Convex subordination chains and injective mappings in \mathbb{C}^{n}

Hidetaka Hamada ${ }^{\text {a,1 }}$, Gabriela Kohr ${ }^{\text {b, }, 2}$, Petru T. Mocanu ${ }^{\text {b,3 }}$, Ioan Şerb ${ }^{\text {b,3 }}$
${ }^{\text {a }}$ Faculty of Engineering, Kyushu Sangyo University, 3-1 Matsukadai 2-Chome, Fukuoka 813-8503, Japan
${ }^{\text {b }}$ Faculty of Mathematics and Computer Science, Babeş-Bolyai University, 1 M. Kogălniceanu Str., 400084 Cluj-Napoca, Romania

A R T I C L E I N F O

Article history:

Received 24 March 2008
Available online 27 November 2009
Submitted by U. Stadtmueller

Keywords:

Biholomorphic mapping
Convex mapping
Convex subordination chain
Hadamard product
Quasiconformal mapping
Quasiregular mapping
Starlike mapping
Subordination

Abstract

In this paper we continue the work related to convex subordination chains in \mathbb{C} and \mathbb{C}^{n}, and prove that if $f(z)=z+\sum_{k=2}^{\infty} A_{k}\left(z^{k}\right)$ is a holomorphic mapping on the Euclidean unit ball B^{n} in \mathbb{C}^{n} such that $\sum_{k=2}^{\infty} k^{2}\left\|A_{k}\right\| \leqslant 1, a:[0,1] \rightarrow[0, \infty)$ is a function of class C^{2} on $(0,1)$ and continuous on $[0,1]$, such that $a(1)=0, a(t)>0, t a^{\prime}(t)>-1 / 2$ for $t \in(0,1)$, and if $a(\cdot)$ satisfies a differential equation on $(0,1)$, then $f(z, t)=a\left(t^{2}\right) D f(t z)(t z)+f(t z)$ is a convex subordination chain over $(0,1]$ and the mapping $F(z)=a\left(\|z\|^{2}\right) D f(z)(z)+$ $f(z)$ is injective on B^{n}. We also present certain coefficient bounds which provide sufficient conditions for univalence, quasiregularity and starlikeness for the chain $f(z, t)$. Finally we give some examples of convex subordination chains over $(0,1]$.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

Let \mathbb{C}^{n} be the space of n complex variables $z=\left(z_{1}, \ldots, z_{n}\right)$ with the Euclidean inner product $\langle z, w\rangle=\sum_{j=1}^{n} z_{j} \bar{w}_{j}$ and the Euclidean norm $\|z\|=\langle z, z\rangle^{1 / 2}$. The open ball $\left\{z \in \mathbb{C}^{n}:\|z\|<r\right\}$ is denoted by B_{r}^{n} and the unit ball B_{1}^{n} is denoted by B^{n}. In the case of one complex variable, B_{r}^{1} is denoted by U_{r} and the unit disc U_{1} is denoted by U. The closed unit ball in \mathbb{C}^{n} and the boundary of B^{n} are denoted respectively by \bar{B}^{n} and ∂B^{n}. Let $L\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right)$ denote the space of linear operators from \mathbb{C}^{n} into \mathbb{C}^{m} with the standard operator norm and let I_{n} be the identity in $L\left(\mathbb{C}^{n}, \mathbb{C}^{n}\right)$. If Ω is a domain in \mathbb{C}^{n}, let $H(\Omega)$ be the set of holomorphic mappings from Ω into \mathbb{C}^{n}. If $f \in H\left(B^{n}\right)$, we say that f is convex if f is biholomorphic on B^{n} and $f\left(B^{n}\right)$ is a convex domain in \mathbb{C}^{n}. If $f \in H\left(B^{n}\right)$ and $f(0)=0$, we say that f is starlike if f is biholomorphic on B^{n} and $f\left(B^{n}\right)$ is a starlike domain in \mathbb{C}^{n} with respect to zero. If $f \in H\left(B^{n}\right)$, we say that f is normalized if $f(0)=0$ and $D f(0)=I_{n}$. Let $S\left(B^{n}\right)$ be the set of normalized biholomorphic mappings on B^{n}. Also let $K\left(B^{n}\right)$ (resp. $S^{*}\left(B^{n}\right)$) be the subset of $S\left(B^{n}\right)$ consisting of convex (resp. starlike) mappings on B^{n}. The classes $S\left(B^{1}\right), K\left(B^{1}\right)$ and $S^{*}\left(B^{1}\right)$ are denoted by S, K and S^{*}. Several properties of mappings in $S\left(B^{n}\right), S^{*}\left(B^{n}\right)$ and $K\left(B^{n}\right)$ can be found in $[2,5,13,16,20]$.

If $f \in H\left(B^{n}\right)$ is normalized, then f has the Taylor series expansion $f(z)=z+\sum_{k=2}^{\infty} A_{k}\left(z^{k}\right), z \in B^{n}$, where $A_{k}=\frac{1}{k!} D^{k} f(0)$ is the k-th Fréchet derivative of f at $z=0$. It is understood that for $v \in \mathbb{C}^{n}, D^{k} f(0)\left(v^{k}\right)=D^{k} f(0)(\underbrace{v, \ldots, v})$.
k-times

[^0]If $f, g \in H\left(B^{n}\right)$, we say that f is subordinate to $g(f \prec g)$ if there exists a Schwarz mapping v (i.e. $v \in H\left(B^{n}\right)$ and $\left.\|v(z)\| \leqslant\|z\|, z \in B^{n}\right)$ such that $f=g \circ v$.

Various applications of this notion may be found in [12]. Recently, Graham, Hamada, Kohr and Pfaltzgraff [4] have introduced the notion of a convex subordination chain (c.s.c.) in several complex variables. This notion was introduced by Ruscheweyh [17] in the case of one complex variable. Various applications of this notion can be found in [14,17,19] (for $n=1$) and in $[4,10]$ (in the case of several complex variables).

Definition 1. Let J be an interval in \mathbb{R}. A mapping $f=f(z, t): B^{n} \times J \rightarrow \mathbb{C}^{n}$ is called a convex subordination chain (c.s.c.) over J if the following conditions hold:
(i) $f(0, t)=0$ and $f(\cdot, t)$ is convex (biholomorphic) for $t \in J$.
(ii) $f\left(\cdot, t_{1}\right) \prec f\left(\cdot, t_{2}\right)$ for $t_{1}, t_{2} \in J, t_{1} \leqslant t_{2}$.

Graham, Hamada, Kohr and Pfaltzgraff [4] obtained necessary and sufficient conditions for a mapping $f(z, t)$ to be a convex subordination chain and gave several examples of c.s.c. over an interval $J \subseteq[0, \infty)$. Among other results, they proved the following sufficient criterion for a mapping to be a c.s.c. over $(0,1)$, by using a basic separation theorem in convexity theory. For other applications of this result, see [4].

Lemma 2. Let $f=f(z, t): \bar{B}^{n} \times[0,1) \rightarrow \mathbb{C}^{n}$ be a continuous mapping such that $f(\cdot, t)$ is convex on B^{n} for $t \in(0,1)$, $f(0, t)=$ $f(z, 0)=0$ for $z \in B^{n}$ and $t \in(0,1)$. For $w \in \partial B^{n}$, let G_{w} be the function defined by

$$
G_{w}(z)= \begin{cases}\Re\left\langle f\left(\frac{z}{\|z\|},\|z\|\right), w\right\rangle, & z \in B^{n} \backslash\{0\} \\ 0, & z=0\end{cases}
$$

If G_{w} has no maximum in B_{r}^{n}, for all $r \in(0,1)$ and $w \in \partial B^{n}$, then $f(z, t)$ is a c.s.c. over $(0,1)$. Moreover, if the mapping $f(\cdot, t)$ is injective on \bar{B}^{n} for $t \in(0,1)$, then the mapping $F: B^{n} \rightarrow \mathbb{C}^{n}$ given by

$$
F(z)= \begin{cases}f\left(\frac{z}{\|z\|},\|z\|\right), & z \in B^{n} \backslash\{0\} \\ 0, & z=0\end{cases}
$$

is injective on B^{n}.
We say that a mapping $f \in H\left(B^{n}\right)$ is K-quasiregular, $K \geqslant 1$, if

$$
\|D f(z)\|^{n} \leqslant K|\operatorname{det} D f(z)|, \quad z \in B^{n}
$$

A mapping $f \in H\left(B^{n}\right)$ is called quasiregular if f is K-quasiregular for some $K \geqslant 1$. It is well known that quasiregular holomorphic mappings are locally biholomorphic.

Definition 3. Let G and G^{\prime} be domains in \mathbb{R}^{m}. A homeomorphism $f: G \rightarrow G^{\prime}$ is said to be K-quasiconformal if it is differentiable a.e., ACL (absolutely continuous on lines) and

$$
\|D(f ; x)\|^{m} \leqslant K|\operatorname{det} D(f ; x)| \quad \text { a.e. } x \in G,
$$

where $D(f ; x)$ denotes the real Jacobian matrix of f at x and K is a constant.
Note that a K-quasiregular biholomorphic mapping is K^{2}-quasiconformal.
Remark 4. (i) Ruscheweyh [17, Theorem 2.41] proved that if $f \in K$, then

$$
f(\zeta, t)=\frac{1-t^{2}}{1+t^{2}} t \zeta f^{\prime}(t \zeta)+f(t \zeta)
$$

is a c.s.c. over $(0,1]$ on the unit disc U.
(ii) Kohr, Mocanu and Şerb [11, Theorem 10] proved that if $f \in K$ and $a:[0,1] \rightarrow[0, \infty)$ is a function of class C^{1} on $(0,1)$ and continuous on $[0,1]$ such that $a(1)=0, a(t)>0$ and $t a^{\prime}(t)>-1 / 2$ for $t \in(0,1)$, then

$$
f(\zeta, t)=a\left(t^{2}\right) t \zeta f^{\prime}(t \zeta)+f(t \zeta), \quad|\zeta|<1, t \in(0,1]
$$

is a c.s.c. over $(0,1]$ on the unit disc.
(iii) Moreover, if $a(\cdot)$ is C^{1} on [0,1), then the function $F(\zeta)=a\left(|\zeta|^{2}\right) \zeta f^{\prime}(\zeta)+f(\zeta)$ is injective on the unit disc by [11, Theorem 7].

Remark 5. It is not difficult to deduce that the following functions satisfy the conditions in Remark 4(ii):
(i) $a(t)=\frac{1}{c}\left(\frac{1-t^{c}}{1+t^{c}}\right), t \in[0,1], c>0$;
(ii) $a(t)=\ln \left(\frac{2}{1+t}\right), t \in[0,1]$;
(iii) $a(t)=e^{-k t}-e^{-k}, t \in[0,1], k>0$.

Let $S K$ be the set of normalized holomorphic functions f on U which satisfy the condition $\left|f^{\prime \prime}(\zeta) / f^{\prime}(\zeta)\right| \leqslant 1$ for $|\zeta|<1$. Clearly $S K \subset K$.

If M is a subset of \mathbb{C}, let $\overline{c o}(M)$ be the closed convex hull of M. Also, if $f, g \in H(U)$, let $f * g$ be the Hadamard product (convolution) of f and g.

The following result is due to Ruscheweyh (see [17, Theorem 2.4]).
Lemma 6. Let $f \in K, g \in S^{*}$, and let $F: U \rightarrow \mathbb{C}$ be a holomorphic function. Then

$$
\frac{f * g F}{f * g}(U) \subseteq \overline{c o}(F(U)) .
$$

Also, it is known that if $f, g \in S K$ then $f * g \in S K$ (see [17, p. 57]; compare [18, Theorem 2.1]).
The following lemma of independent interest is an improved version of the above result.
Lemma 7. Let $f \in K$ and $g \in S K$. Then $f * g \in S K$.

Proof. Let $h=f * g$. It is elementary to obtain the following relations:

$$
h^{\prime}(z)=\frac{1}{z}\left(f(z) * z g^{\prime}(z)\right) \quad \text { and } \quad h^{\prime \prime}(z)=\frac{1}{z^{2}}\left(f(z) * z^{2} g^{\prime \prime}(z)\right), \quad z \in U .
$$

Hence

$$
\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}=\frac{f(z) * z g^{\prime}(z) \frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}}{f(z) * z g^{\prime}(z)}, \quad z \in U
$$

Since $g \in S K$, it follows that $q(z)=z g^{\prime}(z) \in S^{*}$ and $r(z)=z g^{\prime \prime}(z) / g^{\prime}(z)$ is a holomorphic function on U. Hence

$$
\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)} \in \overline{c o}\left\{\frac{\zeta g^{\prime \prime}(\zeta)}{g^{\prime}(\zeta)}: \zeta \in U\right\}, \quad z \in U
$$

by Lemma 6 . On the other hand, since $g \in S K$, it follows that

$$
\overline{c o}\left\{\frac{\zeta g^{\prime \prime}(\zeta)}{g^{\prime}(\zeta)}: \zeta \in U\right\} \subseteq \bar{U}
$$

and hence $\left|h^{\prime \prime}(z) / h^{\prime}(z)\right| \leqslant 1$ for $z \in U$. Thus, $h \in S K$, as desired.
In this paper we continue the work begun in [4] and [11] and prove that if $c>0$ and $f(z)=z+\sum_{k=2}^{\infty} A_{k}\left(z^{k}\right)$ is a holomorphic mapping on the Euclidean unit ball B^{n} in \mathbb{C}^{n} such that $\sum_{k=2}^{\infty} k^{2}\left\|A_{k}\right\| \leqslant 1$, then

$$
f(z, t)=\frac{1}{c}\left(\frac{1-t^{2 c}}{1+t^{2 c}}\right) D f(t z)(t z)+f(t z)
$$

is a convex subordination chain over $(0,1]$ and the mapping

$$
F(z)=\frac{1}{c}\left(\frac{1-\|z\|^{2 c}}{1+\|z\|^{2 c}}\right) D f(z)(z)+f(z)
$$

is injective on B^{n}. If $c=1$, we obtain [4, Theorem 2.11 and Corollary 2.17]. In the case of one complex variable, see [17]. We also present certain coefficient bounds which provide sufficient conditions for univalence, quasiregularity and starlikeness for the chain

$$
f(z, t)=a\left(t^{2}\right) D f(t z)(t z)+f(t z), \quad z \in B^{n}, t \in[0,1]
$$

where $a:[0,1] \rightarrow[0, \infty)$ is a function which satisfies the assumptions of Remark 4(ii). Finally we give some examples of c.s.c. over $(0,1]$.

2. Main results

We begin this section with the following sufficient criterion for a mapping to be a c.s.c. over $(0,1]$. This result is a generalization of [4, Theorem 2.11 and Corollary 2.17]. It would be interesting to see if this result remains valid for any mapping $f \in K\left(B^{n}\right)$. In the case of one complex variable, see [11] and [17].

Theorem 8. Let $f(z)=z+\sum_{k=2}^{\infty} A_{k}\left(z^{k}\right)$ be a normalized holomorphic mapping on B^{n} such that

$$
\begin{equation*}
\sum_{k=2}^{\infty} k^{2}\left\|A_{k}\right\| \leqslant 1 \tag{1}
\end{equation*}
$$

Also let $a:[0,1] \rightarrow[0, \infty)$ be a function of class C^{2} on $(0,1)$ and continuous on $[0,1]$ such that $a(1)=0, a(t)>0$ and $t a^{\prime}(t)>-1 / 2$ for $t \in(0,1)$. Assume that $a(\cdot)$ satisfies the differential equation

$$
\begin{equation*}
t a^{\prime \prime}(t) a(t)+a^{\prime}(t) a(t)-2 t\left(a^{\prime}(t)\right)^{2}-a^{\prime}(t)=0, \quad t \in(0,1) \tag{2}
\end{equation*}
$$

Further, let

$$
\begin{equation*}
f(z, t)=a\left(t^{2}\right) D f(t z)(t z)+f(t z), \quad z \in B^{n}, t \in[0,1] \tag{3}
\end{equation*}
$$

Then $f(z, t)$ is a c.s.c. over $(0,1]$ and the mapping $F: B^{n} \rightarrow \mathbb{C}^{n}$ given by

$$
\begin{equation*}
F(z)=a\left(\|z\|^{2}\right) D f(z)(z)+f(z) \tag{4}
\end{equation*}
$$

is injective on B^{n}.

Proof. We shall use arguments similar to those in the proofs of [4, Theorem 2.11 and Corollary 2.17]. We divide the proof into the following steps:

Step I. If $f(z) \equiv z$ then $f(z, t)=\left(a\left(t^{2}\right)+1\right) t z$ is a c.s.c. over $(0,1]$. Indeed, $f(\cdot, t)$ is convex and it is easy to see that $\left(a\left(s^{2}\right)+1\right) s z \prec\left(a\left(t^{2}\right)+1\right) t z$ for $z \in B^{n}$ and $0<s \leqslant t \leqslant 1$, by the fact that $a(t)>0$ and $t a^{\prime}(t)>-1 / 2$ for $t \in(0,1)$. Hence, without loss of generality, we may assume that $f(z) \not \equiv z$.

We remark that the condition (1) yields that $f \in K\left(B^{n}\right)$ by [16, Theorem 2.1]. Let

$$
\beta_{k}(t)=t^{k}\left(k a\left(t^{2}\right)+1\right) \quad \text { and } \quad g_{k}(t)=\beta_{k}(t) / \beta_{1}(t)
$$

for $k \in \mathbb{N}$ and $t \in(0,1]$. Then $g_{k}(1)=1$ since $a(1)=0$, and an elementary computation yields that

$$
g_{k}^{\prime}(t)=(k-1) t^{k-2} \frac{\left(k a\left(t^{2}\right)+1\right)\left(a\left(t^{2}\right)+1\right)+2 t^{2} a^{\prime}\left(t^{2}\right)}{\left(a\left(t^{2}\right)+1\right)^{2}}, \quad t \in(0,1)
$$

Since $t^{\prime}(t)>-1 / 2$ for $t \in(0,1)$, it follows that $g_{k}^{\prime}(t)>0$ for $k \geqslant 2, t \in(0,1)$, and hence $g_{k}(t)<1$ for $k \geqslant 2, t \in(0,1)$. Therefore $\beta_{k}(t)<\beta_{1}(t)$ for $k \geqslant 2, t \in(0,1)$. Since

$$
f(z, t)=\beta_{1}(t) z+\sum_{k=2}^{\infty} \beta_{k}(t) A_{k}\left(z^{k}\right)
$$

and $f(z) \not \equiv z$, we deduce that

$$
\sum_{k=2}^{\infty} k^{2} \beta_{k}(t)\left\|A_{k}\right\|<\beta_{1}(t) \sum_{k=2}^{\infty} k^{2}\left\|A_{k}\right\| \leqslant \beta_{1}(t)
$$

by the condition (1). Then $f(\cdot, t)$ is convex on B^{n} by [16] and extends as a homeomorphism to \bar{B}^{n} for $t \in(0,1)$ by [8]. On the other hand, it is clear that the mapping $f(z, t)$ is continuous on $\bar{B}^{n} \times[0,1)$.

Next, let $z, w \in \partial B^{n}$ and

$$
\begin{equation*}
F_{z, w}(\zeta)=\mathfrak{R}\left\langle a\left(|\zeta|^{2}\right) D f(\zeta z)(\zeta z)+f(\zeta z), w\right\rangle, \quad \zeta \in U \tag{5}
\end{equation*}
$$

Then $F_{z, w}$ is of class C^{2} on $U \backslash\{0\}$ and is continuous on U. Using elementary computations, we obtain that

$$
\begin{aligned}
\zeta \frac{\partial F_{z, w}}{\partial \zeta}+\bar{\zeta} \frac{\partial F_{z, w}}{\partial \bar{\zeta}}= & \left.\left.2 \mathfrak{R}\left\langle a^{\prime}\left(|\zeta|^{2}\right)\right| \zeta\right|^{2} D f(\zeta z)(\zeta z), w\right\rangle+\mathfrak{R}\left\langle a\left(|\zeta|^{2}\right)\left[D^{2} f(\zeta z)(\zeta z, \zeta z)+D f(\zeta z)(\zeta z)\right]\right. \\
& +D f(\zeta z)(\zeta z), w\rangle, \quad \zeta \in U \backslash\{0\}
\end{aligned}
$$

and

$$
\left.\frac{\partial^{2} F_{z, w}}{\partial \zeta \partial \bar{\zeta}}=\left.\Re\left\langle a^{\prime \prime}\left(|\zeta|^{2}\right)\right| \zeta\right|^{2} D f(\zeta z)(\zeta z), w\right\rangle+\Re\left(a^{\prime}\left(|\zeta|^{2}\right)\left[D^{2} f(\zeta z)(\zeta z, \zeta z)+2 D f(\zeta z)(\zeta z)\right], w\right\rangle, \quad \zeta \in U \backslash\{0\} .
$$

Hence, in view of (2) and the above relations, we deduce that $F_{z, w}$ satisfies the following elliptic equation on $U \backslash\{0\}$:

$$
\begin{equation*}
\frac{\partial^{2} H}{\partial \zeta \partial \bar{\zeta}}-\frac{a^{\prime}\left(|\zeta|^{2}\right)}{a\left(|\zeta|^{2}\right)}\left(\zeta \frac{\partial H}{\partial \zeta}+\bar{\zeta} \frac{\partial H}{\partial \bar{\zeta}}\right)=0 . \tag{6}
\end{equation*}
$$

Let G_{w} be the function constructed using $f(z, t)$ given by (3), i.e.

$$
G_{w}(z)=\Re\left\{a\left(\|z\|^{2}\right) D f(z)(z)+f(z), w\right\rangle, \quad z \in B^{n} .
$$

Fix $r \in(0,1)$ and $w \in \partial B^{n}$. Suppose that the function G_{w} has a maximum in B_{r}^{n}.
(i) If this maximum occurs at $z=0$, then $G_{w}(z) \leqslant G_{w}(0)=0$, i.e.

$$
\Re\left|a\left(\|z\|^{2}\right) D f(z)(z)+f(z), w\right\rangle \leqslant 0, \quad z \in B_{r}^{n} .
$$

Then

$$
\Re\left\{a\left(t^{2}\right) D f(t w)(t w)+f(t w), w\right\rangle \leqslant 0, \quad t \in[0, r),
$$

and hence

$$
\mathfrak{R}\left\langle a\left(t^{2}\right) D f(t w)(w)+\frac{f(t w)}{t}, w\right\rangle \leqslant 0, \quad t \in(0, r) .
$$

Letting $t \rightarrow 0$ in the above relation and using the fact that $D f(0)=I_{n}$, we obtain that $(a(0)+1)\|w\|^{2} \leqslant 0$, i.e. $a(0)+1 \leqslant 0$. However, this is impossible.
(ii) If the maximum of G_{w} occurs at a point $z_{0} \in B_{r}^{n} \backslash\{0\}$, then in view of the above arguments, we deduce that $G_{w}\left(z_{0}\right) \neq 0$. Let $\tilde{z}=z_{0} /\left\|z_{0}\right\|$ and $\zeta_{0}=\left\|z_{0}\right\|$. Considering the function $F_{\tilde{z}, w}(\zeta)$ given by (5), we deduce that $F_{\tilde{z}, w}$ satisfies the elliptic equation (6) on $U_{r} \backslash\{0\}$. Clearly, $F_{\tilde{z}, w}$ is of class C^{2} on $U_{r} \backslash\{0\}$ and is continuous on the closed disc \bar{U}_{r}. On the other hand, since

$$
G_{w}\left(z_{0}\right)=\max _{z \in B_{r}^{n}} G_{w}(z),
$$

we obtain that

$$
F_{\tilde{z}, w}\left(\zeta_{0}\right)=\max _{|\zeta|<r} F_{\tilde{z}, w}(\zeta) .
$$

Taking into account the strong maximum principle for elliptic equations (see e.g. [1, p. 332]), we conclude that $F_{\tilde{Z}, w}(\zeta)=$ $F_{\tilde{z}, w}\left(\zeta_{0}\right)=G_{w}\left(z_{0}\right) \neq 0$ for $0<|\zeta|<r$. However, letting $\zeta \rightarrow 0$ in the above equality and using the fact that $F_{\tilde{z}, w}(0)=0$, we obtain a contradiction.

In view of the above arguments, we deduce that the function G_{w} cannot have a maximum on B_{r}^{n}, and since $r \in(0,1)$ and $w \in \partial B^{n}$ are arbitrary, we conclude by Lemma 2 that $f(z, t)$ is a c.s.c. over the interval $(0,1)$. Next, applying a version of the Carathéodory convergence theorem in several complex variables (see [9, Theorem 2.1]), we deduce that $f(z, t)$ is a c.s.c. over $(0,1]$.

Step II. We next prove that the mapping F given by (4) is injective on B^{n}. Taking into account Lemma 2 , we deduce that the mapping $f(z /\|z\|,\|z\|)=F(z)$ is injective on $B^{n} \backslash\{0\}$. Finally, since $f(z /\|z\|,\|z\|) \neq 0$ for $z \in B^{n} \backslash\{0\}$, by the injectivity of $f(\cdot, t)$ on \bar{B}^{n} and the fact that $f(0, t)=0$ for $t \in(0,1)$, we deduce that F is injective on B^{n}. This completes the proof.

Remark 9. Using elementary computations, it is not difficult to deduce that the general solutions $a(t)$ of Eq. (2), which are of class C^{2} on $(0,1)$ and continuous on $[0,1]$, and satisfy the conditions $a(1)=0, a(t)>0$ and $t a^{\prime}(t)>-1 / 2$ for $t \in(0,1)$, are the following:

$$
\begin{equation*}
a(t)=\frac{1}{c}\left(\frac{1-t^{c}}{1+t^{c}}\right), \quad t \in[0,1], \text { where } c>0 . \tag{7}
\end{equation*}
$$

Proof. Indeed, in view of (2) it is easy to see that

$$
t\left(-\frac{1}{a(t)}\right)^{\prime \prime}=\left(-\frac{1}{a(t)}\right)^{\prime}\left(\frac{1}{a(t)}-1\right), \quad t \in(0,1) .
$$

Let $b(t)=-1 / a(t)$ for $t \in(0,1)$. Then $\left(t b^{\prime}(t)\right)^{\prime}=-\frac{1}{2}\left(b^{2}(t)\right)^{\prime}$ for $t \in(0,1)$, and hence there is $c_{1} \in \mathbb{R}$ such that

$$
t b^{\prime}(t)=-\frac{1}{2} b^{2}(t)+\frac{c_{1}}{2}, \quad t \in(0,1)
$$

Therefore

$$
\begin{equation*}
t a^{\prime}(t)=-\frac{1}{2}+\frac{c_{1} a^{2}(t)}{2}, \quad t \in(0,1) \tag{8}
\end{equation*}
$$

Since $\operatorname{ta}^{\prime}(t)>-1 / 2$ for $t \in(0,1)$, we deduce that $c_{1}>0$. Using again (8), we deduce that

$$
t a^{\prime}(t)=\frac{1}{2}\left(\frac{a^{2}(t)-c_{2}^{2}}{c_{2}^{2}}\right), \quad t \in(0,1)
$$

where $c_{2}=1 / \sqrt{c_{1}}$.
We next prove that $a(t) \neq c_{2}$ for $t \in(0,1]$. Suppose that there exists $t_{0} \in(0,1)$ such that $a\left(t_{0}\right)=c_{2}>0$. Let

$$
A=\left\{t \in\left[t_{0}, 1\right]: a(t)=c_{2}\right\} .
$$

Then A is a nonempty compact set, which contains the maximal element t_{1} such that $t_{1} \geqslant t_{0}, t_{1} \neq 1$, and $a\left(t_{1}\right)=c_{2}$. From the maximality of t_{1}, it is clear that $a(t)<c_{2}$ for $t \in\left(t_{1}, 1\right]$. Let k_{0} be a positive integer such that $t_{1}+1 / k_{0}<1$. It follows for $k \geqslant k_{0}$ that $t_{1}+1 / k<1$ and

$$
\int_{t_{1}+1 / k}^{1} \frac{a^{\prime}(t)}{a^{2}(t)-c_{2}^{2}} d t=\int_{t_{1}+1 / k}^{1} \frac{1}{2 c_{2}^{2} t} d t
$$

The above relation implies that

$$
\frac{c_{2}-a\left(t_{1}+1 / k\right)}{c_{2}+a\left(t_{1}+1 / k\right)}=\left(t_{1}+1 / k\right)^{1 / c_{2}}
$$

However, this is a contradiction for k large enough. Hence $a(t) \neq c_{2}$ for $t \in(0,1]$, as claimed.
In view of the above arguments, we obtain that

$$
\frac{a^{\prime}(t)}{a^{2}(t)-c_{2}^{2}}=\frac{1}{2 c_{2}^{2} t}, \quad t \in(0,1)
$$

Integrating the above equality on $[t, 1]$, and using the fact that $a(1)=0$ and $a(t)<c_{2}$ for $t \in(0,1]$, we deduce that

$$
\frac{1}{c}-a(t)=\left(a(t)+\frac{1}{c}\right) t^{c}, \quad t \in(0,1)
$$

where $c=1 / c_{2}>0$. Hence we obtain the relation (7), as desired.
Taking into account Theorem 8 and Remark 9, we obtain the following consequence. Note that in the case $c=1$, Theorem 10 reduces to [4 , Theorem 2.11], that is the n-dimensional version of [17, Theorem 2.41].

Theorem 10. Let $c>0$ and $f(z)=z+\sum_{k=2}^{\infty} A_{k}\left(z^{k}\right)$ be a normalized holomorphic mapping on B^{n} which satisfies the condition (1). Then

$$
f(z, t)=\frac{1}{c}\left(\frac{1-t^{2 c}}{1+t^{2 c}}\right) D f(t z)(t z)+f(t z)
$$

is a convex subordination chain over $(0,1]$ and the mapping $F: B^{n} \rightarrow \mathbb{C}^{n}$ given by

$$
F(z)=\frac{1}{c}\left(\frac{1-\|z\|^{2 c}}{1+\|z\|^{2 c}}\right) D f(z)(z)+f(z)
$$

is injective on B^{n}.

From Theorem 10 we obtain the following subordination result.

Corollary 11. Let $c>0$ and $f(z)=z+\sum_{k=2}^{\infty} A_{k}\left(z^{k}\right)$ be a normalized holomorphic mapping on B^{n} which satisfies the condition (1). Then

$$
\frac{1}{c}\left(\frac{1-t^{2 c}}{1+t^{2 c}}\right) D f(t z)(t z)+f(t z) \prec f(z), \quad z \in B^{n}, t \in(0,1]
$$

We close this section with the following coefficient bounds which provide sufficient conditions for univalence, quasiregularity and starlikeness for the mapping $f(z, t)$ given by (3).

Theorem 12. Let $f: B^{n} \rightarrow \mathbb{C}^{n}$ be a holomorphic mapping such that $f(z)=z+\sum_{k=2}^{\infty} A_{k}\left(z^{k}\right)$ for $z \in B^{n}$. Assume that there exists $c \in[0,1]$ such that

$$
\begin{equation*}
\sum_{k=2}^{\infty} k\left\|A_{k}\right\| \leqslant c \tag{9}
\end{equation*}
$$

Let $a:[0,1] \rightarrow[0, \infty)$ be a function which satisfies the assumptions of Remark 4(ii). Also let $f(z, t): B^{n} \times[0,1] \rightarrow \mathbb{C}^{n}$ be the mapping given by (3). Then $f(\cdot, t)$ is biholomorphic on B^{n} for $t \in(0,1]$. Moreover, if $c<1$, then $f(\cdot, t)$ is quasiregular on B^{n} and extends to a quasiconformal homeomorphism of $\mathbb{R}^{2 n}$ onto itself for $t \in(0,1]$.

Proof. We remark that the condition (9) yields that f is biholomorphic by [3, Lemma 2.2]. If $c<1$, then f is quasiregular on B^{n} and extends to a quasiconformal homeomorphism of $\mathbb{R}^{2 n}$ onto itself by [3, Lemma 2.2] (see also [8, Corollary 4.5], [7, Theorem 4.1]). Let

$$
\beta_{k}(t)=t^{k}\left(k a\left(t^{2}\right)+1\right) \quad \text { and } \quad g_{k}(t)=\beta_{k}(t) / \beta_{1}(t)
$$

for $k \in \mathbb{N}$ and $t \in(0,1]$. As in the proof of Theorem 8 , we deduce that $g_{k}(t)<1$ for $k \geqslant 2$ and $t \in(0,1)$. Since

$$
f(z, t)=\beta_{1}(t) z+\sum_{k=2}^{\infty} \beta_{k}(t) A_{k}\left(z^{k}\right), \quad z \in B^{n}
$$

we deduce that

$$
\sum_{k=2}^{\infty} k \beta_{k}(t)\left\|A_{k}\right\| \leqslant \beta_{1}(t) \sum_{k=2}^{\infty} k\left\|A_{k}\right\| \leqslant c \beta_{1}(t), \quad t \in(0,1)
$$

by the condition (9). Hence $f(\cdot, t)$ is biholomorphic in view of [3]. If $c<1$, then $f(\cdot, t)$ is quasiregular on B^{n} and extends to a quasiconformal homeomorphism of $\mathbb{R}^{2 n}$ onto itself for $t \in(0,1]$, in view of [3]. This completes the proof.

Remark 13. It would be interesting to see if the mapping F given by (4) is injective on B^{n}, under the same assumptions as in Theorem 12.

Theorem 14. Let $f: B^{n} \rightarrow \mathbb{C}^{n}$ be a holomorphic mapping such that $f(z)=z+\sum_{k=2}^{\infty} A_{k}\left(z^{k}\right)$ for $z \in B^{n}$. Assume that

$$
\begin{equation*}
\sum_{k=2}^{\infty}(2 k-1)\left\|A_{k}\right\| \leqslant 1 \tag{10}
\end{equation*}
$$

Let $a:[0,1] \rightarrow[0, \infty)$ be a function which satisfies the assumptions of Remark $4(\mathrm{ii})$. Also let $f(z, t): B^{n} \times[0,1] \rightarrow \mathbb{C}^{n}$ be the mapping given by (3). Then $f(\cdot, t)$ is starlike and quasiregular on B^{n} and extends to a quasiconformal homeomorphism of $\mathbb{R}^{2 n}$ onto itself for $t \in(0,1]$.

Proof. Since $\sum_{k=2}^{\infty} k\left\|A_{k}\right\| \leqslant 2 / 3$, in view of (10), we deduce that $f(\cdot, t)$ is quasiregular on B^{n} and extends to a quasiconformal homeomorphism of $\mathbb{R}^{2 n}$ onto itself for $t \in(0,1]$ by Theorem 12 . On the other hand, taking into account the condition (10) and [3, Theorem 2.4], it suffices to use arguments similar to those in the proof of Theorem 12 , to deduce that $f(\cdot, t)$ is starlike for $t \in(0,1]$. This completes the proof.

3. Examples of c.s.c. over $(0,1]$ on $B^{\boldsymbol{n}}$

In view of Theorem 10, we obtain the following example of a convex subordination chain over $(0,1]$ and injective mapping on B^{n}.

Example 15. Let $c>0$ and $A: \mathbb{C}^{n} \times \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be a symmetric bilinear operator such that $\|A\| \leqslant 1 / 4$. Also let

$$
f(z, t)=\frac{t(1+c)+t^{2 c+1}(c-1)}{c\left(1+t^{2 c}\right)} z+\frac{t^{2}(2+c)+t^{2 c+2}(c-2)}{c\left(1+t^{2 c}\right)} A\left(z^{2}\right)
$$

Then $f(z, t)$ is a c.s.c. over $(0,1]$. Moreover, the mapping $F: B^{n} \rightarrow \mathbb{C}^{n}$ given by

$$
F(z)=\frac{1+c+\|z\|^{2 c}(c-1)}{c\left(1+\|z\|^{2 c}\right)} z+\frac{2+c+\|z\|^{2 c}(c-2)}{c\left(1+\|z\|^{2 c}\right)} A\left(z^{2}\right)
$$

is injective on B^{n}.
Proof. It suffices to apply Theorem 10 for $f(z)=z+A\left(z^{2}\right)$.

Before to give other examples of c.s.c. over $(0,1]$ on B^{n}, we recall that if $f_{j} \in K$ for $j=1, \ldots, n$, then the mapping $F: B^{n} \rightarrow \mathbb{C}^{n}$ given by $F(z)=\left(f_{1}\left(z_{1}\right), \ldots, f_{n}\left(z_{n}\right)\right)$ is not necessarily a convex mapping in dimension $n \geqslant 2$ (see [15] and [16]). Indeed, $f(\zeta)=\zeta /(1-\zeta) \in K$, however, the mapping $F: B^{n} \rightarrow \mathbb{C}^{n}$ given by

$$
F(z)=\left(\frac{z_{1}}{1-z_{1}}, \ldots, \frac{z_{n}}{1-z_{n}}\right), \quad z=\left(z_{1}, \ldots, z_{n}\right) \in B^{n}
$$

is not convex in dimension $n \geqslant 2$ (see $[15,16,2]$). Thus, if $f_{j} \in K, j=1, \ldots, n$, and $a:[0,1] \rightarrow[0, \infty)$ is a function which satisfies the assumptions of Remark 4(ii), then

$$
\begin{equation*}
f(z, t)=\left(a\left(t^{2}\right) t z_{1} f_{1}^{\prime}\left(t z_{1}\right)+f_{1}\left(t z_{1}\right), \ldots, a\left(t^{2}\right) t z_{n} f_{n}^{\prime}\left(t z_{n}\right)+f_{n}\left(t z_{n}\right)\right) \tag{11}
\end{equation*}
$$

is not necessarily a c.s.c. over $(0,1]$. We shall prove that if $\left|f_{j}^{\prime \prime}(\zeta) / f_{j}^{\prime}(\zeta)\right| \leqslant 1$ for $|\zeta|<1$ and $j=1, \ldots, n$, then $f(z, t)$ given by (11) is a c.s.c. over $(0,1]$.

Theorem 16. Let $f_{j} \in S K$ for $j=1, \ldots, n$ and let $a:[0,1] \rightarrow[0, \infty)$ be a function which satisfies the assumptions of Remark 4(ii). Then

$$
f(z, t)=\left(a\left(t^{2}\right) t z_{1} f_{1}^{\prime}\left(t z_{1}\right)+f_{1}\left(t z_{1}\right), \ldots, a\left(t^{2}\right) t z_{n} f_{n}^{\prime}\left(t z_{n}\right)+f_{n}\left(t z_{n}\right)\right)
$$

is a c.s.c. over $(0,1]$. Moreover, if $a(\cdot)$ is of class C^{1} on $[0,1)$, then the mapping $F: B^{n} \rightarrow \mathbb{C}^{n}$ given by

$$
F(z)=\left(a\left(\left|z_{1}\right|^{2}\right) z_{1} f_{1}^{\prime}\left(z_{1}\right)+f_{1}\left(z_{1}\right), \ldots, a\left(\left|z_{n}\right|^{2}\right) z_{n} f_{n}^{\prime}\left(z_{n}\right)+f_{n}\left(z_{n}\right)\right)
$$

is injective on B^{n}.
Proof. Let $f_{j}\left(z_{j}, t\right)=a\left(t^{2}\right) t z_{j} f_{j}^{\prime}\left(t z_{j}\right)+f_{j}\left(t z_{j}\right)$ for $\left|z_{j}\right|<1, j=1, \ldots, n$ and $t \in(0,1]$. Then $f_{j}\left(z_{j}, t\right)$ is a c.s.c. over (0,1] by Remark 4(ii) and

$$
f_{j}\left(z_{j}, t\right)=\frac{a\left(t^{2}\right) t z_{j}+1-t z_{j}}{\left(1-t z_{j}\right)^{2}} * f_{j}\left(z_{j}\right), \quad j=1, \ldots, n
$$

Let $h_{j}\left(z_{j}, t\right)=\left(a\left(t^{2}\right) t z_{j}+1-t z_{j}\right) /\left(1-t z_{j}\right)^{2}$. Then $h_{j}(\cdot, t)$ is a (non-normalized) convex function on U for $t \in(0,1]$, by [11, Lemma 9]. Let

$$
n_{j}\left(z_{j}, t\right)=\frac{h_{j}\left(z_{j}, t\right)-1}{t\left(a\left(t^{2}\right)+1\right)}, \quad\left|z_{j}\right|<1, j=1, \ldots, n, t \in(0,1] .
$$

Then $n_{j}(\cdot, t) \in K$ for $t \in(0,1]$ and $j=1, \ldots, n$. Also let

$$
p_{j}\left(z_{j}, t\right)=n_{j}\left(z_{j}, t\right) * f_{j}\left(z_{j}\right)=\frac{1}{t\left(a\left(t^{2}\right)+1\right)} f_{j}\left(z_{j}, t\right), \quad j=1, \ldots, n
$$

Taking into account Lemma 7, we deduce that $p_{j}(\cdot, t) \in S K$, and thus

$$
\left|\frac{f_{j}^{\prime \prime}\left(z_{j}, t\right)}{f_{j}^{\prime}\left(z_{j}, t\right)}\right| \leqslant 1, \quad\left|z_{j}\right|<1, j=1, \ldots, n, t \in(0,1]
$$

Next, it is not difficult to deduce that

$$
\left\|[D f(z, t)]^{-1} D^{2} f(z, t)(v, v)\right\|^{2}=\sum_{j=1}^{n}\left|v_{j}\right|^{4}\left|\frac{f_{j}^{\prime \prime}\left(z_{j}, t\right)}{f_{j}^{\prime}\left(z_{j}, t\right)}\right|^{2} \leqslant \sum_{j=1}^{n}\left|v_{j}\right|^{2}=1
$$

for $z=\left(z_{1}, \ldots, z_{n}\right) \in B^{n}, v=\left(v_{1}, \ldots, v_{n}\right) \in \partial B^{n}$ and $t \in(0,1]$. Then $f(\cdot, t)$ is a convex mapping on B^{n} for each $t \in(0,1]$, in view of [6, Theorem 3.4] (see also [13, Theorem 4.1] and [21, Corollary 1]). On the other hand, since $f_{j}\left(z_{j}, s\right) \prec f_{j}\left(z_{j}, t\right)$ by [11, Theorem 10], there exists a Schwarz function $v_{j}=v_{j}\left(z_{j}, s, t\right)$ such that $f_{j}\left(z_{j}, s\right)=f_{j}\left(v_{j}\left(z_{j}, s, t\right), t\right)$ for $\left|z_{j}\right|<1$, $0<s \leqslant t \leqslant 1, j=1, \ldots, n$. Let $v(z, s, t)=\left(v_{1}\left(z_{1}, s, t\right), \ldots, v_{n}\left(z_{n}, s, t\right)\right)$ for $z=\left(z_{1}, \ldots, z_{n}\right) \in B^{n}$ and $0<s \leqslant t \leqslant 1$. Then $v(\cdot, s, t) \in H\left(B^{n}\right)$ and

$$
\|v(z, s, t)\|^{2}=\sum_{j=1}^{n}\left|v_{j}\left(z_{j}, s, t\right)\right|^{2} \leqslant \sum_{j=1}^{n}\left|z_{j}\right|^{2}=\|z\|^{2}, \quad z=\left(z_{1}, \ldots, z_{n}\right) \in B^{n}
$$

Hence $v(\cdot, s, t)$ is a Schwarz mapping. Moreover, since $f(z, s)=f(v(z, s, t), t)$ for $z \in B^{n}$ and $0<s \leqslant t \leqslant 1$, we deduce that $f(\cdot, s) \prec f(\cdot, t)$ for $0<s \leqslant t \leqslant 1$. Taking into account the above arguments, we deduce that $f(z, t)$ is a c.s.c. over (0,1], as desired. Finally, if $a(\cdot)$ is of class C^{1} on $[0,1)$, then the function $F_{j}\left(z_{j}\right)=a\left(\left|z_{j}\right|^{2}\right) z_{j} f_{j}^{\prime}\left(z_{j}\right)+f_{j}\left(z_{j}\right)$ is injective on U for $j=1, \ldots, n$, by Remark 4 (iii). Thus the mapping $F(z)=\left(F_{1}\left(z_{1}\right), \ldots, F_{n}\left(z_{n}\right)\right)$ is injective on B^{n}. This completes the proof.

Taking into account Theorem 16, we obtain the following examples of c.s.c. over $(0,1]$ on the unit ball B^{n}.
Example 17. Let $\lambda_{j} \in \mathbb{C}$ be such that $0<\left|\lambda_{j}\right| \leqslant 1$ for $j=1, \ldots, n$. Also let $a:[0,1] \rightarrow[0, \infty)$ be a function which satisfies the assumptions of Remark 4(ii). Then $f(z, t)$ given by

$$
f(z, t)=\left(a\left(t^{2}\right) t z_{1} e^{\lambda_{1} t z_{1}}+\frac{e^{\lambda_{1} t z_{1}}-1}{\lambda_{1}}, \ldots, a\left(t^{2}\right) t z_{n} e^{\lambda_{n} t z_{n}}+\frac{e^{\lambda_{n} t z_{n}}-1}{\lambda_{n}}\right)
$$

is a convex subordination chain over $(0,1]$.
Proof. Let $f_{j}(\zeta)=\left(e^{\lambda_{j} \zeta}-1\right) / \lambda_{j}$ for $j=1, \ldots, n$. Then $\left|f_{j}^{\prime \prime}\left(z_{j}\right) / f_{j}^{\prime}\left(z_{j}\right)\right|=\left|\lambda_{j}\right| \leqslant 1$ for $j=1, \ldots, n$, and the result follows by Theorem 16.

Example 18. Let $f_{1} \in S K$ and let $a:[0,1] \rightarrow[0, \infty)$ be a function which satisfies the assumptions of Remark 4(ii). Then

$$
f(z, t)=\left(a\left(t^{2}\right) t z_{1} f_{1}^{\prime}\left(t z_{1}\right)+f_{1}\left(t z_{1}\right),\left(a\left(t^{2}\right)+1\right) t \tilde{z}\right), \quad z=\left(z_{1}, \tilde{z}\right) \in B^{n}
$$

is a c.s.c. over $(0,1]$.

Example 19. Let $a:[0,1] \rightarrow[0, \infty)$ be a function which satisfies the assumptions of Remark $4(\mathrm{ii})$. Then $f(z, t)=\left(a\left(t^{2}\right)+1\right) t z$ is a c.s.c. over $(0,1]$ and the mapping $F(z)=\left(a\left(\|z\|^{2}\right)+1\right) z$ is injective on B^{n}.

Proof. It is obvious that $f(z, t)$ is a c.s.c. over $(0,1]$ in view of Example 18. Since $a(t)>0$ and $t a^{\prime}(t)>-1 / 2$ for $t \in(0,1)$, it follows that the function $q(t)=t\left(a\left(t^{2}\right)+1\right)$ is strictly increasing on $(0,1)$. Then it is easy to see that $F(z)=\left(a\left(\|z\|^{2}\right)+1\right) z$ is injective on B^{n}, as desired.

References

[1] L.C. Evans, Partial Differential Equations, American Mathematical Society, Providence, RI, 2002.
[2] S. Gong, Convex and Starlike Mappings in Several Complex Variables, Kluwer Academic Publishers, Dordrecht, 1998.
[3] I. Graham, H. Hamada, G. Kohr, Radius problems for holomorphic mappings on the unit ball in \mathbb{C}^{n}, Math. Nachr. 279 (2006) 1474-1490.
[4] I. Graham, H. Hamada, G. Kohr, J.A. Pfaltzgraff, Convex subordination chains in several complex variables, Canad. J. Math. 61 (2009) $566-582$.
[5] I. Graham, G. Kohr, Geometric Function Theory in One and Higher Dimensions, Marcel Dekker Inc., New York, 2003.
[6] H. Hamada, G. Kohr, Simple criterions for strongly starlikeness and starlikeness of certain order, Math. Nachr. 254-255 (2003) 165-171.
[7] H. Hamada, G. Kohr, Loewner chains and quasiconformal extension of holomorphic mappings, Ann. Polon. Math. 81 (2003) 85-100.
[8] H. Hamada, G. Kohr, Quasiconformal extension of biholomorphic mappings in several complex variables, J. Anal. Math. 96 (2005) $269-282$.
[9] G. Kohr, Kernel convergence and biholomorphic mappings in several complex variables, Int. J. Math. Math. Sci. 67 (2003) $4229-4239$.
[10] G. Kohr, Loewner chains and a modification of the Roper-Suffridge extension operator, Mathematica (Cluj) 48 (71) (2006) 41-48.
[11] G. Kohr, P.T. Mocanu, I. Şerb, Convex and alpha-prestarlike subordination chains, J. Math. Anal. Appl. 332 (2007) 463-474.
[12] S.S. Miller, P.T. Mocanu, Differential Subordinations. Theory \& Applications, Marcel Dekker Inc., New York, 2000.
[13] J.R. Muir, T.J. Suffridge, Construction of convex mappings of p-balls in \mathbb{C}^{2}, Comput. Methods Funct. Theory 4 (2004) 21-31.
[14] S. Muir, Subordinate solutions of a differential equation, Comput. Methods Funct. Theory 7 (2007) 1-11.
[15] K. Roper, T.J. Suffridge, Convex mappings of the unit ball of \mathbb{C}^{n}, J. Anal. Math. 65 (1995) 333-347.
[16] K. Roper, T.J. Suffridge, Convexity properties of holomorphic mappings in \mathbb{C}^{n}, Trans. Amer. Math. Soc. 351 (1999) 1803-1833.
[17] S. Ruscheweyh, Convolutions in Geometric Function Theory, Les Presses de l'Université de Montreal, 1982.
[18] S. Ruscheweyh, T. Sheil-Small, Hadamard products of Schlicht functions and the Pólya-Schoenberg conjecture, Comment. Math. Helv. 48 (1973) 119135.
[19] S. Ruscheweyh, T.J. Suffridge, A continuous extension of the Vallée Poussin means, J. Anal. Math. 89 (2003) 155-167.
[20] T.J. Suffridge, Starlikeness, Convexity and Other Geometric Properties of Holomorphic Maps in Higher Dimensions, Lecture Notes in Math., vol. 599, Springer-Verlag, New York, 1976, pp. 146-159.
[21] Y.C. Zhu, M.S. Liu, Criteria for biholomorphic convex mappings on the unit ball in Hilbert spaces, J. Math. Anal. Appl. 322 (2006) 495-511.

[^0]: * Corresponding author.

 E-mail addresses: h.hamada@ip.kyusan-u.ac.jp (H. Hamada), gkohr@math.ubbcluj.ro (G. Kohr), pmocanu@math.ubbcluj.ro (P.T. Mocanu), ivserb@math.ubbcluj.ro (I. Şerb).
 ${ }^{1}$ Partially supported by Grant-in-Aid for Scientific Research (C) No. 19540205 from Japan Society for the Promotion of Science, 2007.
 ${ }^{2}$ Partially supported by Romanian Ministry of Education and Research, grants CEEX 2-CEx06-11-10/2006 and PN-II-ID 524/2007.
 ${ }^{3}$ Supported by Romanian Ministry of Education and Research, CNCSIS grant of type A 1472/2007.

