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The prevalence of null results in searches for new physics at the LHC motivates the effort to make these 
searches as model-independent as possible. We describe procedures for adapting the Matrix Element 
Method for situations where the signal hypothesis is not known a priori. We also present general and 
intuitive approaches for performing analyses and presenting results, which involve the flattening of 
background distributions using likelihood information. The first flattening method involves ranking events 
by background matrix element, the second involves quantile binning with respect to likelihood (and 
other) variables, and the third method involves reweighting histograms by the inverse of the background 
distribution.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

The CERN Large Hadron Collider (LHC) will soon resume opera-
tion, probing energies never before accessed with colliders. Ideas 
about what sort of new physics it will discover often focus on 
models that resolve the hierarchy problem [1] or provide relic dark 
matter candidates [2]. There are a great variety of ideas in each 
category. However, the lack of convincing evidence for new physics 
at the LHC to date suggests that we may be looking in the wrong 
places. We therefore consider methods that will allow the discov-
ery of any departure from known physics.

The Matrix Element Method (MEM) [3] and similar multivari-
ate analyses [4] have been used with success in LHC experiments. 
A particularly dramatic example has been the use of the MEM in 
the four-lepton channel for the discovery of the Higgs boson [5]
and the measurement of its properties [6]. Such analyses used vari-
ables, such as MELA KD [7] or MEKD [8], that involve the ratio of 
signal and background matrix elements. Clearly these variables are, 
therefore, optimized to the appropriate signal and background hy-
potheses.

It is therefore interesting to ask whether some of the advan-
tages of the MEM can be retained without (as is usually done) 
assuming a specific signal hypothesis. To this end, we propose 
the use of the background matrix element alone (or some re-

* Corresponding author.
E-mail address: jgainer137@gmail.com (J.S. Gainer).
http://dx.doi.org/10.1016/j.physletb.2015.02.020
0370-2693/© 2015 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
lated quantity) as a kinematic variable. This variable automatically 
“knows” about important properties of the background, such as 
spin correlations and kinematic edges. To make such variables 
more intuitive, we suggest “flattening” the distribution of these 
variables in various ways.

In what follows, we will briefly review the MEM and highlight 
the differences in the case where there is no signal hypothesis. We 
will then describe in detail three useful methods for flattening the 
distribution, to help make analyses using the background matrix 
element more intuitive.

2. The matrix element method

According to the Neyman–Pearson lemma [9], the optimal test 
statistic [17] for comparing hypotheses H0 and H1 is provided by 
the likelihood ratio:

R�(H0, H1) = �H0({Ei})
�H1({Ei}) , (1)

where �Hα is the likelihood for the hypothesis Hα (α = 1, 2) as 
a function of the data, which we assume consists of N events, Ei , 
i = 1, 2, . . . , N . Each event consists of a set 

{
p̃μ

j

}
of measured mo-

menta for Nvis particles.

Ei ≡
{

p̃μ
j

}
i
, j = 1,2, . . . , Nvis. (2)

In the MEM, the likelihood for a given event (2) is calculated using 
the expression
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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P(Ei |Hα) = 1

σ(Hα)
×

[Nvis∏
j=1

∫
d3 p j

(2π)32E j

]
× T ({p̃ j}, {p j})

×
[N(α)

inv∏
k=1

∫
d3qk

(2π)32Ek

]∑
a,b

fa(x1) fb(x2)

2sx1x2

× |MHα,ab({p j}, {qk})|2, (3)

where MHα,ab is the theoretical matrix element for hypothesis 
Hα , fa and fb are parton distribution functions (pdf) as a func-
tion of momentum fractions x1 and x2, while σ(Hα) is the total 
cross section after acceptances, efficiencies, etc. Note that the the-
oretical matrix element MHα,ab is a function of the corresponding 
true momenta {p j} of the Nvis visible particles, which are mapped 
onto the set of measured momenta {p̃ j} via the transfer function 
T ({p̃ j}, {p j}) which incorporates all detector effects and efficien-
cies [10]. In general, a given hypothesis Hα for the event will also 
involve a certain number N(α)

inv of invisible particles (such as neu-
trinos or dark matter candidates), whose momenta qk cannot be 
measured.

The likelihood for a set of N events {Ei} is simply the product 
of the likelihoods for each event:

�Hα ({Ei}) =
N∏
i

P(Ei |Hα). (4)

Thus the likelihood ratio (1) contains the product of ratios of 
event-by-event likelihoods described in Eq. (3). Often, the two hy-
potheses (H0 and H1) will involve the same final state, hence 
factors due to the phase space integrals in Eq. (3) will cancel in 
the likelihood ratio. We are then left with a ratio of squared matrix 
elements, possibly weighted (in the case where the hypotheses in-
volve different initial state partons) by pdfs. These squared matrix 
elements contain a great deal of information about the process, 
including the pole structure, spin correlations, etc. While the im-
plementation of an analysis using the likelihood ratio (1) as a test 
statistic may sometimes be challenging in practice, conceptually 
the implementation is straightforward and the sensitivity is, at 
least in principle, optimal [7,8].

3. Discovery from background likelihood distributions

The limitation of the MEM is that we must know the signal pro-
cess in order to calculate the appropriate likelihood. As a result, if 
we do not know what signal model we are looking for we can 
no longer consider the likelihood ratio, as we know only one hy-
pothesis, the background. It will still be useful, however, to use the 
information about the background that is encoded in the matrix el-
ement. Therefore, we propose that we consider the event-by-event 
background likelihood, P(Ei |bg), and closely-related expressions, 
as variables. Here P (Ei | bg) is either defined following Eq. (3) for 
the background hypothesis or is a similar variable (such as the 
background squared matrix element).

As an example, consider the “golden” four lepton channel in 
which the Higgs boson discovery was made. We can define the 
variable

�B =
N∑

i=1

log |Mbg(Ei)|2, (5)

where Mbg(Ei) is the pdf-weighted squared matrix element for 
qq̄ → 4� as evaluated for the final state momenta of the 2e2μ
event, Ei . This quantity can be calculated using MEKD [8] (a pack-
age for MEM calculations for the four-lepton final state based on
Fig. 1. The unit normalized distribution of �B , defined in Eq. (5) as evaluated for 
20-event pseudoexperiments consisting of background qq̄ → 4� events (red solid 
curve), gg → H → 4� signal events for a 125 GeV Higgs (green dashed curve), and 
qq̄ → 4� events for which the Z boson width has been reduced by a factor of 5
(blue dot-dashed curve). If a particular value of �B , indicated by “Data Value” is 
observed, the corresponding p-value is given by the area in gray. In this specific 
case, p ≈ 0.13.

MadGraph [11]). Fig. 1 shows distributions of �B , evaluated for 
pseudo-experiments consisting of 20 events, for three different hy-
potheses: the irreducible qq̄ → 2e2μ background (red solid curve), 
gluon fusion production of a 125 GeV Higgs boson that decays to 
2e2μ (green dashed curve), and the irreducible qq̄ → 2e2μ with 
the Z boson width scaled down by a factor of 5 (blue dot-dashed 
curve). The fact that the distributions of �B for the different sce-
narios are well-separated shows that this variable has good sen-
sitivity. In this figure, we also show graphically how a p-value, 
describing the extent to which actual data is consistent with the 
background hypothesis, can be obtained numerically for the �B
variable.

It is important to note two things:

i) We have chosen to use the pseudo-experiment variable �B , 
rather than the event by event |M|2 for convenience of illus-
tration. In general, event-by-event variables will be more sen-
sitive. Many statistical tests can be employed to test whether 
the values of |M|2 obtained for observed events agree with 
the background distribution of this quantity. Popular choices 
include Fisher’s exact test [12], the Kolmogorov–Smirnov 
test [13], and even the classic χ2 test [14].

ii) Unlike the likelihood ratio, the numerical value of variables 
like �B and |M|2 does not have a direct statistical interpre-
tation. We have highlighted this fact in Fig. 1 by selecting one 
hypothesis for which |�B |S > |�B |B (blue dot-dashed curve), 
and one for which |�B |S < |�B |B (green dashed curve). (Here 
|�B |S(B) is the average value of �B for pseudo-experiments of 
signal (background) events.)

4. How to flatten background distributions: examples

The main point of this letter is that the procedure described 
above allows one to exclude the background hypothesis in the 
presence of an unknown signal. In other words, one can confidently 
look for new physics models “away from the lamppost”, i.e., mod-
els which no theorist has yet thought of. While, in principle, any 
variable can be used to test the background hypothesis in this way, 
the use of a variable based on the background likelihood should 
additionally optimize the sensitivity of such searches.

We now present some related methods, which allow the “non-
backgroundness” of some potential signal to be shown in a clear 
and intuitive way. These methods also have the benefit that they 
generalize to any possible channel, so results and sensitivity in 
various channels can easily be compared. We emphasize that the 
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Fig. 2. Panel (a) shows how the distribution of background MEKD for background 
events is used to create a “ranking variable”. In panel (b) we show that the back-
ground distribution with respect to this ranking variable is flat, while for other 
processes the distribution of background ranking variable is not flat.

motivation for the flattening procedures is to facilitate the visual-
ization of excess and deficits in a model and channel-independent 
way, not to enhance statistical significance. Flattening approaches 
have been used before [15], though their use is underappreciated, 
which motivates our relatively detailed description of their use be-
low.

1. Flattening with ranking. In this approach, one takes the nor-
malized distribution, dN

dξ
, for some kinematic variable, ξ , and de-

fines a “ranking” variable,

r(ξ) =
ξ∫

−∞

dN

dξ ′ dξ ′. (6)

We note that r(ξ) is the cumulative distribution function for the 
background with respect to the variable ξ . We can now evaluate 
the ranking rξ of any given event E by defining

rξ (E) = r(ξ(E)), (7)

that is, the value of the ranking variable for a given event, E , is 
the value found from Eq. (6) for the value of the kinematic vari-
able ξ obtained for the event. The connection between our ranking 
variable rξ (E) and the background ξ distribution is shown pictori-
ally in Fig. 2(a). The figure also illustrates the physical meaning 
of rξ (E) — it is the fraction of background events E ′ in which 
ξ(E ′) < ξ(E). If we then consider the normalized distribution of 
the background with respect to rξ , we find that

dN

drξ

= 1, (8)

hence the distribution of this variable for background events is flat, 
as is shown in Fig. 2(b). This procedure of course works for any 
kinematic variable, ξ , we especially recommend using it with the 
sensitive matrix-element-based variables advocated above. Thus, 
one obtains a sensitive variable for which the background distribu-
tion is flat, while the distribution of signal events is characterized 
by departures from flatness, as is also shown in Fig. 2(b).

We note in passing that calculating r(ξ) from Monte Carlo (MC) 
events is quite straightforward. One simply calculates the value of 
the variable ξ for each of the N events in the MC sample, thus 
obtaining a list of values {ξi}. The value of r(ξ) is then well-
approximated by the fraction of the {ξi} which are less than ξ , 
i.e.,

r(ξ) ≈ 1

N

N∑
i=1

θ(ξ − ξi). (9)

This approach should facilitate the experimental implementation 
of this technique, though we note that care must be taken with 
respect to the possible effects of systematic uncertainties on this 
distribution.

2. Flattening with quantile bins. An alternate approach is to use 
the method of quantile bins [18]. If we are only considering 
one variable, ξ , this approach consists of finding n + 1 ξ values:
ξ1, ξ2, . . . , ξn+1, such that

ξi+1∫
ξi

dN

dξ
dξ = 1/n, i = 1, . . . ,n, (10)

i.e., the integral of the distribution is equal in each bin. This pro-
cedure can be extended to the case where there are several vari-
ables ξi , where again we demand that the integral of the distri-
bution be the same in each bin. For example, in two dimensions, 
we must choose n + 1 values of ξ1: ξ1,1, ξ1,2, . . . , ξ1,n+1 and n + 1
values of ξ2: ξ2,1, ξ2,2, . . . , ξ2,n+1, such that

ξ1,i+1∫
ξ1,i

ξ2, j+1∫
ξ2, j

d2N

dξ1dξ2
dξ1dξ2 = 1

n2
(11)

for any i and j. This procedure allows us to consider additional 
kinematic variables in addition to a likelihood-based variable. Ex-
amples of this are shown in Figs. 3 and 4, in which we consider 
the distribution of four-lepton events at the 8 TeV LHC in terms 
of the four-lepton invariant mass, m4� , and the background MEKD

value.
In Fig. 3 we show the results of an example experiment where 

we have formed quantile bins in m4� and |M|2, assuming the 
background hypothesis. We then plot the number of events in each 
quantile bin either from 150 background qq̄ → 2e2μ events (pan-
els in the top row), or 75 125-GeV Higgs signal and 75 background 
events (panels in the bottom row). The panels in the left column 
are for one 150 event pseudo-experiment, while the panels in the 
right column are for the average of 400 such pseudo-experiments. 
Fig. 4 illustrates the same concept using scatter plots. Here the 
ratio of signal to background events has been changed from 1:1 
(which is realistic for 125 GeV H → 4� signal and the qq̄ → 4�

background) to the much more challenging 1:3. Nevertheless, the 
presence of new signal can still be inferred from the anomalous 
clustering of points. Note that departures from uniform density are 
easier to interpret in the scatter plot in panel (b), which utilizes 
ranking variables.

3. Flattening with respect to all the variables. An extreme case of 
flattening the background distribution with respect to kinematic 
variables occurs when we consider a complete set of kinematic 
variables for some process. We can, of course, calculate the bound-
aries of these bins with Monte Carlo. However, in the limit where 
we have a good analytic, or at least numerical understanding of 
the background, we can perform a flattening using the background 
distribution.

Specifically, if the background (after detector simulation, etc.) 
is described by the differential distribution dn N/dξ , then if we 
weight each background event by 1/(dn N/dξ ), we will end up 
with a distribution that is flat in the full n-dimensional space of 
values. If we weight data events according to this procedure, a sig-
nal will show up as deviations from flatness. This procedure is 
demonstrated in Fig. 5. The image in the top left represents our 
background pdf. If we generate “events” (i.e., pixels) according to 
this pdf, but weigh the corresponding 2D histogram by the recip-
rocal of the pdf, then we obtain an essentially flat distribution, 
shown in the top right corner. We now consider the bottom left 
image, where some “signal” (American football and flying saucers) 
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Fig. 3. Quantile bins in m4� (x-axis) and |M|2 (y-axis) we constructed using the background (qq̄ → 2e2μ) distribution. We then plot the number of events in each quantile 
bin either from 150 background qq̄ → 2e2μ events (panels in the top row), or 75 125-GeV Higgs signal and 75 background events (panels in the bottom row). The panels in 
the left column are for one 150 event pseudo-experiment, while the panels in the right column are for the average of 400 pseudo-experiments.

Fig. 4. Simulated data consisting of 50 125-GeV Higgs gg → H → 4� events and 150 qq̄ → 4� events. In panel (a), the four-lepton invariant mass and pdf-weighted background 
squared matrix element have been plotted, while in panel (b) the ranking variable corresponding to these quantities, as defined in Eq. (6), is plotted. In each case, the dotted 
line mesh represents the quantile bin boundaries.
have been added to the background. If events are generated ac-
cording to this pdf, but weighted according to the reciprocal of 
the background pdf, we obtain the bottom right image, in which 
background features have been flattened, but signal features re-
main distinct.

5. Conclusions

We have presented methods, which utilize variables based on 
the squared matrix element, to search for new physics signals at 
the LHC in a model independent way. These approaches allow for 
model-independent exclusions of the standard model in the pres-
ence of arbitrary, unspecified, new physics. We look forward to the 
utilization of such methods in the upcoming Run 2 at the LHC.
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Fig. 5. A demonstration of filling histograms with the reciprocal of the pdf for the 
case of background only (top row) and in the presence of both signal and back-
ground (bottom row).
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