(
f ∗(P )⊗OX

−, L
(
f ∗(P,φ)

))
∗
(
f ∗(Q,ψ)

) �→ f ∗((P ⊗OY
−, L(P,φ)

)
∗(Q,ψ)

)
,

hence our result. ✷
3.2. The pairingWr(X)× W̃ s(X) → W̃ r+s (X) for a Gorenstein schemeX

We now turn to the situation of Example 1.13. LetX be a Gorenstein scheme of finite
Krull dimension. The derived tensor product

⊗OX
:Db

(
P(X)

) ×Db
fg

(
M(X)

) → Db
fg

(
M(X)

)

is a dualizing pairing, and hence we get from Theorem 2.9 the existence of a left- and a
right pairing

/l respectively /r :Wr(X)× W̃ s (X) → W̃ r+s (X).
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We observe that[OX
id−→ OX] ∈ W0(X) acts as identity oñW∗(X) := ⊕

r∈Z
W̃ r (X) and

that the canonical isomorphism(P• ⊗OX
Q•) ⊗OX

M• � P• ⊗OX
(Q• ⊗OX

M•), where
P•,Q• ∈ Db(P(X)) andM• ∈Db

fg(M(X)), gives (by isometry) the equations

(α /l β) /l τ = α /l (β /l τ ) and (α /r β) /r τ = α /r (β /r τ )

in W̃∗(X), whereα,β ∈W∗(X) andτ ∈ W̃∗(X). Hence:

Theorem 3.3. Both the left and right pairingWr(X)× W̃ s(X) → W̃ r+s (X) makeW̃∗(X)

a graded unital left module over the algebraW∗(X).

Let now f :X → Y be a flat morphism between two Gorenstein schemes of finite
Krull dimension. As well known (cf., e.g., [7]) the pull back functorf ∗ :Db

fg(M(Y )) →
Db

fg(M(X)) can be made in a canonical way duality preserving and induces so a

homomorphismW̃∗(f ∗) : W̃∗(Y ) → W̃∗(X). Using the same arguments as in the proof
of Theorem 3.2 we get the following result (we formulate this only for the left pairing
which anyway seems to be more natural in this situation).

Theorem 3.4. The mapW̃∗(f ∗) : W̃∗(Y ) → W̃∗(X) is a graded module homomorphism,
i.e.,

W̃ r+s (f ∗)(α /l β)=Wr(f ∗)(α) /l W̃ s(f ∗)(β)

for α ∈ Wr(Y ) andβ ∈ W̃ s (Y ).

Remark 3.5. We have analogous results for the Witt groups with support, e.g., a pairing

Wr(X)× W̃ s
Z(X) → W̃ r+s

Z (X),

whereZ ⊆X is a closed subscheme of the Gorenstein scheme of finite Krull dimensionX.
We leave this to the reader.

4. A projection formula

Let R be a commutative noetherian ring (with 1) andS anR-algebra which is a finite
projectiveR-module. We assume that there existsτ ∈ HomR(S,R) such that

S � HomS(S,S) → HomR(S,R), g �→ τ · g
is an isomorphism ofR-modules. Then for allQ ∈ P(S) (i.e., Q is a finitely generated
projectiveS-module) the natural morphism HomS(Q,S) → HomR(Q,R), g �→ τ · g is an
isomorphism of projectiveR-modules. Clearly this functorial bijection induces a functorial

isomorphism of complexesρτ
Q• : HomS(Q•, S)

�→ HomR(Q•,R), whereQ• ∈ Db(P(S)).
Now S is a projective and finiteR-module, hence we have a well defined push forward
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functor TrS/R :Db(P(S)) → Db(P(R)). The pair(TrS/R,ρτ ) is then a duality preserving
functor which induces homomorphisms

TrτS/R ∗ :Wi(S)→ Wi(R)

for all i ∈ Z, by Theorem 2.6.
Let nowX be a noetherian scheme overR, XS = S ×R X andπ :XS → X the projec-

tion. The canonical morphismsXS → S andX → R give pullback functorsDb(P(S))→
Db(P(XS)) respectivelyDb(P(R))→ Db(P(X)). We use them to get dualizing pairings
Db(P(S))×Db(P(XS)) → Db(P(XS)) andDb(P(R))×Db(P(X)) → Db(P(X)) (we
leave here the obvious details to the reader). The by now well known arguments give left
pairings

Wr(S)×Ws(XS)→ Wr+s (XS) and Wr(R)×Ws(X)→ Wr+s (X),

which we also denote/l (we hope this will cause no confusion). ClearlyW∗(XS) and
W∗(X) become in this way gradedW∗(S)- respectivelyW∗(R)-modules. TheR-lin-
ear mapτ induces also a morphism ofOX-modulesOXS � HomOXS

(OXS ,OXS ) →
HomOX

(π∗OXS ,OX). SinceS is flat overR this is an isomorphism. The arguments above
give then for alli ∈ Z transfer homomorphisms

TrτXS/X ∗ :Wi(XS)→ Wi(X).

Theorem 4.1 (Projection formula).Let x ∈Wi(X) ands ∈ Wj(S). Then

TrτXS/X ∗
(
s /l π

∗(x)
) = TrτS/R ∗(s) /l x.

Proof. It is easy to check that any elementx ∈ Wi(X) can be represented by ani-sym-

metric form (Q•,ψ) on Db(P(X)), such thatQ•
ψ→ T i(DXQ•) is an isomorphism of

complexes, i.e., not a fraction (hereDX is the canonical duality inDb(P(X)) andT the
translation functor in this derived category). Let furthers = [P•, ϕ] ∈Wj (S).

Then the left side of the equation can be represented on the(r, s)-component (r+ s = n)
by:

Ps ⊗R Qr → HomOXS
(P−s+j ⊗Q−r+i ,OX),

p ⊗ q �→ {
d ⊗ c �→ (−1)s+ij τ

(
ϕ(p)(d)

) ·ψ(q)(c)
}
.

The reader checks at once that this form represents also the right side of the equation.✷
We conclude with a nice application. The proof is just an adaption of the verification

of the analogous result for the classical Witt groups given by Bayer-Fluckiger and Lenstra
in [4].
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Theorem 4.2. Let X be a scheme over a fieldK andL a finite extension ofK of odd
degree. Then the natural homomorphism

Wi(X) → Wi(X ×K L)

is injective for alli ∈ Z.

Proof. It is enough to show this for a simple extensionL/K. SinceL is of odd degree
overK there exists aK-linear mapL

τ→ K, so that the corresponding transfer morphism
TrτL/K ∗ satisfies TrτL/K ∗([L, id]) = [K, id] (e.g., [9, proof of I, Proposition 10.3.1]). Our
result follows from the projection formula.✷
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