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1. NOTATION AND INTRODUCTION

We shall use standard graph theory notation. A graph G consists of a
vertex set V(G) and an edge set E(G). All graphs will be assumed to have
neither loops nor multiple edges.

We say that graphs G and H, containing an equal number of vertices, are
mutually placeable (m.p.) if there is a bijection o : V(H)— V(G) so that
{i,j} € E(H) implies {ci, aj} ¢ E(G). We shall call such a o a placement.
Equivalently, G and H are m.p. if there exist edge disjoint copies of G, H as
subgraphs of the complete graph on n vertices. In the succeeding sections,
we find the following sufficient conditions for G, H to be m.p. .

(1) If| E(G)|,| E(H) <n— 2,then G, H are m.p.
(2) If | E(G)|| E(H)| < (3), then G, H are m.p.

(3) Set « equal the maximal degree of the points of G and B equal the
maximal degree of the points of H. If 208 < n, then G, H are m.p.

We also show these results are best possible, or nearly best possible, in
certain senses. We note that G, H are m.p. iff G contains a copy of H. We use
this to show, from condition (3), that if every point of G, has degree > %,
then G contains any prescribed H of maximal degree 2.

Result (1) solves a conjecture of Milner and Welsh [3] which provided the
original motivation for this paper.

* Supported by ONR N00014-67-A-0204-0063.
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2. THE cAsSE | E(G)|, | E(H)| <n—2

The object of this section is to prove the following.

THeoREM 1. If | E(G)|, | E(H) <n — 2, when n= | V(H) = | V(G)|,
then G, H are mutually placeable.

Proof. We use induction on z. The theorem is straightforward for small
n, say n < 5. Now fix G, H on n vertices and assume the theorem true for
any smaller number of vertices. It suffices to show G, H are m.p. under the
additional hypothesis | E(G)] = | E(H)| = n — 2. For then, given any
G, , H, satisfying the theorem’s hypotheses we extend arbitrarily to G, H
with n — 2 edges and the bijection o for G, H works also for G, , H, .

By a tree in G or H let us mean an isolated component with ¢ vertices and
t — 1 edges, some 2. This includes the cases ¢ = 1, isolated point, and ¢ = 2,
isolated edge. Each ¢ vertex component which is not a tree must have at least
t edges. Thus, by an elementary counting argument, G and H must each
contain at least two trees. The proof splits into several cases, with case (a)
containing the main idea.

Case (a): Neither G nor H contain isolated points or edges. In a tree with
>3 vertices we may always find an end point « of degree | joined to a
vertex B of degree >1. Let us use the notation o — 8 if vertex « is joined
only to vertex f.

Fig. 1. Case (a).

In G we find in the two trees vertices 1, 2, 3, 4 such that 1 - 2,3 —4,2and 4
have degrees >1 and {2, 3} ¢ E(G) (since they are in different components). In
H we find vertices a, b, ¢, d, a — b, ¢ — d, and the analogous properties. Let

G*=G|(V(G) —{1,2,3,4)), H* = H|(V(H) — {a, b, ¢, d}).

Then | E(G¥)| < | E(G)] — 4 = | V(G*)| — 2and | E(H¥)| <|E(H)| — 4=
| V(H*)| — 2, since in G, the vertices {1, 2, 3, 4} are on at least 4 edges, and
similarly for H. Hence we find a placement
o* : V(G*) — V(H*).
Extend o* to
o : V(G) — V(H)
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defined by
a(x) = o*(x), x#1,2,3,4,
0'(1) = b, 0(3) = ds
o(2) =, a4) = a.

We claim o is a placement. For suppose {i,j} € E(G). If i, j ¢ {1, 2, 3, 4}, then
{6;, 0;} ¢ E(H) since o* is a placement. Suppose i = 1. Then {i,j} € E(G)
only if j =2 but {ol, 02} = {b, c} ¢ E(H). Suppose i = 2. Then if E(H)
contains {o; , 9;} = {c, o;} we must have of = d, so j = 3 but {2, 3} ¢ E(G).
The cases [ = 3, 4 are analogous.

Case (b): There is a component of size 2 in either G or H. We may assume
{1, 2} is a two-point component in G. The remaining » — 2 vertices have
n — 3 edges so we find a point 3 € V(G) of degree >2.

Subcase (bl): H has no isolated point. Take a tree component and find
a,be V(H),a— b. Pick c € V(H), {b, ¢} ¢ E(H), c of maximal degree. (Some
¢, {b, ¢} ¢ E(H), exists as there are only » — 2 edges.) If deg(b) = 1, then
deg(c) > 2. Otherwise, we find deg(c) > 1 unless all edges of H contain b.
In any case {a, b, ¢} are in at least 3 edges. Now we find a placement o*:
V(G) — {1, 2,3} — V(H) — {a, b, ¢} and extend to o by o(l) = b, o(2) = ¢,

ai3)=a.
6 1 2 <.

b .
H : .

Fic. 2. Case (bl)

Subcase (b2): H has an isolated point, say a € V(H). Pick b e V(H) of
maximal degree and ¢ € V(H) of maximal degree so that ¢ + a, {b, ¢} ¢ E(H).

Subsubcase (b21): If no such ¢ exists H must be an isolated point a plus
a star with center b of degree n — 2. In this case set o(1) = b, 0(2) = a rest
arbitrary.

Continuation of (b2): By elementary counting deg(d) > 2 and, excluding
case (b21), deg(c) > 1. We find a placement o* : V(G) — {1, 2, 3} — V(H) —
{a, b, ¢} and extend by o(1) = b, o(2) = ¢, 0(3) = a.

Case (¢): There are no two point components but there are isolated points.
Suppose 1 € V(G) is an isolated point. Pick 2 € ¥(G) with deg(2) = 2.
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Subcase (c1): H has an isolated point a. Pick b € V(H), deg(b) > 2. Find
a placement o* : V(G) — {1,2} — V(H) — {a, b} and extend by o(1) = b,
a(2) = b.

Subcase (c2): H has no isolated points. If H has two-point components

6 3
a b [
H .

Fic. 4. Case (b2)

we use case (b). Otherwise we find a component with points a, b ¢ V(H),
a— b, deg(b) > 2. Find a placement with points a, b € V(H), a — b, deg
(b) = 2. Find a placement o* : ¥(G) — {1, 2} — V(H) — {a, b} and extend
by o(1) = b, 0(2) = a. Q.E.D.

ExaMpPLE. Theorem 1 is, in a certain sense, best possible. Let G be a star,

(]
o
/N\
[ N

[=3
o
[ I

Fic. 5. Case (cl)
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with n — 1 edges, and H be a graph with no isolated points and {}} edges.
Then G, H are not mutually placeable.
The object of this section is to prove the following:

6 2<
®

b *
Ho e .

FiG. 6. Case (c2)

THeOREM 2. If | E(G)|} E(H)| < (3) then G, H are mutually placeable.

We note that for n even the example of the previous section shows that
Theorem 2 is best possible.

Proof. Fix G, H satisfying the conditions of Theorem 2. We use the
probabilistic method. Let o be a random bijection from V(G) to V(H). More
precisely, consider the probability space whose #! points are the possible
bijections o, each with probability n!-1. For any e = {i,j} € E(G), f = {a, b} €
E(H), let A,; denote the event o(e) = f. Then

ProblA,,] — 2(1 — 2)}jn! = (;’)~1

Let 4 = VA,,, the disjunction over all e € E(G), f€ E(H). Then

Prob[A] = Prob[VA,]
< Y Probl4,,]
—1E@I Em) () <1

Hence for some fixed o the event 4 does not hold. That is, ¢ is a place-
ment, Q.E.D.

COROLLARY 1. Ifn even, n = 2m, and | E(G)| + | E(H)| < 3m — 2, then
G, H are mutually placeable.

Ifnodd,n = 2m — 1, and | E(G)| + | E(H)| < 3m, then G, H are mutually
placeable.

These results follow from application of Theorems 1 and 2. They are best
possible by Example 1.
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4. MAxiIMAL DEGREE CONDITIONS

THEOREM 3.} Let | V(G)| = | V(H)| = n. Let « be the maximal degree of
the vertices of G and B the maximal degree of the vertices of H. Assume

20 < n.
Then G, H are mutually placeable.

Proof. Let o: V(G) — V(H) be the bijection which minimizes | o( E(G)) N
E(H)|. Assume {a, c} € o(E(G)) N E(H). We shall derive a contradiction by
finding o* with smaller intersection. We examine those b € V(H) such that
either

@ b=aq
(ii) {a, b} € o(E(G)) N E(H),
(iii) for some x € V(H), {a, x} € o(E(G)), {x, b} € E(H),
or
(iv) forsomeye V(H),{a, y} <€ E(H),{y, b} € o(E(G)).

There are at most af b’s satisfying (iii) and, similarly (iv). More precisely,

if ¢ b’s satisfy (ii) at most o — ¢ satisfy (iii) and similarly (iv). Hence at most

1 + ¢t + 2(«f — t) < 2aP points satisfy one of these conditions. Fix b e V(H)
satisfying none of (i)—(iv). Define o* by

a*(i) = o(i), if a(i) 5~ a, b,
b, if a(i) = a,
a, if o(i) = b.

That is, “flip” a and b in the map o*. Let
{x, y} € E(H) N o *(E(G));

if {x, y} N {a, b} = @, then {x, y} was in E(H) N o(E(G)). But no {a, z} or
{b, z} can be in E(H) N o*(E(G)). For if, say, {a, z} was, then {a, z} € E(H),
{b, z} € o(E(G)), but then b would satisfy (iv). The other cases are similar.
Hence

| E(H) N oX(E(G)] < | E(G) N o(E(G))
implying the theorem. Q.E.D.

Now we outline a proof that Theorem 3 is nearly best possible. We show

! Theorem 3 was proven independently by Paul Catlin.
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that there exist G, H with a ~ 2n'/2, 8 ~2n'/?In n so that G, Z are not
mutually placeable. Let G be a fixed regular graph of degree 2n1/2 and, there-
fore, n3/% edges. Let H be a random graph on V(H) where each edge {i,j} €
E(H) with independent probability p = n~1/2In n. Now fix o: V(G) — V(H).
Then

Prob[E(H) N o(E(G)) = @]
= Prob[A{i, j} ¢ E(H)] (over {i, j} € o(E(G)))
= [ Probl{i,j} ¢ E(E)]  (over {i, j} € o(E(G)))

(since each edge of H is chosen independently)

_ (1 _ p)nalz ~ e_zm:;/z ~ 1",

Now

Prob[H, G mutually placeable]
< Y Prob[E(H) N o(E(G)) = o]

<nln" ~e",

so “almost always” H and G are not m.p. However, any a € V(H) has degree
given by the binomial distribution B(n — 1, p) and so is less than np(1 — €) =
(1 4+ €)n*/21n n all but o(n~1) of the time and so the maximal degree 8 <
(1 + ¢)n'2lnn “almost always.” Thus we may find a specific H with
B < (1 + e)n’?Innand G, H not m.p.

5. CircuITs AND TRIANGLES

Consider the statement: If G has property 4 and H has property B, then
G, H are m.p. We may rewrite this as follows: If G has property 4 and H°¢
has property B then H contains an isomorphic copy of G. Here H° is the
complementary graph to H. The observation is merely that a placement
a: V(G) — o(H) gives a(E(G)) C o(E(H"®)).

We express Theorem 3 with o = 2, 8 <C {n in this form.

COROLLARY 2. Let G be any graph on n points with maximal degree < 2.
Let H be a graph on n points with all points of valence > $n. Then H contains
an isomorphic copy of G.

Let y represent the minimal degree of the points of H. If G is a circuit on n
points, Corollary 2 is improved by
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THEOREM (Dirac [2]). If'y > in, then H contains a Hamiltonian circuit.

If n=3m and G consists of m disjoint triangles, then Corollary 2 is
improved by

THeOREM (Corradi, Hajnal [1]). If y = %, then H contains in vertex
disjoint triangles.

Conjecture. Let G be any graph on » points with maximal degree < 2. If
H is a graph on n points with minimal degree >>£%»n then H contains an iso-
morphic copy of G.

REFERENCES

1. H. CorraDI AND A. HaiNAL, On the maximal number of independent circuits in a
graph, Acta Math. Hung. 14 (19—), 423-439.

2. G. A. DirAc, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952),
69-81.

3. E. C. MiLnER AND D. J. A. WEeLsH (unpublished).



