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In this paper we continue the work related to convex subordination chains in C and C
n ,

and prove that if f (z) = z + ∑∞
k=2 Ak(zk) is a holomorphic mapping on the Euclidean unit

ball Bn in C
n such that

∑∞
k=2 k2‖Ak‖ � 1, a : [0,1] → [0,∞) is a function of class C2 on

(0,1) and continuous on [0,1], such that a(1) = 0, a(t) > 0, ta′(t) > −1/2 for t ∈ (0,1),
and if a(·) satisfies a differential equation on (0,1), then f (z, t) = a(t2)D f (tz)(tz) + f (tz)
is a convex subordination chain over (0,1] and the mapping F (z) = a(‖z‖2)D f (z)(z) +
f (z) is injective on Bn . We also present certain coefficient bounds which provide sufficient
conditions for univalence, quasiregularity and starlikeness for the chain f (z, t). Finally we
give some examples of convex subordination chains over (0,1].

© 2009 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

Let C
n be the space of n complex variables z = (z1, . . . , zn) with the Euclidean inner product 〈z, w〉 = ∑n

j=1 z j w j and

the Euclidean norm ‖z‖ = 〈z, z〉1/2. The open ball {z ∈ C
n: ‖z‖ < r} is denoted by Bn

r and the unit ball Bn
1 is denoted by Bn .

In the case of one complex variable, B1
r is denoted by Ur and the unit disc U1 is denoted by U . The closed unit ball in C

n

and the boundary of Bn are denoted respectively by Bn and ∂ Bn . Let L(Cn,C
m) denote the space of linear operators from

C
n into C

m with the standard operator norm and let In be the identity in L(Cn,C
n). If Ω is a domain in C

n , let H(Ω)

be the set of holomorphic mappings from Ω into C
n . If f ∈ H(Bn), we say that f is convex if f is biholomorphic on Bn

and f (Bn) is a convex domain in C
n . If f ∈ H(Bn) and f (0) = 0, we say that f is starlike if f is biholomorphic on Bn and

f (Bn) is a starlike domain in C
n with respect to zero. If f ∈ H(Bn), we say that f is normalized if f (0) = 0 and D f (0) = In .

Let S(Bn) be the set of normalized biholomorphic mappings on Bn . Also let K (Bn) (resp. S∗(Bn)) be the subset of S(Bn)

consisting of convex (resp. starlike) mappings on Bn . The classes S(B1), K (B1) and S∗(B1) are denoted by S , K and S∗ .
Several properties of mappings in S(Bn), S∗(Bn) and K (Bn) can be found in [2,5,13,16,20].

If f ∈ H(Bn) is normalized, then f has the Taylor series expansion f (z) = z +∑∞
k=2 Ak(zk), z ∈ Bn , where Ak = 1

k! Dk f (0)

is the k-th Fréchet derivative of f at z = 0. It is understood that for v ∈ C
n , Dk f (0)(vk) = Dk f (0)(v, . . . , v︸ ︷︷ ︸

k-times

).
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If f , g ∈ H(Bn), we say that f is subordinate to g ( f ≺ g) if there exists a Schwarz mapping v (i.e. v ∈ H(Bn) and
‖v(z)‖ � ‖z‖, z ∈ Bn) such that f = g ◦ v .

Various applications of this notion may be found in [12]. Recently, Graham, Hamada, Kohr and Pfaltzgraff [4] have
introduced the notion of a convex subordination chain (c.s.c.) in several complex variables. This notion was introduced by
Ruscheweyh [17] in the case of one complex variable. Various applications of this notion can be found in [14,17,19] (for
n = 1) and in [4,10] (in the case of several complex variables).

Definition 1. Let J be an interval in R. A mapping f = f (z, t) : Bn × J → C
n is called a convex subordination chain (c.s.c.)

over J if the following conditions hold:

(i) f (0, t) = 0 and f (·, t) is convex (biholomorphic) for t ∈ J .
(ii) f (·, t1) ≺ f (·, t2) for t1, t2 ∈ J , t1 � t2.

Graham, Hamada, Kohr and Pfaltzgraff [4] obtained necessary and sufficient conditions for a mapping f (z, t) to be a
convex subordination chain and gave several examples of c.s.c. over an interval J ⊆ [0,∞). Among other results, they
proved the following sufficient criterion for a mapping to be a c.s.c. over (0,1), by using a basic separation theorem in
convexity theory. For other applications of this result, see [4].

Lemma 2. Let f = f (z, t) : Bn × [0,1) → C
n be a continuous mapping such that f (·, t) is convex on Bn for t ∈ (0,1), f (0, t) =

f (z,0) = 0 for z ∈ Bn and t ∈ (0,1). For w ∈ ∂ Bn, let G w be the function defined by

G w(z) =
{
〈 f ( z

‖z‖ ,‖z‖), w〉, z ∈ Bn \ {0},
0, z = 0.

If G w has no maximum in Bn
r , for all r ∈ (0,1) and w ∈ ∂ Bn, then f (z, t) is a c.s.c. over (0,1). Moreover, if the mapping f (·, t) is

injective on Bn for t ∈ (0,1), then the mapping F : Bn → C
n given by

F (z) =
{

f ( z
‖z‖ ,‖z‖), z ∈ Bn \ {0},

0, z = 0

is injective on Bn.

We say that a mapping f ∈ H(Bn) is K -quasiregular, K � 1, if

∥∥D f (z)
∥∥n � K

∣∣det D f (z)
∣∣, z ∈ Bn.

A mapping f ∈ H(Bn) is called quasiregular if f is K -quasiregular for some K � 1. It is well known that quasiregular
holomorphic mappings are locally biholomorphic.

Definition 3. Let G and G ′ be domains in R
m . A homeomorphism f : G → G ′ is said to be K -quasiconformal if it is differ-

entiable a.e., ACL (absolutely continuous on lines) and

∥∥D( f ; x)
∥∥m � K

∣∣det D( f ; x)
∣∣ a.e. x ∈ G,

where D( f ; x) denotes the real Jacobian matrix of f at x and K is a constant.

Note that a K -quasiregular biholomorphic mapping is K 2-quasiconformal.

Remark 4. (i) Ruscheweyh [17, Theorem 2.41] proved that if f ∈ K , then

f (ζ, t) = 1 − t2

1 + t2
tζ f ′(tζ ) + f (tζ )

is a c.s.c. over (0,1] on the unit disc U .
(ii) Kohr, Mocanu and Şerb [11, Theorem 10] proved that if f ∈ K and a : [0,1] → [0,∞) is a function of class C1 on

(0,1) and continuous on [0,1] such that a(1) = 0, a(t) > 0 and ta′(t) > −1/2 for t ∈ (0,1), then

f (ζ, t) = a
(
t2)tζ f ′(tζ ) + f (tζ ), |ζ | < 1, t ∈ (0,1],

is a c.s.c. over (0,1] on the unit disc.
(iii) Moreover, if a(·) is C1 on [0,1), then the function F (ζ ) = a(|ζ |2)ζ f ′(ζ ) + f (ζ ) is injective on the unit disc by [11,

Theorem 7].
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Remark 5. It is not difficult to deduce that the following functions satisfy the conditions in Remark 4(ii):

(i) a(t) = 1
c ( 1−tc

1+tc ), t ∈ [0,1], c > 0;

(ii) a(t) = ln( 2
1+t ), t ∈ [0,1];

(iii) a(t) = e−kt − e−k , t ∈ [0,1], k > 0.

Let SK be the set of normalized holomorphic functions f on U which satisfy the condition | f ′′(ζ )/ f ′(ζ )| � 1 for |ζ | < 1.
Clearly SK ⊂ K .

If M is a subset of C, let co(M) be the closed convex hull of M . Also, if f , g ∈ H(U ), let f ∗ g be the Hadamard product
(convolution) of f and g .

The following result is due to Ruscheweyh (see [17, Theorem 2.4]).

Lemma 6. Let f ∈ K , g ∈ S∗ , and let F : U → C be a holomorphic function. Then

f ∗ g F

f ∗ g
(U ) ⊆ co

(
F (U )

)
.

Also, it is known that if f , g ∈ SK then f ∗ g ∈ SK (see [17, p. 57]; compare [18, Theorem 2.1]).
The following lemma of independent interest is an improved version of the above result.

Lemma 7. Let f ∈ K and g ∈ SK. Then f ∗ g ∈ SK.

Proof. Let h = f ∗ g . It is elementary to obtain the following relations:

h′(z) = 1

z

(
f (z) ∗ zg′(z)

)
and h′′(z) = 1

z2

(
f (z) ∗ z2 g′′(z)

)
, z ∈ U .

Hence

zh′′(z)

h′(z)
= f (z) ∗ zg′(z) zg′′(z)

g′(z)

f (z) ∗ zg′(z)
, z ∈ U .

Since g ∈ SK , it follows that q(z) = zg′(z) ∈ S∗ and r(z) = zg′′(z)/g′(z) is a holomorphic function on U . Hence

zh′′(z)

h′(z)
∈ co

{
ζ g′′(ζ )

g′(ζ )
: ζ ∈ U

}
, z ∈ U ,

by Lemma 6. On the other hand, since g ∈ SK , it follows that

co

{
ζ g′′(ζ )

g′(ζ )
: ζ ∈ U

}
⊆ U ,

and hence |h′′(z)/h′(z)| � 1 for z ∈ U . Thus, h ∈ SK , as desired. �
In this paper we continue the work begun in [4] and [11] and prove that if c > 0 and f (z) = z + ∑∞

k=2 Ak(zk) is a
holomorphic mapping on the Euclidean unit ball Bn in C

n such that
∑∞

k=2 k2‖Ak‖ � 1, then

f (z, t) = 1

c

(
1 − t2c

1 + t2c

)
D f (tz)(tz) + f (tz)

is a convex subordination chain over (0,1] and the mapping

F (z) = 1

c

(
1 − ‖z‖2c

1 + ‖z‖2c

)
D f (z)(z) + f (z)

is injective on Bn . If c = 1, we obtain [4, Theorem 2.11 and Corollary 2.17]. In the case of one complex variable, see [17]. We
also present certain coefficient bounds which provide sufficient conditions for univalence, quasiregularity and starlikeness
for the chain

f (z, t) = a
(
t2)D f (tz)(tz) + f (tz), z ∈ Bn, t ∈ [0,1],

where a : [0,1] → [0,∞) is a function which satisfies the assumptions of Remark 4(ii). Finally we give some examples of
c.s.c. over (0,1].
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2. Main results

We begin this section with the following sufficient criterion for a mapping to be a c.s.c. over (0,1]. This result is a
generalization of [4, Theorem 2.11 and Corollary 2.17]. It would be interesting to see if this result remains valid for any
mapping f ∈ K (Bn). In the case of one complex variable, see [11] and [17].

Theorem 8. Let f (z) = z + ∑∞
k=2 Ak(zk) be a normalized holomorphic mapping on Bn such that

∞∑
k=2

k2‖Ak‖ � 1. (1)

Also let a : [0,1] → [0,∞) be a function of class C2 on (0,1) and continuous on [0,1] such that a(1) = 0, a(t) > 0 and ta′(t) > −1/2
for t ∈ (0,1). Assume that a(·) satisfies the differential equation

ta′′(t)a(t) + a′(t)a(t) − 2t
(
a′(t)

)2 − a′(t) = 0, t ∈ (0,1). (2)

Further, let

f (z, t) = a
(
t2)D f (tz)(tz) + f (tz), z ∈ Bn, t ∈ [0,1]. (3)

Then f (z, t) is a c.s.c. over (0,1] and the mapping F : Bn → C
n given by

F (z) = a
(‖z‖2)D f (z)(z) + f (z) (4)

is injective on Bn.

Proof. We shall use arguments similar to those in the proofs of [4, Theorem 2.11 and Corollary 2.17]. We divide the proof
into the following steps:

Step I. If f (z) ≡ z then f (z, t) = (a(t2) + 1)tz is a c.s.c. over (0,1]. Indeed, f (·, t) is convex and it is easy to see that
(a(s2) + 1)sz ≺ (a(t2) + 1)tz for z ∈ Bn and 0 < s � t � 1, by the fact that a(t) > 0 and ta′(t) > −1/2 for t ∈ (0,1). Hence,
without loss of generality, we may assume that f (z) �≡ z.

We remark that the condition (1) yields that f ∈ K (Bn) by [16, Theorem 2.1]. Let

βk(t) = tk(ka
(
t2) + 1

)
and gk(t) = βk(t)/β1(t)

for k ∈ N and t ∈ (0,1]. Then gk(1) = 1 since a(1) = 0, and an elementary computation yields that

g′
k(t) = (k − 1)tk−2 (ka(t2) + 1)(a(t2) + 1) + 2t2a′(t2)

(a(t2) + 1)2
, t ∈ (0,1).

Since ta′(t) > −1/2 for t ∈ (0,1), it follows that g′
k(t) > 0 for k � 2, t ∈ (0,1), and hence gk(t) < 1 for k � 2, t ∈ (0,1).

Therefore βk(t) < β1(t) for k � 2, t ∈ (0,1). Since

f (z, t) = β1(t)z +
∞∑

k=2

βk(t)Ak
(
zk),

and f (z) �≡ z, we deduce that

∞∑
k=2

k2βk(t)‖Ak‖ < β1(t)
∞∑

k=2

k2‖Ak‖ � β1(t),

by the condition (1). Then f (·, t) is convex on Bn by [16] and extends as a homeomorphism to Bn for t ∈ (0,1) by [8]. On
the other hand, it is clear that the mapping f (z, t) is continuous on Bn × [0,1).

Next, let z, w ∈ ∂ Bn and

F z,w(ζ ) = 
〈
a
(|ζ |2)D f (ζ z)(ζ z) + f (ζ z), w

〉
, ζ ∈ U . (5)

Then F z,w is of class C2 on U \ {0} and is continuous on U . Using elementary computations, we obtain that

ζ
∂ F z,w

∂ζ
+ ζ

∂ F z,w

∂ζ
= 2
〈

a′(|ζ |2)|ζ |2 D f (ζ z)(ζ z), w
〉 + 
〈

a
(|ζ |2)[D2 f (ζ z)(ζ z, ζ z) + D f (ζ z)(ζ z)

]
+ D f (ζ z)(ζ z), w

〉
, ζ ∈ U \ {0},
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and

∂2 F z,w

∂ζ∂ζ
= 
〈

a′′(|ζ |2)|ζ |2 D f (ζ z)(ζ z), w
〉 + 
〈

a′(|ζ |2)[D2 f (ζ z)(ζ z, ζ z) + 2D f (ζ z)(ζ z)
]
, w

〉
, ζ ∈ U \ {0}.

Hence, in view of (2) and the above relations, we deduce that F z,w satisfies the following elliptic equation on U \ {0}:

∂2 H

∂ζ∂ζ
− a′(|ζ |2)

a(|ζ |2)
(

ζ
∂ H

∂ζ
+ ζ

∂ H

∂ζ

)
= 0. (6)

Let G w be the function constructed using f (z, t) given by (3), i.e.

G w(z) = 
〈
a
(‖z‖2)D f (z)(z) + f (z), w

〉
, z ∈ Bn.

Fix r ∈ (0,1) and w ∈ ∂ Bn . Suppose that the function G w has a maximum in Bn
r .

(i) If this maximum occurs at z = 0, then G w(z) � G w(0) = 0, i.e.


〈
a
(‖z‖2)D f (z)(z) + f (z), w

〉
� 0, z ∈ Bn

r .

Then


〈
a
(
t2)D f (t w)(t w) + f (t w), w

〉
� 0, t ∈ [0, r),

and hence



〈
a
(
t2)D f (t w)(w) + f (t w)

t
, w

〉
� 0, t ∈ (0, r).

Letting t → 0 in the above relation and using the fact that D f (0) = In , we obtain that (a(0) + 1)‖w‖2 � 0, i.e. a(0) + 1 � 0.
However, this is impossible.

(ii) If the maximum of G w occurs at a point z0 ∈ Bn
r \ {0}, then in view of the above arguments, we deduce that

G w(z0) �= 0. Let z̃ = z0/‖z0‖ and ζ0 = ‖z0‖. Considering the function F z̃,w(ζ ) given by (5), we deduce that F z̃,w satisfies
the elliptic equation (6) on Ur \ {0}. Clearly, F z̃,w is of class C2 on Ur \ {0} and is continuous on the closed disc U r . On the
other hand, since

G w(z0) = max
z∈Bn

r

G w(z),

we obtain that

F z̃,w(ζ0) = max|ζ |<r
F z̃,w(ζ ).

Taking into account the strong maximum principle for elliptic equations (see e.g. [1, p. 332]), we conclude that F z̃,w(ζ ) =
F z̃,w(ζ0) = G w(z0) �= 0 for 0 < |ζ | < r. However, letting ζ → 0 in the above equality and using the fact that F z̃,w(0) = 0, we
obtain a contradiction.

In view of the above arguments, we deduce that the function G w cannot have a maximum on Bn
r , and since r ∈ (0,1)

and w ∈ ∂ Bn are arbitrary, we conclude by Lemma 2 that f (z, t) is a c.s.c. over the interval (0,1). Next, applying a version
of the Carathéodory convergence theorem in several complex variables (see [9, Theorem 2.1]), we deduce that f (z, t) is a
c.s.c. over (0,1].

Step II. We next prove that the mapping F given by (4) is injective on Bn . Taking into account Lemma 2, we deduce that
the mapping f (z/‖z‖,‖z‖) = F (z) is injective on Bn \ {0}. Finally, since f (z/‖z‖,‖z‖) �= 0 for z ∈ Bn \ {0}, by the injectivity
of f (·, t) on Bn and the fact that f (0, t) = 0 for t ∈ (0,1), we deduce that F is injective on Bn . This completes the proof. �
Remark 9. Using elementary computations, it is not difficult to deduce that the general solutions a(t) of Eq. (2), which are
of class C2 on (0,1) and continuous on [0,1], and satisfy the conditions a(1) = 0, a(t) > 0 and ta′(t) > −1/2 for t ∈ (0,1),
are the following:

a(t) = 1

c

(
1 − tc

1 + tc

)
, t ∈ [0,1], where c > 0. (7)

Proof. Indeed, in view of (2) it is easy to see that

t

(
− 1

)′′
=

(
− 1

)′( 1 − 1

)
, t ∈ (0,1).
a(t) a(t) a(t)
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Let b(t) = −1/a(t) for t ∈ (0,1). Then (tb′(t))′ = − 1
2 (b2(t))′ for t ∈ (0,1), and hence there is c1 ∈ R such that

tb′(t) = −1

2
b2(t) + c1

2
, t ∈ (0,1).

Therefore

ta′(t) = −1

2
+ c1a2(t)

2
, t ∈ (0,1). (8)

Since ta′(t) > −1/2 for t ∈ (0,1), we deduce that c1 > 0. Using again (8), we deduce that

ta′(t) = 1

2

(
a2(t) − c2

2

c2
2

)
, t ∈ (0,1),

where c2 = 1/
√

c1.
We next prove that a(t) �= c2 for t ∈ (0,1]. Suppose that there exists t0 ∈ (0,1) such that a(t0) = c2 > 0. Let

A = {
t ∈ [t0,1]: a(t) = c2

}
.

Then A is a nonempty compact set, which contains the maximal element t1 such that t1 � t0, t1 �= 1, and a(t1) = c2. From
the maximality of t1, it is clear that a(t) < c2 for t ∈ (t1,1]. Let k0 be a positive integer such that t1 + 1/k0 < 1. It follows
for k � k0 that t1 + 1/k < 1 and

1∫
t1+1/k

a′(t)
a2(t) − c2

2

dt =
1∫

t1+1/k

1

2c2
2t

dt.

The above relation implies that

c2 − a(t1 + 1/k)

c2 + a(t1 + 1/k)
= (t1 + 1/k)1/c2 .

However, this is a contradiction for k large enough. Hence a(t) �= c2 for t ∈ (0,1], as claimed.
In view of the above arguments, we obtain that

a′(t)
a2(t) − c2

2

= 1

2c2
2t

, t ∈ (0,1).

Integrating the above equality on [t,1], and using the fact that a(1) = 0 and a(t) < c2 for t ∈ (0,1], we deduce that

1

c
− a(t) =

(
a(t) + 1

c

)
tc, t ∈ (0,1),

where c = 1/c2 > 0. Hence we obtain the relation (7), as desired. �
Taking into account Theorem 8 and Remark 9, we obtain the following consequence. Note that in the case c = 1, Theo-

rem 10 reduces to [4, Theorem 2.11], that is the n-dimensional version of [17, Theorem 2.41].

Theorem 10. Let c > 0 and f (z) = z + ∑∞
k=2 Ak(zk) be a normalized holomorphic mapping on Bn which satisfies the condition (1).

Then

f (z, t) = 1

c

(
1 − t2c

1 + t2c

)
D f (tz)(tz) + f (tz)

is a convex subordination chain over (0,1] and the mapping F : Bn → C
n given by

F (z) = 1

c

(
1 − ‖z‖2c

1 + ‖z‖2c

)
D f (z)(z) + f (z)

is injective on Bn.

From Theorem 10 we obtain the following subordination result.
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Corollary 11. Let c > 0 and f (z) = z + ∑∞
k=2 Ak(zk) be a normalized holomorphic mapping on Bn which satisfies the condition (1).

Then

1

c

(
1 − t2c

1 + t2c

)
D f (tz)(tz) + f (tz) ≺ f (z), z ∈ Bn, t ∈ (0,1].

We close this section with the following coefficient bounds which provide sufficient conditions for univalence, quasireg-
ularity and starlikeness for the mapping f (z, t) given by (3).

Theorem 12. Let f : Bn → C
n be a holomorphic mapping such that f (z) = z + ∑∞

k=2 Ak(zk) for z ∈ Bn. Assume that there exists
c ∈ [0,1] such that

∞∑
k=2

k‖Ak‖ � c. (9)

Let a : [0,1] → [0,∞) be a function which satisfies the assumptions of Remark 4(ii). Also let f (z, t) : Bn ×[0,1] → C
n be the mapping

given by (3). Then f (·, t) is biholomorphic on Bn for t ∈ (0,1]. Moreover, if c < 1, then f (·, t) is quasiregular on Bn and extends to a
quasiconformal homeomorphism of R

2n onto itself for t ∈ (0,1].

Proof. We remark that the condition (9) yields that f is biholomorphic by [3, Lemma 2.2]. If c < 1, then f is quasiregular
on Bn and extends to a quasiconformal homeomorphism of R

2n onto itself by [3, Lemma 2.2] (see also [8, Corollary 4.5],
[7, Theorem 4.1]). Let

βk(t) = tk(ka
(
t2) + 1

)
and gk(t) = βk(t)/β1(t)

for k ∈ N and t ∈ (0,1]. As in the proof of Theorem 8, we deduce that gk(t) < 1 for k � 2 and t ∈ (0,1). Since

f (z, t) = β1(t)z +
∞∑

k=2

βk(t)Ak
(
zk), z ∈ Bn,

we deduce that

∞∑
k=2

kβk(t)‖Ak‖ � β1(t)
∞∑

k=2

k‖Ak‖ � cβ1(t), t ∈ (0,1),

by the condition (9). Hence f (·, t) is biholomorphic in view of [3]. If c < 1, then f (·, t) is quasiregular on Bn and extends
to a quasiconformal homeomorphism of R

2n onto itself for t ∈ (0,1], in view of [3]. This completes the proof. �
Remark 13. It would be interesting to see if the mapping F given by (4) is injective on Bn , under the same assumptions as
in Theorem 12.

Theorem 14. Let f : Bn → C
n be a holomorphic mapping such that f (z) = z + ∑∞

k=2 Ak(zk) for z ∈ Bn. Assume that

∞∑
k=2

(2k − 1)‖Ak‖ � 1. (10)

Let a : [0,1] → [0,∞) be a function which satisfies the assumptions of Remark 4(ii). Also let f (z, t) : Bn ×[0,1] → C
n be the mapping

given by (3). Then f (·, t) is starlike and quasiregular on Bn and extends to a quasiconformal homeomorphism of R
2n onto itself for

t ∈ (0,1].

Proof. Since
∑∞

k=2 k‖Ak‖ � 2/3, in view of (10), we deduce that f (·, t) is quasiregular on Bn and extends to a quasiconfor-
mal homeomorphism of R

2n onto itself for t ∈ (0,1] by Theorem 12. On the other hand, taking into account the condition
(10) and [3, Theorem 2.4], it suffices to use arguments similar to those in the proof of Theorem 12, to deduce that f (·, t) is
starlike for t ∈ (0,1]. This completes the proof. �
3. Examples of c.s.c. over (0,1] on Bn

In view of Theorem 10, we obtain the following example of a convex subordination chain over (0,1] and injective
mapping on Bn .
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Example 15. Let c > 0 and A : C
n × C

n → C
n be a symmetric bilinear operator such that ‖A‖ � 1/4. Also let

f (z, t) = t(1 + c) + t2c+1(c − 1)

c(1 + t2c)
z + t2(2 + c) + t2c+2(c − 2)

c(1 + t2c)
A
(
z2).

Then f (z, t) is a c.s.c. over (0,1]. Moreover, the mapping F : Bn → C
n given by

F (z) = 1 + c + ‖z‖2c(c − 1)

c(1 + ‖z‖2c)
z + 2 + c + ‖z‖2c(c − 2)

c(1 + ‖z‖2c)
A
(
z2)

is injective on Bn .

Proof. It suffices to apply Theorem 10 for f (z) = z + A(z2). �
Before to give other examples of c.s.c. over (0,1] on Bn , we recall that if f j ∈ K for j = 1, . . . ,n, then the mapping

F : Bn → C
n given by F (z) = ( f1(z1), . . . , fn(zn)) is not necessarily a convex mapping in dimension n � 2 (see [15] and [16]).

Indeed, f (ζ ) = ζ/(1 − ζ ) ∈ K , however, the mapping F : Bn → C
n given by

F (z) =
(

z1

1 − z1
, . . . ,

zn

1 − zn

)
, z = (z1, . . . , zn) ∈ Bn,

is not convex in dimension n � 2 (see [15,16,2]). Thus, if f j ∈ K , j = 1, . . . ,n, and a : [0,1] → [0,∞) is a function which
satisfies the assumptions of Remark 4(ii), then

f (z, t) = (
a
(
t2)tz1 f ′

1(tz1) + f1(tz1), . . . ,a
(
t2)tzn f ′

n(tzn) + fn(tzn)
)

(11)

is not necessarily a c.s.c. over (0,1]. We shall prove that if | f ′′
j (ζ )/ f ′

j(ζ )| � 1 for |ζ | < 1 and j = 1, . . . ,n, then f (z, t) given
by (11) is a c.s.c. over (0,1].

Theorem 16. Let f j ∈ SK for j = 1, . . . ,n and let a : [0,1] → [0,∞) be a function which satisfies the assumptions of Remark 4(ii).
Then

f (z, t) = (
a
(
t2)tz1 f ′

1(tz1) + f1(tz1), . . . ,a
(
t2)tzn f ′

n(tzn) + fn(tzn)
)

is a c.s.c. over (0,1]. Moreover, if a(·) is of class C1 on [0,1), then the mapping F : Bn → C
n given by

F (z) = (
a
(|z1|2

)
z1 f ′

1(z1) + f1(z1), . . . ,a
(|zn|2

)
zn f ′

n(zn) + fn(zn)
)

is injective on Bn.

Proof. Let f j(z j, t) = a(t2)tz j f ′
j(tz j) + f j(tz j) for |z j | < 1, j = 1, . . . ,n and t ∈ (0,1]. Then f j(z j, t) is a c.s.c. over (0,1] by

Remark 4(ii) and

f j(z j, t) = a(t2)tz j + 1 − tz j

(1 − tz j)
2

∗ f j(z j), j = 1, . . . ,n.

Let h j(z j, t) = (a(t2)tz j + 1 − tz j)/(1 − tz j)
2. Then h j(·, t) is a (non-normalized) convex function on U for t ∈ (0,1], by [11,

Lemma 9]. Let

n j(z j, t) = h j(z j, t) − 1

t(a(t2) + 1)
, |z j| < 1, j = 1, . . . ,n, t ∈ (0,1].

Then n j(·, t) ∈ K for t ∈ (0,1] and j = 1, . . . ,n. Also let

p j(z j, t) = n j(z j, t) ∗ f j(z j) = 1

t(a(t2) + 1)
f j(z j, t), j = 1, . . . ,n.

Taking into account Lemma 7, we deduce that p j(·, t) ∈ SK , and thus∣∣∣∣ f ′′
j (z j, t)

f ′
j(z j, t)

∣∣∣∣ � 1, |z j| < 1, j = 1, . . . ,n, t ∈ (0,1].

Next, it is not difficult to deduce that

∥∥[
D f (z, t)

]−1
D2 f (z, t)(v, v)

∥∥2 =
n∑

|v j|4
∣∣∣∣ f ′′

j (z j, t)

f ′
j(z j, t)

∣∣∣∣
2

�
n∑

|v j|2 = 1,
j=1 j=1
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for z = (z1, . . . , zn) ∈ Bn , v = (v1, . . . , vn) ∈ ∂ Bn and t ∈ (0,1]. Then f (·, t) is a convex mapping on Bn for each t ∈ (0,1],
in view of [6, Theorem 3.4] (see also [13, Theorem 4.1] and [21, Corollary 1]). On the other hand, since f j(z j, s) ≺ f j(z j, t)
by [11, Theorem 10], there exists a Schwarz function v j = v j(z j, s, t) such that f j(z j, s) = f j(v j(z j, s, t), t) for |z j| < 1,
0 < s � t � 1, j = 1, . . . ,n. Let v(z, s, t) = (v1(z1, s, t), . . . , vn(zn, s, t)) for z = (z1, . . . , zn) ∈ Bn and 0 < s � t � 1. Then
v(·, s, t) ∈ H(Bn) and

∥∥v(z, s, t)
∥∥2 =

n∑
j=1

∣∣v j(z j, s, t)
∣∣2 �

n∑
j=1

|z j|2 = ‖z‖2, z = (z1, . . . , zn) ∈ Bn.

Hence v(·, s, t) is a Schwarz mapping. Moreover, since f (z, s) = f (v(z, s, t), t) for z ∈ Bn and 0 < s � t � 1, we deduce that
f (·, s) ≺ f (·, t) for 0 < s � t � 1. Taking into account the above arguments, we deduce that f (z, t) is a c.s.c. over (0,1],
as desired. Finally, if a(·) is of class C1 on [0,1), then the function F j(z j) = a(|z j |2)z j f ′

j(z j) + f j(z j) is injective on U for
j = 1, . . . ,n, by Remark 4(iii). Thus the mapping F (z) = (F1(z1), . . . , Fn(zn)) is injective on Bn . This completes the proof. �

Taking into account Theorem 16, we obtain the following examples of c.s.c. over (0,1] on the unit ball Bn .

Example 17. Let λ j ∈ C be such that 0 < |λ j| � 1 for j = 1, . . . ,n. Also let a : [0,1] → [0,∞) be a function which satisfies
the assumptions of Remark 4(ii). Then f (z, t) given by

f (z, t) =
(

a
(
t2)tz1eλ1tz1 + eλ1tz1 − 1

λ1
, . . . ,a

(
t2)tzneλntzn + eλntzn − 1

λn

)

is a convex subordination chain over (0,1].

Proof. Let f j(ζ ) = (eλ jζ − 1)/λ j for j = 1, . . . ,n. Then | f ′′
j (z j)/ f ′

j(z j)| = |λ j| � 1 for j = 1, . . . ,n, and the result follows by
Theorem 16. �
Example 18. Let f1 ∈ SK and let a : [0,1] → [0,∞) be a function which satisfies the assumptions of Remark 4(ii). Then

f (z, t) = (
a
(
t2)tz1 f ′

1(tz1) + f1(tz1),
(
a
(
t2) + 1

)
t z̃

)
, z = (z1, z̃) ∈ Bn,

is a c.s.c. over (0,1].

Example 19. Let a : [0,1] → [0,∞) be a function which satisfies the assumptions of Remark 4(ii). Then f (z, t) = (a(t2)+1)tz
is a c.s.c. over (0,1] and the mapping F (z) = (a(‖z‖2) + 1)z is injective on Bn .

Proof. It is obvious that f (z, t) is a c.s.c. over (0,1] in view of Example 18. Since a(t) > 0 and ta′(t) > −1/2 for t ∈ (0,1), it
follows that the function q(t) = t(a(t2) + 1) is strictly increasing on (0,1). Then it is easy to see that F (z) = (a(‖z‖2) + 1)z
is injective on Bn , as desired. �
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