
Journal of Biomedical Informatics 43 (2010) 520–536

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector
Contents lists available at ScienceDirect

Journal of Biomedical Informatics

journal homepage: www.elsevier .com/locate /y jb in
Authoring and verification of clinical guidelines: A model driven approach q

Beatriz Pérez a,*, Ivan Porres b

a Department of Mathematics and Computer Science, University of La Rioja, La Rioja, Spain
b Department of Information Technologies, Åbo Akademi University, Turku, Finland

a r t i c l e i n f o a b s t r a c t
Article history:
Received 3 April 2009
Available online 4 March 2010

Keywords:
Clinical guidelines
Formal verification
Computer assisted tools
Model driven development
Model transformation
1532-0464/$ - see front matter � 2010 Elsevier Inc. A
doi:10.1016/j.jbi.2010.02.009

q This work has been partially supported by the Sp
Innovation, project TIN2009-13584, by the Spanish M
and Commerce, project LISBioBank (TSI-020302-200
Aragon, project LIS (PI108/08) and by Programa Euro

* Corresponding author. Fax: +34 941 299 460.
E-mail address: beatriz.perez@unirioja.es (B. Pérez

1 Although clinical guidelines and protocols are diffe
for more specific clinical problems than guidelines), i
clinical guideline or simply guideline to refer to both ter
Objectives: The goal of this research is to provide a framework to enable authoring and verification of
clinical guidelines. The framework is part of a larger research project aimed at improving the represen-
tation, quality and application of clinical guidelines in daily clinical practice.
Methods: The verification process of a guideline is based on (1) model checking techniques to verify
guidelines against semantic errors and inconsistencies in their definition, (2) combined with Model Dri-
ven Development (MDD) techniques, which enable us to automatically process manually created guide-
line specifications and temporal-logic statements to be checked and verified regarding these
specifications, making the verification process faster and cost-effective. Particularly, we use UML state-
charts to represent the dynamics of guidelines and, based on this manually defined guideline specifica-
tions, we use a MDD-based tool chain to automatically process them to generate the input model of a
model checker. The model checker takes the resulted model together with the specific guideline require-
ments, and verifies whether the guideline fulfils such properties.
Results: The overall framework has been implemented as an Eclipse plug-in named GBDSSGenerator
which, particularly, starting from the UML statechart representing a guideline, allows the verification
of the guideline against specific requirements. Additionally, we have established a pattern-based
approach for defining commonly occurring types of requirements in guidelines. We have successfully val-
idated our overall approach by verifying properties in different clinical guidelines resulting in the detec-
tion of some inconsistencies in their definition.
Conclusions: The proposed framework allows (1) the authoring and (2) the verification of clinical guide-
lines against specific requirements defined based on a set of property specification patterns, enabling
non-experts to easily write formal specifications and thus easing the verification process.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

In the last decade, the health sector has used clinical guidelines
and protocols as helpful instruments for decision making1. As de-
fined by the Institute of Medicine, clinical guidelines are systemati-
cally developed statements to assist practitioner and patient decisions
about appropriate health care for specific clinical circumstances [1]. In
other words, they describe all the decision points and corresponding
actions to be carried out depending on a specific patient’s state or
situation. They identify the clinical tests to be performed in order
ll rights reserved.

anish Ministry of Science and
inistry of Industry, Tourism

8-8), by the Government of
pa CAI-Gobierno de Aragon.

).
rent tools (protocols are used

n this paper we use the term
ms.
to confirm or determine the patient’s state. Based on the test results,
the guideline determines the treatment alternatives.

Among the most important potential advantages of document-
ing and using clinical guidelines are assessing and improving the
quality of care, providing support for medical decision-making,
controlling health care costs and reducing both practice variability
and the inappropriate use of resources [1,2].

As a long term research goal we are working on the develop-
ment of an overall framework aimed at improving the representa-
tion, quality and application of clinical guidelines in daily clinical
practice. Particularly, we propose to represent clinical guidelines
using a visual computer language (UML 2.0 statecharts [3]). This
model is taken as the starting point for the verification and tool
development processes we propose, and which are aimed at
improving the quality of clinical guidelines and developing clinical
guideline-based decision support systems (GBDSS) to facilitate pa-
tient care at the point of need respectively.

In this article we focus on our approach to improve the repre-
sentation and verification of clinical guidelines being the main con-
tributions threefold.

https://core.ac.uk/display/82697998?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jbi.2010.02.009
mailto:beatriz.perez@unirioja.es
http://www.sciencedirect.com/science/journal/15320464
http://www.elsevier.com/locate/yjbin

B. Pérez, I. Porres / Journal of Biomedical Informatics 43 (2010) 520–536 521
Firstly, we present an approach to represent clinical guidelines
using a visual computer language (UML 2.0 statecharts [3]). The
objective is to improve the representation of such guidelines and
thus simplify quality improvement and the development of new
computer tools for their processing. Based on our experience with
several real-life guidelines, we provide a set of representation pat-
terns in order to assist in the modelization process of each clinical
guideline as a UML statechart.

Secondly, we have established a pattern-based approach for
defining commonly occurring types of requirements in guidelines
in order to help non experts in their formal specification.

Thirdly, we have developed a framework based on Model Dri-
ven Development (MDD) techniques [4], and in particular in a
Model Driven Architecture approach (MDA), to verify specific
requirements in guidelines in order to be checked against semantic
errors and inconsistencies in their definition.

This paper is based on previous works published by the authors of
this paper [5] and with Domı´ nguez et al. [6,7]. In this paper we pro-
vide a revised and extended version of these works presenting the
first proposal which includes a complete view of our overall frame-
work focusing on the authoring and verification of clinical
guidelines.

The paper is structured as follows. Next we outline the back-
ground and related work of this research. In Section 2, we present
an overview of our overall approach and introduce the IRC guide-
line as the case study used throughout the paper. In order to make
our paper self-contained in Section 3 we describe our approach for
formally representing clinical guidelines as UML statecharts. In
Section 4, we describe in detail the overview of the verification
framework we propose for clinical guidelines. Section 5 discusses
the advantages and limitations of our approach. Finally, conclu-
sions and further work are set out in Section 6.

1.1. Background and related work

1.1.1. Formal representation
There is a large number of published guidelines since each

guideline is focused on a desired health outcome. Furthermore,
guidelines may vary from hospital to hospital since they reflect
variations in resources, as well as in the working philosophy of
the hospital in question. Because of the vast amount of clinical
guidelines, several organizations have undertaken efforts to pub-
lish them (using text formats such as HTML or PDF) in the litera-
ture and on the internet to make them more accessible and to
enable evidence-based knowledge to be reused (see for example
[8,9]). During the past thirty years there have been several efforts
to develop various computer-interpretable models and tools for
the management of guidelines (see GLIF [10,11], Asbru [12–14],
EON [15], PROforma [16,17], GEM [18,19], GLARE [20,21] or
[22,23] for a review) which are mainly aimed at providing guided
support to the physician during the application of the guideline.
They are designed to provide different services such as specifica-
tion and visualization of guidelines, and a close interconnection
with clinical data which would simplify its storage, updating and
tuning. In particular, these proposals address the problem of a for-
mal representation of guidelines by providing a set of representa-
tion primitives that capture their structure [24]. Although the
degree of formality of the representation format varies among
these approaches, the majority of them represent the guidelines
in a format which is precise enough to allow the enactment of
the guideline in a (semi)-automatic fashion. Nevertheless, the
modeling of clinical guidelines using some of these methods can
entail a significant effort [25], and in some cases even understand-
ing the rules governing their semantics involves a difficult task for
the user [12,26], which can make the modeling process very diffi-
cult and even error-prone.
Taking this into account, in [6,7,27] the authors of this paper to-
gether with Domı´ nguez et al. proposed to represent the dynamics of
each clinical guideline by using UML 2.0 statecharts [3]. Statecharts
have been successfully used to represent the behavior of different
and varied kinds of systems including air traffic control systems
[28], embedded systems [29] or even biological [30,31] and peri-
operative processes [32]. In particular, it is worth highlighting that
in [32] it is shown that statecharts capture successfully the behav-
ioral aspects of surgical care delivery. We believe that representing
clinical guidelines by our approach contributes to making the rep-
resentation of clinical guidelines a guided and supported process.

1.1.2. Validation and verification
However, the work done on developing, disseminating and

computerizing guidelines far exceeds the efforts in improving their
quality [25,33]. The fact is that although guidelines have been
based on the development of consensus among experts taking into
account evidence-based medicine and daily medical practice, this
process has limitations and can lead to flawed conclusions [34].
Additionally, the fact that clinical guidelines are commonly repre-
sented in natural language makes them accessible to practitioners,
but they can also contain ambiguities possibly leading to their
inappropriate use. As a consequence, most clinical guidelines are
lacking in quality because of the inconsistency and poverty of the
methodological rigor used to define them. In fact, many works in
the literature have assessed the quality of clinical guidelines find-
ing that most guidelines housed by authoritative institutions are
lacking in quality [2]. They therefore require a reevaluation and
improvement [2,35] both to make sure that they do not lead to
undesired situations (for example, regarding the treatment of a
disorder, that the guideline precludes the prescription of redun-
dant drugs) and to verify that they hold expected properties (such
as that the application of the guideline finally leads to the purpose
for which it was developed).

Given this situation, recent efforts have been made to stimulate
the improvement of clinical guidelines using different verification
techniques such as theorem proving [12,25,36–41], model checking
[33,42–45] or knowledge–based verification [46,47]. In these ap-
proaches, a guideline is modeled in some predefined guideline rep-
resentation language (Asbru, GLARE, etc.) resulting in a first model
which is translated into the input specification language of the cho-
sen technique (such as PROMELA [48]), obtaining a second model.
Then, properties specified in a formal language (such as LTL [49]
(Linear Temporal Logic) [33,43–45], CTL [50] (Computation Tree Lo-
gic) [43,44], ACTL (Action Computation Tree Logic) [42], or a variant
of ITL [51] (Interval Temporal Logic) [12,25,36–41]) are checked in
this second model in order to verify the guideline.

In our particular case, in order to develop decision support sys-
tems for guidelines [6,7], we decided to extend our approach by
applying verification techniques to guidelines in order to generate
GBDSSs of guidelines which have been previously verified against
quality requirements. Specifically, we have chosen the SPIN [48]
model chequer which uses PROMELA (PROcess MEta LAnguage)
[48] as the input specification language and LTL (Linear Temporal
Logic) formulas [49] to specify the properties to be verified in the
model. Starting from the statechart that represents a guideline,
we use a MDA tool which allows us to automatically translate
the statechart into the PROMELA specification. The resulted model
is taken as input of the SPIN tool which, together with a specific
requirement specified in LTL, verifies it in the guideline.

Comparing our approach with different verification techniques
that have been used in the literature to improve the quality of
guidelines, in particular in [25,41] a theorem proving approach is
proposed. Firstly, the guideline is represented using the Asbru lan-
guage [23] and then it is translated into a formal representation in
the KIV theorem prover [52]. The authors use a variant of Interval

522 B. Pérez, I. Porres / Journal of Biomedical Informatics 43 (2010) 520–536
Temporal Logic (ITL) to formulate properties. In contrast to this
verification technique, we have decided to use a model checker
based on the fact that, as is shown in [53], if a property fails to hold,
the result returned by a theorem prover is not normally useful for
users, who must try to determine whether the fault lies with the
system and property being verified, or with the failed proof. So,
the verification process can be tedious and time-consuming,
requiring substantial human guidance [54].

Other works such as [33,42] use, as we propose, a model checking
approach to deal with the problem of improving the quality of guide-
lines. In particular, in [33] the GLARE agent-based representation
language is used to model guidelines. This language is based on a
three layered architecture whose intermediate layer consists of a
set of XML documents used to represent guidelines in order to facil-
itate their dissemination. Later, the SPIN model checker is used to
prove several properties in the guideline, which are defined by using
LTL formulas. As described in [33], the translation of guidelines to the
PROMELA language is implemented in Java taking as input model the
XML specification of the guideline. Our proposal takes advantage of
the well-known MDA approach making the transformation of the
statechart representing a guideline into the PROMELA language an
automatic and more agile process, saving on human resource costs.
Additionally, we want to highlight that, to our knowledge, this is the
first work to use the MDA approach for using model checking tech-
niques, thus opening a new field of application.

In [42] guidelines are modeled in the Asbru language and this
model is translated into the input language of the Cadence SMV
model checker [55]. Properties are formulated by using the Action
Computation Tree Logic (ACTL) language. We wish to emphasize
that although our approach is similar to this one from several
points of view, the use of different model checkers with their cor-
responding property specification languages allows the verification
of different kinds of properties because of the difference in expres-
siveness and theoretical complexity of the language used.

1.1.3. Requirements specification
Previous works on the verification of clinical guidelines cover a

wide range of properties devoted to detecting both semantic errors
in the definition of guidelines and coherence properties concerning
the chosen guideline representation language. Although in most of
these approaches the work done on the formalization and verifica-
tion of guidelines has yielded good results, often the time and ef-
fort involved has been significant [25]. One of the reasons is that
professionals with specific skills are required during the verifica-
tion process. In particular, formal verification processes require
properties to be specified in mathematical formalisms such as tem-
poral logics. This constitutes a big challenge since it requires signif-
icant expertise from practitioners who usually do not have solid
mathematical backgrounds [56–58]. Additionally, accurately rep-
resenting a property can also be surprisingly difficult because of
all the details that must be taken into account [56]. Hence the
importance of providing patterns for commonly occurring types
of requirements which enable non-experts in the specification lan-
guage of the tool to easily write formal specifications and thus eas-
ing the verification process.

Taking this into account, we have defined a set of property spec-
ification patterns for commonly occurring types of requirements in
guidelines. Specifically, we have defined a patterns hierarchy
which even could be used to specify requirements in other con-
texts other than the clinical one.

2. Overview: from a guideline in natural language to an
information and decision support system

In this section, we present an overview of our overall frame-
work, represented diagrammatically in Fig. 1.
2.1. Representation of clinical guidelines

Although clinical guidelines are usually expressed in natural
language, they conform to a specific structure and can be repre-
sented in a computer language. In [6,7,27] the authors of this paper
together with Domı´ nguez et al. proposed the representation of the
dynamics of each guideline by using UML 2.0 statecharts [3] (see
step number 1 in Fig. 1). In order to assist in such a long and com-
plex process as the specification of a clinical guideline could be
turn out to, we have also provided several patterns to assist in
the modelization process in order to have a better and more under-
standable representation of every clinical guideline. In particular,
these patterns take into account the specific elements and seman-
tics of statecharts and provide representation rules of guidelines by
using statecharts in the medical context.

This step is carried out through the actual collaboration be-
tween medical domain experts and knowledge engineers. In this
phase, knowledge engineers participate in as many face-to-face
meetings as necessary with medical domain experts to get famil-
iarized with the domain, terminology, and recommendations of
the guideline. Also, medical domain experts learn the specification
language from the knowledge engineers, which are the ones famil-
iarized with both the UML statechart language and the representa-
tion patterns. Then, knowledge engineers can start to translate the
guideline to the UML statechart model by following the represen-
tation patterns. During the translation process, any doubt arisen,
problem encountered or error identified concerning the under-
standability of the guideline specification is directly discussed with
the medical domain experts. The collaboration between knowledge
engineers and domain experts goes on until a final decision regard-
ing the guideline statechart model is reached.

2.2. Verification of clinical guidelines

Based on the increasing importance of improving the quality of
clinical guidelines, we apply model checking techniques [59] to the
verification of guidelines. In particular, in order to formally verify
each guideline against quality requirements, we carry out a second
step consisting of three sub steps.

In the first sub step, requirements expressed in natural lan-
guage are formalized in temporal logic. In order to overcome the
difficulty perceived in specifying formal properties expected in
guidelines, we have defined a set of property specification patterns
for commonly occurring types of requirements (see sub step num-
ber 2.1 in Fig. 1). These patterns enable people who are not experts
in the specification language of the tool to write formal specifica-
tions easing the verification process. Thus, firstly medical domain
experts establish in natural language the requirements to be veri-
fied in the guideline. The formalization of such requirements in the
LTL language is easily carried out by following our property speci-
fication patterns, task performed by knowledge engineers in a
close collaboration with domain experts who provide support for
the understandability of such requirements.

Having formally specified the properties to be verified in the
guideline, the second sub step consists of formalizing the guideline
into the input specification language of the SPIN verification tool.
In order to carry out such a process automatically, in [5] we pro-
posed a statechart to PROMELA transformation approach which
we have implemented in the model to text tool MOFScript [60]
by defining specific transformations in the MOFScript language
(see sub step number 2.2 in Fig. 1). Thus, having automated the
statechart to PROMELA model transformation, this second sub step
is easily carried out by any professional without specific skills in
informatics. Then, in the third sub step, the chosen model checking
tool accepts the PROMELA model and the formally specified prop-
erty. The tool can check if the given model satisfies the property

Fig. 1. Proposed workflow.

B. Pérez, I. Porres / Journal of Biomedical Informatics 43 (2010) 520–536 523
and it may generate a counterexample otherwise (see sub step
number 2.3 in Fig. 1). In this latter case, if the property verified is
related to an error or inconsistency in the definition of the guide-
line, the process will go back to step 1 in which the inconsistency
detected will be taken into account for the redefinition of the state-
chart that represents the guideline.

Using our approach, in order to carry out the verification pro-
cess of each guideline it is only necessary (1) to manually design
the statechart modeling it (from which the PROMELA model is
automatically generated) and (2) to formalize the properties to
be verified using our property specification patterns.

2.3. Generation of an information and decision support system

Having verified the guideline against quality requirements, the
third main step consists in the generation of actual computer
applications that help practitioners to follow a guideline in
practice.

In [6,7,27] the authors of this paper together with Domı´ nguez
et al. proposed the development of a clinical guideline-based deci-
sion support system (GBDSS) for the clinical guideline. We defined
such a system as a computer-based system which helps health pro-
fessionals in their decision making concerning the application of a
particular clinical guideline to specific patients. In order to achieve
this goal, this system has to take into account the indications of the
guideline, the current circumstances of the patient and should pro-
vide the necessary information to help the physician in her deci-
sions about what to do next.

Following our proposal, the main modules that constitute a
GBDSS are the execution module and the persistent component,
which are guideline-dependent, and the platform library (see bot-
tom right part of Fig. 1) which have been developed following
the Model-View-Controller (MVC) pattern [61]. In particular, the
execution module corresponds with the Java implementation of
the statechart and constitutes the mechanism that allows the phy-
sician to apply the GBDSS to patients. The persistent component, in
the data layer, constitutes the main module which guarantees the
persistence of the guideline application. Specifically, it is composed
of the hibernate configuration component, which is defined to
achieve the persistent task and is developed following the Hiber-
nate O/R mapping technology [62], and the trace database, which
physically stores the data generated during the guideline applica-
tion and whose instances come from the running of the execution
module. Finally, the platform library whose definition is indepen-
dent of the guideline provides standard services of the system re-
lated to the implementation of the presentation and the data
layers. The main characteristic is that the programming interfaces
of the library methods are defined independently of the platform
chosen. In this way, the code generated for the execution module
has calls to these methods so that, in order to change some charac-
teristics related to the presentation or the data layer, we only have
to modify the implementation of the methods in the platform li-
brary (not the execution module). As a consequence, having man-
ually developed a platform library under specific criteria (user
interface, data storage, etc.), it can be reused in different GBDSS
which will share those implementation aspects. And the other
way round, different implementations of this library will allow
us to run the GBDSS of a guideline with different characteristics.

In [6,7,63,64] we proposed the use of several MDA–based tools
to automatically obtain the GBDSS guideline-dependent modules
from the manually created guideline specifications represented
as a statechart. Particularly, based on this model, we have defined
several sets of transformations in two different MDA-based tools in
order to automatically generate those modules. As we explained in
[6,7], we have defined a set of transformation rules in the previ-
ously used MOFScript tool to automatically generate the Java code
that constitutes the execution module (see sub step number 3.1 in
Fig. 1). On the other hand, the development of the persistent com-
ponent requires the performance of several database schema map-
pings as an intermediate step before obtaining the SQL and XML
files which generate the two modules of the persistent component
[63,64]. For this reason, we have defined a set of transformations in
a tool with support for customizable model to model transforma-
tions (the ATL MDA-based tool [65]) in order to carry out such
schema mappings (see sub step number 3.2 in Fig. 1). Then, we
have defined another two sets of transformations in the MOFScript
tool to generate respectively (1) the final SQL code which imple-
ments the trace database (see sub step number 3.3 in Fig. 1) and
(2) the XML files that constitute the hibernate configuration com-
ponent (see sub step number 3.4 in Fig. 1). Finally, these two guide-
line-dependent modules generated from the statechart are
combined with the platform library resulting in the GBDSS for the
clinical guideline.

We would like to emphasize that the platform library and the
transformations defined in both MDA tools to generate the guide-
line-dependent modules are independent of the guideline used, so

524 B. Pérez, I. Porres / Journal of Biomedical Informatics 43 (2010) 520–536
neither the set of transformations nor the platform library has to
be modified to develop the GBDSS for different clinical guidelines.
We do not delve into the development of the GBDSSs since it is be-
yond the scope of this paper but for more information the reader is
referred to [6,7,63,64].

We should remark that since the generation of guideline-
dependent modules is automatic, sub steps number from 3.1 to
3.4 can be carried out by any professional without specific skills
in informatics. On the other hand, the platform library is devel-
oped, conforming to specific criteria (user interface, data storage,
etc.), by knowledge engineers with programming skills. So, for
the performance of this step, collaboration between clinical ex-
perts and knowledge engineers is not necessary.

Therefore, following our approach, for the development of the
GBDSS for a guideline it is only necessary (1) to design manually
the statechart modeling it and develop the platform library under
specific criteria (user interface, data storage, etc.), and (2) taking
the statechart as source model to automatically generate the
GBDSS guideline-dependent modules which, together with the
platform library, constitute the GBDSS for the guideline.

Overall, we propose a complete framework aimed at improving
the formal representation, quality and computer aided application
of clinical guidelines.

2.4. Tool chain

The challenge is to perform these steps in a viable and cost-
effective way. The vast amount of clinical guidelines (there are
thousands of guidelines in existence), the possibility of changes
over time and their dependence on the hospital which uses them,
make both the manual verification process and the implementa-
tion of every guideline into a software system a long, cumbersome
and costly endeavour.

To overcome these challenges, we propose the use of a Model
Driven Development (MDD) approach [4], in particular a Model
Driven Architecture approach (MDA) [66]. The general idea be-
hind MDD is to focus on models rather than on computer pro-
grams, so that the code programs are generated in an automatic
way by means of a refinement process [4]. So, starting from the
statechart that represents a clinical guideline, we use a Model
Driven Architecture tool chain to perform the verification and
the implementation processes automatically which means a low-
er cost than that required for manual verification and
implementation.

We wish to remark that the overall verification and tool imple-
mentation processes have been implemented as an Eclipse plug-in
called GBDSSGenerator attending at Guideline-Based Decision Sup-
port Systems generator. This plug-in uses and integrates the de-
fined ATL and MOFScript transformations allowing the processes
to be carry out automatically by only selecting different menu op-
tions the plug-in provides. Thus, using the developed plug-in, we
can proceed as follows: A paper-format guideline is represented
in a computer interpretable format as a UML 2.0 statechart guided
by our representation patterns and using the Borland Together
Modelling tool [67]. This tool is a UML 2.0 compliant tool which al-
lows us to graphically represent the statechart and to import it in
XMI format obtaining a .uml2 extension file . At this point, the re-
quired properties to be proven in the guideline are specified in the
LTL language by using our property specification patterns resulting
in several .ltl extension files. Then, the GBDSSGenerator takes the
statechart .uml2 extension file as a starting point of the verifica-
tion process and automatically generates the associated PROMELA
model by only selecting a menu option which the plug-in provides.
After this, the SPIN model checker takes both the generated PRO-
MELA model and a property of those previously specified in the
LTL language and checks whether the given model satisfies the
property or not (see sub step number 2.3 in Fig. 1). As described
previously, the process requires returning to step 1 in which the
inconsistencies detected will be taken into account for the redefi-
nition of the statechart that represents the guideline obtaining a
different .uml2 extension file. Regarding the generation of the
GBDSS for the guideline, the GBDSSGenerator takes the final
.uml2 extension file as input model and, by only selecting different
menu options which the plug-in provides, automatically generates
the guideline-dependent modules of the GBDSS. Then, the gener-
ated guideline-dependent modules together with a platform li-
brary (previously developed under specific criteria regarding the
user interface, the data storage, etc.) will constitute the GBDSS
for the guideline.

It should be emphasized that, following our proposal based on
MDA, for each guideline the resources (such as time, effort or costs)
required to both carry out the verification process and generate the
GBDSS are lower than those required for a manual implementa-
tion. Overall, it is worth noting that we propose a new application
of MDA tools and techniques to support model driven business
processes and their mapping to MDA computation models.
2.5. Overview of the case study

In order that the reader can have a better understanding of our
approach, we will use as a case study a particular clinical guideline
presented in [7]. This guideline is used for the management of
infections related to intravenous catheters (IRC) and provides evi-
dence-based recommendations for preventing such infections. In
particular, it is used in a Spanish hospital and has been developed
on the basis of a guideline published by the US Agency for Health
Care Research and Quality (AHRQ) National Guideline Clearing-
house (NGC) [8]. From now on we will refer to this guideline as
the IRC guideline.

The use of intravenous catheters is indispensable in modern-
day medical practice, especially in intensive care units (ICU), for
patients in critical conditions suffering from a wide range of seri-
ous illnesses and injuries. The problem is that catheter-related
infections have been found to constitute the most common cause
of hospital-acquired nosocomial bacteremia and to increase mor-
bidity and mortality [68,69]. Hence the importance of establishing
intervention guidelines for the prevention, diagnosis and treat-
ment of infections caused by central catheters. In particular, the
IRC guideline establishes the criterion that the physician must take
into account to decide whether or not to remove the catheter, as
well as what antibiotic treatment must be given to the patient or
what clinical actions or tests must be carried out regarding her
clinical condition.

Regarding its representation, this guideline is presented as a
text document of 10 pages, written in natural language. It also
comprises several tables of the treatment options for patients to
whom the guideline is applied, and flowcharts which partially ex-
plain the behavior of the application of the guideline.

Next, we explain in more detail our approach for the represen-
tation of guidelines as UML statecharts in order to make our paper
self-contained, and we move on to focus on the validation and ver-
ification issue as the main contribution of our approach.
3. Representation of clinical guidelines using UML

Clinical guidelines are normally represented in free text using
other related or overlapping approaches corresponding to graphic
representations of algorithms, such as flowcharts, decision tables,
and protocol charts [1,70]. Although natural language is easy to
understand, its potential for ambiguity and the difficulty of access-
ing long text documents in urgent situations makes the free text

B. Pérez, I. Porres / Journal of Biomedical Informatics 43 (2010) 520–536 525
form rather inconvenient for representing guidelines. Furthermore,
this form of representation means that in most cases the same
information is distributed amongst such different representation
methods (flowcharts, decision tables, etc.) that the practitioner is
forced to consult all of them in order to gather the information
needed. Some clinical researchers, moreover, argue that flowcharts
are ineffective for representing clinical algorithms and propose
moving towards the use of a meta-language that allows the use
of computer-based decision aids [1].

In addition, a clinical guideline can be considered to be a kind of
medical process. Medical processes have been modeled in many
different ways, using both formal and informal methods [23,71].
Formal methods overcome the problem of ambiguity [72], but
may be more difficult to understand for health care personnel. It
is claimed in [71] that the modeling of medical processes must
be done by means of methods that overcome the problems of both
formal and informal approaches: methods that, on the one hand,
have an easily understandable notation, and on the other hand
can be formally analyzed.
3.1. Using UML statecharts to represent clinical guidelines

Taking this into account, we propose the use of UML 2.0 state-
charts [3] as a method to represent the dynamics of clinical guide-
lines. Particularly, statecharts consist essentially of states, which
denote a situation of objects during which some condition holds,
and transitions, which are the means by which the objects change
of state. States can be simple (without substates) or composite, dis-
tinguishing between orthogonal composite states, to model con-
current behaviors where several states are active simultaneously,
and simple composite states, to specify that only one of its sub-
states must be active.

The reasons for this choice are multiple. UML statecharts allow
the user to properly model concurrent behaviors, as well as to rep-
resent state hierarchy, increasing both scalability and legibility. As
we shown in [7], these model elements of statecharts will play an
important role in the representation of clinical guidelines, since
guidelines frequently include many situations which have a hierar-
chical or a concurrent nature. Additionally, UML statecharts are
considered to be an easy to communicate and an understandable
visual formalism [30] which, as we have described previously,
has been applied over a wide range of different and varied kinds
of systems.

Another important advantage of using this formalism is that
many modeling tool vendors have adopted and supported UML,
so there are many support tools available for this modeling lan-
guage both commercial (such as Enterprise Architect [73], Posei-
don [74] or Borland Together Modeling tool [67]) and open
source (such as ArgoUML [75] or Eclipse UML2 tool [76]), some
of them better than some commercial alternatives (see [77–79]
for a review). In particular, many such UML tools conform to the
Model Driven Development approach, providing facilities for gen-
erating any kind of text from models, in particular, for code gener-
ation (see [77,78,80] for a review).

One possible drawback of UML as a whole is the lack of a precise
definition. However, the UML subset defining statecharts has been
studied and formalized by many researchers [81,82], who have
also developed analysis tools as described in [83,84].

To summarize, we consider that using UML statecharts will en-
able us not only to represent clinical guidelines in a better way
than with other informal methods of representation, but also to
make available several modeling and code generator tools from
which, based on those representations, we can generate code in
an automatic way.
3.2. Representation patterns

There is no single criterion to follow to create a statechart rep-
resenting a clinical guideline, especially taking into account that
existing guidelines can be represented in multiple formats. How-
ever, based on our experience with several real-life clinical guide-
lines, we have described several patterns to assist in the
modelization process. These patterns take into account the specific
elements and semantics of statecharts and provide representation
rules of guidelines by using statecharts in the medical context
[6,7]. So that this paper may be self-contained, we give a summary
of these representation patterns. We emphasize that we do not in-
tend to give an explanation of the elements and semantics of state-
charts, but to present the representation patterns by using
statecharts in the medical context. These patterns determine,
among other things, that the situation of a patient with respect
to the application of a guideline is represented by means of states.
Usually, these situations can be refined into more substates refer-
ing to different discrete steps necessary to treat the patient or to
improve the judgment of the physician, which are represented by
means of hierarchical states (simple composite states) or concur-
rent states (orthogonal composite states) which are two of the
main components of the expressivity richness of statecharts. On
the other hand, the occurrences that cause a patient to change
her state are represented by a transition. We do not delve into
more detail of the description of the representation patterns, but
refer to [7] for a more complete description.

We wish to remark that, although UML seems a suitable nota-
tion for representing the guidelines, we have nevertheless found
some drawbacks concerning its use in our work. UML is considered
to be the de-facto standard for modeling software systems but it is
also true that UML does not have one single and precise action
semantics [85]. In addition, UML proposes a wide variety of spe-
cialized actions. We want to avoid this, due to our intention of rep-
resenting clinical guidelines as easily as possible. Therefore, as part
of our representation patterns, we have had to define our own ac-
tion language for representing clinical guidelines, and which com-
plies with the UML semantic [3]. In particular, this action
semantics includes different actions and events defined based on
several identified situations which commonly take place in every-
day clinical practice and, in particular, in clinical guidelines’ appli-
cation [7] (for example, we have defined an event to represent the
arrival of the results of a specific clinical test testResultsAr-
rive(testName)). On the other hand, when dealing with guidelines
representation models and, in particular, with the verification and
validation of clinical guidelines, the use of ontologies comes into
play. Regarding this issue, we would like to note that such events
and actions have to be defined within an ontology, which consti-
tutes the link between our work and previous defined ontologies.
In other words, our approach does indeed need to use a formally
defined ontology of medical terms that contains all the different
actions and events that appear in a clinical guideline. However,
we consider that our approach is independent of the actual ontol-
ogy and it can be used with different ontologies.

In order that the reader can have a better understanding of the
defined patterns, next we briefly explain them by describing an ex-
cerpt of the statechart defined from the IRC guideline.

3.3. Example: the IRC guideline as a statechart

As mentioned above, the IRC guideline consists of a 10 page text
document written in free text form together with other represen-
tations such as flowcharts or treatment tables. As would be ex-
pected, for the representation of the guideline as a UML
statechart a physician with specialized skills has been required in
order to help us to understand the specific medical background

526 B. Pérez, I. Porres / Journal of Biomedical Informatics 43 (2010) 520–536
surrounding the guideline. Finally, it has been proved that the de-
fined statechart provides a unified, more understandable and effi-
cient way of representing the source IRC guideline.

A fragment of the statechart defined from the IRC guideline is
shown in Fig. 2. Firstly, the patient is in the state Patient is not sus-
pected to have IRC. If the patient shows specific symptoms (such as
signs of local infection or high fever without any demonstrable
infectious cause), which is represented by the triggered of the
event symptomsAppear(), the IRC guideline is applied and the state
changes to Guideline is being applied to the patient. During the
course of the application of the guideline, the patient can be sus-
pected to have (represented by the state Patient is suspected to have
IRC) or can definitely have IRC (depicted by state Patient with diag-
nosis of IRC). While the patient is in the former state, several clinical
test are carried out (for example, maki and hemoccult tests). The
clinical test results will determine whether the patient has an
infection related to the intravenous catheter. In the affirmative an-
swer, the patient changes her state to that of being diagnosed with
IRC (Patient with diagnosis of IRC) in which case she is treated with
appropriate antibiotics in accordance with the specific bacterial
infection until she recovers from it. For both the negative answer
and when the patient is treated and finally recovers from the infec-
tion, the patient changes her state again to that of being not sus-
pected to have IRC (Patient is not suspected to have IRC).
4. Formal verification of clinical guidelines

The objective of the formal verification process is to ensure that
a given guideline exhibits a number of desired properties. At this
point, two issues come into play. On the one hand, we have to
establish and formally define the requirements to be verified in
the guideline. On the other hand, we have to choose a formal ver-
ification technique which provides an effective and efficient way to
verify guidelines. We address these issues in the following subsec-
tions by giving our verification approach. We conclude this section
by showing our experience of using this approach with the IRC
guideline.
4.1. Verification requirements for clinical guidelines

Verification requirements in a guideline have been studied in
the past by several authors [12,25,33,36–47,86–89]. Based on the
classification introduced in [42] and in [41], in [5] the authors of
this paper considered two main kinds of properties: medical prop-
erties or properties at the conceptual level, and structural properties
or properties at the implementation level. Medical properties refer
to aspects such as clinical parameters, physicians’ actions or overall
intentions of the guideline. Structural properties, on the other
hand, specify the general correctness requirements related to the
formal representation chosen to model the guideline. In [5] we
gave a first approximation for a subclassification of medical and
structural properties based mainly on [33] and on [46]
respectively.
Fig. 2. Part of the statechart defi
In the present paper we focus on medical properties since we
consider them to be the most interesting and generalizable ones.
We redefine and extend the previously established classification
developing a pattern–based framework for overcoming the per-
ceived difficulty of specifying formal properties expected in guide-
lines [56–58]. In order to establish such a framework, we have
analyzed numerous works in the literature: those dealing with
general medical practice and which focus on clinical guidelines
development and content [1,2,34], and those whose goal is the for-
mal proving of guidelines [12,25,33,36–47,86–89]. We have drawn
two main conclusions from these comparisons: (1) guideline
requirements are determined or established from different sources
which guideline properties are expected to hold and (2) to the best
of our knowledge, there are no approaches devoted to the defini-
tion of property patterns to enable non experts to define guideline
specifications. Only [38] provides reasoning patterns to specify
guidelines control structures and in [38,39,86] to determine the
behavior of treatment selection, but these are provided in an inac-
curate fashion. Taking this into account, firstly we have determined
different requirement sources on which guideline properties are
expected to hold, distinguishing among the following: good medical
practice, the particularities of the hospital, the guideline goal and the
patient specific clinical condition. Secondly, we have identified the
properties the analyzed works consider useful to be verified in
guidelines and abstracted these properties from particularities.
Based on these requirements, the idea is to establish a set of prop-
erty specification patterns which provides complete support for
the formal specification of commonly occurring guideline proper-
ties. Then, each property formulated in natural language in a spe-
cific requirement source background conforms to one of the
defined patterns which, by providing the mappings of the property
to formal specification languages enables developers to easily for-
mulate the requirement to be checked against the guideline. Next,
we explain in detail both the different requirement sources and the
property specification patterns we have considered.

4.1.1. Sources of verification properties
We consider that the verification of clinical guidelines against

expected requirements can be done within the scope of different
requirement sources depending on the aim for which these
requirements are checked on the guideline. In order to establish
these sources, we have based them not only on our experience
but also on the previous cited works which deal with both general
medical practice and the formal proving of clinical guidelines. We
consider that the verification of guidelines against expected prop-
erties can be done taking into account at least four sources de-
scribed below:

� Good medical practice. Clinical guidelines must conform to the
corresponding medical standard, which is defined by scientific
knowledge, practical experience and professional acceptance.
For example, one would expect that a good-quality medical
guideline regarding treatment of a disorder would preclude
the prescription of redundant drugs, or advise against the
ned from the IRC guideline.

B. Pérez, I. Porres / Journal of Biomedical Informatics 43 (2010) 520–536 527
prescription of a treatment that is less effective than some alter-
native. Requirements defined within the scope of this source
aim at verifying whether the guideline conforms to good med-
ical practice. Checking such properties could be valuable, in par-
ticular during the process of designing and adapting medical
guidelines to the possible changes in their definition that could
take place over time.
Since principles of best care practice become a medical standard
for optimal care, the properties defined in this requirement
source can be checked in all guidelines, as long as those proper-
ties are related with the indications of the guideline (as far as
prescribed treatments, medical actions to be carried out, etc.
are concerned). In particular, in [38] the authors consider the
knowledge surrounding this source to be the metaknowledge, a
term that we have also adopted to refer to the knowledge about
good medical practice.
� Particularities of the hospital. Each hospital has different treat-

ment facilities and resource levels which can lead to them pro-
ducing their own versions of clinical guidelines. Additionally,
the particularities of the hospital in which a guideline is applied
may impose several limitations on the regular application of
guidelines related, for example, to the reduction in the use of
certain pharmacological treatments or the lack of specific hospi-
tal resources (such as laboratory instruments). The conse-
quences that may result from such limitations have to be
identified and thoroughly analyzed in order to make sure that
in the case of a specific set of resources being available (or
not available) there is a therapy for a patient to which a guide-
line is being applied. To sum up, this source concerns the con-
textualization of the guideline to a given hospital.
Regarding the scope of the requirements defined in this source
for a specific hospital, this can be checked in any clinical guide-
line used in that hospital, since optimization of the hospital
resources may affect the regular use of the guidelines in daily
practice.
� Guideline goal. This source refers to the aspects or factors intrin-

sic to the guideline by itself, such as the conditions and clinical
problems it covers or the desired outcomes. Properties defined
in this requirement source can be used, for example, to verify
whether the guideline contains a path requiring specific support
services needed for a given treatment. Additionally, as is
claimed in [34], guideline documentation should be assessed
to determine whether the guideline conforms to the principles
outlined in it. So, verifying that the application of the guideline
finally leads to the purpose for which the guideline was devel-
oped constitutes an interesting property to be checked. Taking
this into account, some of these defined requirements could
be reused to be checked against both other versions of the
guideline and guidelines developed for the same purpose.
� Patient specific clinical condition. A clinical guideline describes a

set of alternative paths the physicians can choose during the
diagnostic process. This source refers to the possible paths the
guideline proposes to be carried out given a specific patient
clinical state. The properties defined in the scope of this source
can be used to check the feasibility of a given action, or path of
Fig. 3. Dwyer’s property specifi
actions on the patient or to prove whether there is a therapy for
a patient under these clinical conditions. So, the feasibility of
future physician actions can be proven before carrying out the
action. In this case, the defined requirements are, in most cases,
specific to the guideline.

4.1.2. Property specification patterns
Given the lack of previous works published on the subject of

specification patterns in the medical context, we have looked at
the literature on property specification patterns in general [56–
58,90,91]. Of particular interest is the work of Dwyer et al. [57]
whose specification patterns have been increasingly used in the lit-
erature in a wide range of contexts (for example, in web service
applications [58], cash management systems [91] even in the med-
ical domain [56]) to specify commonly occurring types of proper-
ties. For this reason, we have taken this approach as a starting
point for the definition of our property specification patterns. First,
we briefly present Dwyer et al.’s approach and then move on to de-
scribe our proposal built on it.

In this section we assume that the reader is familiar with both
Computational Tree Logic (CTL) and Linear Temporal Logic (LTL).
Otherwise, the reader is referred to [50] and [49] respectively.

Dwyer et al. patterns. Dwyer’s approach for property specifica-
tion patterns consists of the hierarchy of patterns shown in the
Fig. 3. As is shown in the figure, patterns are classified into occur-
rence and order. Occurrence patterns represent requirements re-
lated to the existence or absence of certain states/events during a
defined interval of time. On the other hand, order patterns are used
to represent a certain ordering of states/events during a defined
interval of time. Additionally, each pattern has a scope which is
used to specify the part of the program execution over which the
pattern must hold. Examples of these scopes are Global, Before
and After. In particular, in the Global scope the entire program exe-
cution is considered. In the Before scope the execution is consid-
ered up to a given state or event. The After scope means that the
property must hold after the execution of a given state or event.
So, in this approach, patterns specify what must occur while the
scope specifies when the patterns must hold [58].

For each specification pattern, Dwyer et al. provide mappings to
several formal specification languages (such as Computational Tree
Logic (CTL), first proposed in [50], or Linear Temporal Logic (LTL)
[49]) presented as temporal logic formulas. These formulas contain
one or more variables or predicates that the user has to substitute
with valid values from the model in order to obtain the specific
property to be verified later in the model. Therefore, the instantia-
tion of patterns to construct specific properties consists of choos-
ing the suitable pattern and filling in the pattern’s variables of
the formula. More details of these patterns can be found in [57]
or in [92] where the complete list of specification patterns is
shown.

In order to make sure that this approach is complete enough for
representing the widest possible spectrum of guideline properties,
firstly we have considered the analyzed works which deal with the
formal proving of guidelines. We have identified the properties
these works consider useful to be verified in guidelines and ab-
cation patterns hierarchy.

528 B. Pérez, I. Porres / Journal of Biomedical Informatics 43 (2010) 520–536
stracted these properties from particularities. Starting from the
collected properties, we have based on Dwyer et al.’s property
specification patterns and manually determined whether each
property matches a Dwyer pattern following a documentation pro-
cess. In particular, as is proposed in [92] (pp. 416), for each prop-
erty we have recorded, when it has been possible, the following
information: (1) the description of the property in natural language
(Requirement), (2) the pattern of which the property is an instance
(Pattern), (3) the scope of the pattern (Scope), (4) the parameters
provided to the template (Parameters), (5) the property specifica-
tion in the formal specification language chosen (CTL, LTL, etc.),
(6) the source of the property such as the authors and citation of
the paper (Source), (7) the application domain which in our case
has been presented by indicating the specific clinical guideline
for which the property is defined (Domain) and (8) any additional
information needed (Note). We would note that the documentation
process followed has required a significant effort since it has been
necessary to thoroughly read each paper, understand the descrip-
tion in natural language of the clinical guideline used (in most
cases part of the definition of the guideline was not provided)
and check and identify the formal specification of the properties gi-
ven in the paper. As a result, we have collected 54 requirements
from the 19 analyzed papers. Due to space reasons, we do not in-
clude the complete documentation of these properties, but we
show in Fig. 4 the number of properties that the most significant
analyzed papers define matching each pattern. In particular, from
this analysis we have concluded that, while the vast majority of
the properties match one or other of Dwyer et al.’s patterns, some
of them have not been identified as being instances of any of these
patterns. These latter properties have the particularity of being re-
lated to the existence of at least one path in the system (the guide-
line application in our specific case) in which some conditions
must hold (from now on we will refer to this type of property as
properties of existential nature). By way of example, in Fig. 5 we
show four properties from the 54 collected which conform to this
type. The fact that this property type is not matched in Dwyer’s
patterns (confirmed with Mr. Dwyer via email) has led us to
slightly tailor the original pattern hierarchy to give support to its
specification. It must be said that, although their proposal has an
existence pattern, in principle this pattern is defined in order to de-
scribe a portion in all executions of a system’s execution that con-
tains an instance of certain events or states [92], which differs from
what we want to specify.

Our approach for the property specification patterns. In order to
have an extension of the Dwyer et al.’s patterns which provides
support for the specification of properties of an existential nature,
we have searched the literature for works proposing patterns to
specify properties of this type. We have mainly focused on those
works which have used the approach of Dwyer et al. As a result
of this analysis, we have found that the work of Ryndina et al.
Fig. 4. Number of properties
[90,91,93] provides a proposal for the extension of Dwyer et al.’s
Existence pattern. These authors have developed a tool named the
SUM Analyser which allows users to define UML use cases, validate
different types of properties (generic and specific, defined using
CTL) in these use cases and obtain an interpretation of the results
in terms of those use cases. In particular, for the definition of spe-
cific properties this tool uses a tailored version of Dwyer et al.’s ap-
proach which consists of excluding those patterns that are not
commonly used and including others to suit the requirements of
the use case model analysis. The patterns hierarchy finally pro-
posed by Ryndina et al. is shown in Fig. 6. As can be seen in this fig-
ure, their approach for the extension of the Existence pattern
consists of considering four new subcategories:

� Everywhere eventually. In order to represent that something will
always eventually happen, no matter what execution path is
taken. The associated CTL formula is AFp. We note that this sub-
pattern matches with the Existence Global pattern of Dwyer
et al.
� Possible existence. It is possible for something to happen, that is,

a property may hold in some paths but not all the paths of the
execution. The corresponding CTL formula is EFp. This pattern is
strongly related to Dwyer et al.’s Absence pattern.
� Always eventually. No matter where in the system execution we

are, something will always eventually happen. The CTL formula
is AG(AFp)). This pattern is a stronger variation of the Every-
where eventually pattern.
� Liveness. At any time during the execution of the system, some-

thing will eventually become possible. The corresponding CTL
formula is AG(EFp). This pattern is a stronger variation of the
Possible existence pattern.

It is worth pointing out that these authors only consider the
Global scope [90] since, as is claimed in [57], this scope is the most
used in the property specifications.

Taking into account this approach (1) we have checked
whether the properties of an existential nature that we have col-
lected from the literature can be considered as instances of the
new patterns proposed by Ryndina et al., and (2) we have given
an extension proposal where necessary. In particular, of the four
properties of existential nature presented in Fig. 5, those labelled
(a), (c) and (d) could be mapped to the Possible existence pattern.
In these properties, the variable or predicate p has been substi-
tuted by another composed formula which refers, at the same
time, to the existence of another path of the guideline represent-
ing a certain ordering of actions. Following Dwyer et al.’s method-
ology for defining chain patterns, we have defined a subpattern of
Existence named Chain Possible Existence in order to give support
to this type of property. The formal definition of this subpattern
is the following:
matching each pattern.

Fig. 5. Existential properties which do not match with Dwyer et al. patterns.

B. Pérez, I. Porres / Journal of Biomedical Informatics 43 (2010) 520–536 529
Chain Possible Existence. There exists at least one path in the
system execution in which a specific set of states/events
p1. . .pn takes place. This pattern is the generalization of the
Possible Existence pattern.

Although the properties labelled (a), (c) and (d) in Fig. 5 specify
the ordering occurrence of actions during the application of the
guideline, we have also considered the definition of properties re-
lated to the existence of paths in the guideline in which some clin-
ical actions must take place in any order. For this reason, we
propose the specialization of the previous pattern Chain Possible
Fig. 6. Ryndina’s property specification patterns hierarchy.
Existence by considering the two possibilities (with and without or-
der), giving rise to two subpatterns: Chain Possible Existence with
order and Chain Possible Existence without order respectively, whose
definition and associated formulas in CTL and LTL are the
following:

Chain Possible Existence with order. There exists at least one
path in the system execution in which a certain ordering of
states/events p1, p2, p3 takes place.

CTL: EF(p1 & EF(p2 & EFp3))

LTL: Do not supported
Chain Possible Existence without order. There exists at least one
path in the system execution in which certain states/events
p1, p2, p3 take place no matter what the order.

CTL: EF(p1 & EF(p2 & EFp3)) | EF(p1 & EF(p3 & EF p2)) |

EF(p2 & EF(p1 & EF p3)) | EF(p2 & EF(p3 & EF p1)) |

EF(p3 & EF(p1 & EF p2)) | EF(p3 & EF(p2 & EF p1))

LTL: Do not supported.

On the other hand, property (b) in Fig. 5 shows that there exists
at least one path in the guideline application in which a certain
clinical test (in particular the angiography technique) is not re-

530 B. Pérez, I. Porres / Journal of Biomedical Informatics 43 (2010) 520–536
quired to treat the patient. This property can be represented for-
mally in CTL as EG!p, where p represents the application of the
clinical test. This property does not match with any pattern either
of Dwyer et al. or of Ryndina et al. We therefore suggest the inclu-
sion of another pattern in our proposal which is a subpattern of
Existence. This pattern is named Possible absence and represents
the fact that it is possible for something not to happen. As with
the possible existence, this pattern is strongly related to Dwyer
et al.’s Absence pattern. The formal specification of this pattern is
the following:

Possible Absence. There exists at least one path in the runtime
guideline application in which a certain state/event does
not happen.

CTL: EGp � AFp

LTL: Do not supported.

Regarding the expressivity of the LTL and CTL temporal logic
languages for specifying the patterns considered in our proposal,
we would like to highlight as an important issue in our work that
the properties of existential nature (Possible Existence, Chain Possi-
ble Existence with and without order and Possible Absence) can not be
directly represented by the LTL language [94–98]. Nevertheless, by
using specific verification techniques, such as model checkers, the
verification of such properties with LTL is possible by means of the
verification of the negation of the property. We would also stress
that the Liveness pattern in Dwyer’s et al. and Ryndina’s et al. ap-
proaches is not supported by LTL [94–98]. In particular, the for-
mula associated in CTL is AG(EFp) and neither this formula nor
its negation are represented in LTL. This is why model checking
techniques can not be used to decide whether this kind of formula
is true or not [99].

As for the instantiation of patterns to construct specific proper-
ties, since we represent each guideline as a statechart, in the LTL or
CTL formulas obtained by using the requirement patterns, each
predicate in these formulas models the fact that (1) a state in the
statechart is active, (2) an event has been triggered (3) an action
has been carried out or (4) the patient has a specific clinical
condition.

Our final property specification pattern hierarchy built upon
Dwyer and Ryndina et al.’s proposals can be seen in Fig. 7 in which
the new proposed subpatterns are depicted on a square. To sum up,
we emphasise that since the proposed patterns hierarchy gives
support for representing the complete list of 54 requirements col-
lected from the 19 analyzed papers, we think that this approach is
Fig. 7. Our property specifica
sufficiently complete for representing a wide spectrum of guideline
properties.

4.2. Verification process

There are many formal verification techniques, two of the best
known being theorem proving [53] and model checking [59]. In
[5], we decided to use a model checker for the verification of clin-
ical guidelines, based mainly on the three comparison aspects for
these two approaches presented in [100]. The reasons for taking
such a decision are that (i) following our approach each guideline
is represented by a statechart, so the state space is finite, (ii) model
checking is completely automatic [54], and (iii) using a model
checker, counterexamples are automatically generated. Addition-
ally, we have also considered two other comparison aspects. Since,
unlike theorem proving, model checking cannot be applied to sys-
tems with an arbitrary large number of processes, the fourth com-
parison aspect is related to the number of processes of the system.
In our particular case, only one statechart is defined for each guide-
line, so there is no problem with the number of processes in the
model. The fifth comparison aspect is related to the fact that, in
the verification process of model checking, the behavior of the sys-
tem is modeled as a finite state machine called a Kripke structure
[101]. A Kripke structure is basically a graph whose nodes repre-
sent the reachable states of the system and the edges represent
state transitions. Therefore, for its state-based nature, UML state-
charts have many similarities with Kripke structures and they
can be easily converted to these structures. Taking all this into ac-
count, the use of a model checker seems to be a natural choice.

Among the different model checkers in the literature, we have
chosen the SPIN model checker [48] based on several criteria. SPIN
can be used in three basic modes: as a simulator, as a verifier and
as a proof approximation system [48]. During simulation and ver-
ification the tool checks for the absence of deadlocks, unspecified
receptions, and executable code. In addition, the use of SPIN can
be particularly useful for the purpose of refutation [54], which
we consider especially interesting in the verification of guidelines.
As we have specified in Section 2, as a model checker the verifica-
tion process of SPIN consists of the following steps. Firstly, the sys-
tem is modeled in the specification language of the tool. Next, the
properties of the system are specified, usually using temporal logic
formulas. Then, the model checker accepts the model and a prop-
erty that the system is expected to satisfy. The tool outputs yes if
the given model satisfies the property and generates a counterex-
ample otherwise. In particular, as we have commented previously,
in SPIN the input specification language is PROMELA [48], while
the properties to be verified are represented by LTL formulas
tion patterns hierarchy.

B. Pérez, I. Porres / Journal of Biomedical Informatics 43 (2010) 520–536 531
[49]. We now discuss our approach for translating a clinical guide-
line, represented by a UML statechart, into the PROMELA language.

4.2.1. Encoding guidelines in PROMELA
The UML statechart into PROMELA translation issue has been

tackled in the literature in a number of different ways [102–105].
We have based our translation approach on [102], where a pro-
posal to verify UML state machines focusing on a UML subset for
protocol models is presented. In particular, the authors describe
a method to translate UML state machines (including a specific ac-
tion language) to the PROMELA language. Although we consider
that it is one of the most complete proposals, it does not support
some state machine elements such as fork or join pseudostates,
which we use in the representation of guidelines. We have there-
fore introduced several differences to their proposal related to
the specific semantics of the statecharts which represent guide-
lines, and related also to our aim of verifying specific properties
in the model. Next, we briefly explain the characteristics of the
transformation approach given in [102] showing in each case the
changes proposed.

PROMELA Program. In [102] each UML class is translated into a
PROMELA process with an argument corresponding to the instance
number of the created object. Our model only has a class related to
the patient whose behavior is represented by the statechart. Thus,
the PROMELA program consists of a process without arguments.

Constants and Variables. As in [102], we define a constant for
each state and event signal in the statechart, and local variables
encoding the state configuration of each region in the statechart.
Nevertheless, since in each LTL formula the names or symbols must
be defined using global variables from the model [48], we have de-
clared all variables as being global. Additionally to the approach in
[102], we define one variable for each UML action, and constants
for event and action parameters in the statechart. We also declare
other variables related to the translation of guards and choices in
the statechart, the definition of which will be explained in the sec-
tion devoted to Data Abstraction.

Process Structure. Based on UML semantics, [102] divides the
main loop of the process encoding the state machine into two parts
(identified by PROMELA label statements), evalcompletions and
evaltriggers, to implement completion and signal-triggered
transitions respectively. Also, the former part is subdivided into
two blocks to control completion transitions (1) from pseudostates
(completion transition from pseudostates) and (2) from simple and
composite states (completion transition from states). For the latter
block they also make a further distinction: (1) for the consumption
of a signal event from the queue or non-deterministic generation of
an external signal and (2) for evaluating whether a signal-triggered
transition can be fired. In our case, we have adopted this block clas-
sification and the content characteristics proposed, but we have
introduced some changes related to the translation of pseudostates
and to the management of the events queue.

Following our approach, when the patient is in a specific state,
only the possible events that can be dispatched from that state are
controlled. Thus, we do not consider the management of events
queue. As for the translation of pseudostates, we have defined rules
for choice, join, fork, entry and exit pseudostates, which are the
following:

� Choice. A variable choice is defined and for each choice an inte-
ger value is assigned, in such a way that the value of the choice
variable will change depending on the corresponding choice.
Also, for each guard in the outgoing transitions of the choice,
a boolean variable is assigned (see Data Abstraction paragraph).
Since this kind of pseudostate has outgoing completion transi-
tions, its translation is allocated in the completion transition from
pseudostates block. Firstly, when a choice is reached, the value of
the choice variable is fixed to the one associated to that choice.
Then, the control flow is transferred to the asignValueVari-

ables label statement in order to non-deterministically assign
to true the value of the guard of transitions. Later, the control
flow is sent to a label statement associated to the choice, in
which the guard whose value was assigned to true is controlled
(by using if..fi statements). Finally, the control flow contin-
ues with the specific outgoing transition.
� Join pseudostate. Since join pseudostates have a state as the

source UML element, their translation is allocated in the com-
pletion transition from states block. Each join is translated as a
completion transition from a completion state but controlled
in an if..fi statement, if all the simple source states of its
incoming transitions are active.
� Fork pseudostate. In [102] the code for firing a transition sets the

new active state to be the target state of the transition. Then,
the translation of a fork pseudostate sets the new active state
configuration to be the target state of each of its outgoing
transitions.
� Entry and Exit pseudostates. For each entryPoint/exitPoint an
entry Point/exitPoint label is defined. When the transla-
tion of the incoming/ outgoing transition is finished, the control
flow is sent to the corresponding label in which the outgoing/
incoming transitions are controlled.

Data abstraction. In order to avoid the possible state explosion
problem, we have used a data abstraction approach. In particular,
we have used data abstraction for the assignment of values in
choices. For each guard in the statechart we have defined a boolean
variable in the PROMELA specification. In this way, we do not de-
fine a PROMELA variable for each variable in each statechart guard,
reducing the number of possible states in the PROMELA program.

Currently, our approach for the translation of guidelines repre-
sented by statecharts into the PROMELA language does not support
several UML statechart elements (such as history pseudostates or
do activities). These are advanced modeling elements that could
be later incorporated into our transformation proposal if needed.

4.2.2. Automatic translation
In order to manually transform a clinical guideline represented

by a UML statechart into the PROMELA language, a professional
with both UML and model checking skills may be required. Also,
such an encoding process may entail a big effort depending on
the guideline used. As we have described previously, we have used
a MDA-based tool chain that allows us to customize the transfor-
mation strategy from the statechart to the PROMELA specification
by defining a set of model to text transformations. So, as we show
in Fig. 8 which is an extract of Fig. 1, starting from the manually
created guideline specifications represented as a statechart, we
use the transformations defined in a MDA tool to automatically
generate the PROMELA specification of the model (see step number
2.2). In this way, for each guideline it is only necessary to manually
design the statechart modeling it and, based on this model, the
PROMELA specification is automatically generated. From this PRO-
MELA specification and a medical property defined using our pat-
terns and expressed by an LTL formula, we use SPIN to check the
property in the guideline (see step number 2.3).

Choosing the suitable tool. Among the large amount of MDA-
based tools in the literature, we are interested in those with sup-
port for customizable model to text transformations. The idea is
to define, based on the specific semantics of every statechart which
represents a guideline, only one set of transformations for all
guidelines by means of which the corresponding PROMELA model
is generated. Finally, we have chosen the MOFScript Eclipse plug-in
[60,106]. MOFScript is an Eclipse plug-in developed within the
MODELWARE Project [107] and is included in the Eclipse Genera-

Fig. 8. Architecture of the verification approach.

532 B. Pérez, I. Porres / Journal of Biomedical Informatics 43 (2010) 520–536
tive Modeling Technologies (GMT) project [108]. The tool imple-
ments the MOFScript language which follows the OMG RFP process
on MOF Model-to-Text Transformation [109]. The MOFScript sub-
project aims at developing tools and frameworks for supporting model
to text transformations [60]. Among its features we can highlight
that it provides control mechanisms (such as loops and conditional
statements), collection types (such as list and hashtables), facilities
for string manipulation, as well as the possibility of combining, in
output files, clear text with expressions referencing model ele-
ments [60].

As input models, MOFScript can use any model which complies
with the EMF [110] metamodel. From these input models, the tool
can generate any arbitrary text (such as Java code or XML) by using
a defined set of MOFScript transformations. Each MOFScript trans-
formation contains transformation rules which are basically the
same as functions, and which define the behavior of the transfor-
mation. The idea is that the transformation rules are defined based
on the metamodel and subsequently compiled and executed on the
model generating the corresponding text.

Using MOFScript. In our particular case, we use the UML 2.0
metamodel and the statechart which represents the guideline as
the model. To create the statechart models, we can use any UML
2.0 compliant tool that can create models in the XMI format sup-
ported by EMF (for example, the UML2 Eclipse plug-in [76] or Bor-
land Together Modeling tool [67]). As far as the PROMELA program
generation is concerned, we have defined several MOFScript trans-
formation scripts that generate the different PROMELA specifica-
tion sections (the definition of constants and variables,
evalcompletions and evaltriggers blocks, and the translation of
pseudostates). We want to highlight that the defined transforma-
tion scripts are independent of the guideline used. They do not
have to be modified to translate a different clinical guideline.

Regarding the statechart to PROMELA model transformation, we
have defined several MOFScript transformation files employed to
produce the print statements that generate the various PROMELA
specification sections (the definition of constants and variables,
evalcompletion and evaltrigger blocks, and the translation of
pseudostates). The main transformation (principal .m2t) has
the main rule that will generate the final PROMELA specification
by using specific rules from the rest of the transformation files.
We have defined another MOFScript file which is used as a library
(library.m2t), that is, it contains commonly used rules that are
required by other rules during the transformation process. The rest
of the transformation files are devoted to the generation of the
PROMELA code related to the creation of (1) constants and variables
(constantsAndVariables.m2t), (2) evalcompletion (evalCom-
pletions.m2t) and (3) evaltrigger (evalTriggers.m2t) blocks
and (4) the implementation of pseudostates (pseudostates.m2t).
The main rule in principal.m2t has calls to specific rules in these
transformation files which produce the print statements that final-
ly generate the PROMELA model. In particular, since the transfor-
mation constantsAndVariables.m2t generates the code
corresponding to constants and variables in the PROMELA specifi-
cation, its rules have to traverse the model looking for several
statechart elements (such as states, events and actions), as we ex-
plained in section 4.2.1. Then, in order to avoid unnecessary tra-
versals of the model and to be used by other rules during the
transformation process, we have defined several collections (such
as hashtables or lists) which collect specific information from
the statechart during the execution of the rules in constantsAnd-

Variables.m2t. In this way, the statechart is traversed only once,
making the translation process faster.

Finally, as we have described in Section 2.4, the defined MOF-
Script transformations have been integrated in the GBDSSGenerator
plug-in.

4.3. Example: verification of the IRC guideline

In this section we briefly present the results and experiences
obtained from the verification of the IRC guideline. During the ver-
ification process we have not only found several anomalies related
to the guideline definition, but also proved different kinds of prop-
erties we consider useful in everyday guideline applications. In
particular, we have checked in the guideline several properties pre-
viously identified in our properties specification patterns which
have allowed us to detect some inconsistencies in its definition.

Firstly, as described previously, the statechart model for the IRC
guideline has been created using the Borland Together Modeling
tool [67] obtaining a .uml2 extension file. Secondly, we have used
the GBDSSGenerator which, taking this file as input model, has
automatically generated, by using a menu option the plug-in pro-
vides, the PROMELA program resulting a file with more than 900
lines. Thirdly, we have defined several properties to be verified in
the guideline, among which we note the following. The first is re-
lated to the aspects or factors intrinsic to the guideline (Guideline
goal source). The property states that if an empirical treatment has
not been ordered at some point of the guideline, later on the guideline
does not prescribe the exclusion of the treatment. This property is
identified as (Absence-After) in our property specification patterns
and a similar version can be found in [33,45]. In particular, based
on Dwyer et al. patterns, the LTL formula which represents this
property is the following:

}:(removeTreatment==Empirical
?beginTreatment==Empirical).
This property happens to be false and SPIN produces a counter-
example which shows that the guideline has an inconsistency in its
definition.

By means of the verification process, we can guess whether given
a patient with certain clinical conditions there exists a guideline
application which leads to a specific patient’s state. This kind of
property is defined in the Patient specific clinical condition scope, for
example, starting from some patient’s clinical test results, to find
out whether with such results there exists a path which leads to a
specific patient’s state (Patient isn’t suspected to have IRC). This prop-
erty is identified as Possible Existence in our property specification
patterns. In this case, the property to be verified is the following:

h((MakiTest==3 && HemoccultTest==2)?
h:(stateTop_R==PatientIsntSuspectedToHaveIRC)).
We are checking whether with these test results, the expected
state is never reached. This property happens to be false, and we
get a counterexample which corresponds to a path in which having
such test results the patient reaches the state.

B. Pérez, I. Porres / Journal of Biomedical Informatics 43 (2010) 520–536 533
To sum up, thanks to the verification process we have checked
in the IRC guideline requirements with different aims, both to
ascertain whether the guideline has errors or inconsistences in
its definition and to obtain specific information useful for health-
care providers in their day-to-day clinical practice concerning the
application of the guideline.
5. Discussion

There are several strengths that we want to highlight. Firstly,
the only two manual steps that must be performed in the overall
process correspond to (1) the modelization of the clinical guideline
as a UML statechart, step guided by the defined representation pat-
terns, and (2) the specification, guided by our property specifica-
tion patterns, of the temporal-logic requirements to be checked
in the guideline. Then, we use MDD techniques that enable us to
automatically process manually created guideline specifications
and temporal-logic statements to be checked and verified regard-
ing these specifications, making the verification process faster
and cost-effective. Secondly, we have defined our property specifi-
cation patterns in a general fashion build upon Dwyer et al.’s pro-
posal which has been increasingly used in the literature in a wide
range of contexts. So, we consider that our patterns could be used
to specify requirements in other contexts other than the clinical
one. Finally, the overall verification and tool implementation
framework has been implemented in the GBDSSGenerator Eclipse
plugin by which, in particular, the PROMELA model is automati-
cally generated by only selecting different menu options the
plug-in provides. Thus, if the definition of a guideline that was pre-
viously verified with our proposal is changed, it will only be neces-
sary to manually modify the statechart which represents the
guideline (and therefore the properties defined from it), making
it easy to carry out the verification process without having to mod-
ify the PROMELA model manually.

As shown in the previous section, the proposed verification ap-
proach has been satisfactorily applied to the particular case of the
IRC guideline, finding as a result several semantic errors due to
ambiguities and inconsistencies in its definition. Besides, we have
checked different kinds of properties we consider useful in every-
day guideline applications. Additionally, the proposed framework
has been applied to several real-life guidelines used in different
contexts within the medical care system. Among them, we would
like to note its application to a laboratory guideline to carry out
the aliquoting process. Other applications include several clinical
guidelines published by the National Guideline Clearinghouse
(NGC) [111] (for example, guidelines for the management of obes-
ity in primary care and of rubella in pregnancy), obtaining encour-
aging results along the same line as with the IRC guideline. In
particular, following the guideline categorization distinguished
by this organization [111], these guidelines cover a wide range
including management, diagnosis, treatment or prevention.

On the other hand, it is worth highlighting the importance of
the collaboration between medical domain experts and knowledge
engineers during both the authoring and verification processes,
fact that has been already stressed by previous works in the med-
ical context [112,113]. Particularly, we consider that such a coop-
eration has constituted a central asset of the representation and
verification strategies.

While we have applied our verification approach to different
guidelines obtaining encouraging results, we recognize there are
certain limitations to the presented work. Here, we touch upon
several of these issues, which provide a basis for the extension of
this research. Firstly, as we have already mentioned, our approach
for the translation of guidelines represented by statecharts into the
PROMELA language does not currently support several UML state-
chart elements. Therefore, in the near future we plan to extend our
approach in order to support such elements. Secondly, taking into
account the guideline characterization of [111], as described previ-
ously, we have applied our approach to guidelines covering certain
categories but its application to guidelines covering the other cat-
egories (such as counselling or rehabilitation) remains an ongoing
task. Thirdly, there are several works which consider an upper level
guideline ontology for authoring guidelines easing both the guide-
line specification, verification and tool support [47,113]. In partic-
ular, in [113] authors present a successfully evaluated
methodology for collaborative guideline specification and verifica-
tion which starts with an ontology-specific consensus established
by knowledge engineers and expert physicians. In [47] on the other
hand, the authors propose a knowledge-based methodology for the
identification of anomalies in guidelines by using a knowledge-
base component. Based on the temporal nature of clinical guide-
lines recommending actions and following their results over time,
other works propose to use a time oriented language for annota-
tion of a clinical guidelines intentions (Asbru/Asgaard [114], PRO-
forma [115]). In particular, in the Asbru language specific
temporal patterns with time annotations have been defined to ex-
press conditions in plan state transitions, which proposal has been
extended in the context of the PROforma project. As we have de-
scribed previously, our approach needs to use a formally defined
ontology of medical terms that contains all the different actions
and events that appear in a clinical guideline. However, we con-
sider that our approach is independent of the actual ontology
and it can be used with different ontologies. So, and taking into ac-
count these works, we consider that the use of a higher level guide-
line ontology, with specific temporal components, for guideline
statecharts’ concepts and semantics could greatly assist in the de-
tailed specification process. So, the extension of our approach
including such ontology constitutes a possible line for future work.
Finally, regarding previous existing guideline representation lan-
guages, and the complex and labor intensive process that entails
the modelization of guidelines using most of such languages, we
would like to remark the work proposed in [116,117]. In this work,
the authors propose an approach to facilitate such a process pre-
senting a new methodology based on information extraction (IE)
techniques for semi-automatic information extraction of clinical
guidelines. Following their approach, the information extracted
can be used in further transformations to finally generate a repre-
sentation in any guideline representation language. So, the pro-
posal is irrespective to the final guideline representation format.
That is why, we consider the application of such a methodology
as a complement to our representation format an interesting line
of further work.
6. Conclusions

In this paper we present an approach and workflow aimed at
improving the authoring and verification of clinical guidelines.
The most significant contributions of this research paper are the
following. Firstly, we have used UML statecharts as a method to
model clinical guidelines which provides some advantages over
other informal ways of representation used nowadays, especially
when considering text generation. Secondly, we have established
a pattern-based approach for defining commonly occurring types
of requirements in guidelines in order to help non experts in their
formal specification. Thirdly, we have developed a framework
based on MDA techniques to verify specific requirements (defined
using our property specification patterns) in guidelines in order to
be checked against semantic errors and inconsistencies in their
definition. Particularly, we have presented a statechart to PROMEL-
A transformation proposal and defined a MDA approach for auto-

534 B. Pérez, I. Porres / Journal of Biomedical Informatics 43 (2010) 520–536
matically generating the PROMELA program required by the SPIN
model checker to carry out the verification process.

Additionally, the proposed framework is part of a larger re-
search project aimed at improving the authoring, quality and appli-
cation of clinical guidelines in daily clinical practice. The overall
framework has been implemented in the GBDSSGenerator plug-
in for the Eclipse platform which allows us both to carry out the
verification process and to generate the GBDSS of a guideline in
an automatic fashion starting from its manually created statechart
model.
References

[1] Institute of Medicine. Guidelines for Clinical Practice: from Development to
Use. Washington, DC: National Academy Press; 1992.

[2] Papadopoulos C. The development of Canadian clinical practice guidelines: a
literature review and synthesis of findings. JCCA J. Can. Chiropr. Assoc.
2003;47(1):39–57.

[3] OMG, UML 2.0 Superstructure Specification (August 2005), document formal/
05-07-04. Available at http://www.omg.org/. Last visited: September 2009.

[4] Selic B. The pragmatics of model-driven development. IEEE Softw.
2003;20(5):19–25.

[5] B. Pérez, I. Porres, Verification of clinical guidelines by model checking, in:
Proceedings of the 21th IEEE International Symposium on Computer-Based
Medical Systems (CBMS 2008), 2008, pp. 114–119.

[6] I. Porres, E. Domı´ nguez, B. Pérez, A. Rodrı́guez, M. Zapata, Development of an
ubiquitous decision support system for clinical guidelines using MDA, in:
Proceedings of the CAiSE’07 Forum, Trondheim, Norway, 2007.

[7] I. Porres, E. Domı´ nguez, B. Pérez, A. Rodrı́guez, M. Zapata, A model driven
approach to automate the implementation of clinical guidelines in decision
support systems, in: Proceedings of the 15th Annual IEEE International
Conference and Workshop on Engineering of Computer Based Systems (ECBS
2008), 2008, pp. 210–218.

[8] Agency for Healthcare Research and Quality, National guideline
clearinghouse, guidelines for the prevention of intravascular catheter-
related infections, available at http://www.guideline.gov. Last visited: Sept.
2009.

[9] SEIMC Sociedad Espa nola de Enfermedades Infecciosas y Microbiologı́a
Clı́nica [On-line], Documentos cientı́ficos, Available at http://www.seimc.org/
documentos/. Last visited: Sept. 2009.

[10] Wang D, Peleg M, Tu S, Boxwala A, Ogunyemi O, Zeng Q, et al. Design and
implementation of the GLIF3 guideline execution engine. J. Biomed. Inform.
2004;37(5):305–18.

[11] Ohno-Machado L, Gennari J, Murphy S, et al. The guideline interchange
format: a model for representing guidelines. J. Am. Med. Inform. Assoc.
1998;5(4):357–72.

[12] M. Balser, C. Duelli, W. Reif, Formal semantics of Asbru – an overview, in:
B.K.H Ehrig, e. A Ertas (Eds.), Proc. of the 6th Biennial World Conference on
Integrated Design and Process Technology (IDPT-02), Society for Design and
Process Science, USA, 2002, pp. 1–8.

[13] Shahar Y, Young O, Shalom E, Galperin M, Mayaffit A, Moskovitch R, et al. A
framework for a distributed, hybrid, multiple-ontology clinical-guideline
library, and automated guideline-support tools. J. Biomed. Inform.
2004;37(5):325–44.

[14] Young O, Shahar Y, Liel Y, Lunenfeld E, Bar G, Shalom E, et al. Runtime
application of Hybrid–Asbru clinical guidelines. J. Biomed. Inform.
2007;40(5):507–26.

[15] Tu S, Musen M. Modeling data and knowledge in the EON guideline
architecture. Medinfo 2001;10(1):280–4.

[16] M. Humber, H. Butterworth, J. Fox, R. Thomson, Medical decision support via
the Internet: PROforma and Solo, in: Proceedings of the Tenth World
Congress on Health and Medical Informatics (Medinfo2001), Vol. 10, 2001,
pp. 464–469.

[17] Sutton D, Fox J. The syntax and semantics of the PROforma guideline
modelling language. J. Am. Med. Inform. Assoc. 2003;10(5):433–43.

[18] Shiffman R, Agrawal A, Deshpande A, Gershkovich P. An approach to guideline
implementation with GEM. Medinfo 2001;10(Pt 1):271–5.

[19] Shiffman R, Michel G. Toward improved guideline quality: using the COGS
statement with GEM. Medinfo 2004;11(Pt 1):159–63.

[20] Terenziani P, Montani S, Bottrighi A, Torchio M, Molino G, Correndo G. A
context-adaptable approach to clinical guidelines. Medinfo
2004;11(1):169–73.

[21] Terenziani P, Montani S, Bottrighi A, Torchio M, Molino G, Correndo G. The
GLARE approach to clinical guidelines: main features. Stud. Health Technol.
Inform. 2004;101:162–6.

[22] Peleg M, Tu S, Bury J, Ciccarese P, Fox J, et al. Comparing computer-
interpretable guideline models: a case-study approach. J. Am. Med. Inform.
Assoc. 2002;10(1):52–68.

[23] OpenClinical, Methods and tools for representing computerised clinical
guidelines, http://www.openclinical.org/gmmsummaries.html. Last visited:
September 2009.
[24] Wang D, Peleg M, Tu S, Boxwala A, Greenes R, Patel V, et al. process models
and patient data in computer-interpretable clinical practice guidelines: a
literature review of guideline representation models. Int. J. Med. Inform.
2002;68(1–3):59–70.

[25] ten Teije A, Marcos M, Balser M, van Croonenborg J, Duelli C, et al. Improving
medical protocols by formal methods. Artif. Intell. Med. 2006;36(3):193–209.

[26] M. Moser, S. Miksch, Improving clinical guideline implementation through
prototypical design patterns, in: S. Miksch, J. Hunter, E.K. (Eds.), Proceedings
of the 10th Conference on Artificial Intelligence in Medicine (AIME 2005),
Lecture Notes in Computer Science, vol. 3581, Springer, 2005, pp. 126–130.

[27] Domı´ nguez E, Pérez B, Rodrı́guez A, Zapata M. Protocolos médicos para la
toma de decisiones en un contexto de computación ubicua. Novática
2005;177:38–41.

[28] J. Whittle, J. Schumann, Statechart synthesis from scenarios: an air traffic
control: case study, in: Workshop on Scenarios and State Machines at
ICSE2002, 2002.

[29] Büssow R, Geisler R, Klar M. Specifying safety-critical embedded systems
with statecharts and Z: a case study. In: Astesiano E, editor. Proc. Int. Conf. on
Fundamental Approaches to Software Engineering (FASE), vol. 1382. Berlin,
Lisbon, Portugal: Springer-Verlag; 1998. p. 71–87.

[30] Efroni S, Harel D, Cohen I. Toward rigorous comprehension of biological
complexity: modeling, execution, and visualisation of thymic T-cell
maturation. Genome Res. 2003;13(11):2485–97.

[31] N. Kam, I. Cohen, D. Harel, The immune system as a reactive system:
modeling T cell activation with statecharts, in: Proc. Visual Languages and
Formal Methods (VLFM’01), part of IEEE Symp. on Human-Centric Computing
(HCC’01), 2001, pp. 15–22.

[32] Sobolev B, Harel D, Vasilakis C, Levy A. Using the statecharts paradigm for
simulation of patient flow in surgical care. Health Care Manag. Sci.
2008;11(1):7986.

[33] L. Giordano, P. Terenziani, A. Bottrighi, S. Montani, L. Donzella, Model
checking for clinical guidelines: an agent-based approach, in: AMIA Annu
Symp Proc, 2006, pp. 289–293.

[34] N. Health, M.R. Council, A guide to the development, implementation and
evaluation of clinical practice guidelines, in: Canberra: NHMRC, 1998,
available at http://www.csp.nsw.gov.au/nhmrc/downloads/pdfs/
NHMRCClinicalPractice.pdf. Last visited: September 2009.

[35] Watine J, Friedberg B, Nagy E, Onody R, Oosterhuis W, Bunting P, et al.
Conflict between guideline methodologic quality and
recommendation validity: a potential problem for practitioners. Clin. Chem.
2006;52(1):65–72.

[36] Balser M, Coltell O, van Croonenborg J, Duelli C, van Harmelen F, Jovell A, et al.
Protocure: supporting the development of medical protocols through formal
methods. In: Proceedings of the Workshop on Computerised Protocols and
Guidelines (CGP-04). IOS Press; 2004.

[37] M. Balser, J. Schmitt, W. Reif, Verification of medical guidelines with KIV, in:
Proceedings of Workshop on AI Techniques in Healthcare: Evidence-based
Guidelines and Protocols (ECAI-2006), 2006.

[38] Hommersom A, Groot P, Lucas P, Balser M, Schmitt J. Verification of medical
guidelines using background knowledge in task networks. IEEE Trans.
Knowledge Data Eng. 2007;19(6):832–46.

[39] Lucas P. Quality checking of medical guidelines through logical abduction. In:
Coenen F, Preece A, Mackintosh A, editors. Proceedings of the 23rd SGAI Int’l
Conference Innovative Techniques and Applications of Artificial Intelligence
(AI’03). Lecture Notes in Computer Science, vol. XX. Springer; 2003. p.
309–21.

[40] M. Marcos, M. Balser, A. Ten Teije, F. Van Harmelen, From informal knowledge
to formal logic: a realistic case study in medical protocols, in: Proceedings of
the 13th International Conference on Knowledge Engineering and Knowledge
Management (EKAW-2002), Springer-Verlag, 2002, pp. 49–64.

[41] Marcos M, Balser M, ten Teije A, van Harmelen F, Duelli C. Experiences in the
formalisation and verification of medical protocols. In: Proceedings of the
Ninth European Conference on Artificial Intelligence in Medicine (AIME’03).
LNAI, vol. 2780. Springer-Verlag; 2003. p. 132–41.

[42] Bäumler S, Balser M, Dunets A, Reif W, Schmitt J. Verification of medical
guidelines by model checking – a case study. In: Model Checking Software,
13th International SPIN Workshop. Lecture Notes in Computer Science, vol.
3925. Vienna, Austria: Springer; 2006. p. 219–33.

[43] Groot P, Hommersom A, Lucas P, Serban R, ten Teije A, van Harmelen F. The
role of model checking in critiquing based on clinical guidelines. In:
Proceedings of the Eleventh European Conference on Artificial Intelligence
in Medicine (AIME’07). Lecture Notes in Computer Science, vol.
4594. Amsterdam, The Netherlands: Springer; 2007. p. 411–20.

[44] A. Hommersom, P. Groot, P. Lucas, M. Marcos, B. Martinez-Salvador, A
constraint-based approach to medical guidelines and protocols, in: ECAI 2006
Workshop – AI techniques in healthcare: evidence based guidelines and
protocols, 2006, pp. 25–30.

[45] P. Terenziani, L. Anselma, A. Bottrighi, L. Giordano, S. Montani, Automatic
checking of the correctness of clinical guidelines in glare, in: Proceedings of
the 12th World Congress on Health (Medical) Informatics – Building
Sustainable Health SystemsMedInfo (MEDINFO 2007), vol. 129, 2007, pp.
807–811.

[46] G. Duftschmid, Knowledge-based verification of clinical guidelines by
detection of anomalies, PhD Dissertation, University of Vienna, 1999.

[47] Duftschmid G, Miksch S. Knowledge-based verification of clinical guidelines
by detection of anomalies. Artif. Intell. Med. 2001;22(1):23–41.

http://www.omg.org/
http://www.guideline.gov
http://www.seimc.org/documentos/
http://www.seimc.org/documentos/
http://www.openclinical.org/gmmsummaries.html
http://www.csp.nsw.gov.au/nhmrc/downloads/pdfs/NHMRCClinicalPractice.pdf
http://www.csp.nsw.gov.au/nhmrc/downloads/pdfs/NHMRCClinicalPractice.pdf

B. Pérez, I. Porres / Journal of Biomedical Informatics 43 (2010) 520–536 535
[48] SPIN and PROMELA reference manual, Available at http://spinroot.com. Last
visited: September 2009.

[49] Pnueli A. The temporal logic of programs. Proceedings of the 18th Annual
Symposium on Foundations of Computer Science (FOCS), vol. 0. Los Alamitos,
CA, USA: IEEE Computer Society; 1977. p. 46–57.

[50] Clarke E, Emerson E. Design and synthesis of synchronization skeletons using
branching-time temporal logic. In: Logic of Programs. Lecture Notes in
Computer Science, vol. 131. Springer; 1981. p. 52–71.

[51] Moszkowski B. A temporal logic for multilevel reasoning about hardware.
Computer 1985;18(2):10–9.

[52] KIV Theorem Prover, available at http://www.informatik.uni-augsburg.de/
lehrstuehle/swt/se/kiv/. Last visited: September 2009.

[53] T. Uribe, Combinations of model checking and theorem proving, in:
Proceedings of the Third International Workshop on Frontiers of Combining
Systems (FroCoS 2000), Lecture Notes in Computer Science, vol. 1794,
Springer, Nancy, France, 2000, pp. 151–170.

[54] V. Pantelic, X. Jin, M. Lawford, D. Parnas, Inspection of concurrent systems:
combining tables, theorem proving and model checking, in: H.R. Arabnia, H.
Reza (Eds.), Software Engineering Research and Practice, CSREA Press, 2006,
pp. 629–635.

[55] The Cadence SMV Model Checker, Available at http://www.kenmcmil.com/
smv.html. Last visited: September 2009.

[56] R. Cobleigh, G. Avrunin, L. Clarke, User guidance for creating precise
and accessible property specifications, in: SIGSOFT ’06/FSE-14: Proceedings
of the 14th ACM SIGSOFT International Symposium on Foundations of
software engineering, ACM, New York, NY, USA, 2006, pp. 208–218.

[57] M. Dwyer, G. Avrunin, J. Corbett, Patterns in property specifications for finite-
state verification, in: Proceedings of the International Conference on Software
Engineering (ICSE ’99), IEEE, 1999, pp. 411–420.

[58] Yu J, Manh T, Han J, Jin Y, Han Y, Wang J. Pattern based property
specification and verification for service composition. In: Aberer K et al.,
editors. Proc. 7th Int. Conference on Web Information Systems Engineering
(WISE 06). Lecture Notes in Computer Science, vol. 4255. Springer; 2006. p.
156–68.

[59] Clarke E, Jr O, Peled D. Model Checking. Masachusetts, Cambridge: The MIT
Press; 2001.

[60] MOFScript Eclipse plug in, Available at http://www.eclipse.org/gmt/
mofscript. Last visited: September 2009.

[61] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design patterns: elements of
reusable object-oriented software, Addison Wesley, 1995.

[62] Hibernate, Relational Persistence for Java and .NET, http://
www.hibernate.org/. Last visited: September 2009.

[63] E. Domı´ nguez, B. Pérez, M. Zapata, Tracing the application of clinical
guidelines, in: Proceedings of the International Workshop On Health Data
Management, (IWHDM 2008), Lecture Notes in Computer Science, vol. 4977,
Springer, 2008, pp. 122–133.

[64] E. Domı´ nguez, B. Pérez, M. Zapata, Towards a traceable clinical guidelines
application: a model driven approach, Methods Inform. Med. doi:10.3414/
ME09-01-0038.

[65] ATL Eclipse Plug-in, Available at http://www.eclipse.org/m2m/atl/. Last
visited: September 2009.

[66] OMG, OMG Model Driven Architecture (June 2003), document omg/2003-06-
01. Available at http://www.omg.org/. Last visited: September 2009.

[67] Borland Together 2006 Release 2 for Eclipse, http://www.borland.com/
together. Last visited: September 2009.

[68] E. Bouza, J.L. nares, A. Pascual, Diagnóstico microbiológico de las infecciones
asociadas a catéteres intravasculares, in: R.C. e. E Cercenado (Ed.),
Procedimientos en Microbiologı́a Clı́nica, segunda edici=n Edition, Sociedad
Espa nola de Enfermedades Infecciosas y Microbiologı́a Clínica, 2004,
Available at http://www.seimc.org/documentos/protocolos/microbiologia/.
Last visited: September 2009.

[69] Leon C, Ariza J. Guı́as para el tratamiento de las infecciones relacionadas con
catéteres intravasculares de corta permanencia en adultos: conferencia de
consenso SEIMC-SEMICYUC. Enferm. Infecc. Microbiol. Clin.
2004;22(2):92–101.

[70] Society for Medical Decision Making Committee of Standardization of Clinical
Algorithms. Proposal for Clinical Algorithm Standards. Med. Decis. Making
1992;12(2):149–54.

[71] Baresi L, Consorti F, Di Paola M, Gargiulo A, Pezzè M. LEMMA: a language for
easy medical model analysis. J. Med. Syst. 1997;21(6):369–88.

[72] E. Domı´ nguez, A. Rubio, M. Zapata, A way of dealing with behaviour of state
machines, in: Proceedings of the UML 2000 Workshop: Dynamic Behaviour in
UML Models: Semantic Questions, 2000, pp. 32–37.

[73] Enterprise Architect UML Case Tool, Available at http://
www.sparxsystems.com/. Last visited: September 2009.

[74] Gentleware, Poseidon for uml case tool, Available at http://
www.gentleware.com/. Last visited: September 2009.

[75] ArgoUML modeling tool, Available at http://argouml.tigris.org. Last visited:
September 2009.

[76] EMF-based implementation of the Unified Modeling Language (UMLTM) 2.x
OMG metamodel for the Eclipse platform, The Eclipse UML2 project website,
http://www.eclipse.org/uml2. Last visited: September 2009.

[77] Eclipse Plugin Central (EPIC), Available at http://
www.eclipseplugincentral.com/. Last visited: September 2009.

[78] Eclipse plugins, Available at http://www.eclipse-plugins.info/. Last visited:
September 2009.
[79] modelbased.net, UML Tools, Available at http://www.modelbased.net/
uml_tools.html. Last visited: September 2009.

[80] modelbased.net, MDA Tools, Available at http://www.modelbased.net/
mda_tools.html. Last visited: September 2009.

[81] Domı´ nguez E, Rubio A, Zapata M. Dynamic semantics of UML state machines:
a metamodeling perspective. J. Database Manag. 2002;13(4):20–38.

[82] Jin Y, Esser R, Janneck J. A method for describing the syntax and semantics of
UML statecharts. Softw. Syst. Model. 2004;3(2):150–63.

[83] Gnesi S, Latella D, Massink M. Model checking UML statechart diagrams using
JACK. In: Proc. of the Fourth IEEE International Symposium on High Assurance
Systems Engineering. IEEE; 1999.

[84] Lilius J, Porres I. vUML: a tool for verifying UML models. In: The 14th IEEE
International Conference on Automated Software Engineering. Cocoa Beach,
Florida: IEEE Computer Society; 1999.

[85] France RB, Ghosh S, Dinh-Trong T, Solberg A. Model-driven development
using UML 2.0: promises and pitfalls. IEEE Comput. 2006;39(2):59–66.
doi:10.1109/MC.2006.65.

[86] Hommersom A, Lucas P, Balser M. Meta-level verification of the quality of
medical guidelines using interactive theorem proving. In: Proceedings of the
9th European Conference Logics in Artificial Intelligence (JELIA’04). Lecture
Notes in Computer Science, vol. 3229. Springer; 2004. p. 654–66.

[87] M. Marcos, H. Roomans, A. ten Teije, F. van Harmelen, Improving medical
protocols through formalisation: a case study, in: H. Ehrig, B. Kraemer, A.
Ertas (Eds.), Proceedings of the Sixth World Conference on Integrate Design
and Process Technology, 2002, pp. 59–64.

[88] M. Marcos, G. Berger, F. van Harmelen, A. ten Teije, H. Roomans, S. Miksch,
Using critiquing for improving medical protocols: harder than it seems, in:
Proceedings of the 8th Conference on Artificial Intelligence in Medicine (AIME
2001), 2001, pp. 431–441.

[89] M. van Gendt, A. ten Teije, R. Serban, F. van Harmelen, Formalising medical
quality indicators to improve guidelines, in: S. Miksch, JHunter, E. Keravnou
(Eds.), Proceedings of the 10th Conference on Artificial Intelligence in
Medicine (AIME 2005), Lecture Notes in Computer Science, vol. 3581,
Springer, 2005, pp. 201–210.

[90] K. Ryndina, Improving Requirements Engineering: An Enhanced
Requirements Modelling and Analysis Method, Ph.D. thesis, Department of
Computer Science, University of Cape Town, master’s thesis, 2005.

[91] Ryndina K, Kritzinger P. Analysis of structured use case models through
model checking. S. Afr. Comput. J. 2005;35:84–96.

[92] M. Dwyer, G. Avrunin, J. Corbett., Specification Patterns Website, http://
patterns.projects.cis.ksu.edu/. Last visited: September 2009.

[93] O. Ryndina, P. Kritzinger, Improving requirements specification for
communication services with formalised use case models, in: Southern
African Telecommunication Networks and Applications Conference (SATNAC
2004), Spier Wine Estate, South Africa, 2004.

[94] Clarke E, Draghicescu I. Expressibility results for linear-time and branching-
time logics. In: Linear Time, Branching Time and Partial Order in Logics and
Models for Concurrency, School/Workshop. London, UK: Springer-Verlag;
1988. p. 428–37.

[95] O. Kupferman, M. Vardi, Relating linear and branching model checking, in:
Proceedings of the International Conference on Programming Concepts and
Methods (PROCOMET’98), 1998, pp. 304–326.

[96] Laroussinie F, Markey N. Expressiveness of temporal logics. In: Introductory
course, 18th European Summer School in Logic, Language and Information
(ESSLLI’06). Spain: Malaga; 2006.

[97] M. Vardi, Sometimes and not never re-revisited: on branching versus linear
time, in: Proceedings of the 9th International Conference on Concurrency
Theory (CONCUR ’98), Springer-Verlag, London, UK, 1998, pp. 1–17, invited
Presentation.

[98] Vardi M. Branching vs. linear time: final showdown. In: Proceedings of the
7th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS). London, UK: Springer-Verlag; 2001. p. 1–22.

[99] Clarke E, Grumberg O, Hamaguchi K. Another look at LTL model checking.
Form. Methods Syst. Des. 1997;10(1):47–71.

[100] Kong W, Seino T, Futatsugi K, Ogata K. A lightweight integration of theorem
proving and model checking for system verification. In: Proceedings of the
12th Asia-Pacific Software Engineering Conference (APSEC). Taipei,
Taiwan: IEEE Computer Society; 2005. p. 59–66.

[101] Kripke S. Semantic analysis of modal logic. Zeitschrift fur Mathematische
Logik und Grundlagen der Mathematik 1963;9:67–96.

[102] T. Jussila, J. Dubrovin, T. Junttila, T. Latvala, I. Porres, Model checking dynamic
and hierarchical UML state machines, in: MoDeV2a: Model Development,
Validation and Verification; 3rd International Workshop, Genova, Italy,
October 2006, 2006, pp. 94–110.

[103] A. Knapp, S. Merz, Model checking and code generation for UML state
machines and collaborations, in: G. Schellhorn, W. Reif (Eds.), FM-TOOLS
2002: 5th Workshop on Tools for System Design and Verification, Report
2002-11, Institut für Informatik, Universität Augsburg, Reisensburg,
Germany, 2002.

[104] E. Mikk, Semantics and Verification of Statecharts, PhD Dissertation,
University of Kiel, 2000.

[105] I. Porres, Modeling and Analyzing Software Behavior in UML, Ph.D. thesis, Åbo
Akademi, Finland, 2001.

[106] J. Oldevik, MOFScript eclipse plug-in: metamodel-based code generation, in:
Proceedings of the Eclipse Technology eXchange workshop (eTX) at the
ECOOP 2006 Conference, Nantes, France, 2006.

http://spinroot.com
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/kiv/
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/kiv/
http://www.kenmcmil.com/smv.html
http://www.kenmcmil.com/smv.html
http://www.eclipse.org/gmt/mofscript
http://www.eclipse.org/gmt/mofscript
http://www.hibernate.org/
http://www.hibernate.org/
http://dx.doi.org/10.3414/ME09-01-0038
http://dx.doi.org/10.3414/ME09-01-0038
http://www.eclipse.org/m2m/atl/
http://www.omg.org/
http://www.borland.com/together
http://www.borland.com/together
http://www.seimc.org/documentos/protocolos/microbiologia/
http://www.sparxsystems.com/
http://www.sparxsystems.com/
http://www.gentleware.com/
http://www.gentleware.com/
http://argouml.tigris.org
http://www.eclipse.org/uml2
http://www.eclipseplugincentral.com/
http://www.eclipseplugincentral.com/
http://www.eclipse-plugins.info/
http://www.modelbased.net/uml_tools.html
http://www.modelbased.net/uml_tools.html
http://www.modelbased.net/mda_tools.html
http://www.modelbased.net/mda_tools.html
http://dx.doi.org/10.1109/MC.2006.65
http://patterns.projects.cis.ksu.edu/
http://patterns.projects.cis.ksu.edu/

536 B. Pérez, I. Porres / Journal of Biomedical Informatics 43 (2010) 520–536
[107] MODELWARE project., Modelling solution for software systems, Available at
http://www.modelware-ist.org/. Last visited: September 2009.

[108] Eclipse Generative Modeling Tools (GMT), Available at http://
www.eclipse.org/gmt. Last visited: September 2009.

[109] OMG, Mofscript Second Revised Submission to the MOF Model to Text
Transformation RFP, OMG document ad/2005-11-03, Available at http://
www.omg.org/. Last visited: September 2009.

[110] EMF, The Eclipse Modeling Framework website, http://www.eclipse.org/emf.
Last visited: September 2009.

[111] Agency for Healthcare Research and Quality, National Guideline
Clearinghouse, Available at http://www.guideline.gov. Last visited:
September 2009.

[112] Peleg M, Patel V, Snow V, et al. Support for guideline development through
error classification and constraint checking. Proc. AMIA Fall Symp.
2002:607–11.
[113] Shalom E, Shahar Y, Taieb-Maimon M, Bar G, Yarkoni A, et al. A quantitative
assessment of a methodology for collaborative specification and evaluation of
clinical guidelines. J. Biomed. Informat. 2008;41(6):889–903.

[114] Shahar Y, Miksch S, Johnson P. The Asgaard project: a task-specific
framework for the application and critiquing of time-oriented clinical
guidelines. Artif. Intell. Med. 1998;14(1-2):29–51.

[115] Fox J, Johns N, Rahmanzadeh A. Disseminating medical knowledge: the
PROforma approach. Artif. Intell. Med. 1998;14:157–81.

[116] Kaiser K, Akkaya C, Miksch S. How can information extraction ease
formalizing treatment processes in clinical practice guidelines?: a method
and its evaluation. Artif. Intell. Med. 2007;39(2):151–63.

[117] Kaiser K, Miksch S. Versioning computer-interpretable guidelines: semi-
automatic modeling of ’Living Guidelines’ using an information extraction
method. Artif. Intell. Med. 2009;46(1):55–66.

http://www.modelware-ist.org/
http://www.eclipse.org/gmt
http://www.eclipse.org/gmt
http://www.omg.org/
http://www.omg.org/
http://www.eclipse.org/emf
http://www.guideline.gov

	Authoring and verification of clinical guidelines: A model driven approach
	Introduction
	Background and related work
	Formal representation
	Validation and verification
	Requirements specification

	Overview: from a guideline in natural language to an information and decision support system
	Representation of clinical guidelines
	Verification of clinical guidelines
	Generation of an information and decision support system
	Tool chain
	Overview of the case study

	Representation of clinical guidelines using UML
	Using UML statecharts to represent clinical guidelines
	Representation patterns
	Example: the IRC guideline as a statechart

	Formal verification of clinical guidelines
	Verification requirements for clinical guidelines
	Sources of verification properties
	Property specification patterns

	Verification process
	Encoding guidelines in PROMELA
	Automatic translation

	Example: verification of the IRC guideline

	Discussion
	Conclusions
	References

