Edge Disjoint Placement of Graphs

Norbert Sauer
University of Calgary, Calgary, Canada
AND
Joel Spencer*
SUNY at Stony Brook, New York 11790
Communicated by the Editors
Received September 30, 1974

1. Notation and Introduction

We shall use standard graph theory notation. A graph G consists of a vertex set $V(G)$ and an edge set $E(G)$. All graphs will be assumed to have neither loops nor multiple edges.

We say that graphs G and H, containing an equal number of vertices, are mutually placeable (m.p.) if there is a bijection $\sigma: V(H) \rightarrow V(G)$ so that $\{i, j\} \in E(H)$ implies $\{\sigma i, \sigma j\} \notin E(G)$. We shall call such a σ a placement. Equivalently, G and H are m.p. if there exist edge disjoint copies of G, H as subgraphs of the complete graph on n vertices. In the succeeding sections, we find the following sufficient conditions for G, H to be m.p.
(1) If $|E(G)|,|E(H)| \leqslant n-2$, then G, H are m.p.
(2) If $|E(G) \| E(H)|<\binom{n}{2}$, then G, H are m.p.
(3) Set α equal the maximal degree of the points of G and β equal the maximal degree of the points of H. If $2 \alpha \beta<n$, then G, H are m.p.

We also show these results are best possible, or nearly best possible, in certain senses. We note that G, H are m.p. iff \bar{G} contains a copy of H. We use this to show, from condition (3), that if every point of G_{1} has degree $\geqslant \frac{3}{4}$, then G_{1} contains any prescribed H of maximal degree 2.

Result (1) solves a conjecture of Milner and Welsh [3] which provided the original motivation for this paper.

[^0]$$
\text { 2. The case }|E(G)|,|E(H)| \leqslant n-2
$$

The object of this section is to prove the following.
Theorem 1. If $|E(G)|,|E(H)| \leqslant n-2$, when $n=|V(H)|=|V(G)|$, then G, H are mutually placeable.

Proof. We use induction on n. The theorem is straightforward for small n, say $n \leqslant 5$. Now fix G, H on n vertices and assume the theorem true for any smaller number of vertices. It suffices to show G, H are m.p. under the additional hypothesis $|E(G)|=|E(H)|=n-2$. For then, given any G_{1}, H_{1} satisfying the theorem's hypotheses we extend arbitrarily to G, H with $n-2$ edges and the bijection σ for G, H works also for G_{1}, H_{1}.

By a tree in G or H let us mean an isolated component with t vertices and $t-1$ edges, some t. This includes the cases $t=1$, isolated point, and $t=2$, isolated edge. Each t vertex component which is not a tree must have at least t edges. Thus, by an elementary counting argument, G and H must each contain at least two trees. The proof splits into several cases, with case (a) containing the main idea.

Case (a): Neither G nor H contain isolated points or edges. In a tree with $\geqslant 3$ vertices we may always find an end point α of degree 1 joined to a vertex β of degree >1. Let us use the notation $\alpha \rightarrow \beta$ if vertex α is joined only to vertex β.

Fig. 1. Case (a).
In G we find in the two trees vertices $1,2,3,4$ such that $1 \rightarrow 2,3 \rightarrow 4,2$ and 4 have degrees >1 and $\{2,3\} \notin E(G)$ (since they are in different components). In H we find vertices $a, b, c, d, a \rightarrow b, c \rightarrow d$, and the analogous properties. Let

$$
G^{*}-G\left|(V(G)-\{1,2,3,4\}), \quad H^{*}=H\right|(V(H)-\{a, b, c, d\})
$$

Then $\left|E\left(G^{*}\right)\right| \leqslant|E(G)|-4=\left|V\left(G^{*}\right)\right|-2$ and $\left|E\left(H^{*}\right)\right| \leqslant|E(H)|-4=$ $\left|V\left(H^{*}\right)\right|-2$, since in G, the vertices $\{1,2,3,4\}$ are on at least 4 edges, and similarly for H. Hence we find a placement

$$
\sigma^{*}: V\left(G^{*}\right) \rightarrow V\left(H^{*}\right)
$$

Extend σ^{*} to

$$
\sigma: V(G) \rightarrow V(H)
$$

defined by

$$
\begin{aligned}
\sigma(x) & =\sigma^{*}(x), & x & \neq 1,2,3,4, \\
\sigma(1) & =b, & \sigma(3) & =d, \\
\sigma(2) & =c, & \sigma(4) & =a .
\end{aligned}
$$

We claim σ is a placement. For suppose $\{i, j\} \in E(G)$. If $i, j \notin\{1,2,3,4\}$, then $\left\{\sigma_{i}, \sigma_{j}\right\} \notin E(H)$ since σ^{*} is a placement. Suppose $i=1$. Then $\{i, j\} \in E(G)$ only if $j=2$ but $\{\sigma 1, \sigma 2\}=\{b, c\} \notin E(H)$. Suppose $i=2$. Then if $E(H)$ contains $\left\{\sigma_{i}, \sigma_{j}\right\}=\left\{c, \sigma_{j}\right\}$ we must have $\sigma j=d$, so $j=3$ but $\{2,3\} \notin E(G)$. The cases $i=3,4$ are analogous.

Case (b): There is a component of size 2 in either G or H. We may assume $\{1,2\}$ is a two-point component in G. The remaining $n-2$ vertices have $n-3$ edges so we find a point $3 \in V(G)$ of degree $\geqslant 2$.

Subcase (bl): H has no isolated point. Take a tree component and find $a, b \in V(H), a \rightarrow b$. Pick $c \in V(H),\{b, c\} \notin E(H), c$ of maximal degree. (Some $c,\{b, c\} \notin E(H)$, exists as there are only $n-2$ edges.) If $\operatorname{deg}(b)=1$, then $\operatorname{deg}(c) \geqslant 2$. Otherwise, we find $\operatorname{deg}(c) \geqslant 1$ unless all edges of H contain b. In any case $\{a, b, c\}$ are in at least 3 edges. Now we find a placement σ^{*} : $V(G)-\{1,2,3\} \rightarrow V(H)-\{a, b, c\}$ and extend to σ by $\sigma(1)=b, \sigma(2)=c$, $\sigma(3)=a$.

Fig. 2. Case (b1)
Subcase (b2): H has an isolated point, say $a \in V(H)$. Pick $b \in V(H)$ of maximal degree and $c \in V(H)$ of maximal degree so that $c \neq a,\{b, c\} \notin E(H)$.
Subsubcase (b21): If no such c exists H must be an isolated point a plus a star with center b of degree $n-2$. In this case sct $\sigma(1)=b, \sigma(2)=a$ rest arbitrary.

Continuation of (b2): By elementary counting $\operatorname{deg}(b) \geqslant 2$ and, excluding case (b21), $\operatorname{deg}(c) \geqslant 1$. We find a placement $\sigma^{*}: V(G)-\{1,2,3\} \rightarrow V(H)-$ $\{a, b, c\}$ and extend by $\sigma(1)=b, \sigma(2)=c, \sigma(3)=a$.

Case (c): There are no two point components but there are isolated points. Suppose $1 \in V(G)$ is an isolated point. Pick $2 \in V(G)$ with $\operatorname{deg}(2) \geqslant 2$.

Subcase (c1): H has an isolated point a. Pick $b \in V(H), \operatorname{deg}(b) \geqslant 2$. Find a placement $\sigma^{*}: V(G)-\{1,2\} \rightarrow V(H)-\{a, b\}$ and extend by $\sigma(1)=b$, $\sigma(2)=b$.

Subcase (c2): H has no isolated points. If H has two-point components

Fig. 3. Case (b21)

Fig. 4. Case (b2)
we use case (b). Otherwise we find a component with points $a, b \in V(H)$, $a \rightarrow b, \operatorname{deg}(b) \geqslant 2$. Find a placement with points $a, b \in V(H), a \rightarrow b$, deg (b) $\geqslant 2$. Find a placement $\sigma^{*}: V(G)-\{1,2\} \rightarrow V(H)-\{a, b\}$ and extend by $\sigma(1)=b, \sigma(2)=a$.
Q.E.D.

Example. Theorem 1 is, in a certain sense, best possible. Let G be a star,

Fig. 5. Case (c1)
with $n-1$ edges, and H be a graph with no isolated points and $\left\{\frac{1}{2}\right\}$ edges. Then G, H are not mutually placeable.
The object of this scction is to prove the following:

H

Fig. 6. Case (c2)
Theorem 2. If $|E(G)||E(H)|<\binom{n}{2}$ then G, H are mutually placeable.
We note that for n even the example of the previous section shows that Theorem 2 is best possible.

Proof. Fix G, H satisfying the conditions of Theorem 2. We use the probabilistic method. Let σ be a random bijection from $V(G)$ to $V(H)$. More precisely, consider the probability space whose n ! points are the possible bijections σ, cach with probability $n!^{-1}$. For any $e=\{i, j\} \in E(G), f=\{a, b\} \in$ $E(H)$, let $A_{e f}$ denote the event $\sigma(e)=f$. Then

$$
\operatorname{Prob}\left[A_{e f}\right]=2(n-2)!/ n!=\binom{n}{2}^{-1} .
$$

Let $A=V A_{e f}$, the disjunction over all $e \in E(G), f \in E(H)$. Then

$$
\begin{aligned}
\operatorname{Prob}[A] & =\operatorname{Prob}\left[V A_{e f}\right] \\
& \leqslant \sum \operatorname{Prob}\left[A_{e f}\right] \\
& =|E(G)||E(H)|\binom{n}{2}^{-1}<1 .
\end{aligned}
$$

Hence for some fixed σ the event A does not hold. That is, σ is a placement.
Q.E.D.

Corollary 1. If n even, $n=2 m$, and $|E(G)|+|E(H)|<3 m-2$, then G, H are mutually placeable.

If n odd, $n=2 m-1$, and $|E(G)|+|E(H)| \leqslant 3 m$, then G, H are mutually placeable.

These results follow from application of Theorems 1 and 2. They are best possible by Example 1.

4. Maximal Degree Conditions

Theorem 3. ${ }^{1} \quad$ Let $|V(G)|=|V(H)|=n$. Let α be the maximal degree of the vertices of G and β the maximal degree of the vertices of H. Assume

$$
2 \alpha \beta<n .
$$

Then G, H are mutually placeable.
Proof. Let $\sigma: V(G) \rightarrow V(H)$ be the bijection which minimizes | $\sigma(E(G)) \cap$ $E(H) \mid$. Assume $\{a, c\} \in \sigma(E(G)) \cap E(H)$. We shall derive a contradiction by finding σ^{*} with smaller intersection. We examine those $b \in V(H)$ such that either
(i) $b=a$,
(ii) $\{a, b\} \in \sigma(E(G)) \cap E(H)$,
(iii) for some $x \in V(H),\{a, x\} \in \sigma(E(G)),\{x, b\} \in E(H)$,
or
(iv) for some $y \in V(H),\{a, y\} \in E(H),\{y, b\} \in \sigma(E(G))$.

There are at most $\alpha \beta$'s satisfying (iii) and, similarly (iv). More precisely, if $t b$'s satisfy (ii) at most $\alpha \beta-t$ satisfy (iii) and similarly (iv). Hence at most $1+t+2(\alpha \beta-t) \leqslant 2 \alpha \beta$ points satisfy one of these conditions. Fix $b \in V(H)$ satisfying none of (i)-(iv). Define σ^{*} by

$$
\begin{array}{ccc}
\sigma^{*}(i)=\sigma(i), & & \text { f } \sigma(i) \neq a, b, \\
b, & & \text { i } \sigma(i)=a, \\
a, & & \text { if } \sigma(i)=b .
\end{array}
$$

That is, "flip" a and b in the map σ^{*}. Let

$$
\{x, y\} \in E(H) \cap \sigma^{*}(E(G)) ;
$$

if $\{x, y\} \cap\{a, b\}=\varnothing$, then $\{x, y\}$ was in $E(H) \cap \sigma(E(G))$. But no $\{a, z\}$ or $\{b, z\}$ can be in $E(H) \cap \sigma^{*}(E(G))$. For if, say, $\{a, z\}$ was, then $\{a, z\} \in E(H)$, $\{b, z\} \in \sigma(E(G))$, but then b would satisfy (iv). The other cases are similar. Hence

$$
\left|E(H) \cap \sigma^{*}(E(G))\right|<|E(G) \cap \sigma(E(G))|
$$

implying the theorem.
Q.E.D.

Now we outline a proof that Theorem 3 is nearly best possible. We show
${ }^{1}$ Theorem 3 was proven independently by Paul Catlin.
that there exist G, H with $\alpha \sim 2 n^{1 / 2}, \beta \sim 2 n^{1 / 2} \ln n$ so that G, Z are not mutually placeable. Let G be a fixed regular graph of degree $2 n^{1 / 2}$ and, therefore, $n^{3 / 2}$ edges. Let \mathbf{H} be a random graph on $V(H)$ where each edge $\{i, j\} \in$ $E(\mathbf{H})$ with independent probability $p=n^{-1 / 2} \ln n$. Now fix $\sigma: V(G) \rightarrow V(H)$. Then

$$
\begin{array}{rlrl}
\operatorname{Prob} & {[E(\mathbf{H}) \cap \sigma(E(G))=\varnothing]} & & \\
& =\operatorname{Prob}[\Lambda\{i, j\} \notin E(\mathbf{H})] & (\text { over }\{i, j\} \in \sigma(E(G))) \\
& =\prod \operatorname{Prob}[\{i, j\} \notin E(\mathbf{H})] & (\text { over }\{i, j\} \in \sigma(E(G)))
\end{array}
$$

(since each edge of \mathbf{H} is chosen independently)

$$
=(1-p)^{n^{3 / 2}} \sim e^{-p n^{3 / 2}} \sim n^{-n} .
$$

Now

$$
\begin{aligned}
& \operatorname{Prob}[H, G \text { mutually placeable }] \\
& \quad \leqslant \sum_{\sigma} \operatorname{Prob}[E(H) \cap \sigma(E(G))=\varnothing] \\
& \quad<n!n^{-n} \sim e^{-n},
\end{aligned}
$$

so "almost always" H and G are not m.p. However, any $a \in V(H)$ has degree given by the binomial distribution $B(n-1, p)$ and so is less than $n p(1-\epsilon)=$ $(1+\epsilon) n^{1 / 2} \ln n$ all but $o\left(n^{-1}\right)$ of the time and so the maximal degree $\beta \leqslant$ $(1+\epsilon) n^{1 / 2} \ln n$ "almost always." Thus we may find a specific H with $\beta \leqslant(1+\epsilon) n^{1 / 2} \ln n$ and G, H not m.p.

5. Circuits and Triangles

Consider the statement: If G has property A and H has property B, then G, H are m.p. We may rewrite this as follows: If G has property A and H^{c} has property B then H contains an isomorphic copy of G. Here H^{c} is the complementary graph to H. The observation is merely that a placement $\sigma: V(G) \rightarrow \sigma(H)$ gives $\sigma(E(G)) \subseteq \sigma\left(E\left(H^{c}\right)\right)$.

We express Theorem 3 with $\alpha=2, \beta<\frac{1}{4} n$ in this form.
Corollary 2. Let G be any graph on n points with maximal degree $\leqslant 2$. Let H be a graph on n points with all points of valence $>\frac{3}{4} n$. Then H contains an isomorphic copy of G.

Let γ represent the minimal degree of the points of H. If G is a circuit on n points, Corollary 2 is improved by

Theorem (Dirac [2]). If $\gamma>\frac{1}{2} n$, then H contains a Hamiltonian circuit.
If $n=3 m$ and G consists of m disjoint triangles, then Corollary 2 is improved by

Theorem (Corradi, Hajnal [1]). If $\gamma \geqslant \frac{2}{3}$, then H contains $\frac{1}{3} n$ vertex disjoint triangles.

Conjecture. Let G be any graph on n points with maximal degree $\leqslant 2$. If H is a graph on n points with minimal degree $>\frac{2}{3} n$ then H contains an isomorphic copy of G.

References

1. H. Corradi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Hung. 14 (19-), 423-439.
2. G. A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952), 69-81.
3. E. C. Milner and D. J. A. Welsh (unpublished).

[^0]: *Supported by ONR N00014-67-A-0204-0063.

