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A ring R is said to be an I-ring if and only if for every non-nilpotent
element a in R , there exists b g R , b / 0, such that bab s b. Equiva-
lently, R has this property if and only if each non-nil right ideal contains

w xan idempotent. I-rings apparently first occurred in a paper of Kothe 14 ,¨
who was then searching for a non-commutative substitute of the finiteness
condition for rings which today usually is contained in the expression

Ž w x‘‘noetherian.’’ It was later observed by Kaplansky 13 that an I-ring either
contains an infinite number of mutually orthogonal idempotents or satis-

.fies the descending chain condition modulo its radical. In his paper,
Kothe shows among other things that each minimal non-nil right ideal of¨
an arbitrary ring contains an idempotent and that I-rings contain what
today is occasionally called a Kothe-radical, i.e., a unique maximal bilateral¨
ideal, which contains all left and right nil-ideals of the ring in question.
I-rings appear next in the literature as a weak form of von Neumann’s

w xregular rings 11]13 and have then systematically been investigated by
w x Ž wLevitzki 17, 18 . For an investigation of I-rings with involution see 15,

x .16 .
The structure of regular rings within the category of Banach algebras is

w xfairly well understood: All of them are finite dimensional 12 . The situa-
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tion for I-rings within this class seems to be more difficult to understand
w xand only much more restrictive conditions have been investigated 19 .

The idea behind the following is to connect I-rings to smoothness of the
unit sphere in case that the ring in question is a C*-algebra. More
precisely, we are going to show that a C*-algebra is an I-ring if and only if

Ž .its norm is strongly subdifferentiable see the definition below on a dense
Ž .set Theorem 3 . Part of this result extends an old characterization of

w xcommutative C*-algebras that are I-rings due to Kaplansky 12, Theorem .
ŽKaplansky’s interest in such a characterization was to show that there is
an abundance of Banach algebras which are I-rings but not regular. In

.fact, the proof for the commutative version is a matter of a few lines.
Another aspect of the present result is that there is no topological version
of I-rings within the frame of C*-algebras: A C*-algebra which has the
property that all closed left ideals contain an idempotent already is an
I-ring. It is worth mentioning that the class of C*-algebra thus character-

w xized comprises the so-called spectral C*-algebras 19 , a fairly wide family
Žof algebras including all von Neumann algebras actually all Rickart

. w xC*-algebras , AF-algebras, and C*-algebras with real rank zero 19, 3 .
Furthermore, each C*-algebra is the factor of another C*-algebra which is

wan I-ring and satisfies a finiteness condition for matrix units 19, Proposi-
xtion 2.18 .

For the sake of completeness we include a similar characterization for
Ž .C*-algebras with everywhere strongly subdifferentiable norm Theorem 2 :

A C*-algebra is sharing this property if and only if it is a modular
annihilator algebra.

All of these results depend on a characterization of strong subdifferen-
Ž .tiability of the norm of C*-algebras in algebraic terms Theorem 1 . This

latter result parallels similar characterizations of points of Frechet-´
w xdifferentiability, which had been obtained in 21, 22 . Nevertheless, in the

framework of C*-algebras, strongly subdifferentiability of the norm hap-
pens to be much weaker than Frechet-differentiability. Note that there are´
von Neumann algebras whose norm is Frechet-differentiable at no point´
but strongly subdifferentiable on a dense set.

It is now time to recall the geometrical definition which will be crucial in
w xthe sequel. Following 5 we say that the norm of a Banach space X is

strongly subdifferentiable at a point x g X when the limit

5 5 5 5x q ty y x
lim

q ttª0

exists uniformly for y in the unit ball of X. Note that this condition is
Ž .trivially satisfied for x s 0 and that it holds for r x r ) 0 whenever it
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holds for x, so we shall mainly consider strong subdifferentiability of the
norm at points in the unit sphere S . For x g S it is well known thatX X

5 5x q ty y 1
lim s max Re w y : w g D x ,� 4Ž . Ž .

q ttª0

Ž . Ž Ž . .where D x or D x, X if it is necessary to be more precise is the set of
normalized support functionals for the unit ball at x, that is,

D x s w g S : w x s 1 .� 4Ž . Ž .X *

w x Ž w x.It was shown by D. Gregory 9, Corollary 4.4 see also 5, Theorem 1.2
that the norm of X is strongly subdifferentiable at x g S if and only ifX

Ž . Ž Ž ..the face D x is strongly exposed by x, that is, the distance d w , D xn
� 4tends to zero for any sequence w in the dual unit ball such thatn

Ž .w x ª 1. Norm-to-norm upper semicontinuity of the set-valued mappingn
w xD in the sense of Giles, Gregory, and Sims 6 is another equivalent

condition. We should also mention that a continuous convex function
defined on an open subset of X is differentiable on a dense G if it isd

Ž .strongly subdifferentiable on another dense G D. Preiss, unpublishedd

Žw x w x.and that G. Godefroy 7 , see also 4 has shown that Banach spaces with
everywhere strongly subdifferentiable norm are Asplund spaces.

Our first goal will be the announced algebraic characterization of strong
subdifferentiability points for the norm of a C*-algebra. Let us fix some
notation: In what follows, A will always denote a C*-algebra. Recall that

Ž .the topological bidual A** of a C*-algebra is itself a C*-algebra and that
this makes it possible to equip A* in a natural way with an A**-bimodule
structure via

fu a [ ua f and uf a [ au f ,Ž . Ž . Ž . Ž .

where f g A* and u g A**. Note that

5 5 5 5 5 5fu s sup ua f F u fŽ .
agBA

5 5 5 5 5 5and similarly uf F u f . For unexplained notation and standard re-
sults on C*-algebras which are used without comment we refer to the book

w xof Pedersen 20 . We will need the following lemma.

w x � 4 5 5LEMMA 1 21, Lemma 2.7 . Let w be a sequence in A*, with w F 1,n n
5 5for all n. Suppose p, q are projections in A** such that pw q ª 1. Thenn

5 5pw q y w ª 0.n n

Consider the trivial fact that strong subdifferentiability points are pre-
served under isometric linear bijections. This applies, in particular, to
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multiplication by unitary elements in a unitary C*-algebra. Our next
lemma shows that multiplication by a partial isometry still preserves some
points of strong subdifferentiability.

LEMMA 2. Strong subdifferentiability of the norm passes from a g S toA

¨a for any partial isometry ¨ g A** such that ¨a g A and ¨*¨a s a.

� 4 Ž . XProof. Given a sequence w in S with w ¨a ª 1, write w s w ¨ .n A* n n n
X Ž . Ž . 5 X 5Since w a s w ¨a ª 1 and w F 1, the assumption yields a sequencen n n

� X4 Ž . 5 X X 5 Xc in D a such that w y c ª 0 and we write c s c ¨*. Note thatn n n n n
5 5 Ž . XŽ . XŽ . Ž .c F 1 and c ¨a s c ¨*¨a s c a s 1, so c g D ¨a and we aren n n n n

5 5left with showing that w y c ª 0. Actually, we haven n

5 5 5 X X 5 5 X X 5w ¨¨* y c s w ¨* y c ¨* F w y c ª 0,n n n n n n

5 5and also w ¨¨* y w ª 0, forn n

w ¨¨* ¨a s w ¨a ª 1,Ž . Ž . Ž .n n

and Lemma 1 applies.

ŽStrong subdifferentiability at x g B implies this property for theX
. w xcanonical image of x g B 6, Corollary 2.1 , and one might conse-X **

Žquently dispense with the condition that ¨a g A in the above lemma. For
.our present purposes, the above form suffices. It is on the other hand easy

to see that the assumption ¨*¨a s a cannot be dropped.

LEMMA 3. Let p be a projection in the C*-algebra A. Then the norm of A
is strongly subdifferentiable at p.

Proof. The norm of a unital Banach algebra is always strongly subdif-
Ž w x .ferentiable at the unit see 1, Theorem 5.5 , for example . Thus, the norm

of the C*-algebra pA p is strongly subdifferentiable at p, but we want
� 4 Ž .something better. Given a sequence w in S with w p ª 1 the aboven A* n

� 4observation and the Hahn]Banach Theorem provide a sequence c inn
Ž .D p, A such that w y c ª 0 uniformly on the unit ball of pA p,n n

5 Ž . 5 5 5equivalently, p w y c p ª 0. Lemma 1 now gives w y pc p ª 0,n n n n
Ž .but pc p g D p, A for all n.n

Therefore the norm of a C*-algebra containing non-zero projections is
strongly subdifferentiable at some non-zero points. The converse is also
true as a by-product of our next result.

THEOREM 1. Let A be a C*-algebra and a g S . The following asser-A

tions are equï alent.

Ž .i The norm of A is strongly subdifferentiable at a.
Ž . < <ii 1 is an isolated point in the spectrum of a .
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Ž .iii There exists a partial isometry ¨ g A such that

5 5a¨* s ¨¨* and a y ¨ - 1.

Ž . Ž .Proof. i « ii . By using the polar decomposition and Lemma 2 we
Ž . < <get from i that the norm of A is strongly subdifferentiable at a . Let us

< <denote by B the C*-subalgebra generated by a and consider the ele-
ments of B as continuous functions on the locally compact space L s
Ž < <. � 4 < <sp a _ 0 vanishing at infinity, the function a being the identity func-

tion on L. If we denote by d the evaluation at the point t g L, we clearlyt
Ž < < . � 4have D a , B s d . Arguing by contradiction, we may suppose that1

� 4 Ž < <. � 4there is a sequence t in sp a such that t converges to 1 and t - 1n n n
Ž < <. � 4for all n. Since d a ª 1, and the sequence d does not converge to dt t 1n n

Ž .even in the weak topology we have that the norm of B is not strongly
< <subdifferentiable at a , the desired contradiction.

Ž . Ž .ii « iii . Use the continuous functional calculus to find a projection
p g A satisfying

< < 5 < < 5a p s p and a y p - 1. )Ž .

< < Ž .If a s u a is the polar decomposition of a, we claim that iii holds with
¨ s up. In fact, since

< <¨ s u a p s ap,

we have ¨ g A and

< <¨*¨ s pu*ap s p a p s p ,

hence ¨ is a partial isometry. Moreover, ¨¨* s upa* s ¨a*, that is, a¨* s
< <¨¨*. Since ¨*a s p a s p we finally have

5 5 2 5 5a y ¨ s a*a y ¨*a y a*¨ q ¨*¨

5 < < 2 5s a y p

5 < < < < 5s a a y p - 1.Ž .

Ž . Ž . Ž .iii « i . We first prove that p s ¨*¨ satisfies ) . In fact,

< < 2p a p s ¨* a¨* * a¨* ¨ s p ,Ž . Ž .

Ž < < 2 . < < < <that is, p 1 y a p s 0 and it follows that p a s a p s p. On the other
5 5hand, since a y ¨ - 1 and

< < 2p s p a s ¨*¨¨* a s ¨*a,Ž .

5 < < 5 2 5 5 5 5we get a y p s a*a y p s a*a y ¨*a - 1.
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Ž .To prove i , we show that the norm of A is strongly subdifferentiable at
< <a and the result will follow from Lemma 2. By Lemma 3 and the dual

Ž w x.characterization of strong subdifferentiability see 5, Proposition 3.1 , it is
Ž < <. Ž .enough to show that D a s D p . Since the C*-subalgebra generated by

< <a and p is commutative, an obvious application of the Hahn]Banach
Theorem reduces the problem to the commutative case, that is, we may

Ž .assume that A s C L , for some locally compact space L. Then p is the0
< <characteristic function of a clopen set V, the relation between p and a

Ž . � < <Ž . 4given by ) clearly implies that V s t g L: a t s 1 , and the equality
Ž Ž .. Ž < < Ž ..D p, C L s D a , C L follows.0 0

If the norm of A is Frechet-differentiable at a point a and B is a larger´
C*-algebra, then the norm of B need not be Frechet-differentiable at a´
but it is still strongly subdifferentiable, as shown by the following immedi-
ate consequence of the above theorem.

COROLLARY 1. Let B be a C*-algebra, A a C*-subalgebra of B , and
a g A. If the norm of A is strongly subdifferentiable at a, then the norm of
B is also strongly subdifferentiable at a.

Ž .If K is a compact space, the norm of C K is strongly subdifferentiable
� < Ž . < < Ž . < 4at a g S if and only if sup a t : t g K, a t - t - 1. This elemen-C ŽK .

tary fact, covered by Theorem 1, also admits the following non-
commutative version in terms of irreducible representations.

COROLLARY 2. The norm of A is strongly subdifferentiable at a g S if ,A

and only if , there is a family F of irreducible representations of A , satisfying
the following conditions.

Ž . 5 Ž .5i p a s 1 for all p g F and there exists r ) 0 such that
5 Ž .5p a F 1 y r for any irreducible representation p not belonging to F.

Ž . Ž Ž Ž ...ii For all « ) 0 there exists d ) 0 such that d w, D p a - «
Ž Ž Ž ...whene¨er p g F and w g B satisfy Re w p a ) 1 y d .LŽH .*p

Ž .Proof. A is isometric to a C*-subalgebra of the l -sum B s [ L H ,` ` p

where p runs through the family of all irreducible representations of A.
In view of the above corollary we can dispose of A and consider a as an
element in B. Then the result follows from the behavior of points of

w xstrong subdifferentiability in l -sums of Banach spaces 5, Theorem 2.5 .`

We come now to a description of C*-algebras with everywhere strongly
subdifferentiable norm. Recall the following definition: A ring R is a
modular annihilator ring, if and only if

� 4L M s r g R : r M s 0 / 0Ž .
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Žfor every maximal modular right ideal M of R. Note that a proper
exchange of ‘‘left’’ and ‘‘right’’ in this definition doesn’t lead to a new

w x .concept 23, Theorem 3.4 .

THEOREM 2. For a C*-algebra A , the following assertions are equï alent.

Ž .i The relatï e weak and weak-) topologies agree on S .A*

Ž .ii The norm of A is strongly subdifferentiable at e¨ery point.
Ž .iii For e¨ery normal element a g A , zero is the only possible accumu-

Ž .lation point in sp a .
Ž .iv A is a modular annihilator algebra.
Ž .v A is a c -sum of algebras of compact operators on Hilbert space.0

Ž . Ž .Proof. i « ii . Given any element a in the unit sphere of a Banach
space, it is easy to show that for any weak-* neighbourhood of zero V in
the dual space there is a d ) 0 such that

Re w a ) 1 y dŽ . « w g D a q V .Ž .55 5w s 1

Ž .We can take for a any positive element in S and our assumption iA

allows replacing ‘‘weak-*’’ with ‘‘weak’’ in the above statement. Then,
Ž . Ž .arguing like in the proof of the assertion i « ii in Theorem 1 we get

Ž . Ž .that 1 is an isolated point of sp a and ii follows.
Ž . Ž .ii « iii . Let a be a normal element in A , and a / 0 an accumulation

Ž . Ž .point of sp a . Consider the continuous function f : sp a ª C given by
Ž . < < Ž < < < <. Ž Ž ..f t s t r t q t y a . Since 1 is an accumulation point of sp f a , the

Ž .norm of A is not strongly subdifferentiable at f a .
Ž . Ž . w xiii « iv . This is a special case of 2, Theoreme 3, p. 84 .´ `
Ž . Ž . Živ « v . The conclusion follows from results of B. Yood every C*-

algebra which is a modular annihilator algebra is dual, i.e., every closed
w x. Žideal is an annihilator ideal 23, Theorem 4.1 and I. Kaplansky every

Ž . w x.C*-algebra is of the form announced in v 11, Theorem 8.3 .
Ž . Ž . w x Ž .v « i . By 10, Proposition III.2.9 A is an M-ideal of A** and i

Ž .follows from the fact that for this class of spaces condition i always is
w xsatisfied 10, Corollary III.2.15 .

Let us finally prove the main result of this paper, a geometric characteri-
zation of C*-algebras that are I-rings. Recall that a projection Q g A** is

� 4called open, if and only if there is an increasing net a of positivel

elements in A that converges to Q in the weak*-topology. We will also
make use of the fact that Q ª A**Q l A establishes a one-to-one

Ž . Ž wcorrespondence of open projections and closed left ideals of A see 20,
x .3.10.7, 3.11.10 for details .
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THEOREM 3. For a C*-algebra, the following assertions are equï alent.

Ž .i The norm of A is strongly subdifferentiable on a dense subset of A.
Ž . 5 5ii For e¨ery a g S there exists x g S such that x y a - 1 andA A

the norm of A is strongly subdifferentiable at x.
Ž .iii A is an I-ring.
Ž .iv E¨ery non-zero closed left ideal of A contains a non-zero projec-

tion.
Ž .v For e¨ery open projection Q in A**, Q / 0, there is a projection

q g A , q / 0, such that q F Q.

Ž . Ž .Proof. i « ii . This is evident.
Ž . Ž . Ž .ii « iii . For a g S , let x g S be given by ii . By Theorem 1, thereA A

is a partial isometry ¨ g A such that
5 5x¨* s ¨¨* and x y ¨ - 1.

Since
5 5 5 5a¨* y ¨¨* s a¨* y x¨* - 1,

the element ¨¨*a¨* s ¨¨*a¨*¨¨* is invertible in the unital C*-algebra
¨¨*A¨¨* so there is an element c g A , c / 0, such that ¨¨*a¨*c¨¨* s ¨¨*.

Ž .Condition iii now follows with b s ¨*c¨¨*, which clearly is different from
zero.
Ž . Ž .iii « iv . A non-zero left ideal of a C*-algebra cannot be a nil ideal.

Ž . Ž .Thus, if iii holds, every non-zero closed or not left ideal of A contains a
non-zero idempotent. The conclusion then follows from the fact that

y1p s 1 q e y e* e* y e e*eŽ . Ž .
Ž wis a projection whenever e is idempotent see, e.g., the proof of 8,

x .Proposition 19.1 for details .
Ž . Ž .iv « v . Let Q be a non-zero open projection in A**. Then A**Q l A

is a non-zero, closed left ideal of A which will contain a non-zero
projection p, and it is easy to see that p F Q.
Ž . Ž .v « i . An appeal to Lemma 2 shows that it is sufficient to prove that

any positive element a g A is the limit of a sequence of points of strong
� 4 Ž .subdifferentiability a such that s a a s a for all natural numbers n,n n n

Ž . Žwhere s a denotes the support of a. This by definition is the smallest
projection p g A** with ap s pa s a. Equivalently, a s pa is the polar

.decomposition of a. Hence let a g S , a G 0, be given and fix « ) 0.A

Denote by B the C*-subalgebra generated by a, and select a positive
Želement a g S as well as a projection Q g B88, open for B and henceˆ B

.for A , so that
«

5 5a y a - and Qa s Q.ˆ ˆ
2
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� 4 Ž .Pick q g A _ 0 with q F Q and put a [ «r2 q q 1 y «r2 a. Sinceˆ«

Ž . Ž .s a a s a and q s qa s aq it follows that s a a s a . Furthermore,ˆ ˆ ˆ ˆ « «

5Ž . 5 5 5 5 5qa s q and 1 y q a F 1 y «r2. Also a y a F a y a qˆ« « «

5 5 Ž .a y a - « , and i follows from Theorem 1.ˆ «
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