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In this paper we study actions of locally compact quantum groups on von
Neumann algebras and prove that every action has a canonical unitary implemen-
tation, paralleling Haagerup's classical result on the unitary implementation of a
locally compact group action. This result is an important tool in the study of quan-
tum groups in action. We will use it in this paper to study subfactors and inclusions
of von Neumann algebras. When : is an action of the locally compact quantum
group (M, 2) on the von Neumann algebra N we can give necessary and sufficient
conditions under which the inclusion N:/N/�M: _ N is a basic construction.
Here N : denotes the fixed point algebra and M: _ N is the crossed product. When
: is an outer and integrable action on a factor N we prove that the inclusion
N:/N is irreducible, of depth 2 and regular, giving a converse to the results of
M. Enock and R. Nest (1996, J. Funct. Anal. 137, 466�543; 1998, J. Funct. Anal.
154, 67�109). Finally we prove the equivalence of minimal and outer actions and
we generalize the main theorem of Yamanouchi (1999, Math. Scand. 84, 297�319):
every integrable outer action with infinite fixed point algebra is a dual action.
� 2001 Academic Press

INTRODUCTION

Building on the work of Kac and Vainerman [30], Enock and Schwartz
[6], Baaj and Skandalis [1], Woronowicz [32] and Van Daele [31], a
precise definition of a locally compact quantum group was recently intro-
duced by J. Kusterman and the author in [19], see [18] and [20] for an
overview. For an overview of the historical development of the theory we
refer to [20] and the introduction of [19]. This theory provides a
topological framework to study quantum groups and it unifies locally com-
pact groups, compact quantum groups and Kac algebras.

Because classical groups are usually defined to act on a space it is very
natural to make a quantum group act on a quantum space, which will be
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an algebra. In an algebraic framework the study of Hopf algebras acting on
algebras has been very useful.

On the other hand, actions of locally compact groups on von Neumann
algebras have always been an important topic in operator algebra theory,
see e.g. [2] and [23]. In these works the importance of Haagerup's results
on the canonical implementation of locally compact group actions and his
results on the dual weight construction, cannot be overestimated. It is
simply used all the time, without noticing it. See [10] and [11].

Hence it seems natural to study more generally actions of locally com-
pact quantum groups on von Neumann algebras and to try to develop the
same machinery of canonical implementation and dual weight construction.
This is what is done in the first half of this paper. We strongly believe that
this will serve as an important tool in several applications of locally com-
pact quantum groups. We already give some applications in the second half
of this paper. Other applications are given by Kustermans in [17] and by
Vainerman and the author in [29a]. This will be explained below.

The special case of Kac algebra actions has been studied by Enock and
Schwartz in [4] and [5]. They obtained important results on crossed
products, with the biduality theorem as a major achievement. But they
never obtained a unitary implementation for an arbitrary action and also
Haagerup's theory of dual weights on the crossed product could not be
completely generalized. For instance, it remained an open problem whether
the crossed product with a Kac algebra action on a von Neumann algebra
is in standard position on its natural Hilbert space. It should be mentioned
that in [1] also Baaj and Skandalis obtain a biduality theorem for crossed
products with multiplicative unitaries.

A first attempt to obtain the unitary implementation of a Kac algebra
action was made by J.-L. Sauvageot in [25]. Unfortunately his proof is
wrong, and for this we refer to the discussion in the beginning of Section 3.

So in this paper we will define actions of a locally compact quantum
group on a von Neumann algebra and we will construct its unitary
implementation. We will also give a construction for the dual weight on the
crossed product and prove analogous results as those about group actions
obtained by Haagerup in [10] and [11]. In particular we prove that the
crossed product is in standard position on its natural Hilbert space and we
identify the associated modular objects. Hence we do not only give a right
proof for the results of Sauvageot, but also we prove new results on the
dual weights which make then a workable and applicable tool, and we
work in the more general setting of locally compact quantum groups.

In the second half of the paper we will give some applications of these
results in the theory of subfactors and inclusions of von Neumann algebras.
It has been proved by Enock and Nest in their beautiful papers [7] and
[8] that every irreducible, depth 2 inclusion of factors satisfying the
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regularity condition, can be obtained as N:/N where : is an outer action
of a locally compact quantum group on the factor N and N: is the fixed
point algebra. We show in this paper that the action : is always integrable
and that, conversely, for every outer and integrable action : on a factor N
the inclusion N:/N is irreducible, of depth 2 and regular. So we obtain a
converse to the results of Enock and Nest. The same result is stated for the
special case of a dual Kac algebra action in [7, 11.14], but not proved.
While doing this, we study more generally the problem when the inclusion
N:/N/�M: _ N is a basic construction, and here M: _ N denotes the
crossed product.

As a final application of our results we prove the equivalence of outer-
ness and minimality of a locally compact quantum group action, under the
integrability condition. We also generalize the main theorem of Yamanouchi
[33] to actions of arbitrary locally compact quantum groups: when working
on separable Hilbert spaces, we prove that every integrable outer action
with infinite fixed point algebra is a dual action.

It should also be mentioned that our results on the unitary implementa-
tion of a locally compact quantum group action are already applied in a
recent paper by Kustermans (see [17]) in which he constructs induced
corepresentations of locally compact quantum groups. Taking into account
the importance of induced representations of locally compact groups, it is
clear that the results of Kustermans serve as a major motivation of our work.

DEFINITIONS AND NOTATIONS

The whole of this paper will rely heavily on the modular theory of von
Neumann algebras. Throughout the text we will not make efforts to give
references to the original papers, but we will use [26] as a general
reference.

When % is a normal, semifinite and faithful (we say n.s.f.) weight on a
von Neumann algebra N, one can make the so-called GNS-construction
(K% , ?% , 4%), where K% is a Hilbert space, ?% is a normal representation of
N on K% and 4% : N% � K% is a linear map satisfying ?% (x) 4% ( y)=4% (xy)
for all x # N and y # N% . Further 4% (N%) is dense in K% . Here N% is the left
ideal in N defined by [x # N | %(x*x)<�]. The representation ?% is faithful
and often we will identify N and ?% (N). Then we will use the expression:
let us represent N on the GNS-space of % such that (K% , @, 4%) is a GNS-
construction.

We will use several standard notations and results of modular theory.
We write

M+
% =[x # N+ | %(x)<�]
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and we denote with (_%
t )t the modular automorphism group of %. Further

we denote with T% the Tomita algebra defined by

T% =[x # N | x is analytic with respect to (_%) and

_%
z(x) # N% & N%* for all z # C].

Given a GNS-construction (K% , ?% , 4%) we define as usual the modular
conjugation J% and the modular operator {% . Recall that

J%{1�2
% 4% (x)=4% (x*)

for all x # N% & N%* and 4% (N% & N%*) is a core for {1�2
% .

When %1 and %2 are n.s.f. weights on N we denote with ([D%1 : D%2]t)t # R

the Connes cocycle as defined in e.g. [26, 3.1].
Often we will make use of operator valued weights. When N is a von

Neumann algebra we denote with N +
ext the extended positive part of N as

introduced by Haagerup in [13], see e.g. [26, 11.1]. For the notion of
operator valued weights we refer to [13] or [26, 11.5]. We will denote
with ( } , } ) the composition of elements of N +

ext and N
*
+. When T is an

operator valued weight we denote with NT the left ideal of elements x such
that T(x*x) is bounded.

All tensor products in this paper are either von Neumann algebra tensor
products or tensor products of Hilbert spaces. This will always be clear
from the context. We will use _ to denote the flip map on a tensor product
A�B of von Neumann algebras and 7 to denote the flip map on a tensor
product H�K of Hilbert spaces. When K is a Hilbert space and ! # K we
denote with %! the operator in B(C, K) given by %!(*)=*! for all * # C.
When H is a Hilbert space and !, ' # H we denote with |!, ' the usual
vector functional in B(H)

*
given by |!, '(x)=(x!, '). We use |! as a

shorter notation for |!, ! . We will denote with D(T ) the domain of a
(usually densely defined) map T.

Throughout this paper the pair (M, 2) will denote a (von Neumann
algebraic) locally compact quantum group. This means that

v M is a von Neumann algebra and 2: M � M�M is a normal and
unital V-homomorphism satisfying coassociativity: (2� @) 2=(@�2) 2.

v There exist n.s.f. weights . and � on M such that

�� . is left invariant in the sense that .((|� @) 2(x))=.(x) |(1)
for all x # M+

. and | # M
*
+.

�� � is right invariant in the sense that �((@�|) 2(x))=�(x) |(1)
for all x # M+

� and | # M
*
+.
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We refer to [19, 21] and [18] for the theory of locally compact quantum
groups in either the von Neumann algebra or C*-algebra language. It
should be stressed that in [19] there is given a definition of a locally
compact quantum group in the C*-algebra framework, and it is proven
that one can associate with this a locally compact quantum group in the
von Neumann algebra framework. In [21] the above definition of a von
Neumann algebraic locally compact quantum group is given and it is
shown how to associate with it a C*-algebraic locally compact quantum
group.

One can then prove the existence of a _-strong* closed map S on M,
called the antipode, such that for all a, b # N. we have

(@�.)(2(a*)(1�b)) # D(S)

and

S((@�.)(2(a*)(1�b)))=(@�.)((1�a*) 2(b)).

Moreover, such elements (@�.)(2(a*)(1�b)) span a _-strong* core for S.
Then there exists a unique one-parameter group ({t)t # R of automorphisms
of M and a unique V-anti-automorphism R of M such that

S=R{&i�2 R2=@ R{t={t R for all t # R

We call { the scaling group of (M, 2) and R the unitary antipode. One
refers to the expression S=R{&i�2 as the polar decomposition of the
antipode.

Next one can prove that 2R=_(R�R) 2, where _ denotes the flip map
on M�M. One can also prove that the left and right invariant weights on
(M, 2) are unique up to a positive scalar. So � and .R are proportional
and we can suppose from the beginning that �=.R. We denote with
(_t)t # R the modular group of .. Then there exists a unique self-adjoint,
strictly positive operator $ affiliated with M and satisfying _t($)=&t$ and
�=.$ , where &>0 is a real number. Formally this means that
�(x)=.($1�2x$1�2) and for an exact definition of .$ we refer to [29, 1.5].
We call $ the modular element of (M, 2). The number &>0 is called the
scaling constant of (M, 2).

Let us represent M on the GNS-space H of . such that (H, @, 4) is a
GNS-construction for .. Let (H, @, 1 ) be the canonical GNS-construction
for �=.$ as defined in [19, 7.2]. Then one can define unitaries W and V
in B(H�H) such that

W*(4(a)�4(b))=(4�4)(2(b)(a�1)) for all a, b # N.

V(1(a)�1(b))=(1�1 )(2(a)(1�b)) for all a, b # N� .
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Here 4�4 and 1�1 denote the canonical GNS-maps for the tensor
product weights .�. and ���. Then W and V are multiplicative
unitaries, which means that they satisfy the pentagonal equation

W12W13W23=W23W12 .

The unitaries W and V will be used throughout the paper. Denoting with
& the _-strong* closure we have that

M=[(@�|)(W ) | | # B(H )
*

]& and

2(x)=W*(1�x) W for all x # M.

We will denote with J and { the modular conjugation and modular
operator of . in the GNS-construction (H, @, 4).

Finally we describe how to define the dual locally compact quantum
group (M� , 2� ). Define the von Neumann algebra M� as follows, where again
& denotes the _-strong* closure.

M� =[(|� @)(W ) | | # M
*

]&.

Then one can define a comultiplication 2� on M� by

2� ( y)=7W( y�1) W*7 for all y # M�

where 7 denotes the flip map on H�H. When | # M
*

we define *(|)=
(|� @)(W ). Of course M

*
should be thought of as the L1-functions on the

quantum group (M, 2), and then * is the left regular representation. We
also define

I=[| # M
*

| there exists ' # H such that

|(x*)=(', 4(x)) for all x # N.].

Such a ' # H is necessarily uniquely determined and will be denoted with
!(|). Then there exists a unique n.s.f. weight .̂ on M� with GNS-construc-
tion (H, @, 4� ) such that *(I)/N.̂ , *(I) is a _-strong*-norm core for 4�
and 4� (*(|))=!(|) for all | # I.

Then (M� , 2� ) will be a locally compact quantum group, and having fixed
the GNS-construction (H, @, 4� ) for .̂ we can now repeat the story about
(M, 2) and obtain (_̂t)t # R , $� , W� , V� , J� and {� . For all kinds of formulas
relating these objects we refer to [21]. We only mention that

J� J=&i�4JJ�

{� itx{� &it={t(x) and J� x*J� =R(x) for all x # M, t # R.
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Finally we denote with (M, 2)op the opposite locally compact quantum
group (M, 2op) where 2op=_2. Further we define (M, 2)$=(M$, 2$)
where

2$(x)=(J�J ) 2(JxJ )(J�J )

for all x # M$ and we call (M, 2)$ the commutant locally compact quantum
group. Then one can prove that

(M, 2)op ^ =(M, 2) ^ $

and for this we refer to [21].

1. ACTIONS OF LOCALLY COMPACT QUANTUM GROUPS

In this section we define actions of locally compact quantum groups on
von Neumann algebras and we construct an important tool: the canonical
operator valued weight from the von Neumann algebra on which we act to
the fixed point algebra, obtained by integrating out the action.

Definition 1.1. Let N be a von Neumann algebra. A normal, injective
and unital V-homomorphism :: N � M�N will be called a left action of
(M, 2) on N when (@�:) :=(2� @) :.

A normal, injective and unital V-homomorphism :: N � N�M will be
called a right action of (M, 2) on N when (:� @) :=(@�2) :.

In this paper we will only work with left actions and so we drop the
predicate left. When : is a right action, _: will be a left action of (M, 2op)
on N, where _ denotes the flip map from N�M to M�N and 2op denotes
the opposite comultiplication. So it is not a real restriction to work only
with left actions. It should be observed that in [4] and [5] they work with
right actions.

Definition 1.2. When :: N � M�N is an action of (M, 2) on N we
define the fixed point algebra N: as

N:=[x # N | :(x)=1�x].

It is clear that N: is a von Neumann subalgebra of N.
Recall that N +

ext denotes the extended positive part of N.

Proposition 1.3. Let N be a von Neumann algebra and : an action of
(M, 2) on N. For every x # N+ the element T:(x)=(�� @) :(x) of N +

ext
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belongs to (N:)+
ext . Further T: is a normal, faithful operator valued weight

from N to N:.

Proof. Let x # N+ and | # (M�N)
*
+. Denote with ( } , } ) the com-

position of an element in N +
ext and an element in N

*
+. Then by definition

of the operator valued weight �� @ we get

(T:(x), |:) =( (�� @) :(x), |:) =�((@�|:) :(x))

=�((@�|)(2� @) :(x))

=( (�� @� @)((2� @) :(x)), |).

By the right invariant version of [21, 3.1] we get that

(T:(x), |:) =(1� (�� @) :(x), |)=(1�T:(x), |).

From this it follows that :(T:(x))=1�T:(x). So we get that T:(x) #
(N:)+

ext .
If x # N + and a # N: we have

(T:(axa*), |) =( (�� @)((1�a) :(x)(1�a*)), |)

=�((@�a*|a) :(x))=(T:(x), a*|a).

So we get that T: is indeed an operator valued weight. Because both : and
�� @ are faithful and normal, also T: is faithful and normal. K

One should observe that the same result is stated and used in [5] for
Kac algebra actions. Their proof contains a gap because they do not have
an invariance formula like [21, 3.1], which is indispensable. For Kac
algebra actions this was repaired by Zsido� (see [34], see also [26, 18.18
and 18.23]). Also in the case of a group action this was a non-trivial
problem (see [11]). The simple proof of Zsido� for this invariance formula
only works in the Kac algebra setting, where the scaling group is trivial.
I would like to thank prof. Enock for the discussion on this topic.

Definition 1.4. An action : of (M, 2) on a von Neumann algebra N
is called integrable when the operator valued weight T: defined in Proposi-
tion 1.3 is semifinite.

We will now introduce the well known concept of cocycle equivalent
actions (cfr. [4, I.6]).

Definition 1.5. Let : be an action of (M, 2) on the von Neumann
algebra N. A unitary U # M�N is called an :-cocycle if

(2� @)(U )=U23(@�:)(U ).
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It is clear that in this case the formula

;(x)=U:(x) U* for all x # N

defines an action ; of (M, 2) on N.
Two actions : and ; of (M, 2) on N are called cocycle equivalent if there

exists an :-cocycle U such that ; is given by the formula above.

It is easy to see that U* is a ;-cocycle when U is an :-cocycle and when
;(x)=U:(x) U* for all x # N.

2. CROSSED PRODUCTS, THE DUAL ACTION, AND
THE DUALITY THEOREM

In this section we fix an action : of a locally compact quantum group
(M, 2) on a von Neumann algebra N. We will define the crossed product
M: _ N in a similar way as in [4]. We will also state some classical
theorems concerning crossed products, the biduality theorem being the
major one, but we will omit proofs because they are completely analogous
to the proofs of [4] and [5]. See also [9], where the results of [4] and
[5] are generalized to actions of Woronowicz algebras.

Definition 2.1. We define the crossed product of N with respect to the
action : of (M, 2) on N as the von Neumann subalgebra of B(H )�N
generated by :(N) and M� �C. We denote this crossed product with
M: _ N. So we have

M: _ N=(:(N ) _ M� �C)".

We will now define in the usual way the dual action, which will be an
action of (M� , 2� op) on M: _ N.

Proposition 2.2. There exists a unique action :̂ of (M� , 2� op) on M: _ N
such that

:̂(:(x))=1�:(x) for all x # N

:̂(a�1)=2� op(a)�1 for all a # M� .

Moreover when we denote with W� the unitary (J�J) 7W7(J�J ) we have

:̂(z)=(W� �1)(1�z)(W� *�1) for all z # M: _ N.
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As we already mentioned, Enock and Schwartz deal with right actions in
[4] and [5]. Hence they also give a slightly different definition for the
crossed product, but in fact our definition agrees with theirs. When : is a
right action of (M, 2) on N they define N <: M to be (:(N ) _ C�M� $)".
This is in accordance with our definition, because _: is a left action of
(M, 2op) on N. The dual of (M, 2op) is (M� $, 2� $), which gives

M_: _ N=(_:(N ) _ M� $�C)".

So we have N <: M=_(M_: _ N ), which shows that both definitions in fact
agree.

Let us introduce the following concept, which will be needed later on.
See also [5, III.1].

Definition 2.3. Let \ be a self-adjoint, strictly positive operator
affiliated with M. Then a n.s.f. weight % on N is called \-invariant if

%((|!, !� @) :(x))=&\1�2!&2 %(x)

for all x # M+
% and ! # D(\1�2).

We will always work with $&1-invariant weights, where $ is the modular
element of the locally compact quantum group in action.

Then the following result can be proved as in [9, 2.9]. For the last state-
ment of the next proposition observe that {t($)=$ and so the self-adjoint
operators $ and {� commute strongly. Hence their product ${� is closable.

Proposition 2.4. When % is a n.s.f. $&1-invariant weight on N with
GNS-construction (H% , ?% , 4%), then there exists a unique unitary V% #
M�B(H%) such that for all ! # D($1�2), ' # H and x # N%

(|!, ' � @)(V%) 4% (x)=4% ((|$1�2!, '� @) :(x)).

Denote with J% and {% the modular conjugation and modular operator of %.
Then V% satisfies

(2� @)(V%)=V%23V%13

(@�?%) :(x)=V% (1�?% (x)) V %* for all x # N

V% (J� �J%)=(J� �J%) V%*

V% (Q�{%)=(Q�{%) V% where Q is the closure of ${� .

The following result is crucial (see [9, 2.8]).
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Proposition 2.5. v Let : be an integrable action of (M, 2) on N and
denote with T: the operator valued weight defined in Proposition 1.3. Let +
be a n.s. f. weight on N:. Then + b T: is a $&1-invariant weight on N.

v Every dual action is integrable.

With these results at hand one can copy the proofs of [5] to obtain the
well known biduality theorem. Before we state this theorem we have to
clarify some terminology. The dual action :̂ is an action of (M, 2) ^ op on
M: _ N. So we can make the double crossed product M� :̂ _ (M: _ N ) in
B(H�H )�N and on this double crossed product there is an action :̂̂ of
(M, 2) ^ op ^ op. Now (M, 2) ^ op ^ op=(M, 2)$op and we can define an
isomorphism of locally compact quantum groups

J: (M, 2) � (M, 2)$op

given by J(x)=J� JxJJ� for all x # M.

Theorem 2.6 (Biduality theorem). 1. We have B(H )�N=(B(H )�
C _ :(N ))".

2. The map 8 from B(H )�N to B(H�H )�N defined by

8(z)=(W�1)(@�:)(z)(W*�1)

defines a V-isomorphism from B(H )�N onto M� :̂ _ (M: _ N ), satisfying

8(:(x))=1�:(x) for all x # N

8(b�1)=2� op(b)�1 for all b # M�

8( y�1)=y�1�1 for all y # M$.

In particular 8(M: _ N)=:̂(M: _ N ).

3. When we define

+=(_� @)(@�:): B(H )�N � M�B(H )�N

then + is an action of (M, 2) on B(H )�N. The unitary 7V*7�1 is a
+-cocycle and the action # of (M, 2) on B(H )�N defined by

#(z)=(7V*7�1) +(z)(7V7�1) for all z # B(H )�N

is isomorphic to the bidual action :̂̂ of (M, 2) ^ op ^ op on M� :̂ _ ((M: _ N ) in
the following way:

:̂̂(8(z))=(J�8) #(z) for all z # B(H )�N.
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With the help of the biduality theorem Enock and Schwartz were able to
prove the following crucial results, which remain true for actions of locally
compact quantum groups.

Theorem 2.7. We have

(M: _ N ) :̂=:(N)

:(N )=[z # M�N | (@�:)(z)=(2� @)(z)].

3. THE UNITARY IMPLEMENTATION OF A LOCALLY
COMPACT QUANTUM GROUP ACTION

In this section we will define in a canonical way the unitary implementa-
tion of a locally compact quantum group action. This will be a unitary
corepresentation of the quantum group, implementing the action and
satisfying some other properties. A same kind of result was obtained for
Kac algebra actions by Sauvageot in [25], but the proof of the fact that
the implementation is a corepresentation, is wrong. More precisely,
Sauvageot's crucial Lemma 4.1 is false. I would like to thank prof.
Sauvageot for the discussions on this topic.

We will use a different technique to prove that the implementation is a
corepresentation. In the same time we will obtain some interesting results
concerning the dual weight on the crossed product M: _ N given a weight
on N. We will also settle a problem which was left open in [25].

For integrable actions��and in particular for dual actions��we already
obtained an implementation in Proposition 2.4, as it was done by Enock
and Schwartz. Nevertheless it is desirable to have an implementation
without the integrability condition, first of all for reasons of elegance. But,
more importantly, one will need this general implementation result in
several applications. We refer to the introduction for a discussion.

Fix an action : of a locally compact quantum group (M, 2) on a von
Neumann algebra N. In Definition 2.1 and Proposition 2.2 we defined the
crossed product M: _ N and the dual action :̂: M: _ N � M� � (M: _ N ).
We already observed in Proposition 2.5 that :̂ is integrable. So we can
define the n.s.f. operator valued with T from M: _ N to (M: _ N) :̂ by

T(z)=(.̂� @� @) :̂(z) for all z # (M: _ N )+.

For this, observe that :̂ is an action of (M� , 2� op) and that .̂ is the right
invariant weight on (M� , 2� op). By Theorem 2.7 we know that (M: _ N ) :̂=
:(N ). So T is an operator valued weight from M: _ N to :(N ).
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With this operator valued weight at hand, we can easily define the dual
weights on M: _ N. Nevertheless, to make dual weights a workable tool,
we need a concrete GNS-construction for them. The structure of this
section is then as follows. First we will restrict the dual weight to a weight
for which we can give a GNS-construction (Definition 3.4), then we use the
restricted weight to obtain the unitary implementation for the action
(Definition 3.6 and Proposition 3.7) and finally we prove that the restricted
weight is in fact not a restriction, but equal to the original dual weight
(Proposition 3.10).

Definition 3.1. Let : be an action of (M, 2) on N. Denote with T the
n.s.f. operator valued weight from M: _ N to :(N ) given by the formula
above. For every n.s.f. weight % on N, we define the dual weight %� on
M: _ N by the formula:

%� =% b :&1 b T.

For the rest of this section we fix a n.s.f. weight % on N. One can prove
easily the following lemma.

Lemma 3.2. For all a # N.̂ and x # N we have

%� (:(x*)(a*a�1) :(x))=%(x*x) .̂(a*a).

Proof. We have

:̂(:(x*)(a*a�1) :(x))=(1�:(x*))(2� op(a*a)�1)(1�:(x)).

Choose | # (M: _ N )
*
+. Define + # M�

*
+ by +(b)=|(:(x*)(b�1) :(x)) for

all b # M� . Then

(T(:(x*)(a*a�1) :(x)), |)=.̂((@�+) 2� op(a*a))

=.̂(a*a) +(1)=.̂(a*a) |(:(x*x))

by invariance of .̂. So we may conclude that

T(:(x*)(a*a�1) :(x))=.̂(a*a) :(x*x).

Then the result of the lemma follows immediately. K

From now on we will suppose that N acts on the GNS-space of the n.s.f.
weight %, such that (K, @, 4%) is a GNS-construction for %. We will restrict
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the weight %� in the sense of Proposition 7.4 of the appendix in order to
obtain a concrete GNS-construction. Fix a GNS-construction (K1 , ?1 , 41)
for %� . Because of the previous lemma we can define a unique isometry

V: H�K � K1 such that V(4� (a)�4% (x))=41((a�1) :(x))

for all a # N.̂ and x # N% .
Further we define

D0=span[(a�1) :(x) | a # N.̂ , x # N%].

Because we have the isometry V at our disposal there is a well defined
linear map

4� 0 : D0 � H�K: 4� 0((a�1) :(x))=4� (a)�4% (x)

for all a # N.̂ , x # N% .

Because 41 is _-strong*-norm closed, we can close 4� 0 for the _-strong*-
norm topology, and then we obtain a linear map 4� : D � H�K satisfying
D/N%� and V4� (z)=41(z) for all z # D.

In order to apply Proposition 7.4, we need the following lemma.

Lemma 3.3. 1. D is a weakly dense left ideal in M: _ N.

2. For all z # M: _ N and y # D we have 4� (zy)=z4� ( y).

Proof. Choose ! # H and b # T. . Let (ei) i # I be an orthonormal basis for
H. Choose x # N. Because (2� @) :(x)=(@�:) :(x) we have

(1�:(x))(W�1)=(W�1)(@�:) :(x).

Hence applying |!, 4(b)� @� @ gives

:(x)(*(|!, 4(b))�1)= :
i # I

(*(|ei , 4(b))�1) :((|!, ei
� @) :(x))

in the _-strong* topology.
Choose now y # N% . For every finite subset I0 /I we have by Proposi-

tion 7.1 that the element

zI0
:= :

i # I0

(*(|ei , 4(b))�1) :((|!, ei
� @) :(x) y)
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belongs to D0 and

4� 0(zI0
)= :

i # I0

4� (*(|ei , 4(b)))� (|!, ei
� @) :(x) 4% ( y)

= :
i # I0

J_ i�2(b) Jei� (|!, ei
� @) :(x) 4% ( y)

=(J_i�2(b) J�1)(PI0
�1) :(x)(!�4% ( y)),

where PI0
is the projection on span[e i | i # I0]. So we get that the net (zI0

)
converges _-strong* to the element

z :=:(x)(*(|!, 4(b))�1) :( y)

and the net (4� (zI0
)) converges in norm to

(J_i�2(b) J�1) :(x)(!�4% ( y))=:(x)(J_i�2(b) J!�4% ( y))

=:(x)(4� (*(|!, 4(b)))�4% ( y))

=:(x) 4� ((*(|!, 4(b))�1) :( y)).

Then we may conclude that z # D and

4� (z)=:(x) 4� ((*(|!, 4(b))�1) :( y)).

Because the considered elements *(|!, 4(b)) form a _-strong*-norm core for
4� we conclude that for every x # N and z # D we have :(x) z # D and
4� (:(x) z)=:(x) 4� (z).

It is easy to prove that for every a # M� and z # D we have (a�1) z # D

and 4� ((a�1) z)=(a�1) 4� (z). From this follows the lemma. K

We can now apply Proposition 7.4.

Definition 3.4. There is a unique n.s.f. weight %� 0 on M: _ N such that
N%� 0

=D and such that (H�K, @, 4� ) is a GNS-construction for %� 0 .

Later on we will prove that in fact %� 0=%� . This question was left open in
the Kac algebra case considered by Sauvageot. In applications the equality
%� 0=%� is indispensable, e.g. Proposition 5.7 cannot be proved without
knowing the GNS-construction of %� , which amounts to the equality %� 0=%� .

In [29a] Vainerman and the author study the bicrossed product con-
struction and extensions locally compact quantum groups. In this situation
the Haar weight will be a dual weight and in order to prove invariance and
to compute the multiplicative unitary, we need a concrete GNS-construc-
tion for this weight.

Let us fix some modular notations.

Definition 3.5. We denote with J� and {� the modular conjugation and
modular operator of %� 0 in the GNS-construction (H�K, @, 4� ). We denote
with _~ the modular automorphism group of %� 0 and we put T� =J� {� 1�2.
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We denote with J% and {% the modular conjugation and modular
operator of % in the GNS-construction (K, @, 4%), and with _% the modular
automorphism group of %.

With this notations at hand we will now define the unitary implementa-
tion of the action :. Of course this terminology will only be justified after
the proofs of 3.7, 3.12 and 4.4.

Definition 3.6. Define U=J� (J� �J%). Then U is a unitary in B(H�K)
and it is called the unitary implementation of :.

We will first prove the following result.

Proposition 3.7. We have the following formulas:

1. :(x)=U(1�x) U* for all x # N.

2. _~ t b :=: b _%
t for all t # R.

3. U(J� �J%)=(J� �J%) U*.

Before we can prove this proposition we need the following lemma.

Lemma 3.8. For all y # D(_%
i�2) we have :( y) # D(_~ i�2) and

J� _~ i�2(:( y))* J� =1�J%_%
i�2( y)* J% .

Proof. Choose a # N.̂ and x # N% . Then xy # N% and hence (a�1) :(x)
:( y) # N%� 0

with

4� ((a�1) :(x) :( y))=4� (a)�4% (xy)

=(1�J%_%
i�2( y)* J%) 4� ((a�1) :(x)).

Because D0 is a _-strong*-norm core for 4� we may conclude that for every
z # N%� 0

we have z:( y) # N%� 0
and

4� (z:( y))=(1�J% _%
i�2( y)* J%) 4� (z).

Then the lemma follows immediately. K

Proof of Proposition 3.7. Because _%
i�2( y)*=_%

&i�2( y*) it follows from
the previous lemma that for every y # D(_%

&i�2) we have :( y) # D(_~ &i�2) and

_~ &i�2(:( y))=U(1�_%
&i�2( y)) U*.

Taking the adjoint we may replace &i�2 by i�2 in the formula above.
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Let now y # D(_%
&i). Then we have :( y) # D(_~ &i�2) and

_~ &i�2(:( y))=U(1�_%
&i�2( y)) U*.

Because _%
&i ( y) # D(_%

i�2) we also have :(_%
&i ( y)) # D(_~ i�2) and

_~ i�2(:(_%
&i ( y)))=U(1�_%

i�2(_%
&i ( y))) U*=U(1�_%

&i�2( y)) U*.

So we get _~ &i�2(:( y))=_~ i�2(:(_%
&i ( y))) and so :( y) # D(_~ &i) with _~ &i (:( y))

=:(_%
&i ( y)). It now follows from the results of [13, 4.3 and 4.4] that

_~ t b :=: b _%
t for every t # R.

But then it follows that for all y # D(_%
&i�2) we have _~ &i�2(:( y))=

:(_%
&i�2( y)). Combining this with the formula above we get

:(_%
&i�2( y))=_~ &i�2(:( y))=U(1�_%

&i�2( y)) U*.

By the density of such elements _%
&i�2( y) we get that :(x)=U(1�x) U* for

all x # N.
From the definition of U follows immediately the final formula we had

to prove. K

Now we have gathered enough material to prove that %� 0=%� . For this we
need the following lemma (cfr. [5, VI.4]).

Lemma 3.9. Let : be an action of (M, 2) on N. Let %1 and %2 be two
$&1-invariant n.s.f. weights on N. Then [D%2 : D%1] t # N: for all t # R.

Proof. Denote with M2 the von Neumann algebra of 2_2-matrices
over C. Denote with eij the matrix units. Define

#: N�M2 � M�N�M2 : #=:� @.

Then # is an action of (M, 2) on N�M2 . Denote with % the balanced
weight on N�M2 (see e.g. [26, 3.1]) given by

% \x11

x21

x12

x22+=%1(x11)+%2(x22).

It is immediately clear that % is $&1-invariant for the action #.
Let t # R. Denote with +t the automorphism of M defined by +t=

_$t b _&t b {t . Here (_$t)t # R denotes the modular automorphism group of �.
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Then +t is implemented by Qit=$ it {� it. It follows from Proposition 2.4 that
# b _%

t =(+t�_%
t ) b # for all t # R. In particular we have

:([D%2 : D%1]t)�e21 =#([D%2 : D%1] t�e21)=#(_%
t (1�e21))

=(+t �_%
t ) #(1�e21)=(+t�_%

t )(1�1�e21)

=1� [D%2 : D%1]t �e21 .

So we get [D%2 : D%1]t # N: for all t # R. K

Now we can prove the following interesting result. It is important for
technical reasons and we will need it in Section 5.

Proposition 3.10. Let % be a n.s.f. weight on N. Then the weights %� and
%� 0 on M: _ N, defined in 3.1 and 3.4 are equal.

Proof. Recall that the dual action :̂ is an action of (M� , 2� op) on M: _ N.
We claim that the weight %� 0 is $� -invariant. Observe that $� &1

is the modular element of (M� , 2� op) and that is the reason to have
$� -invariance rather than $� &1-invariance.

To prove our claim, choose a # N.̂ , x # N% , ! # D($� 1�2) and ' # H. Then
define

z :=(|!, '� @� @) :̂((a�1) :(x))=((|!, '� @) 2� op(a)�1) :(x).

It follows from Proposition 7.2 of the appendix that

(|!, '� @) 2� op(a)=(@�|!, ') 2� (a) # N.̂ and

4� ((|!, '� @) 2� op(a))=(@�|$� 1�2!, ')(V� ) 4� (a).

So we may conclude that z # N%� 0
and

4� (z)=((@�|$� 1�2!, ')(V� )�1)(4� (a)�4% (x))

=((@�|$� 1�2!, ')(V� )�1) 4� ((a�1) :(x)).

Because D0 is a _-strong*-norm core for 4� we conclude that (|!, '� @�
@) :̂( y) # N%� 0

for all y # N%� 0
and

4� ((|!, '� @� @) :̂( y))=((@�|$� 1�2!, ')(V� )�1) 4� ( y).

Because V� is unitary we immediately get that %� 0 is $� -invariant.
From Proposition 2.5 it follows that %� is $� -invariant. Then we conclude

from Lemma 3.9 that [D%� 0 : D%� ]t # (M: _ N ) :̂ for all t # R. So by
Theorem 2.7 we can take unitaries ut # N such that [D%� 0 : D%� ] t=:(ut) for
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all t # R. From the theory of operator valued weights we know that
_%�

t b :=: b _%
t . Because ([D%� 0 : D%� ]t) is a _%� -cocycle, we get that (ut) is a

_%-cocycle. By [26, 5.1] we can take a (uniquely determined) n.s.f. weight
\ on N such that [D\ : D%]t=ut for all t # R. With \ we can define the
n.s.f. weight \~ on M: _ N in the sense of Definition 3.1. Then it follows from
the theory of operator valued weights that

[D\~ : D%� ]t=:([D\ : D%] t)=:(ut)=[D%� 0 : D%� ]t

for all t # R. So \~ =%� 0 . Because %� 0 is a restriction of %� we get that \~ is a
restriction of %� .

Fix a # M+
.̂ with .̂(a)=1. Choose x # N\ . Then it follows from

Lemma 3.2 that :(x*)(a�1) :(x) # M+
\~ and

\~ (:(x*)(a�1) :(x))=\(x*x).

Because \~ is a restriction of %� we get that :(x*)(a�1) :(x) # M+
%� and

%� (:(x*)(a�1) :(x))=\(x*x).

Then it follows from Lemma 3.2 that %(x*x)=\(x*x). This means that \
is a restriction of %.

Further we have, using the theory of operator valued weights in the first
equality and Proposition 3.7 in the last one,

: b _\
t =_\~

t b :=_%� 0
t b :=: b _%

t .

So _\
t =_%

t for all t # R. Because \ is a restriction of % we may conclude that
\=% and then %� =\~ =%� 0 . K

We want to conclude this section with the proof of the fact that U # M�
B(K ). First we state the following lemma, which is easily proved because
4� is the closure of 4� 0 . Recall that T� =J� {� 1�2.

Lemma 3.11. Defining T� =J� {� 1�2, we have that the linear space

span[:(x*)('�4% ( y)) | x, y # N% , ' # D(T� )]

is a core for T� and

T� :(x*)('�4% ( y))=:( y*)(T� '�4% (x))

for all x, y # N% and ' # D(T� ).
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Proposition 3.12. We have U # M�B(K ).

Proof. Let t # R. Because {� it implements the automorphism {t on M we
get that Ad {� it will also leave M$ invariant. So we can define the
automorphism group (+t) on M by

+t(x)=J {� itJxJ {� &itJ for all x # M, t # R.

So, for every a # D(+&i�2) we have JaJ {� 1�2/{� 1�2J+&i�2(a) J. Further we
have

+t(R(a))=J {� itJJ� a*J� J {� &itJ= J {� itJ� Ja*JJ� {� &itJ

=J� +t(a*) J� =R(+t(a))

for all t # R and a # M. Here we used the formula J� J=&i�4JJ� stated in the
beginning of the paper.

Let now a # D(+i�2), x, y # N% and ' # D(T� ), where T� =J� {� 1�2. Then

(JaJ�1) T� :(x*)('�4% ( y))=(JaJ�1) :( y*)(T� '�4% (x))

=:( y*)(JaJJ� {� 1�2'�4% (x))

=:( y*)(J� JR(a*) J {� 1�2'�4% (x)).

Now a* # D(+&i�2) and R and +t commute. So R(a*) # D(+&i�2) and
+&i�2(R(a*))=R(+i�2(a)*). Then we get

JR(a*) J {� 1�2/{� 1�2JR(+i�2(a)*) J.

Hence we may conclude that JR(+i�2(a)*) J' # D(T� 1�2) and

(JaJ�1) T� :(x*)('�4% ( y))=:( y*)(T� JR(+i�2(a)*) J'�4% (x))

=T� :(x*)(JR(+i�2(a)*) J'�4% ( y))

=T� (JR(+i�2(a)*) J�1) :(x*)('�4% ( y)).

Because of the previous lemma we get

(JaJ�1) T� /T� (JR(+i�2(a)*) J�1) (3.1)

for all a # D(+i�2). By taking the adjoint we get

(JR(+i�2(a)) J�1) T� */T� *(Ja*J�1)
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for all a # D(+i�2). So for all a # D(+&i)

(JaJ�1) {� =(JaJ�1) T� *T� /T� *(JR(+&i�2(a)*) J�1) T�

/{� (J+&i (a) J�1).

Denoting with #t the automorphism Ad {� it of B(H�K ) we get that for
every a # D(+&i) we have JaJ�1 # D(#i) and #i (JaJ�1)=J+&i (a) J�1.
Then the results of [13, 4.3 and 4.4] allow us to conclude that #t(JaJ�1)=
J+t(a) J�1 for every t # R and a # M. This gives

(JaJ�1) {� &1�2/{� &1�2(J+ i�2(a) J�1)

for all a # D(+i�2). Combining this with Eq. 3.1 we get for every a # D(+i�2)

(JaJ�1) T� {� 1�2/T� (JR(+i�2(a)*) J�1) {� &1�2

/T� {� &1�2(JR(a*) J�1)/J� (JJ� aJ� J�1).

So we get

(JaJ�1) J� =J� (JJ� aJ� J�1)=J� (J� JaJJ� �1)

for every a # D(+i�2), and hence for every a # M. Rewriting this we get
(JaJ�1) U=U(JaJ�1) for every a # M. This gives U # M�B(K ). K

Finally we want to prove that U is a unitary corepresentation of (M, 2),
namely (2� @)(U)=U23U13 . This will be done in an indirect way in the
next section. Nevertheless the results we use to prove that U is a
corepresentation are interesting in themselves.

4. THE UNITARY IMPLEMENTATION IS A
COREPRESENTATION

The main aim of this section is to prove that the unitary implementation
U is a corepresentation (Theorem 4.4). On our way towards the proof of
Theorem 4.4 we will solve three problems which appear naturally in
applications (see Section 5 and [17]). First we will see what happens when
we choose a different weight % on N, next we will show how U changes
when the action : is deformed with an :-cocycle and finally we will show
that in the presence of a $&1-invariant weight our implementation agrees
with the one of Enock and Schwartz given by Proposition 2.4.

In the proof of the first proposition we will make use of Connes' relative
modular theory (see e.g. [26, 3.11, 3.12 and 3.16]). When %i are n.s.f.
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weights on N with GNS-constructions (Ki , ? i , 4i) (i=1, 2), we denote with
J2, 1 the relative modular conjugation, which is a anti-unitary from H1 to
H2 . Recall that J1, 2=J*2, 1 . If we denote with J i the modular conjugation
of the weight %i we have J2, 1J1=J2J2, 1 and we denote this unitary with u.
Then u is the unique unitary from K1 to K2 which satisfies u?1(x) u*=
?2(x) for all x # N and which maps the positive cone of K1 (determined by
the GNS-construction (K1 , ?1 , 41)) onto the positive cone of K2 . We will
say that u intertwines the two standard representations of N.

Finally we introduce the one-parameter group _2, 1 of isometries of N
given by

_2, 1
t (x)=[D%2 : D%1]t _%1

t (x)

for all x # N and t # R.

Proposition 4.1. Let : be an action of (M, 2) on N. Let %i be n.s.f.
weights on N with GNS-constructions (Ki , ?i , 4i)(i=1, 2). Let u be the
unitary from K1 to K2 intertwining the two standard representations of N.
Denote for every i=1, 2 with %� i the dual weight of %i on M: _ N, with
GNS-construction (H�Ki , @�? i , 4� i). Denote with Ui # M�B(Ki) the
unitary implementation of : obtained with %i , as defined in Definition 3.6.

Then 1�u is the unitary intertwining the two standard representations of
M: _ N. In particular

U2=(1�u) U1(1�u*).

Proof. Let a # N.̂ and x # N%1
. Let y # D(_2, 1

&i�2). Then, by [26, 3.12],
xy* # N%2

and

42(xy*)=J2, 1?1(_2, 1
&i�2( y)) J1 41(x).

So (a�1) :(x) :( y)*=(a�1) :(xy*) # N%� 2
and

4� 2((a�1) :(x) :( y)*)=4� (a)�42(xy*)

=(1�J2, 1?1(_2, 1
&i�2( y)) J1)(4� (a)�41(x))

=(1�J2, 1?1(_2, 1
i&�2( y)) J1) 4� 1((a�1) :(x)).

Because the elements (a�1) :(x) span a core for 4� 1 and because 4� 2 is
closed (both in the _-strong*-norm topology), we have for all z # N%� 1

that
z:( y)* # N%� 2

and

4� 2(z:( y)*)=(1�J2, 1?1(_2, 1
&i�2( y)) J1) 4� 1(z).
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Denoting with J� 2, 1 and (_~ 2, 1
t ) the relative modular apparatus of the

weights %� 2 and %� 1 , it follows from [26, 3.12] that :( y) # D(_~ 2, 1
&i�2) and

J� 2, 1(@�?1)(_~ 2, 1
&i�2(:( y))) J� 1=1�J2, 1?1(_2, 1

&i�2( y)) J1 .

Because [D%� 2 : D%� 1]t=:([D%2 : D%1]t) for every t # R we see that _~ 2, 1
t b :

=: b _2, 1
t . So we have _~ 2, 1

&i�2(:( y))=:(_2, 1
&i�2( y)). Combining this with the

equation above we get

(@�?1) :(_2, 1
&i�2( y))=J� *2, 1(J� �J2, 1)(1�?1(_2, 1

&i�2( y))) U1*.

The last formula is valid for all y # D(_2, 1
&i�2). Because U1 implements : we

may then conclude that U1=J� *2, 1(J� �J2, 1).
Then we get

1=U1U1*=J� *2, 1(J� �J2, 1)(J� �J1) J� 1

and so J� 2, 1J� 1=1�J2, 1J1 . Now u=J2, 1J1 and J� 2, 1J� 1 is the unitary inter-
twining the two standard representations of M: _ N. This proves the first
claim of the proposition. In particular we get

(1�u) U1(1�u*)=(1�u) J� 1(J� �J1)(1�u*)

=J� 2(1�u)(J� �J1)(1�u*)=J� 1(J� �J2)=U2 .

This proves the proposition. K

In the next proposition we will show how the unitary implementation of
an action : changes when : is deformed with an :-cocycle.

Proposition 4.2. Let : be an action of (M, 2) on N and let V # M�N
be an :-cocycle in the sense of Definition 1.5. Define the action ; of (M, 2)
on N by ;(x)=V:(x) V* for all x # N. If % is a n.s.f. weight on N with
GNS-construction (K, @, 4%), the unitary implementations U: and U; of : and
; obtained with % satisfy

U;=VU:(J� �J%) V*(J� �J%).

In particular U; is a corepresentation if and only if U: is a corepresentation.

Proof. Because (2� @)(V)=(1�V)(@�:)(V) we have

(1�V*)(W�1)(1�V)=(W�1)(@�:)(V*).
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So for every !, ' # H and with (ei) i # I an orthonormal basis of H we have,
by applying |!, '� @� @

V*(*(|!, ')�1) V= :
i # I

(*(|ei , ')�1) :((|!, ei
� @)(V*))

in the _-strong* topology. From this it follows that V*(a�1)V # M: _ N
for all a # M� . But V*;(x) V=:(x) for all x # N. So

\: M; _ N � M: _ N: z [ V*zV

is a well-defined V-homomorphism. By symmetry \ will be surjective and
hence it is a V-isomorphism. Consider now the dual weights %� : and %� ; on
M: _ N and M; _ N, with canonical GNS-constructions (H�K, @, 4� :) and
(H�K, @, 4� ;). Take ! # H, b # T. and x # N% . Then

V*(*(|!, 4(b))�1) ;(x) V= :
i # I

(*(|ei , 4(b))�1) :((|!, ei
� @)(V*) x)

in the _-strong* topology. For every finite subset I0 of I we define

zI0
:= :

i # I0

(*(|ei , 4(b))�1) :((|!, ei
� @)(V*) x).

By Proposition 7.1 of the appendix we get that zI0
belongs to N%� :

and

4� :(zI0
)= :

i # I0

4� (*(|ei , 4(b)))� (|!, ei
� @)(V*) 4% (x)

= :
i # I0

J_ i�2(b) Jei� (|!, ei
� @)(V*) 4% (x)

=(J_i�2(b) J�1)(PI0
�1) V*(!�4% (x))

where PI0
denotes the projection onto span[e i | i # I0]. Now define z :=

V*(*(|!, 4(b))�1) ;(x) V. Then we see that zI0
� z _-strong* and

4� :(zI0
) � (J_i�2(b) J�1) V*(!�4% (x)) in norm.

So we get that z # N%� :
and

4� :(z)=(J_i�2(b) J�1) V*(!�4% (x))

=V*(J_i�2(b) J!�4% (x))=V*4� ;((*(|!, 4(b))�1) ;(x)).

Because the elements (*(|!, 4(b))�1) ;(x) span a core for 4� ; we have
\( y) # N%� :

for every y # N%� ;
and 4� :(\( y))=V*4� ;( y) in that case.
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By symmetry \( y) # N%� :
if and only if y # N%� ;

. But then it is clear that
J� ;=VJ� : V* and so

U;=J� ;(J� �J%)=VJ� :V*(J� �J%)=VU:(J� �J%) V*(J� �J%).

Now suppose that U: is a corepresentation, meaning that (2� @)(U:)=
U:23 U:13 . Then

(2� @)(U;)=(2� @)(V) U:23 U:13(2� @)(R�L%)(V)

where L% is the V-anti-isomorphism from N to N$ defined by L% (x)=
J% x*J% for all x # N. Then we can compute

(2� @)(U;)=V23(@�:)(V) U:23U:13(R�R�L%)(2op � @)(V)

=V23U:23V13U*:23U:23U:13(R�R�L%)(V13(@�:)(V)213)

=V23U:23V13U:13(J� �J� �J%) U:13V*23U*:13V*13(J� �J� �J%)

=V23U:23V13(J� �J� �J%)

_V*23(J� �J� �J%)(J� �J� �J%) U*:13V*13(J� �J� �J%)

=V23U:23((J� �J%) V*(J� �J%))23

_V13U:13((J� �J%) V*(J� �J%))13

=U;23 U;13 .

So, when U: is a corepresentation then U; is a corepresentation. By
symmetry also the converse implication holds. K

In Proposition 2.4 we saw how to construct, with the methods of Enock
and Schwartz, an implementation of an action : in the presence of a
$&1-invariant weight. We will show now that this implementation coincides
with the unitary implementation given in Definition 3.6.

Proposition 4.3. Let : be an action of (M, 2) on N. Let % be a n.s.f. and
$&1-invariant weight on N with GNS-construction (K, @, 4%). When V% is the
unitary defined in Proposition 2.4 and when U is the unitary implementation
of : defined in Definition 3.6, then U=V% .

Proof. Recall that

(|!, ' � @)(V%) 4% (x)=4% ((|$1�2!, '� @) :(x))
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for all ! # D($1�2) and ' # H. Because the positive operators $ and {�
strongly commute, we can define the closure Q of the product $ {� . Denot-
ing with /U the characteristic function of a subset U/R we consider the
following subspace of H.

D0= .
n, m # N

/]1�n, n[($) /]1�m, m[({� ) H.

Let now ! # H, ' # D0 , x # T% and y # N% & N%*. Put again T� =J� {� 1�2 and
T� =J� {� 1�2. Then

(%!*�1) T� :(x*)('�4% ( y))

=(%!*�1) :( y*)(T� '�4% (x))=4% ((|T� ', !� @) :( y*) x)

=J%_%
i�2(x)* J%4% ((|T� ', !� @) :( y*))

=J%_%
i�2(x)* J% (|$ &1�2T� ', !� @)(V%) 4% ( y*)

=(%!*�1)(1�J%_%
i�2(x)* J%) V% ($&1�2T� '�4% ( y*)).

Now

$&1�2T� '=$&1�2J� {� 1�2'=J� $1�2 {� 1�2'=J� Q1�2'.

So we may conclude that

T� :(x*)('�4% ( y))

=(1�J%_%
i�2(x)* J%) V% (J� �J%)(Q1�2�{1�2

% )('�4% ( y))

for all ' # D0 , x # T% and y # N% & N%*. Because T� is closed we can
conclude that '�4% ( y) # D(T� ) and

T� ('�4% ( y))=V% (J� �J%)(Q1�2�{1�2
% )('�4% ( y))

for all ' # D0 and y # N% & N%*. Because D0 is a core for Q1�2 and
4% (N% & N%*) for {1�2

% we get

V% (J� �J%)(Q1�2�{1�2
% )/T� . (4.1)

We now claim that (Qit �{ it
% ) T� =T� (Qit�{ it

% ) for every t # R. Together
with the fact that D(Q1�2�{1�2

% )/D(T� ) this leads to the conclusion that
D(Q1�2�{1�2

% ) is a core for T� . Then we get that the inclusion in Eq. 4.1 is
in fact an equality. Uniqueness of the polar decomposition gives us
V% (J� �J%)=J� and so V%=U.
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So we only have to prove our claim. For this choose x, y # N% and
! # D(T� ). Then using Proposition 2.4 we get

(Qit�{ it
% ) T� :(x*)(!�4% ( y))=(Qit �{ it

% ) :( y*)(T� !�4% (x))

=(Qit�{ it
% ) V% (1�y*) V%*(T� !�4% (x))

=V% (1�_%
t ( y*)) V%*(QitT� !�{ it

% 4% (x))

because Qit �{ it
% and V% commute. Now observe that Q it and T� commute,

so that Qit! # D(T� ) and

(Qit�{ it
% ) T� :(x*)(!�4% ( y))=:(_%

t ( y)*)(T� Qit!�4% (_%
t (x)))

=T� :(_%
t (x*))(Qit!�4% (_%

t ( y)))

=T� (Qit�{ it
% ) :(x*)(!�4% ( y)).

From this immediately follows our claim, and then the proof of the
proposition is complete. K

With all these results at hand we can now prove the following theorem.

Theorem 4.4. The unitary implementation U of an action : of (M, 2) on
N is a corepresentation in the sense that (2� @)(U )=U23 U13 .

Proof. Consider the bidual action :̂̂ of (M, 2) ^ op ^ op on M� :̂ _ (M: _ N ).
Let % be a n.s.f. weight on N and denote with %� � the bidual weight on
M� :̂ _ (M: _ N ). It follows from Proposition 2.5 that %� � is a J$J-invariant
weight for the action :̂̂. With the notation of Theorem 2.6 we define
\ :=%� � b 8. Then \ will be a n.s.f. and $&1-invariant weight on B(H )�N for
the action # of (M, 2) on B(H )�N. Combining Proposition 4.3 and
Proposition 2.4 the unitary implementation of # constructed with the
weight \ is a corepresentation. By Proposition 4.2 the unitary implementa-
tion of + :=(_� @)(@�:) constructed with \ is a corepresentation as well.
Then it follows from Proposition 4.1 that the unitary implementation U+ of
+ constructed with the n.s.f. weight Tr�% on B(H )�N will be a
corepresentation. Here Tr denotes the usual trace on B(H).

Represent N on the GNS-space of % such that (K, @, 4%) is a GNS-con-
struction for %. Let (HTr , ?Tr , 4Tr) be a GNS-construction for Tr. Then we
have a canonical GNS-construction (HTr�K, ?Tr � @, 4Tr�%) for Tr�%.
With this we construct the GNS-construction (H�HTr�K, @�?Tr � @,
4� Tr�%) of the dual weight (Tr�%) � on M+ _ (B(H )�N ). Denote with
T� Tr�%=J� Tr�%{� 1�2

Tr�% the modular operator of this dual weight. As before
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we denote with T� =J� {� 1�2 the modular operator of the weight %� on M: _ N
with GNS-construction (H�K, @, 4� ). It is an easy exercise to check that

712T� Tr�%712=JTr �T� ,

where 712 flips the first two legs of H�HTr�K. By uniqueness of the
polar decomposition we get

712J� Tr�%712=JTr �J�

and hence 712U+712=1�U. Because U+ is a corepresentation, also U will
be a corepresentation. K

5. SUBFACTORS AND INCLUSIONS OF VON NEUMANN
ALGEBRAS

It is well known that there is an important link between irreducible,
depth 2 inclusions of factors and quantum groups. After a conjecture of
Ocneanu the first result in this direction was proved by David in [3],
Longo in [22] and Szymanski in [27]. They were able to prove that every
irreducible, depth 2 inclusion of II1 -factors with finite index has the form
N:/N, where N is a II1 -factor and : is an action of a finite Kac algebra
(i.e. a finite dimensional locally compact quantum group, or a finite dimen-
sional Hopf V-algebra with positive invariant integral). The restriction on
type an index has been removed by Enock and Nest in [7] and [8]. There
does not appear a finite quantum group but an arbitrary locally compact
quantum group.

The theory of Enock and Nest is quite technical, but the results are deep
and beautiful. They are important in themselves and serve as a motivation
for the concept of a locally compact quantum group.

Before we describe their result we have to explain a little bit the basic
theory of infinite index inclusions of factors or van Neumann algebras. So,
let us look at an inclusion N0 /N1 of von Neumann algebras. In this most
general setting one can perform the well known basic construction of Jones.
For this we have to choose a n.s.f. weight % on N1 and represent N1 on the
GNS-space of %. Denote with J% the modular conjugation of %. Then we
define N2=J% N$0J% . Because N$1=J%N1J% we have N0 /N1 /N2 and this
inclusion of three von Neumann algebras is called the basic construction.
One can continue in the same way and represent N2 on the GNS-space of
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some n.s.f. weight. Then we obtain the von Neumann algebra N3 . Going on
we get a tower of von Neumann algebras

N0 /N1 /N2 /N3 / } } }

which is called the Jones tower.
But there is more. In the theory of inclusions of II1 -factors an important

role is played by conditional expectations. In the more general theory being
described now, this role will be taken over by operator valued weights.
Before we can explain this, and also because we need it in the proof of
Theorem 5.3, we have to explain Connes' spatial modular theory. For this
we refer to e.g. [26, Section 7] and [28, Section III].

Suppose that N is a von Neumann algebra acting on a Hilbert space K.
Let . be a n.s.f. weight on N and � a n.s.f. weight on N$. Let (K� , ?� , 4�)
be a GNS-construction for �. For every ! # K we define the densely defined
operator R�(!) with domain 4�(N�)/K� and range in K by R�(!)
4�(x)=x! for all x # N� . When ! # K we can define an operator 3�(!) in
the extended positive part of B(K) by

(|' , 3�(!))={&R�(!)* '&2

+�
if ' # D(R�(!)*)
else

.

In fact 3�(!)=R�(!) R�(!)*+�P where P is the projection onto the
orthogonal complement of D(R�(!)*). Then one can prove that 3�(!)
belongs to N +

ext and it is possible to define a strictly positive, self-adjoint
operator d.

d� on K such that

�|! ,
d.
d��=(., 3�(!))

for all ! # K. Here we used the extension of the weight . to the extended
positive part of N. The operator d.

d� is called the spatial derivative of . with
respect to �.

So, let N0 /N1 be an inclusion of von Neumann algebras and T1 a n.s.f.
operator valued weight from N1 to N0 . Represent again N1 on the GNS-
space of a n.s.f. weight %. Let N0 /N1 /N2 be the basic construction. Then
there exists a unique n.s.f. operator valued weight T2 from N2 to N1 such
that

d(+ b T2)
d&$

=
d+

d((& b T1)$)

for all n.s.f. weights + on N1 and & on N0 . Here we denote with '$ the n.s.f.
weight on either N$2=J% N0J% or N$1=J% N1J% , given by the formula
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'$(x)='(J%xJ%) for all positive x, whenever ' is a n.s.f. weight on either N0

or N1 . The existence of T2 follows from [26, 12.11]. One can continue in
the same way and construct n.s.f. operator valued weights Ti from Ni to
Ni&1 anywhere in the Jones tower.

Next recall that an inclusion of von Neumann algebras N0 /N1 is said
to be

v irreducible, when N1 & N$0=C.

v of depth 2, when N1 & N$0 /N2 & N$0 /N3 & N$0 is the basic
construction.

Finally we describe the notion of regularity as it was introduced by
Enock and Nest in [7, 11.12]. Let N0 /N1 be an inclusion of von
Neumann algebras. Suppose that T1 is a n.s.f. operator valued weight from
N1 to N0 . Let N0 /N1 /N2 /N3 / } } } be the Jones tower and construct
as above the operator valued weights T2 from N2 to N1 and T3 from N3

to N2 . Then T1 is called regular when the restrictions of T2 to N2 & N$0 and
of T3 to N3 & N$1 are both semifinite.

Then we can give the main result of Enock and Nest. Recall that for a
locally compact quantum group (M, 2) we denoted with (M, 2)$ the com-
mutant locally compact quantum group, as described in the introduction.

Theorem 5.1 (Enock and Nest). Let N0 /N1 be an irreducible, depth 2
inclusion of factors and let T1 be a regular n.s.f. operator valued weight from
N1 to N0 . Then the von Neumann algebra M=N3 & N$1 can be given the
structure of a locally compact quantum group (M, 2), such that there exists
an outer action : of (M, 2)$ on N1 satisfying N0=N :

1 and such that the
inclusions N0 /N1 /N2 and C�N :

1 /:(N1)/M$: _ N1 are isomorphic.

The definition of an outer action is given in Definition 5.5. Further we
want to mention that in [8] it is proved that (M, 2), together with
invariant weights and antipode, is in fact a Woronowicz algebra. But it
should be stressed that there is a small mistake in the proof that the Haar
weight is invariant under the scaling group, so that in fact (M, 2) is an
arbitrary locally compact quantum group, possibly with scaling constant
different from 1.

The main aim of this section is to clarify the conditions of Enock and
Nest's theorem (in particular the regularity condition) and to prove a con-
verse result: when : is an integrable and outer action of (M, 2) on N, then
the inclusion N :/N is irreducible, of depth 2 and the operator valued
weight (�� @) : from N to N: is regular. The same result is stated in [7,
11.14] for the special case of dual Kac algebra actions, but the proof is
incomplete. The crucial point, our Proposition 5.7 identifying two operator
valued weights, is not proved in [7]. We also remark that it will follow
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from Corollary 5.6 that the actions appearing in Enock and Nest's theorem
are integrable. Further we refer to section 6 for the link between outer and
minimal actions.

First of all we study the following problem. Let : be an action of (M, 2)
on N. Let N:/N/N2 be the basic construction. When (M, 2) is finite
dimensional, it is known that N2 is a quotient of the crossed product
M: _ N (a proof can be found in [14, 4.1.3], but the result was undoubtedly
known before). More precisely, there exists a surjective V-homomorphism
\ from M: _ N to N2 sending :(x) to x for all x # N. So, when M: _ N is
a factor, the inclusion C�N:/:(N )/M: _ N is the basic construction.
More specifically, when N is a II1 -factor and : is an outer action (or equiv-
alently a free action) of a finite group G on N it is well known that the
crossed product G: _ N can be identified with (N _ [ut | t # G])", where N
is represented standardly and (ut)t # G is the canonical implementation of :.
This can be found in e.g. [16].

More generally we look at the following problem. Suppose that a locally
compact group G acts on a von Neumann algebra N with action :. Then
we can construct the crossed product G: _ N as follows. We represent N on
a Hilbert space K and define operators on L2(G)�K$L2(G, K ) by
putting

(:(x) !)(g)=:g&1(x) !(g) for all g # G and x # N, ! # L2(G, K )

(*g!)(h)=!(g&1h) for all g, h # G and ! # L2(G, K ).

Then we define G: _ N=(:(N) _ [*g | g # G])". But, when we represent N
standardly on K and denote with (ug)g # G the canonical unitary implemen-
tation of :, we can also define

N2=(N _ [ug | g # G])".

Purely algebraicly one would expect to be able to define a V-homomorphism
\: G: _ N � N2 satisfying \(:(x))=x for all x # N and \(*g)=ug for all
g # G. When the group G is finite, this can be done easily. In Theorem 5.3
we will prove that the construction of such a \ is possible if and only if the
action is integrable, and this will be proved for arbitrary locally compact
quantum group actions. To see the link with the group case, recall that
now the role of the regular representation (*g) is taken over by
*(|)=(|� @)(W ) for all | # M

*
. So we work in fact with the regular

representation of the L1-functions.
Before we come to the proof of our main Theorem 5.3 we characterize

the basic construction N2=J% (N:)$ J% in terms of the unitary implementa-
tion of :.
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Proposition 5.2. Let : be an action of (M, 2) on N. Fix a n.s.f. weight
% on N and let N act on the GNS-space of %. Let U be the unitary implemen-
tation of : obtained with %. Let N2=J% (N:)$ J% be the basic construction
from N:/N. Then

N2=(N _ [(|� @)(U ) | | # M
*

])".

Proof. Because N2=J% (N:)$ J% we get easily that

N$2=N$ & J%[(|� @)(U*) | | # M
*

]$ J% .

But (J� �J%) U*(J� �J%)=U, so that we have

N$2=N$ & [(|� @)(U ) | | # M
*

]$.

Because U is a corepresentation the _-strong* closure of [(|� @)(U ) | | #
M

*
] is self-adjoint and then the result follows. K

Then we prove the following result.

Theorem 5.3. Let : be an action of (M, 2) on N. Fix a n.s.f. weight %
on N and let N act on the GNS-space of %. Let U be the unitary implementa-
tion of : obtained with %. Let N2=J% (N:)$ J% be the basic construction from
N:/N. Then the following statements are equivalent.

v There exists a normal and surjective V -homomorphism \: M: _ N �
N2 satisfying

\(:(x))=x for all x # N and

\((|� @)(W )�1)=(|� @)(U*) for all | # M
*

.

v The action : is integrable.

Proof of the first implication. Let us first suppose the first statement is
valid. Because Ker \ is a _-strong* closed, two-sided ideal of M: _ N we
can take a central projection P # M: _ N such that

Ker \=(M: _ N)(1&P).

Let \P be the restriction of \ to (M: _ N) P. Then \P is a V-isomorphism
onto N2 . When ' is a n.s.f. weight on M: _ N we have _'

t (P)=P for all
t # R, because P is central. So the restriction 'P of ' to (M: _ N ) P is a n.s.f.
weight and _'P

t is the restriction of _'
t to (M: _ N ) P for all t # R.

For every n.s.f. weight + on N we define the n.s.f. weight +� on N2 by
+� =(+~ )P b \&1

P . Here +~ denotes as before the dual weight on M: _ N. For
every x # N we have

_+�
t (x)=\P(_ (+~ )P

t (\&1
P (x)))=\P(_ (+~ )P

t (:(x) P))

=\P(_+~
t (:(x)) P)=\P(:(_+

t (x)) P)=_+
t (x).
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When + and & are both n.s.f. weights on N we have

[D+� : D&� ]t =\P([D(+~ )P : D(&~ )P]t)=\P([D+~ : D&~ ] t P)

=\P(:([D+ : D&]t) P)=[D+ : D&]t

for all t # R. So, by [26, 12.7], there exists a unique n.s.f. operator valued
weight T2 from N2 to N such that +� =+ b T2 for all n.s.f. weights + on N.
So + b T2 b \P=(+~ )P for all n.s.f. weights + on N.

When & is a n.s.f. weight on either N: or N we denote again with &$ the
n.s.f. weight on either J%N :J%=N$2 or J%NJ%=N$ given by &$(x)=&(J%xJ%)
for all positive x in either N: or N. By [26, 12.11] there exists a unique
n.s.f. operator valued weight T1 from N to N : such that

d(+ b T2)
d&$

=
d+

d((& b T1)$)
(5.1)

for all n.s.f. weights + on N and & on N:.
Choose now a n.s.f. weight %0 on N :. Put %1=%0 b T1 and %2=%1 b T2 .

When we change the weight % which was chosen on N in the beginning of
the story, the tower N:/N/N2 will be transformed into a unitarily equiv-
alent tower. The unitary implementing this transformation is the unique
unitary intertwining the two standard representations of N. This unitary
also intertwines the two implementations of : by Proposition 4.1. Hence
also \ can be transformed. So we may suppose that %=%1 .

From Eq. 5.1 follows that

d%2

d%$0
=

d%1

d%$1
.

So we also have
d%$0
d%2

=
d%$1
d%1

. But
d%$1
d%1

={&1
% because K is the GNS-space of

%=%1 . To compute
d%$0
d%2

we need a GNS-construction for the weight %2 . But
%2 b \P=% b T2 b \P=(%� )P . So we put L=P(H�K ) and as before we
denote with (H�K, @, 4� ) the GNS-construction of %� . For every x # N%2

we
define 4%2

(x)=4� (\&1
P (x)). Then 4%2

(x) # L and it is easy to check that
(L, \&1

P , 4%2
) is a GNS-construction for %2 . Also observe that for all a # N.̂

and x # N% we have \(a�1) x # N%2
and

4%2
(\(a�1) x)=P(4� (a)�4% (x)).

Now choose z # T% . Then

+�>%(z*z)=(|4%(_%
&i�2(z)) , {&1

% )=�|4%(_%
&i�2(z)) ,

d%$0
d%2�

=(%$0 , 3%2(4% (_%
&i�2(z)))). (5.2)
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Choose now a family (!i) i # I of vectors in K such that

%$0(z)= :
i # I

|!i
(z)

for all z # (J%N :J%)+. Fix i # I. Then

(|!i
, 3%2(4% (_%

&i�2(z))))<+�

and so !i # D(R%2(4% (_%
&i�2(z)))*). Further

(|!i
, 3%2(4% (_%

&i�2(z))))=&R%2(4% (_%
&i�2(z)))* !i&2. (5.3)

We will compute the final expression. For this we choose | # I and x # N% .
Recall that the subset I/M

*
was introduced in the introduction. Observe

that

R%2(4% (_%
&i�2(z)))* ! i # L.

So we have

(R%2(4% (_%
&i�2(z)))* !i , 4� ((|� @)(W ))�4% (x))

=(R%2(4% (_%
&i�2(z)))* ! i , P(4� ((|� @)(W ))�4% (x)))

=(R%2(4% (_%
&i�2(z)))* ! i , 4%2

(\((|� @)(W )�1) x))

=(!i , R%2(4% (_%
&i�2(z))) 4%2

((|� @)(U*) x))

=(!i , (|� @)(U*) x4% (_%
&i�2(z)))

=(!i , (|� @)(U*) J%z*J% 4% (x))

=|� ((@�|!i , 4% (x))((1�J% zJ%) U )).

By continuity we get that

(R%2(4% (_%
&i�2(z)))* ! i , 4� ((|� @)(W ))�')

=|� ((@�|!i , ')((1�J%zJ%) U ))

for all | # I, ' # K and z # T% . By Proposition 7.3 of the appendix, it
follows that

(@�|!i , ')((1�J%zJ%) U ) # N.
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and

4((@�|!i , ')((1�J%zJ%) U ))=(1�%'*) R%2(4% (_%
&i�2(z)))* ! i

for all ' # K and z # T% . Fix an orthonormal basis (e j) j # J for K. Then we
may conclude that

&R%2(4% (_%
&i�2(z)))* !i &2

= :
j # J

&(1�%*ej
) R%2(4% (_%

&i�2(z)))* !i&2

= :
j # J

.((@�|!i , ej
)((1�J%zJ%) U )* (@�|!i , ej

)((1�J% zJ%) U ))

=.((@�|!i
)(U*(1�J% z*zJ%) U))

=.(J� (@�|J%!i
) :(z*z) J� )

=�((@�|J%!i
) :(z*z))

=(|J%!i
, (�� @) :(z*z)).

Combining this with Eq. 5.3 we get that

(|!i
, 3%2(4% (_%

&i�2(z)))) =(|J%!i
, (�� @) :(z*z))

for all z # T% and i # I. Summing over i we get

(%$0 , 3%2(4% (_%
&i�2(z)))) =(%0 , (�� @) :(z*z))

for all z # T% . Using Eq. 5.2 we get that

%(z*z)=(%0 , (�� @) :(z*z))

for all z # T% . Hence the normal faithful weight %0 b (�� @) : is semifinite.
From [26, 11.7] it follows that (�� @) : is semifinite. So : is integrable.

Proof of the second implication. The second implication can be proved
along the same lines as in the case of an Abelian group action, see [24].
So let us suppose that : is integrable. Choose a n.s.f. weight %0 on N: and
put %=%0 b (�� @) :. Then % is a n.s.f. weight on N. Represent N on the
GNS-space K of % such that (K, @, 4%) is a GNS-construction for %. Choose
a family of vectors (!i)i # I in K such that

%0(x)= :
i # I

|!i
(x) for all x # (N:)+.
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Define L=�i # I H�K and let ? be the I-fold direct sum of the identical
representation @ of M: _ N on H�K. Recall that for any operator valued
weight T we define NT as the left ideal of elements x for which T(x*x) is
bounded. Also recall that we introduced the canonical GNS-construction
(H, @, 1) for � in the introduction. When z # N�� @ we define (1� @)(z) #
B(K, H�K ) by (1� @)(z) 4% (x)=(1�4%)(z(1�x)) for all x # N% , where
1�4% denotes the canonical GNS-map of ��%. One can check easily
that (1� @)(z)* (1� @)(z)=(�� @)(z*z). For this see e.g. [7, 10.6]. Put
T=(�� @) :. For all x # NT & N% we define

V4% (x)=�
i # I

(1� @) :(x) !i .

Observe that V is well-defined:

:
i # I

&(1� @) :(x) ! i&2= :
i # I

|!i
((�� @) :(x*x))

=(%0 , (�� @) :(x*x))=%(x*x)<�.

Because NT & N% is a _-strong*-norm core for 4% we get that
4% (NT & N%) is dense in K. So V can be extended uniquely to an isometry
from K to L.

We now want to prove that the range of V is invariant under
?(M: _ N ). So we first choose y # N. Then for every x # NT & N% we have

?(:( y)) V4% (x)=�
i # I

:( y)(1� @) :(x) !i

=�
i # I

(1� @) :( yx) !i=V4% ( yx)=Vy4% (x).

Next we will look at the invariance under ?(M� �C). Analogously as in
Proposition 7.2 of the appendix we have that for every x # N� , ! # D($1�2)
and ' # H, (|$ 1�2!, '� @) 2(x) # N� and

1((|$ 1�2!, '� @) 2(x))=(|!, ' � @)(W*) 1(x).

Then it follows easily that for all z # N�� @ we have

x :=(|$1�2!, '� @� @)(2� @)(z) # N�� @ and

(1� @)(x)=((|!, '� @)(W*)�1)(1� @)(z).
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So for all ! # D($1�2), ' # H and x # NT & N% we have

?((|!, '� @)(W*)�1) V4% (x)

=�
i # I

((|!, ' � @)(W*)�1)(1� @) :(x) !i

=�
i # I

(1� @)((|$ 1�2!, ' � @� @)(2� @) :(x)) !i

=�
i # I

(1� @)(:((|$1�2!, ' � @) :(x))) !i

=V4% ((|$ 1�2!, '� @) :(x))=V(|!, '� @)(U ) 4% (x)

by Propositions 2.4 and 4.3. So the range of V is invariant under
?(M: _ N ). Then we can define a V-homomorphism

\: M: _ N � B(K ): \(z)=V*?(z) V.

By the computations above we get that \(:(x))=x for all x # N and
(@�\)(W�1)=U*. Then it follows from Proposition 5.2 that
\(M: _ N )=N2 and so the theorem is proved. K

One can also prove the following more general kind of result, where we
do not specify what \ should be.

Proposition 5.4. Let : be an action of (M, 2) on N. Fix a n.s.f. weight
% on N and let N act on the GNS-space K of %. Consider the inclusions

C�N:/:(N )/M: _ N and N:/N/N2=J% (N :)$ J% .

Then the following statements are equivalent.

v There exists a surjective V -homomorphism \ from M: _ N to N2

such that \ is an isomorphism of :(N ) onto N and of C�N: onto N:.

v The action : is cocycle-equivalent with an integrable action ; satisfying
N;=N:.

Proof of the first implication. Suppose the first statement is true.
Because N is represented on the GNS-space of %, there exists a unitary u
on K such that \(:(x))=uxu* for all x # N and uJ%=J%u. Define \~ from
M: _ N to B(K ) by \~ (z)=u*\(z) u for all z # M: _ N. Then \~ (:(x))=x for
all x # N. Further

u*N:u=u*\(C�N:) u=u*\(:(N :)) u=N:.

Because uJ%=J% u, we get u*N2u=N2 , which leads to \~ (M: _ N )=N2 .
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So we may suppose from the beginning that \(:(x))=x for all x # N.
Define the unitary X # M�B(K ) by

X=(J� �J%)(@�\)(W�1)(J� �J%).

Put V=XU*. Clearly V # M�B(K ) and

(J� �J%) V(J� �J%)=(@�\)(W�1) U.

For every x # N we have

(@�\)(W�1) U(1�x)=(@�\)(W�1) :(x) U

=(@�\)((W�1)(@�:) :(x)) U

=(@�\)((1�:(x))(W�1)) U

=(1�x)(@�\)(W�1) U.

So we get (@�\)(W�1) U # M�N$ and hence V # M�N. In the next
computation we denote again with L% the V-anti-automorphism of B(K )
given by L% (x)=J%x*J% for all x # B(K ). Then we have

(2� @)(V)=(2� @)(R�L%)(@�\)(W*�1) (2� @)(U*)

=(R�R�L%)(2op �\)(W*�1) U*13U*23

=(R�R�L%)(@� @�\)(W*13W*23) U*13U*23

=((R�L%)(@�\)(W*�1))23 U*23 U23

_((R�L%)(@�\)(W*�1) U*)13 U*23

=V23(@�:)(V).

So V is a :-cocycle. Define the action ; on (M, 2) on N given by ;(x)=
V:(x) V* for all x # N. Then ;(x)=X(1�x) X* for all x # N. Because the
_-strong* closure of [(|� @)(X ) | | # M

*
] equals J%\(M� �C) J% we get

that N;=J%\(M: _ N )$ J%=N:.
To conclude the proof of the first implication we have to show that ; is

integrable. For this we will use the previous theorem. From Proposition 4.2
it follows that the unitary implementation U; of ; is given by

U;=VU(J� �J%) V*(J� �J%)=V(@�\)(W*�1).

From the proof of Proposition 4.2 we also get that z [ V*zV gives an
isomorphism from M; _ N onto M: _ N. So we can define

\~ : M; _ N � N2 : \~ (z)=\(V*zV).
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Then \~ is a surjective V-homomorphism onto N2=J% (N:)$ J%=J% (N;)$ J%

and clearly \~ (;(x))=x for all x # N. Because V is an :-cocycle we get that

(1�V*)(W*�1)(1�V)=(@�:)(V)(W*�1).

From this it follows that

(@�\~ )(W*�1)=(@�\)((1�V*)(W*�1)(1�V))

=V(@�\)(W*�1)=U; .

By the previous theorem we get that ; is integrable.

Proof of the second implication. Conversely suppose that the second
statement is valid and take such an action ;. Let V be an :-cocycle such
that ;(x)=V:(x) V* for all x # N. It follows from the proof of Proposi-
tion 4.2 that

8: M: _ N � M; _ N: 8(z)=VzV*

is an isomorphism and 8(:(x))=;(x) for all x # N. By the previous
theorem we can find a surjective V-homomorphism \~ from M; _ N onto
J% (N ;)$ J% satisfying \~ (;(x))=x for all x # N. Putting \=\~ b 8 and observ-
ing that N:=N ; we get the first statement. K

We do not know an example of a non-integrable action : which is
cocycle-equivalent with an integrable action ; satisfying N:=N ;, but it
seems to be natural that this kind of actions will exist. We will now specify
a case in which it cannot exist. This should be compared with the example
of a finite group acting outerly on a factor as described above.

Definition 5.5. An action : of a locally compact quantum group
(M, 2) on N is called outer when

M: _ N & :(N )$=C.

Corollary 5.6. Let : be an outer action of (M, 2) on N. Choose again
a n.s.f. weight % on N and represent N on the GNS-space of %. Let N2=
J% (N :)$ J% be the basic construction. Then the inclusions

C�N:/:(N )/M: _ N and N:/N/N2

are isomorphic if and only if : is integrable.
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Proof. When : is integrable, one can use Theorem 5.3 and then observe
that the V-homomorphism \ is faithful because M: _ N is a factor.

Next suppose that the inclusions stated above are isomorphic. By
Proposition 5.4 there exists an integrable action ; which is cocycle equiv-
alent with : and satisfies N;=N:. Let V # M�N be an :-cocycle such
that ;(x)=V:(x) V* for all x # N. Then for all x # N:=N; we have

1�x=;(x)=V:(x) V*=V(1�x) V*.

Hence we get V # M� (N & (N:)$). From our assumption and the fact
that : is outer it follows that N2 & N$=C. But then also

(N:)$ & N=J% (N2 & N$) J%=C.

So we can take u # M such that V=u�1. Because V is an :-cocycle we
get that 2(u)=u�u. By the unicity of right invariant weights on (M, 2)
there exists a number *>0 such that �(u*au)=*�(a) for all a # M +. Then
we get that for all x # N+ we have (�� @) :(x)=*(�� @) ;(x). Because ;
is integrable it follows that : is integrable. K

There exist outer actions which are not integrable: see 6.3. Combining
the previous result with Theorem 5.1 we get that all actions coming out of
Enock and Nest's construction are integrable.

Next we turn towards the notion of a regular operator valued weight.
Suppose : is an integrable action of (M, 2) on N and suppose that the
V-homomorphism \ given by Theorem 5.3 is faithful. This will of course be
the case whenever M: _ N is a factor, but also when : is a dual action or
a semidual action. The latter follows from Proposition 5.12. Then we can
prove that the operator valued weight (�� @) : from N to N: is regular.
More precisely, we will do the following. By our assumption the basic con-
struction N:/N/N2 is isomorphic with C�N:/:(N )/M: _ N through
the isomorphism \. Let us denote with T1 the operator valued weight
(�� @) : from N to N :. Then we can construct the operator valued weight
T2 from N2 to N by modular theory and the basic construction, as
described above. Through the isomorphism \ the operator valued weight
T2 is transformed to an operator valued weight from M: _ N to :(N ). In
the next proposition we prove that this operator valued weight is equal to
the canonical operator valued weight T=(.̂� @� @) :̂ from M: _ N to
:(N ).

Proposition 5.7. Let : be an integrable action of (M, 2) on N. Suppose
that the V-homomorphism \ constructed in Theorem 5.3 is faithful. Denote
with T2 and T the operator valued weights defined above. Then \ b T=T2 b \.
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Proof. For clarity we stress that T1 is the operator valued weight
(�� @) : from N to N :, that T2 is obtained out of T1 by modular theory
and the basic construction, and it goes from N2 to N. Finally T is the
canonical operator valued weight (.̂� @� @) :̂ from M: _ N to :(N ), giving
the dual weights by the formula %� =% b :&1 b T for all n.s.f. weights %
on N.

Choose a n.s.f. weight %0 on N :. Put %=%0 b T1 and let %2=%� b \&1. We
will prove that %2=% b T2 . As in the proof of Theorem 5.3 we may suppose
that N is represented on the GNS-space of % such that (K, @, 4%) is a GNS-
construction for %. Let (H�K, @, 4� ) be the canonical GNS-construction for
%� and put 4%2

=4� b \&1. We now make a kind of converse reasoning of the
proof of Theorem 5.3. Denote again with %$0 the n.s.f. weight on J% N:J%=
N$2 given by %$0(x)=%0(J% xJ%) for all positive x. We claim that for all z # T%

�|4% (_%
&i�2(z)) ,

d%$
d%2�=(%0 , (�� @) :(z*z)). (5.4)

So choose z # T% . Take a family of vectors (! i) i # I in K such that

%0(x)= :
i # I

(xJ%! i , J%!i)

for all x # (N:)+. Because (%0 , (�� @) :(z*z))=%(z*z)<� we have

(|J%!i
, (�� @) :(z*z))<�

for all i # I. Fix i # I. Then we conclude from the previous formula that

.((@�|!i
)(U*(1�J%z*zJ%) U ))<�.

So, when (ej) j # J is an orthonormal basis for K we can define the element
' # H�K by

' := :
j # J

4((@�|!i , ej
)((1�J% zJ%) U ))�ej .

It is easy to check that for all + # K we have (@�|!i, +
)((1�J%zJ%) U ) # N.

and

4((@�|!i , +)((1�J%zJ%) U ))=(1�%*+) '.
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Using the notation I/M
*

introduced in the introduction, we get for all
| # I and x # N% that

(!i , R%2(4% (_%
&i�2(z))) 4%2

((|� @)(U*) x))

=(!i , (|� @)(U*) J%z*J%4% (x))

=|� ((@�|!i , 4% (x))((1�J%zJ%) U))

=(', 4� ((|� @)(W ))�4% (x))

=(', 4%2
((|� @)(U*) x)).

From this we get that

(!i , R%2(4% (_%
&i�2(z))) 4%2

( y))=(', 4%2
( y))

for all y # N%2
. Hence !i # D(R%2(4% (_%

&i�2(z)))*) and

&R%2(4% (_%
&i�2(z)))* !i &2=&'&2=(|J%!i

, (�� @) :(z*z)).

This means that

(|!i
, 3%2(4% (_%

&i�2(z)))) =(|J%!i
, (�� @) :(z*z)) .

Summing over i we get our claim stated in Eq. 5.4. But now

(%0 , (�� @) :(z*z)) =%(z*z)=(|4% (_%
& i�2(z)) , {&1

% ) ,

and so

(|4% (_%
&i�2(z)) , {&1

% ) =�|4% (_%
&i�2(z)) ,

d%$0
d%2�

for all z # T% . Next we claim that
d%$0
d%2

and {&1
% commute strongly. Then we

will be able to conclude that
d%$0
d%2

={&1
% . But then

d%2
d%$0

={% , and so we will
get

d(% b T2)
d%$0

=
d%

d((%0 b T1)$)
=

d%
d%$

={%=
d%2

d%$0
.

So we may conclude that %2=% b T2 . By definition of %� we have %� =% b \ b T
and then % b \ b T=%� =%2 b \=% b T2 b \. By [26, 11.13] we get that
\ b T=T2 b \.
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So we only have to prove our claim. Hence we want to prove that
d%$0
d%2

and {it
% commute for every t # R. For this it is sufficient to prove that Ad { it

%

leaves both J% N:J% and N2 invariant and

%$0 b Ad { it
% %$0 and %2 b Ad { it

% =%2

for all t # R. When x # N: we have

{ it
% J%xJ%{&it

% =J%_%
t (x) J%=J%_%0

t (x) J% # J%N:J% .

Then it is immediately clear that %$0 b Ad { it
% =%$0 .

Because N2=(J% N:J%)$ we have that Ad { it
% leaves N2 invariant. Recall

that we denoted with (_~ t) the modular group of %� on M: _ N. Then we
have, for all x # N

{ it
% \(:(x)) {&it

% ={ it
% x{&it

% =_%
t (x)

=\(:(_%
t (x)))=\(_~ t(:(x))). (5.5)

Finally, for all | # B(H )
*

we have by Proposition 4.3 and 2.4 that

{ it
% P((|� @)(W )�1) {&it

% ={ it
%(|� @)(U*) {&it

% =(Q it|Q&it � @)(U*)

=\((Qit|Q&it � @)(W )�1)

=\((Qit �{ it
% )((|� @)(W )�1)(Q&it�{&it

% ))

where we used that W(Qit�Q it)=(Qit�Qit) W. From the proof of
Proposition 4.3 it follows that {� it=Q it �{ it

% and so we see that

{it
% \(a�1) {&it

% =\(_~ t(a�1))

for all a # M� and t # R. Combining this with Eq. 5.5 we get that
{ it

% \(z) {&it
% =\(_~ t(z)) for all z # M: _ N and t # R. Then we get

immediately that %2 b Ad { it
% =%2 for all t # R.

This proves our claim and ends the proof of the proposition. K

Corollary 5.8. Under the same assumptions as in Proposition 5.7, the
operator valued weight (�� @) : from N to N : is regular.

Proof. Using the notations introduced above we will identify the
inclusions N:/N/N2 and C�N:/:(N )/M: _ N. Then we get that
T2=(.̂� @� @) :̂. Now it is obvious that M� �C/M: _ N & (C�N:)$ and
N.̂�C/NT2

. So the restriction of T2 to N2 & (N :)$ is semifinite.
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Next observe that :(N )=(M: _ N ) :̂. Applying the first part of the proof
to the dual action :̂, which is integrable and for which the V-homomorphism
\ is faithful by Proposition 5.12, we get that the restriction of T3 to
N3 & N$1 is semifinite. K

As a final ingredient for the converse of Enock and Nest's theorem we
look at depth 2 inclusions. The assumption of the following proposition
may seem strange, but one can immediately look at the corollary for a
more clear result.

Proposition 5.9. Let : be an action of (M, 2) on N such that C�N:/
:(N )/M: _ N is the basic construction. Then the inclusion N:/N has
depth 2.

Proof. Choose a n.s.f. weight % on N and let %� be the dual weight on
M: _ N. Represent N on the GNS-space of % such that (K, @, 4%) is a GNS-
construction for %. Let (H�K, @, 4� ) be the canonical GNS-construction for
%� and denote with J� the modular conjugation of %� . Then it follows from
Definition 3.6 that U=J� (J� �J%) is the unitary implementation of :. The
basic construction from :(N )/M: _ N is then given by

J� :(N )$ J� =J� U(B(H )�N$) U*J� =B(H )�N.

To prove that N :/N has depth 2, we have to show that

:(N & (N:)$)/(M: _ N ) & (C�N:)$/B(H )� (N & (N:)$)

is the basic construction. But it is immediately clear that the restriction of
: to N & (N:)$ is an action ; of (M, 2) on N & (N :)$. So by the first part
of the proof it is sufficient to prove that

M; _ ((N & (N:)$)=(M: _ N ) & (C�N:)$. (5.6)

Now it follows from Theorem 2.6 and 2.7 that

M; _ ((N & (N:)$)=[z # B(H )� (N & (N :)$) | (@�;)(z)=V12z13 V*12]

and

M: _ N=[z # B(H )�N | (@�:)(z)=V12z13V*12].

From this we can immediately deduce Eq. 5.6, and that concludes the
proof. K

Although the following result is an immediate corollary of the previous
one, we include it for completeness. The first statement is clear and the next
two statements follow from the first, using Proposition 5.12 for the last one.
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Corollary 5.10. Let : be an action of (M, 2) on N.

v If : is integrable and the V -homomorphism in Theorem 5.3 is faithful,
then the inclusion N:/N has depth 2.

v If : is integrable and M: _ N is a factor, then the inclusion N:/N
has depth 2.

v The inclusion :(N )/M: _ N has depth 2.

We now prove the announced result giving a converse to the theorem of
Enock and Nest.

Proposition 5.11. Let : be an integrable outer action of (M, 2) on N.
Then the operator valued weight (�� @) : from N to N: is regular. Further
the inclusion N:/N is irreducible and has depth 2.

Proof. Because M: _ N is a factor the V-homomorphism \ from
Theorem 5.3 is faithful. Then we apply Corollary 5.8 to obtain the
regularity of (�� @) : and Corollary 5.10 to get that N:/N has depth 2. It
is clear that N:/N is irreducible, because

N & (N:)$=J% (N2 & N$) J%=C. K

As a complement to Theorem 5.3 we prove the following easy result. The
terminology is taken from [23].

Proposition 5.12. Let : be an action of (M, 2) on N. Then we call :
semidual when there exists a unitary v # B(H )�N satisfying (@�:)(v)=
v13 V*12 .

v Every dual action is semidual.

v Every semidual action is integrable and the V-homomorphism \ from
Theorem 5.3 is faithful.

Proof. Let us first prove the first statement. Denote with :̂ the dual
action, which is an action of (M� , 2� op) on M: _ N. Because .̂ is the right
Haar weight of (M� , 2� op), the role of V is played by 7W� *7=W. So we
have to find a unitary v # B(H )� (M: _ N ) satisfying (@� :̂)(v)=v13W*12 .
Then it is clear that we can take v=W*�1 and so :̂ is semidual.

To prove the second part suppose that v # B(H )�N is unitary and
(@�:)(v)=v13V*12 . Define the isomorphism 9: B(H)�N � B(H )�N by
9(z)=vzv*. Using the notation of Theorem 2.6 we get that +(9(z))=
(@�9) #(z) for all z # B(H )�N. So the action + of (M, 2) on B(H )�N
is isomorphic with the action #, which is integrable because it is isomorphic
with the bidual action :̂̂. Hence + is integrable, and so : is integrable.
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Fix now a n.s.f. weight % on N and represent N on the GNS-space of %
such that (K, @, 4%) is a GNS-construction. Let U be the canonical
implementation of :. Let N2=J% (N:)$ J% be the basic construction from
N:/N and let \: M: _ N � N2 be the V-homomorphism from Theorem 5.3.
Then define w=(J� �J%) v(J� �J%) and define

': N2 � B(H�K): '(z)=Uw*(1�z) wU* for all z # N2 .

Because w # B(H )�N$ we have

'(x)=U(1�x) U*=:(x)

for all x # N. Further we have (@�:)(v)=v13 V*12 and so U23 v13U*23=
v13 V*12 . Putting J� �J� �J% around this equation and using that V=
(J� �J� )7W*7(J� �J� ) (see [21, 2.15]), we get

U*23 w13U23=w13(7W7)12 .

Flipping the first two legs of this equation and rewriting it we get

w*23U*13w23=W12U*13 .

From this it follows that

U23 w*23U*13w23U*23 =U23 W12U*13U*23

=U23 W12(2� @)(U*)=U23U*23W12=W12 .

Then we get for all | # M
*

that

'((|� @)(U*))=(|� @� @)(U23w*23U*13w23U*23)=(|� @)(W )�1.

Hence we may conclude that ' b \=@ and so \ is faithful. K

6. MINIMAL ACTIONS AND OUTER ACTIONS

In Definition 5.5 we already defined the notion of an outer action. In the
literature one usually encounters the notion of outer action when dealing
with discrete group actions and one encounters the notion of minimal
action when dealing with compact group actions. In this section we will
prove how both notions can be linked in a locally compact quantum group
setting. We will also prove a generalization of the main theorem of
Yamanouchi, [33]: when working on separable Hilbert spaces, we prove
that every integrable outer action with infinite fixed point algebra is a dual
action.

The following definition appears in [15, 4.3] when dealing with actions
of compact Kac algebras.
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Definition 6.1. An action : of (M, 2) on N is called minimal when

N & (N:)$=C and [(@�|) :(x) | | # N
*

, x # N]"=M.

We will prove the following result.

Proposition 6.2. Let : be an action of (M, 2) on N.

v If : is minimal, then : is outer.

v If : is outer and integrable, then : is minimal.

Proof. Let : be minimal. Let z # (M: _ N ) & :(N )$. Then certainly z #
(B(H )�N ) & (C�N :)$ and hence z # B(H )�C by minimality. We now
claim that for x # B(H ) we have x�1 # M: _ N if and only if x # M� . Sup-
pose x�1 # M: _ N. It is clear that for every z # M: _ N we have (@�:)(z)
=V12z13V*12 . So we get (x�1) V=V(x�1). From this it follows that
x # M� . So we may conclude that z=x�1, where x # M� . Because z # :(N )$
we get that (x�1) :( y)=:( y)(x�1) for all y # N. By minimality we get
x # M$. But then x # M$ & M� =C and so z # C. Hence : is outer.

Let now : be outer and integrable. Choose a n.s.f. weight % on N and
represent N on the GNS-space of %. Let J% denote the modular conjugation
of % and let N2=J% (N:)$ J% be the basic construction from N:/N. Let \
be the V-homomorphism given in Theorem 5.3. Then \ is faithful because
M: _ N is a factor. Because \ is an isomorphism we get N2 & N$=C and
so

N & (N:)$=J% (N2 & N$) J%=C.

Next we claim that (:(N) _ C�N$)"=M�B(K). Because, by Theorem 2.6,
B(H )�N=(M: _ N _ M�C)", we get

B(H )� (:(N ) _ C�N$)"=((@�:)(B(H)�N) _ C�C�N$)"

=((@�:)(M: _ N ) _ M�C�N$)"

=V12((M: _ N)13 _ V*(M�C) V�N$)" V*12 .

When J� denotes the modular conjugation of the dual weight %� , we already
observed in the proof of Proposition 5.9 that B(H )�N=J� :(N)$ J� . Then
the outerness of : implies that B(H )�N & (M: _ N)$=C and so

(C�N$ _ M: _ N )"=B(H)�B(K).
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Then we may conclude from the previous computation that

B(H )� (:(N ) _ C�N$)"

=V12(B(H )�C�B(K) _ V*(M�C) V�C)" V*12

=(V(B(H)�C) V*�B(K) _ M�C�C)"

=(2(M)�B(K) _ (M� _ M)�C�C)"

=B(H )�M�B(K),

where we have used that V # M� $�M, (M� _ M)"=B(H ) and (2(M) _
B(H )�C)"=B(H )�M. Then our claim follows and hence it is clear that

[(@�|) :(x) | | # N
*

, x # N]"=M.

So : is minimal. K

We will now give an example of an outer action which is not minimal.

Counterexample 6.3. There exists an action : of Z on a II1 -factor N
such that : is outer and N:=C. Then : is clearly not minimal, and neither
can C�N:/:(N)/M: _ N be the basic construction.

Proof. Let G be the free group with a countably infinite number of
generators [an | n # Z]. It is well known that the free group factor
N=L(G) is a II1 -factor. Let ; be the automorphism of G satisfying
;(an)=an+1 for all n # Z. Let : be the automorphism of N satisfying :(*g)
=*;(g) for all g # G. Define the automorphism group (:n)n # Z in the usual
way by :n=:n for all n # Z. It is easy to verify that : is a free action and
hence : is outer (see [16, Def. 1.4.2 and Prop. 1.4.4]). Further it is easy to
check that N:=C. K

We conclude this section with a generalization of the main theorem of
Yamanouchi [33]. It is remarkable that the proof of our result is much
more easy then Yamanouchi's proof. In [33] the following result is proved
for minimal actions of compact Kac algebras, which are automatically
integrable because the Haar weight is finite.

Proposition 6.4. Let : be an action of (M, 2) on N. Suppose that both
M and N are _-finite von Neumann algebras (i.e. with separable preduals). If
the action : is minimal and integrable and if N: is infinite, then : is a dual
action.
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Proof. Consider the action ; of (M, 2) on N� =B(H )�N�M2(C)
given by

; \x
x

y
r+=\ +(x)

V� +(z)
+(g) V� *

#(r) + ,

for x, y, z, r # B(H )�N. Here we used the notations of Theorem 2.6:
+(x)=(_� @)(@�:)(x), #(r)=V� +(r) V� * and V� =7V*7�1. Let us define
now

J=[x # B(H )�N | (@�:)(x)=x13V*12].

Using matrix notation and referring to Theorem 2.6 and 2.7, it is then clear
that x # N� ; if and only if x11 # B(H )�N:, x22 # M: _ N and x12 , x*21 # J.

Choose a n.s.f. weight % on N and represent N on the GNS-space of %
such that (K, @, 4%) is a GNS-construction. Then we fix z # N(�� @) : and
! # H and we claim that the element x # B(H�K) defined by

x :=(1� @) :(z)(%!*�1)

belongs to J*. Here we used the notation 1� @ introduced in the second
part of the proof of Theorem 5.3. To prove our claim we observe that for
all b # N� , y # N% and ' # H

(%*1(b)�1) x('�4% ( y))=(', !)(%*1(b)�1)(1�4%)(:(z)(1�y))

=(', !)(�� @)((b*�1) :(z)) 4% ( y).

We can conclude that

(|', 1(b) � @)(x)=(', !)(�� @)((b*�1) :(z)).

So x # B(H )�N and for all ' # H, b # N� and | # N
*

we have

(|', 1(b)� @�|)(@�:)(x)=(@�|) :((', !)(�� @)((b*�1) :(z)))

=(', !)(�� @)((b*�1) 2((@�|) :(z)))

=(', !)(|1((@�|) :(z)), 1(b) � @)(V ).

Next we observe that for all y # N�

((', !) 1((@�|) :(z)), 1( y)) =(', !) |(�� @)(( y*�1) :(z))

=|((|', 1( y)� @)(x))

=( (@�|)(x) ', 1( y)).
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Inserting this in the computation above we get that

(|', 1(b)� @�|)(@�:)(x)=(|(@�|)(x) ', 1(b)� @)(V )

=(|', 1(b)� @�|)(V12x13).

Then it follows that x # J*.
So we see that J{[0]. Because : is minimal we also have that : is

outer by Proposition 6.2. In particular M: _ N is a factor. Also N: is a
factor. Because J{[0] we then get immediately that N� ; is a factor.
Because M is supposed to be _-finite, the Hilbert space H is separable. So
N� ; is _-finite. Denoting with eij the matrix units in M2(C) we see that the
projections 1�e11 and 1�e22 both belong to N� ;. Because C�N:/M: _ N
both projections are infinite. Hence they are equivalent in the _-finite factor
N� ;. Take w # N� ; such that w*w=1�e22 and ww*=1�e11 . Then there
exists a unitary v # J such that w=v�e12 .

Now we can consider the isomorphism

9: B(H )�N � B(H )�N: 9(z)=v*zv.

It is easy to check that (@�9) +(z)=#(9(z)) for all z # B(H )�N. So the
actions + and # are isomorphic. Because # is isomorphic to the bidual
action :̂̂ by Theorem 2.6, we get that + is a dual action. Because N: is
properly infinite and because H is a separable Hilbert space we get that the
action : on N is isomorphic with the action + on B(H )�N. So : is a dual
action. K

7. APPENDIX

In this appendix we collect four technical results which do not have any-
thing to do with actions. The first three results are general results on locally
compact quantum groups and the last one deals with n.s.f. weights on a
von Neumann algebra. We will use freely the notations introduced in the
introduction.

Proposition 7.1. Let (M, 2) be a locally compact quantum group. For
every ! # H and b # T. we have

*(|!, 4(b)) # N.̂ and 4� (*(|!, 4(b)))=J_ i�2(b) J!.

Moreover span[*(|!, 4(b)) | ! # H, b # T.] is a _-strong*-norm core for 4� .
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Proof. The first statement follows easily from the definition of .̂. Let
x # N. , then

|!, 4(b)(x*)=(x*!, 4(b)) =(J_i�2(b) J!, 4(x)).

So we get the first statement. To prove the second one we define

L=[a # N. | there exists | # M
*

such that |(x)=.(xa) for all x # N*.].

It is clear that for a # L such a | # M
*

is necessarily unique. We denote
it with a.. Then for every a # L we have *(a.) # N.̂ and 4� (*(a.))=4(a).
Define D0=[*(a.) | a # L]. We claim that D0 is a _-strong*-norm core
for 4� .

Denote with D the domain of the _-strong*-norm closure of the restriction
of 4� to D0 .

Let a # L and t # R. Define b={t(a) $&it. Then b # N. and for all x # N*.
we have

.(xb)=.(x{t(a) $&it)=&t.($&itx{t(a))=.($&it{&t(x) a)

=(a.)($&it{&t(x))=(\t(a.))(x)

where we used the notation of [19, 8.7]. So b # L and b.=\t(a.). Hence

_̂t(*(a.))=*(\t(a.))=*(b.) # D0 .

So we get that D0 is invariant under _̂t . Then it is easy to conclude that
D is invariant under _̂t for all t # R.

Let now | # M
*

and suppose that there exists a + # M
*

such that
+(x)=|(S&1(x)) for all x # D(S &1). Let a # L. Define b=(+� @) 2(a).
Then b # N. and for all x # N*. we have

.(xb)=.(x(+� @) 2(a))=+((@�.)((1�x) 2(a)))

=|((@�.)(2(x)(1�a)))=.((|� @) 2(x) a)=(|�a.) 2(x).

So we see that b # L and b.=(|�a.) 2. Then we may conclude that

*(|) *(a.)=*(b.) # D0 .

Because such elements *(|) form a _-strong* dense subset of M� it is easy
to conclude that D is a left ideal in M� .

Because D is a _-strong* dense left ideal of M� , invariant under _̂ and
because D/N.̂ , we may conclude that D is a _-strong*-norm core for 4� .
But then D=N.̂ and we have proven our claim.
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Then it follows easily that also

span[*(ab.) | a # L, b # T.]

is a _-strong*-norm core for 4� . This last space equals

span[*(|4(a), 4(b)) | a # L, b # T.]

and so the proposition is proven. K

For completeness we also include the following easy result.

Proposition 7.2. Let (M, 2) be a locally compact quantum group. For
every a # N. , ! # D($1�2) and ' # H we have (@�|!, ') 2(a) # N. and

4((@�|!, ') 2(a))=(@�|$1�2!, ')(V ) 4(a).

Proof. Let (en) be the sequence of operators defined in the proof of [19,
7.6]. Because 2($)=$�$ it is clear that

((@�|!, ') 2(aen)) $&1�2/(@�|$1�2!, ') 2(a($&1�2en)).

Because a($&1�2en) # N� we have (@�|$ 1�2!, ') 2(a($&1�2en)) # N� . We know
that .=�$ &1 , so that (@�|!, ') 2(aen) # N. and

4((@�|!, ') 2(aen))=1((@�|$1�2!, ') 2(a($&1�2en)))

=(@�|$1�2!, ')(V ) 1(a($&1�2en))

=(@�|$1�2!, ')(V ) 4(aen).

Because 4 is _-strong*-norm closed, the conclusion follows. K

We also need the following technical result.

Proposition 7.3. Let (M, 2) be a locally compact quantum group and
let x # M. Suppose that there exists a vector ' # H such that

|(x*)=(!(|), ')

for all | # I. Then x # N. and 4(x)='.

Proof. Let | # I and y # T. . Then we have for all a # N. that

(|y)(a*)=|((ay*)*)=(!(|), 4(ay*)) =(J_i�2( y*) J!(|), 4(a)).
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So we get that |y # I and !(|y)=J_ i�2( y*) J!(|). Take now a net (e:) in
T. such that _z(e:) � 1 in the _-strong* topology for all z # C. Then we
have for all | # I

(!(|), 4(xe:)) =|(e:*x*)=(|e:*)(x*)=(!(|e:*), ')

=(!(|), J_i�2(e:)* J') .

Hence 4(xe:)=J_i�2(e:)* J' for all :. Because 4 is _-strong*-norm closed
we get x # N. and 4(x)='. K

The following result is probably well known, but we could not find it in
the literature.

Proposition 7.4. Let % be a n.s.f. weight on a von Neumann algebra N
with GNS-construction (H, ?, 4). Suppose that

v D is a weakly dense left ideal in N with D/N% .

v K is a Hilbert space and 40 : D � K is a linear map such that 40(D)
is dense in K.

v ?0 is normal representation of N on K such that ?0(x) 40( y)=
40(xy) for all x # N and y # D.

v V is an isometry from K to H such that V40(x)=4(x) for all
x # D.

v 40 is _-strong*-norm closed.

Then there exists a unique n.s.f. weight + on N such that N+=D and
(K, ?0 , 40) is a GNS-construction for +. In particular + is a restriction of %,
which means that for every x # M+

+ we have x # M+
% and +(x)=%(x).

Proof. Because V is an isometry, 40 is injective. Define U=40(D & D*).
Then U is a dense subspace of K. We make U into a V-algebra by using
40 and the V-algebra structure on D & D*. We claim that U is a left Hilbert
algebra. The only non-trivial point is to prove that the map 40(x) [ 40(x*)
for x # D & D* is closable. But, suppose that (xn) is a sequence in D & D*
such that 40(xn) � 0 and 40(xn*) � ! # K. Applying V we get 4(xn) � 0
and 4(xn*) � V!. Because % is a n.s.f. weight we get that V!=0 and so
!=0. This gives our claim.

It is clear that the von Neumann algebra generated by the left Hilbert
algebra U is ?0(N). Because 40 is injective we have that ?0 is injective. So
the n.s.f. weight on ?0(N ) which is canonically associated with U can be
composed with ?0 to obtain a n.s.f. weight + on N. Let (K, ?0 , 41) be the
canonically associated GNS-construction.
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Then, by definition of +, every x # D & D* will belong to N+ and
41(x)=40(x). Let now x # D. Take a net (e:) in D such that e: � 1
_-strong*. Then we have e:*x � x _-strong*, e:*x # D & D* and

41(e:*x)=40(e:*x)=?0(e:*) 40(x) � 40(x).

Because 41 is _-strong*-norm closed we get x # N+ and 41(x)=40(x).
Conversely, suppose x # N+ . By the main theorem of [12] thee exists a

net (x:) in D & D* such that &x:&�&x& for all :, x: � x _-strong* and
41(x:) � 41(x) in norm. But 41(x:)=40(x:) for every :. Because 40 is
_-strong*-norm closed we get that x # D. This concludes our proof. K
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