JOURNAL OF COMBINATORIAL THEORY, Series B 25, 295-302 (1978)

Edge Disjoint Placement of Graphs

NORBERT SAUER

University of Calgary, Calgary, Canada

AND

JOEL SPENCER*

SUNY at Stony Brook, New York 11790 Communicated by the Editors Received September 30, 1974

1. NOTATION AND INTRODUCTION

We shall use standard graph theory notation. A graph G consists of a vertex set V(G) and an edge set E(G). All graphs will be assumed to have neither loops nor multiple edges.

We say that graphs G and H, containing an equal number of vertices, are *mutually placeable* (m.p.) if there is a bijection $\sigma: V(H) \rightarrow V(G)$ so that $\{i, j\} \in E(H)$ implies $\{\sigma i, \sigma j\} \notin E(G)$. We shall call such a σ a *placement*. Equivalently, G and H are m.p. if there exist edge disjoint copies of G, H as subgraphs of the complete graph on n vertices. In the succeeding sections, we find the following sufficient conditions for G, H to be m.p.

- (1) If |E(G)|, $|E(H)| \leq n 2$, then G, H are m.p.
- (2) If $|E(G)||E(H)| < \binom{n}{2}$, then G, H are m.p.

(3) Set α equal the maximal degree of the points of G and β equal the maximal degree of the points of H. If $2\alpha\beta < n$, then G, H are m.p.

We also show these results are best possible, or nearly best possible, in certain senses. We note that G, H are m.p. iff \overline{G} contains a copy of H. We use this to show, from condition (3), that if every point of G_1 has degree $\geq \frac{3}{4}$, then G_1 contains any prescribed H of maximal degree 2.

Result (1) solves a conjecture of Milner and Welsh [3] which provided the original motivation for this paper.

* Supported by ONR N00014-67-A-0204-0063.

SAUER AND SPENCER

2. The case
$$|E(G)|$$
, $|E(H)| \leq n-2$

The object of this section is to prove the following.

THEOREM 1. If |E(G)|, $|E(H)| \leq n-2$, when n = |V(H)| = |V(G)|, then G, H are mutually placeable.

Proof. We use induction on *n*. The theorem is straightforward for small n, say $n \leq 5$. Now fix G, H on n vertices and assume the theorem true for any smaller number of vertices. It suffices to show G, H are m.p. under the additional hypothesis |E(G)| = |E(H)| = n - 2. For then, given any G_1 , H_1 satisfying the theorem's hypotheses we extend arbitrarily to G, H with n - 2 edges and the bijection σ for G, H works also for G_1 , H_1 .

By a *tree* in G or H let us mean an isolated component with t vertices and t-1 edges, some t. This includes the cases t = 1, isolated point, and t = 2, isolated edge. Each t vertex component which is not a tree must have at least t edges. Thus, by an elementary counting argument, G and H must each contain at least two trees. The proof splits into several cases, with case (a) containing the main idea.

Case (a): Neither G nor H contain isolated points or edges. In a tree with ≥ 3 vertices we may always find an end point α of degree 1 joined to a vertex β of degree >1. Let us use the notation $\alpha \rightarrow \beta$ if vertex α is joined only to vertex β .

In G we find in the two trees vertices 1, 2, 3, 4 such that $1 \rightarrow 2, 3 \rightarrow 4, 2$ and 4 have degrees >1 and $\{2, 3\} \notin E(G)$ (since they are in different components). In H we find vertices a, b, c, d, $a \rightarrow b$, $c \rightarrow d$, and the analogous properties. Let

$$G^* = G | (V(G) - \{1, 2, 3, 4\}), \quad H^* = H | (V(H) - \{a, b, c, d\})$$

Then $|E(G^*)| \leq |E(G)| - 4 = |V(G^*)| - 2$ and $|E(H^*)| \leq |E(H)| - 4 = |V(H^*)| - 2$, since in G, the vertices $\{1, 2, 3, 4\}$ are on at least 4 edges, and similarly for H. Hence we find a placement

Extend
$$\sigma^*$$
 to
 $\sigma : V(G^*) \to V(H^*).$

defined by

$$\sigma(x) = \sigma^*(x), \qquad x \neq 1, 2, 3, 4,$$

 $\sigma(1) = b, \qquad \sigma(3) = d,$
 $\sigma(2) = c, \qquad \sigma(4) = a.$

We claim σ is a placement. For suppose $\{i, j\} \in E(G)$. If $i, j \notin \{1, 2, 3, 4\}$, then $\{\sigma_i, \sigma_j\} \notin E(H)$ since σ^* is a placement. Suppose i = 1. Then $\{i, j\} \in E(G)$ only if j = 2 but $\{\sigma 1, \sigma 2\} = \{b, c\} \notin E(H)$. Suppose i = 2. Then if E(H) contains $\{\sigma_i, \sigma_j\} = \{c, \sigma_j\}$ we must have $\sigma j = d$, so j = 3 but $\{2, 3\} \notin E(G)$. The cases i = 3, 4 are analogous.

Case (b): There is a component of size 2 in either G or H. We may assume $\{1, 2\}$ is a two-point component in G. The remaining n - 2 vertices have n - 3 edges so we find a point $3 \in V(G)$ of degree ≥ 2 .

Subcase (b1): *H* has no isolated point. Take a tree component and find $a, b \in V(H), a \rightarrow b$. Pick $c \in V(H), \{b, c\} \notin E(H), c$ of maximal degree. (Some $c, \{b, c\} \notin E(H)$, exists as there are only n - 2 edges.) If deg(b) = 1, then deg(c) ≥ 2 . Otherwise, we find deg(c) ≥ 1 unless all edges of *H* contain *b*. In any case $\{a, b, c\}$ are in at least 3 edges. Now we find a placement σ^* : $V(G) - \{1, 2, 3\} \rightarrow V(H) - \{a, b, c\}$ and extend to σ by $\sigma(1) = b, \sigma(2) = c, \sigma(3) = a$.

Subcase (b2): *H* has an isolated point, say $a \in V(H)$. Pick $b \in V(H)$ of maximal degree and $c \in V(H)$ of maximal degree so that $c \neq a$, $\{b, c\} \notin E(H)$.

Subsubcase (b21): If no such c exists H must be an isolated point a plus a star with center b of degree n - 2. In this case set $\sigma(1) = b$, $\sigma(2) = a$ rest arbitrary.

Continuation of (b2): By elementary counting deg(b) ≥ 2 and, excluding case (b21), deg(c) ≥ 1 . We find a placement $\sigma^* : V(G) - \{1, 2, 3\} \rightarrow V(H) - \{a, b, c\}$ and extend by $\sigma(1) = b$, $\sigma(2) = c$, $\sigma(3) = a$.

Case (c): There are no two point components but there are isolated points. Suppose $1 \in V(G)$ is an isolated point. Pick $2 \in V(G)$ with deg $(2) \ge 2$. Subcase (c1): *H* has an isolated point *a*. Pick $b \in V(H)$, deg(*b*) ≥ 2 . Find a placement $\sigma^* : V(G) - \{1, 2\} \rightarrow V(H) - \{a, b\}$ and extend by $\sigma(1) = b$, $\sigma(2) = b$.

Subcase (c2): H has no isolated points. If H has two-point components

we use case (b). Otherwise we find a component with points $a, b \in V(H)$, $a \rightarrow b$, deg(b) ≥ 2 . Find a placement with points $a, b \in V(H)$, $a \rightarrow b$, deg (b) ≥ 2 . Find a placement $\sigma^* : V(G) - \{1, 2\} \rightarrow V(H) - \{a, b\}$ and extend by $\sigma(1) = b, \sigma(2) = a$. Q.E.D.

EXAMPLE. Theorem 1 is, in a certain sense, best possible. Let G be a star,

FIG. 5. Case (c1)

with n-1 edges, and H be a graph with no isolated points and $\{\frac{1}{2}\}$ edges. Then G, H are not mutually placeable.

The object of this section is to prove the following:

THEOREM 2. If $|E(G)||E(H)| < \binom{n}{2}$ then G, H are mutually placeable.

We note that for n even the example of the previous section shows that Theorem 2 is best possible.

Proof. Fix G, H satisfying the conditions of Theorem 2. We use the probabilistic method. Let σ be a random bijection from V(G) to V(H). More precisely, consider the probability space whose n! points are the possible bijections σ , each with probability $n!^{-1}$. For any $e = \{i, j\} \in E(G), f = \{a, b\} \in E(H)$, let A_{ef} denote the event $\sigma(e) = f$. Then

Prob
$$[A_{ef}] = 2(n-2)!/n! = {\binom{n}{2}}^{-1}.$$

Let $A = VA_{ef}$, the disjunction over all $e \in E(G)$, $f \in E(H)$. Then

$$Prob[A] = Prob[VA_{ef}]$$

$$\leq \sum Prob[A_{ef}]$$

$$= |E(G)| |E(H)| {\binom{n}{2}}^{-1} < 1.$$

Hence for some fixed σ the event A does not hold. That is, σ is a placement. Q.E.D.

COROLLARY 1. If n even, n = 2m, and |E(G)| + |E(H)| < 3m - 2, then G, H are mutually placeable.

If n odd, n = 2m - 1, and $|E(G)| + |E(H)| \leq 3m$, then G, H are mutually placeable.

These results follow from application of Theorems 1 and 2. They are best possible by Example 1.

SAUER AND SPENCER

4. MAXIMAL DEGREE CONDITIONS

THEOREM 3.¹ Let |V(G)| = |V(H)| = n. Let α be the maximal degree of the vertices of G and β the maximal degree of the vertices of H. Assume

 $2\alpha\beta < n$.

Then G, H are mutually placeable.

Proof. Let $\sigma: V(G) \to V(H)$ be the bijection which minimizes $| \sigma(E(G)) \cap E(H) |$. Assume $\{a, c\} \in \sigma(E(G)) \cap E(H)$. We shall derive a contradiction by finding σ^* with smaller intersection. We examine those $b \in V(H)$ such that either

(i)
$$b = a$$
,

(ii)
$$\{a, b\} \in \sigma(E(G)) \cap E(H)$$

(iii) for some
$$x \in V(H)$$
, $\{a, x\} \in \sigma(E(G))$, $\{x, b\} \in E(H)$,

or

(iv) for some
$$y \in V(H)$$
, $\{a, y\} \in E(H)$, $\{y, b\} \in \sigma(E(G))$.

There are at most $\alpha\beta$ b's satisfying (iii) and, similarly (iv). More precisely, if t b's satisfy (ii) at most $\alpha\beta - t$ satisfy (iii) and similarly (iv). Hence at most $1 + t + 2(\alpha\beta - t) \le 2\alpha\beta$ points satisfy one of these conditions. Fix $b \in V(H)$ satisfying none of (i)–(iv). Define σ^* by

$$\sigma^*(i) = \sigma(i), \quad \text{if } \sigma(i) \neq a, b,$$

 $b, \quad \text{if } \sigma(i) = a,$
 $a, \quad \text{if } \sigma(i) = b.$

That is, "flip" a and b in the map σ^* . Let

$$\{x, y\} \in E(H) \cap \sigma^*(E(G));$$

if $\{x, y\} \cap \{a, b\} = \emptyset$, then $\{x, y\}$ was in $E(H) \cap \sigma(E(G))$. But no $\{a, z\}$ or $\{b, z\}$ can be in $E(H) \cap \sigma^*(E(G))$. For if, say, $\{a, z\}$ was, then $\{a, z\} \in E(H)$, $\{b, z\} \in \sigma(E(G))$, but then b would satisfy (iv). The other cases are similar. Hence

$$|E(H) \cap \sigma^*(E(G))| < |E(G) \cap \sigma(E(G))|$$

implying the theorem.

Now we outline a proof that Theorem 3 is nearly best possible. We show

Q.E.D.

¹ Theorem 3 was proven independently by Paul Catlin.

that there exist G, H with $\alpha \sim 2n^{1/2}$, $\beta \sim 2n^{1/2} \ln n$ so that G, Z are not mutually placeable. Let G be a fixed regular graph of degree $2n^{1/2}$ and, therefore, $n^{3/2}$ edges. Let H be a random graph on V(H) where each edge $\{i, j\} \in$ $E(\mathbf{H})$ with independent probability $p = n^{-1/2} \ln n$. Now fix $\sigma: V(G) \rightarrow V(H)$. Then

$$Prob[E(\mathbf{H}) \cap \sigma(E(G)) = \emptyset]$$

=
$$Prob[A\{i, j\} \notin E(\mathbf{H})] \qquad (over \{i, j\} \in \sigma(E(G)))$$

=
$$\prod Prob[\{i, j\} \notin E(\mathbf{H})] \qquad (over \{i, j\} \in \sigma(E(G)))$$

(since each edge of H is chosen independently)

 $= (1 - p)^{n^{3/2}} \sim e^{-pn^{3/2}} \sim n^{-n}.$

Now

Prob[H, G mutually placeable] $\leq \sum_{\sigma} \operatorname{Prob}[E(H) \cap \sigma(E(G)) = \emptyset]$ $< n! \ n^{-n} \sim e^{-n},$

so "almost always" *H* and *G* are not m.p. However, any $a \in V(H)$ has degree given by the binomial distribution B(n-1, p) and so is less than $np(1-\epsilon) = (1+\epsilon) n^{1/2} \ln n$ all but $o(n^{-1})$ of the time and so the maximal degree $\beta \leq (1+\epsilon) n^{1/2} \ln n$ "almost always." Thus we may find a specific *H* with $\beta \leq (1+\epsilon) n^{1/2} \ln n$ and *G*, *H* not m.p.

5. CIRCUITS AND TRIANGLES

Consider the statement: If G has property A and H has property B, then G, H are m.p. We may rewrite this as follows: If G has property A and H^c has property B then H contains an isomorphic copy of G. Here H^c is the complementary graph to H. The observation is merely that a placement $\sigma: V(G) \to \sigma(H)$ gives $\sigma(E(G)) \subseteq \sigma(E(H^c))$.

We express Theorem 3 with $\alpha = 2, \beta < \frac{1}{4}n$ in this form.

COROLLARY 2. Let G be any graph on n points with maximal degree ≤ 2 . Let H be a graph on n points with all points of valence $> \frac{3}{4}n$. Then H contains an isomorphic copy of G.

Let γ represent the minimal degree of the points of *H*. If *G* is a circuit on *n* points, Corollary 2 is improved by

SAUER AND SPENCER

THEOREM (Dirac [2]). If $\gamma > \frac{1}{2}n$, then H contains a Hamiltonian circuit.

If n = 3m and G consists of m disjoint triangles, then Corollary 2 is improved by

THEOREM (Corradi, Hajnal [1]). If $\gamma \ge \frac{2}{3}$, then H contains $\frac{1}{3}n$ vertex disjoint triangles.

Conjecture. Let G be any graph on n points with maximal degree ≤ 2 . If H is a graph on n points with minimal degree $>\frac{2}{3}n$ then H contains an isomorphic copy of G.

References

- 1. H. CORRADI AND A. HAJNAL, On the maximal number of independent circuits in a graph, Acta Math. Hung. 14 (19--), 423-439.
- 2. G. A. DIRAC, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952), 69-81.
- 3. E. C. MILNER AND D. J. A. WELSH (unpublished).