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Abstract 

A measure of departures of monotonicity of a given function, the L,-DIP, 1 < r < co, is introduced. Our analysis is 
performed to cover two different situations: When the function is known our interest is related to its behavior in 
a stochastic model. However, in most cases, the knowledge of the function is obtained through a preliminary estimation 
of the function. In both situations the aim focuses in the obtainment of strong consistency results. 

Keywords: Monotone functions; Quantile function; Stochastic behavior; L,-norm; L,-DIP; L,-best monotone approxi- 
mation; Consistency; Nonparametric regression 

1. Introduction 

Probability theory and statistics are often concerned in a natural way with monotone functions. 
The distribution and quantile functions or the monotone density functions are basic tools in 
probability and provide examples of the use and importance of monotone functions in probability 
theory. 

On the other hand, monotone functions, or, in a more general setting, isotonic functions, 
constitute the basic elements in inference under order restrictions which, since the pioneering works 
by Brunk, Ewing and others, plays a prominent role in statistics. Special interest has received the 
problem of isotonic regression (see e.g. [l, 4,13-15,19,20] and references therein), where it is 
assumed that the regression function m(x) = E(Y/X = x) is nondecreasing. 
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In this paper we are concerned with monotone real functions in two different directions. 
However in both cases we pay special attention to obtain almost sure convergence results and the 
problem is related with measuring departures of monotonicity. 

Very often in mathematics the measurement of some kind of precision or anomaly is based on 
the consideration of metrics related to the problem under study. The different L,-metrics possess 
a wide range of properties which make them specially suitable in these situations: typically it is 
possible to get a good approximation for the study of the desired problem by considering some 
suitable &metric. In probability and statistics, this leads in a natural fashion to the usual fact of 
making reference to optimal properties formulated in terms of L,-approximations. There is a vast 
literature about the advantages of considering any one of the L,-norms. 

Therefore, in spite of the existence of some other possibilities to measure departures from 
the isotonicity (for instance one might use the Haussdorf metric, see [17]), we suggest to measure 
departures of isotonicity, with respect to the different L,-metrics, by considering the dis- 
tance to the class of nondecreasing functions. This is carried out through the introduction 
of the L,-DIP, 1 d r d co, in Section 2. Notice that in the L, case the DIP was introduced 
in [7]. 

As it is stated above, such an approach can be useful in two different situations. When H is 
a known function, we can be interested in the estimation of how increasing is its behavior with 
respect to a stochastic model or parent population. In Section 2 we present the results of some 
simulations based on two examples which may well illustrate this situation. 

The other direction of our study arises in the nonparametric regression context, where the 
knowledge of the function is limited to a random sample relating the joint distribution of a pair of 
random variables. Therefore the estimation of the L,-DIP must be based on a preliminary 
estimation of that function. We study this problem, in Section 4, by considering the L,-DIP 
measured over the estimation of the regression. When such an estimation is sampling L,-consistent, 
we obtain strong consistency of estimators of the theoretical L,-DIP (Theorem 4.1). 

In Corollary 4.3 and Theorem 4.7 we particularize our study to the well-known Na- 
daraya-Watson estimator, obtaining strong consistency under the usual hypotheses in the litera- 
ture to get L,-consistency of the kernel estimator. 

In Section 3 we provide the technical support for both estimation problems. We prove the strong 
consistency of the sample version of the L,-DIP in Theorems 3.1.4 (1 d Y < co) and 3.2.3 (r = co). 
This section also includes the proof of the consistency of the corresponding best monotone 
approximations (Theorems 3.1.5 and 3.2.2). 

Finally, in the Appendix we show some results related with the quantile function and Skorohod 
a.s. representation theorem. For example, Theorem A.1 is a natural extension of the Skorohod 
result, even though, for us, it can be of independent interest. Notice that these results are needed 
only in our proof of Theorem 3.1.5. 

Remark. For simplicity, our study of monotone functions will be carried out for the nondecreasing 
case, even though the results will generally remain valid when working with nonincreasing 
functions. Therefore, from now on, the term “monotone function” means nondecreasing function, 
while we reserve the term “nondecreasing function” to be used when the involved result or 
reasoning strongly depends on that property. 
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2. Measuring deviations from monotonicity 

Our approach to the consideration of measurements of departures from isotonicity assumptions 
is based on some well-known aspects of approximation theory related to the L,-spaces, 1 < r < co. 
Useful references are [l, 5, lo]. 

In this and in subsequent sections, we will make use of a rich enough probability space of 
reference (Q, o,~), where the r.r.v.‘s X,X1, . . . ,X,, . . . will be defined. 

Let X be a r.r.v. with probability distribution given by P, and denote by L,(P), 1 < Y d co, the 
L,-space L,(R, D, P, R) of (classes of) real Bore1 functions with finite L,-norm (w.r.t. P). Also, let us 
consider the closed convex cone C,(P) in L,(P) of those classes which contain a nondecreasing 
Bore1 function. Notice that we will assume that all the representative functions in a class of C,(P) 
are nondecreasing. 

We introduce the &DIP of an arbitrary function H in L,(P) through the expression 

L,-DIP(H) = D,(P,H) = inf IIH - Gllr. 
GE C,(P) 

(1) 

Note that the right-hand side equals infGEC ))H - Gl),, where now G ranges over the set C of all 
nondecreasing real-valued Bore1 functions. From the definition we get general properties such as 

(i) D,(P, H) = 0 iff H coincides P-a.s. with a nondecreasing function. 
(ii) IWP,HI) - WJ,H2)l d IIH1 - H211r for any HI,Hz~LU?. 
Moreover the infimum in Eq. (1) is attained for any r, 1 < Y < co. The cases 1 < r < cc follow 

from smoothness properties of the L,-norms (see e.g., [18, p. 369]), while the case p = 1 was treated 
in [9] and the case p = cc was studied in [S] in the general framework of conditioning on o-lattices 
(recall that the study of isotonocity is related to the consideration of measurability with respect to 
o-lattices (see e.g., [3] or Cl]). 

The set of functions in C,(P) where the minimum in (1) is attained, i.e., the L,-best approxima- 
tions to H by elements of C,(P), will be denoted by P’(H), and the same notation will be used for 
any of its elements when no confusion arises. In fact, for 1 < r < 00, it is well known that the 
I,,-spaces are uniformly convex so there is unicity (P-a.s.) for the “L,-metric projection” defined 
through (1) and it becomes continuous. 

When based on a random sample X1, . . . , X, of X, the sample version of the different L,-DIP’s 
will obviously be defined as the r.r.v. given by 

RR, w, H) = inf ((H - GI(:,“, (2) 
GEC,(P.,lJ 

where P,, w is the sample distribution based on X1 (co), . . . , X,(o), and the superscripts in the norm 
mean that it is computed with respect to P,,,. 

Observe that C,(P,,,) contains exactly the Bore1 functions which are nondecreasing on 
(X1(4Y,X&)}. 

The comments after the definition of the L,-DIP are in force, so we can also express Eq. (2) as 

Wpn, w, H) = inf 11H - Gil:,‘“. 
GcC 

As an application of the preceding ideas we have carried out some simulations to show that the 
estimation of how increasing a known function is has some interest in statistics. 
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With this aim, let us consider the functionsf,(x) = x - a[~], a > 0, where [x] denotes the integer 
part of the real number x. These functions describe the profit in processes like the following two: 

(1) A person has to arrange the composition of a train given the number of passengers. Let us 
suppose that each transported passenger gives a profit of $1, that each coach can carry 100 
passengers, that each additional coach supposes a cost of 50$ and that he/she has to supply as 
much coaches as needed (i.e., with 100 passengers only one coach is needed, but for 101 passengers 
two coaches are needed). 

(2) Let us suppose that in a country the personal income tax is fixed as follows: Your first $1000 
are free. Then for each additional $1000 or fraction you must pay $100. 

Let us assume that we are interested in knowing if the profit (resp. net income) really increases 
when the number of passengers (resp. gross income) increases. 

With the simulations which follow we try to answer those questions by taking into account that 
a relevant fact is the distribution of the number of passengers or that of the gross income of the 
people. 

In this way, the cases in which the distribution is very concentrated would describe situations in 
which either there is little variation in the number of passengers or we are interested in a fixed 
narrow category in the population (for instance, the salary of the beginning teachers). 

On the contrary, if the distribution is very sparse, we would be in a situation in which either the 
number of passengers vary very much from a time to another or we are concerned with the total 
population in the country. 

We have carried out 50 simulations of 250 pseudo-random numbers each. We show the mean of 
the DIP#‘u~,~,_&) on th ese simulations in Tables l(A) and l(B) depending on P. We have chosen 
this distribution both as uniform or Gaussian. 

The pseudo-random numbers have been generated with ZBASIC and the Gaussian distributions 
have been simulated through the Box-Muller algorithm. 

These data support the idea we have presented: the DIP of a given function ranges from 1 to 2 or 
3 depending only on the parent distribution. However it is evident that DIPz(P,,,, fa) depends on 
the scale we chose to represent our function and therefore these values are relative. Even when we 
will not consider it in the theoretical development, it seems reasonable to normalize the DIPS to get 
some feeling about them. We have considered the index DIPz(P,,,,f,) over the empirical 

Table l(A) 
Simulation results for normal distribution 

Mean Standard 
deviation 

DIP,@‘,,,, Ax) DIP2V’n.m LX% 

a = 0.5 a = 0.25 a =O.l a =OS a = 0.25 a = 0.1 

30 0.1 0.173 0.066 0.017 0.999 0.898 0.233 
30 0.5 0.099 0.035 0.008 0.331 0.087 0.018 

30 1.0 0.099 0.034 0.008 0.180 0.042 0.008 
30 3.0 0.094 0.032 0.007 0.059 0.013 0.002 

30 5.0 0.092 0.029 0.006 0.035 0.007 0.001 
30 10.0 0.083 0.024 0.005 0.016 0.003 0.000 
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Table l(B) 
Simulation results for uniform distribution 

Interval DIP,(P,,,, Jz) D-G’,.,> .L)/& 

a = 0.5 a = 0.25 a = 0.1 a = 0.5 a = 0.25 a=O.l 

(0.8, 1.3) 0.142 0.049 0.012 0.999 0.655 0.115 
(0.3, 1.8) 0.080 0.028 0.007 0.314 0.083 0.018 
(0.8, 4.3) 0.107 0.037 0.009 0.203 0.047 0.010 
(0.3, 7.8) 0.094 0.032 0.008 0.085 0.020 0.004 
(0.8, 12.3) 0.099 0.033 0.007 0.058 0.013 0.002 
(0.3, 12.3) 0.094 0.032 0.006 0.051 0.012 0.002 

standard deviation, S,. We have chosen that index because, if fa were a decreasing function, then 
the better approximant increasing function would be a constant one. Therefore DIP2(P,,,, fa)/& 
has two important advantages: It is scale-free and it measures how decreasing is the considered 
function. 

In Table 1 we also show the quotient of the mean of DIP2(P 250,w,fa) in the 50 simulations over 

the mean of SzsO in the 50 simulations. This column reinforces our first interpretation. From it we 
conclude that the function is the same but depending on the parent distribution we must consider it 
as increasing, as decreasing or maybe as in an intermediate case. 

3. Consistency of the &best monotone approximation and the &DIP, 1 < Y < cc 

This section is devoted to proving consistency of the _&-DIP when 1 < r < 00. Since the 
approaches to prove consistency are completely different depending on whether r is finite or 
infinite, it is preferable to consider each case separately. 

We use {X,}, as a common notation to denote a sequence of independent r.r.v.‘s equally 
distributed as X with probability distribution P. The sample probability distribution based on 

X,(m), .*. ,X,(U) will be denoted by P,, o. 

3.1. Thecasel <r<co 

As an intermediate step for the proof of the consistency of the L,.-DIP we consider the problem 
for stepwise functions, for which a technique based on [S] is useful (even for r = 1, in spite of the 
fact that the &-best approximation is not necessarily unique). 

Lemma 3.1.2 is a particular version of [S, Lemma 2.11, taking advantage of the simplicity given 
by the stepwise functions under consideration. The first lemma shows that if H is a stepwise 
function, H = 1 , G i G k hilA,, then D,(P, H) depends on P only through the values P(Ai), i = 1,. . . , k. 

Lemma 3.1.1. Let H = x1 G i G k hilAL be a stepwise function, with Al = (-co, al], A2 = 
@d21, . . . . Ak = (ak- I, CO), and P be a probability measure in (R, B). Then for all r in [l, co) there 
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exists a version G’ of P’(H) w 1~ h’ h . 1s constant in every Ai, i = 1, . . . , k, and bounded by supi Q i 4 k 1 hil; 
i.e., there exists a stepwisefunction G, = 1 1 <i <k tTIAj in P’(H) with sup1 G i G k 1 t[I < sup1 Q i G k I hi I. . . 

Proof. The last assertion follows from the fact that if I H I d c and h is an increasing function, the 
function h, = inf {c, sup(h, -c)} is increasing and a better approximation to H than h: 

s IH - hl’dP = 
s 

IH-hl’dP+ 
s 

IH - hl’dP 
ilhl $ cl ilhl > c) 

2 
s 

IH - h,I’dP + 
Ilhl QC) s 

IH - h,l’dP = 
ilhl > cl s 

IH - h,I’dP. 

Therefore, it suffices to prove the existence of a stepwise function, G’ = xi G k t;IA,, in P’(H). For 
this, let f’ E P’(H) and define t;, i = 1, . . . , k, through the relation 

Ihi - t;I = ,‘,“,f Ihi -f*(x)1 

with tT in the closure of the set {j’(x), x E Ai}. 
Then the function G’ = 1 i G i G k t;L,, provides an obvious version of P’(H). 0 

Lemma 3.1.2. Let H be the stepwise function considered in the previous lemma and P, Q be two 
probability measures on (U&13). For all r in Cl, co) the following inequalities hold: 

IP’(H) - Hl’dQ 

IP’(H)- Hl’dP SUP Ihi] i IP(A,)- Q(Ai)l 
i= I,...,& >( i=l 

Proof. The first inequality is an immediate consequence of the definition of Q’(H). 
From Lemma 3.1.1 we have that 

IP’(H) -HI’ d (2i~~~,,lhil)‘, 

hence 

P P \r k 

J [P’(H) - Hl’dP - 
J 

IP’(H) - Hl’dQ < 2 SUP lhil 
i= l,..., k 

Now, using that IaS - b”l d la - bl” if a,b 2 0 and 0 -C s < 

2 IP(Ai) - Q(Ai) I- 
i=l 

1, we obtain, for s = l/r: 

IP’(H) - HJ’dP [P’(H) - Hl’dQ “’ 
> I 

which proves the second inequality. 0 

i IP(Ai)- Q(A)1 
i=l 

The previous lemmas permit us to prove the consistency of the L’-DIP, 1 d r < 00, for stepwise 
functions in the following way. 
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Proposition 3.1.3. If H is the stepwise function previously considered, then 

DAP,, o, H) + D,.(P, H) as n -+oo, 

for p-a.e. o and every r in [ 1, co). 

Proof. An application of the Glivenko-Cantelli theorem gives 

i IP,,,(Ai) - P(Ai)I +O as y1+G0 for p-ae 0 9 . . > 
i=l 

which with the strong law of large numbers and making a double use of the inequalities obtained in 
Lemma 3.1.2, by alternating the role of P,,, and P, implies 

D,(P,H) = 
(1 

IF(H) - Hl’dP 
> 

iI* 
= lim D,(P,,,, H) for p-a.e. o. 

n+m 

This completes the proof. 0 

Theorem 3.1.4 (Consistency of the _&-DIP, 1 < r < co). Let {X,}, be a sequence of independent 
r.r.v.‘s with probability distribution P and let H be afunction in L,.(P). Then D,(P,, w, H) -+ D,(P, H) as 
n -+ 00 for p-a.e. o, where P,, w is the sample distribution bused on X1(w), . . . , X,(o). 

Proof. First observe that 

Ilr 
UP,, w > W G 

(1 
IP’(W - HI*dPn,, 

> 

and use the strong law of large numbers to obtain 

lim sup D,(P,, o, H) d D,(P, H). 
n-02 

On the other hand, it is a well-known fact that the stepwise functions constitute a dense subset of 
L,.(P) for 1 < r < co, so we can choose a sequence {Hk}k of stepwise functions such that 

(s 

iI* 
IHk - H(‘dP 

> 
+O ask+co. 

Now, considering the inequalities 

W=,, w, H) 3 
(S 

i/r 
‘jr IHk - K,,WWPn,, 

> (s 
- (H - HJdP,,, 

> 

3 D,(P,, w, HA - 
(s 

Ilr 
IH - fWdP,,, 

> 
3 

and letting n -+ co, the previous proposition and the strong law of large numbers give 

ii* 
liminfD,(P,,,, H) 2 D,(P, Hk) - 

(1 
IH - HkIrdP for fi-a.e. 0. 

n-a 
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Finally, let k + GO and take into account item (ii) in Section 2 to obtain 

lim infD,(P,, a, H) > D,(P,H) for p-a.e. CL), 
n+a: 

which finalizes the proof. 0 

The consistency of the L,-DIP is used in our proof of consistency of the L,-best monotone 
approximation. We also take advantage of two results included in the Appendix and related to the 
Skorohod a.s. representation. theorem. 

Note that the assumption of uniqueness of the theoretical L,-best monotone approximation in 
the hypotheses is superfluous unless r = 1. 

Theorem 3.1.5 (Consistency of monotone L,-approximations). Let {X,}, be a sequence ofindepen- 
dent r.r.v.‘s with probability distribution P, and let H be a function in L,.(P). Assume that P’(H) = {h}, 
and let h,, w E Pi,,(H) where P,, w is the sample distribution based on X1(o), . . . , X,(o). Then, for p-a.e. 
o in Q, the sequence {h,, ,}, converges to h, P-a.s. 

Proof. From the elementary inequality 

s h,JdLo G C [S IH - hn,,I’dPn,, + j ,,W’n,,], 

where C is a constant which only depends on r, we have, after the strong law of large numbers 
applied to the last term in the sum, and the previous theorem of consistency of the L,-DIP, that 

SUP IhwJdK, 
s 

< co for p-a.e. 0. 
n 

Now let E > 0 be given. Then, for p-a.e. co, by Markov’s inequality there exists an interval [a, b] 
such that 

P,, w Ch,, w E[a,b]] > 1-4~ 

for all n, where a and b depend on o. 
Also the Glivenko-Cantelli theorem implies that for p-a.e. CL), for large enough n, 

IP”,cm - pm < $8 for each interval. Hence, taking into account the monotone character of each 
h ,,, w, the set I,, w = {x: h,, &) E Ca, bl > is an interval and we have 

PCkwA~,bll = PCIn,,I 2 J’,,&wl - ts 

= Pn, w Chn, w E[a,b]]-Ja>l-~s--3a=l-s. 

Therefore, for ,u-a.e. o, the sequence of probability measures induced by the random variables 
h,, o defined on (R,B, P) is tight. Theorem A.1 in the Appendix implies that every subsequence has 
a P-a.s. convergent subsequence. 

Let g be a monotone function which is the P-a.s. limit of the subsequence {h,,,,},, and let 

C = 1~: h,,,&) + g(y)). 
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Let !& be the probability one set obtained in Proposition A.3, let o E &, and let Y $, Y r, Y 2, . . . 
be the sequence of r.r.v.‘s defined there. We are going to prove that 

A@: k&Y;(0) + g(Y6V))) = I. (4) 

First note that if to is such that g is continuous on Yz(to), then a standard argument based on the 
increasing character of g gives us that, in this case, h,,,(YE(t,)) --) g(Y$(t,,)). 

Note that the set D = {t: g is not continuous in Y,“(t) and P[ Y:(t)] = 0} is denumerable because 
g is increasing (therefore it is continuous except in a denumerable set) and, if P [ Y,“(t)] = 0, then, by 
definition of Yg, we have that (Yg)-‘[Y;(t)] = {t}. 

Therefore the only problem remains of those points t,,, such that g is not continuous in Yg(t,) 
and P[Yg(&,)] > 0. 

Let us suppose that to belongs to the interior of the set (Y,W)-1 [Yg(to)]. Then, by Proposition 
A.3, there exists no, which depends on o and to, such that if n 2 no then YF(tO) = Yg(to). On the 
other hand, PIY,“(to)] > n{(Y~)-‘[Y$‘(to)]} > 0 and, then Yf(t,) belongs to C. So, also in this 
case, h,,,(Y~(t~)) + sOWo)). 

Therefore we have proved that h,‘,JYz(t)) --) g( Y;(t)) with the exception of those points t, 
which either are in D or satisfy P[Y,“(t)] > 0 and t does not belong to the interior of 
(Y$)-’ [ Y$‘(t)] which is, at most, a denumerable set and (4) is proved. 

Now, if H, is a continuous function, then, by Eq. (4) 

A@: K(Y:(t)) - kk,,(Y;(t)) -+ H,(Y%)) - S(Y8))) = 1 (5) 

and by the basic integration to the limit theorem 

s 
(H, - g(‘dP d liminf (H, - h,,,(‘dP,,,. 

n, - 4, s 

Therefore, by considering a continuous function H, which satisfies that [JH - H,)‘dP < E’ 
and a point co in the probability one set where the law of large numbers 
JIH - H,I’dP,,, -‘jIH - H,I’dP holds, we have 

(~~H-g,‘d~)iir-,$(~,~~-g,‘dp)lir-(~~H-~~~’dP)1P 

d lim inf IH, - h,,,(‘dP,‘,,, 
nk U 

>“’ - limmf( 1 (H - H’l’dP”‘,,>“’ 

U > 

11’ 
d liminf (H - h,,,,)‘dP,,,, = lim D’(P,,,,, H). 

nk “k 

Finally, the assumption of uniqueness of the theoretical L’-best monotone approximation, and the 
consistency of the L’-DIP provided by Theorem 3.1.4, give us the result. 0 

3.2. The case r = co 

The double problem of consistency for both the L,-DIP and the L,-best monotone approxima- 
tion of a P-as. bounded function H have an easy joint solution based on the paper [S]. 
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First recall [S, Theorem 4.1.31 that, in general, the set P”(H) of all L,-best approximations to 
H by monotone essentially bounded functions is not a singleton and can be described as the set of 
functions {f: monotone and such that 7-J - D,(P,H) <f< L + D,(P,H) P-a.s.). Here U (resp. L) 
denotes for the essential infimum (resp. supremum) of the monotone functions h, satisfying h 2 H 
(resp. h d H) P-a.s. 

Moreover the conditional midrange, defined as M = $(U + L), is a distinguished element in 
P”(H), and our consistency result will be precisely the consistency of the conditional midrange. 

Indeed, D,(P,H) can be also described in terms of L and U (see [S, Theorem 4.1.41): 

D,(P,H) = 311 U - Llloo. 

Let us consider the nondecreasing functions U and L. It is easy to show that versions of U and 
L are given, respectively, by 

U(x) = 
P-essup{H(y), y Gx}, if P[(-c0,x]] > 0, 

P-esinf{H(y), YE R}, if P[(-00,x]] = 0, 

and 

L(x) = 
P-esinf{H(y), y >, x}, if P[[x, c0)] > 0, 

P-essup{H(y), yE[W}, if P[[x, c0)] = 0. 

Therefore the a.s. consistency of the conditional midrange, M,, w, is an obvious consequence of 
that one of the conditional bounds, U,,, and L,,,, which follow from the next lemma. 

Lemma 3.2.1. Let {X,> be a sequence of independent r.r.v.‘s with probability distribution P, and let 

p. denote the empirical probability distribution based on X1 (co), . . . ,X,(u). For every bounded 
nk:mpty Bore1 set A in R with P(A) > 0 we have that 

P,, w-essup A + P-essup A for y-a.e. o, 

P,, ,-esinf A + P-esinf A for ,u-a.e. o. 

Proof. The proofs of both convergences are similar, so we will only consider the first. 
Let rc = P-essup A. Then /A (X E A, X > TC} = 0, so 

~U(O: Xi(o)E A and Xi(W) > 7~ for some if = 0, 

i.e., P,, o -essup A d rc for ,u-a.e. co. 
On the other hand, for every E > 0 we have that l{X E A, X > n: - E} > 0, hence ~{a: Xi(O) E: A 

and Xi(o) > rc - E for some i} = 1, which proves that P,,, -essup A > TC - E from an index on for 
fi-a.e. 0. 0 

Now we have the announced consistencies of the conditional bounds and midrange via the 
standard argument of considering a p-probability one set, where the convergences 
U,,,(G) -+ U(G) and L,,AJ -+ L(+), k = 1,2, . . . , hold for a convergence-determining denumer- 
able set. 
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Theorem 3.2.2 (Consistency of monotone L,-approximations). Let H be afunction in L,(P). The 
sequence of sample L,-best approximations of H by monotone functions given by the sample 
conditional midranges, M,, w, converges to the theoretical one, M, for p-a.e. co. 

The previous considerations about D,(P, H) relate their consistency to that of the conditional 
bounds and make possible a simple proof of the consistency of the L,-DIP. 

Theorem 3.2.3 (Consistency of the La-DIP). Let {X,} b e a sequence of independent r.r.v.‘s with 
probability distribution P and let P,,, be the sample probability distribution based on 

Xl (~1, * *. ,X,(o). Then for every function H in L,(P) we have D,(P,,,, H) + D,(P, H) as n -+ co, 
for p-a.e. 0. 

Proof. First observe that for any function G, the inequality 1 Gl d 11 Gllm holds P-a.s., whence p {o: 
G(Xi(o)) > ((G((, for some i> = 0 and ~{co: 116112” < (lG(lm for every n} = 1. 

Therefore we have IIH - P,C&(H)IIzW < JIH - P”(H))lz” < IIH - P”(H)II,, and, then 

lim SUP D, (P,, o, H) < D,(P, H) for p-a.e. o. 
n--too 

So, if D,(P, H) = 0, the proof is finished. In the other case, let us denote d = II U - LI(, and let 
E be such that d > E > 0. Then P[ I U - LJ > d - E] > 0, and the monotone character of U and 
L implies that there exists an interval (possibly degenerate) [a, b] such that 

O<p[XE[a,b]] and [a,b]c{JU-LJ>d-8). 

Therefore for ,u-a.e. o there exists some no (= no(o)) such that X,,_(o) E [a, b]. 
Finally, by taking into account that L,, w + L and U,, w + U for ,u-a.e. w as n -+ co, we have also 

I Un, &L,W) - Ln, o$G,W)l > d - 8 

from an index on for p-a.e. co, then P,, o{ ( U,, w - L,,,( > d - E) > 0 from that index on and 
liminf,,, (1 U,,, - L,,,,(Iz” > d - E for p-a.e. o. 

Whence D,(P,,w,H) = iIlK,, - L,,llZ” -+ilj U - L(I, = D,(P, H) for p-a.e. co. 0 

4. Consistency of the &DIP in nonparametric regression 

In the framework of nonparametric regression estimation, the purpose is to estimate the 
regression function m(x) = E(Y/X = x) from a sample of independent random vectors {(X,, Y,)> 
with the same distribution as (X, Y). 

Let m, be a nonparametric estimator of the function m. We begin by stating a basic result in 
which we propose a simple condition under what the sample L,-DIP of m, provides a strongly 
consistent estimation of the L,-DIP of m. Then we analyze the question of whether the Na- 
daraya-Watson estimator satisfies this condition. 

Note that in this result we do not distinguish between the cases in which r is finite or infinite. 
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Theorem 4.1. Let {(X,, Y,)}, b e a sequence of independent identically distributed two-dimensional 
random vectors and let m(x) = E( Y/X = x). Let us assume that 11 Y II1 < 00, 1 < r d co. Lf (m,>, is 
a sequence of nonparametric estimators of m such that )I m, - rnll:‘” + 0, ,u-a.e. as n -+ 00, then we have 
that 

R(K w, m,) + D,(P, m), p-a.e. as n + 00. 

Proof. Taking into account inequality (ii) in Section 2, we have that 

I W’n, o, m,) - D,V’,m)I d 11% - mllY + IRU’,,,,m) - Q4?4l. 

By hypothesis, the first term on the right-hand side converges to zero p-a.e. 
With respect to the second one, we have that the hypothesis on the L,-norm of Y implies that 

Ilm(X)llr < 00 and to get the result we can apply either Theorem 3.1.4 if r is finite or Theorem 3.2.3 
if r is infinite. I-J 

Next we apply the preceding result to the well-known Nadaraya-Watson estimators which are 
defined by 

m,(x) = i 
Y&C(Xi - Wd 

i=1C’J=1K[(Xj_x)lhnl’ 
if ~7~ 1 K[(Xj - x)/h,,] # 0, and 0 otherwise. 

The hypotheses about the real random variables X, Y, or about the involved kernel, K, and the 
bandwidths will be of a different nature as those in the available literature in the treatment of the 
consistency of kernel estimators in the L,, 1 < r < co, and the uniform senses. 

According to Theorem 4.1 we only need to check whether the condition llm,, - rnll:*” + 0, FL-a.e. 
as n -P 00 holds or not. We analyze separately the cases 1 < r < 00 and r = GO. 

The first case is solved in the next result. Its proof will be given in a future paper and it is quoted 
here for the sake of completeness. 

Proposition 4.2. Let us assume the following hypotheses. 

(1) On 
6) 

(ii) 
(2) On 

(3) On 
(i) 

(ii) 

the kernel: 
There exists 0 < r < r’ -C co and 0 < p < b < a0 such that 

where B(O,s) means the closed ball with center in 0 and radius s. 
jK(u)du = 1. 
the sequence of bandwidths: 

Ce-n’a’hn < co for every a > 0. 
n 

the distribution of the random variables: 
ElYI’<co,r>l. 
The distribution of X admits a continuous density function with respect to the Lebesgue 
measure. 
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Then 

JJm, - rnll:,” -+ 0, p-a.e. as n -+ co. 

Therefore we have proved the following corollary. 

Corollary 4.3. Let {m,} be a sequence of kernel estimators of the regression function m. Under the 
hypotheses in Proposition 4.2 we have that 

RR, wY m,) -+ D,(P, m), p-a.e. as n + co. 

More involved hypotheses are necessary in our study of the case r = 00 for which we give 
a complete analysis of it. 

Since we will occasionally be concerned with the L,-DIP measured over subsets of the line, let us 
briefly mention some terminology and facts related to this peculiarity. 

First note that the definition of the norm ((JoD or that of the L,-DIP can be changed to cover 
any positive finite measure with the same properties as those obtained before. Therefore, given 
a Bore1 set, A, let us consider the measures PnIA(B) = P,,,(AnB), and P,,(B) = P(AnB), and let us 
denote the L,-seminorm associated with PnlA by l/_ll> (note that llHll$ = SU~,~{~,,...,~J~A IH(x) 

The L,-DIP measured with respect to the measures PIA or PnlA will be denoted by DA and D:, 
respectively. Obviously, the basic inequality in Theorem 4.1 holds also in this case and we have that 

IFWJ - R&4 G lb, - mllS + l4@4 - kdW (6) 

Now a slight modification of Theorem 3.2.3 gives us that ) D\(m) - DA(m)) + 0 ,u-a.e. 
On the other hand, if A is a bounded set, conditions are known (see e.g., [6, 11, 121) under which 

the first term in Eq. (6) converges to zero p-a.s. So we have the consistency of the kernel-based 
estimation of the L,-DIP measured over compact sets. 

Next we are going to prove that it is possible to estimate consistently the L,-DIP over R by 
using a kernel estimation of m. The idea is to continue using the decomposition (6) but over a 
sequence of empirically chosen sets {A,}. The problem here is that if we choose too large sets, then 
llrnn - rn& 4 0 fails, but if we choose them too small, the convergence D!“(m) --+ D,(P, m) fails. Having 
this in mind, in Theorem 4.7 we propose an empirical election criteria which handles both problems. 

As usual in the related literature, it is useful to consider the following functions: 

h(X) = & ,t YiKC(Xi - x)/h,], 
” r-l 

gn(4 = $ j KC(Xi - Wd, 
n L-1 

so gn is the well-known kernel estimator for the marginal density, g, of X. With this notation the 
estimator m, becomes 

m, = f , if g,, # 0, and 0 otherwise. 
n 

Our hypotheses (see below) are essentially those in [12]. 
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We begin with two important properties for which we need the following hypotheses: The 
random vector (X, Y) has a joint density f(x, y). The marginal density of X is denoted by g; 
therefore, if u(x) = 1 yf(x, y) dy, then u/g is a version of the regression function, m. The assumptions 
on the kernel K are: 

(a) K is continuous and of bounded variation, 
(AK) (b) K is absolutely integrable w.r.t. Lebesgue measure on the line, 

(c) jlxlog(xl”2(ldK(x)I <co. 

Then, if we denote 

8, = 
1 112 

I I +x~ 
n It 

we have (see [12]) the following result. 

Proposition 4.4. Suppose that E 1 Y IS < 00 for some s 2 2 and that sup, s I yl”f(x, y)dy < co. Let US 

assume that K satisfies (AK), that {h,}, are such that I,, hi < co and nZvplh,, + 00 for some 
q<l-~-~andII>O. 

Then sup, 1 u,(x) - E [ u,,(x)] I = 0(&J, p-a.e. 

Proposition 4.5. If K satisjes (AK), g is continuous and {h,), satis$es that 2” hi < 00 and that 
nl-&h n + 00 for some A > 0 and E > 0, then 

sup I s&4 - ECsddI I = WA w.e. 

Additional requirements for the distribution of (X, Y), bandwidths and the kernel are the 
following: 

(a) there exists s 2 2 with E I Y IS < CXI and sup,j I y I”f(x, y)dy < 00, 
(RD) (b) g and u have bounded second derivatives, 

(c) there exists If such that u/g d H on the set {g > 0}, 

(a) n 2s-1h +co for some q < 1 - s-l, 
(RB) (b) C,“= 1 hi c co for some A > 0, 

where s satisfies (a) in (RD), 

(c) h,2 = 0(&J, 

(a) jK(x)dx = 1, 
(RK) (b) j xK(x)dx = 0, 

(c) sx2 IK(x)l dx < co. 

These assumptions permit us to bound the bias in the next proposition. Note that assumptions 
(RB) imply that n1 -“h, + co for some E > 0, and they hold when s > 2 and h,E [n-‘, n-O], with 
1-2/s>a>p>+. 

Proposition 4.6. If assumptions (AK), (RD), (RB) and (RK) hold then 

max{w, I cd4 - g(x) I, sup, I u,(x) - WI > = WA w.e. 
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Proof. After Propositions 4.4 and 4.5 it suffices to show that 

max{sup.MCg,(41 - s(x)I,s~~~IECwkdl -WI} = W,) 

but we will only prove that 

sup l~Cgn(41 - g(4l = o(e”)Y 
x 

because the other asymptotic bound is proved analogously. 
Let it be a positive integer and let x E [w. For every t in [w we can choose t,,, in the interval 

[x,x + t/z”] in such a way that 

ECgn(41 = K j r$)g(l;)du = {K(f)g(x + th,)dt 

= 
s 

K(t) [g(x) + th,g’W + t2 %d’(5x,t)l dt 

and the result follows from (RD) (b), (RB) (c) and (RK) (c). IJ 

The announced estimator of D,(P, m) and its strong consistency appear in the following 
theorem. 

Theorem 4.7. Let (X, Y), k and {h,}, b e such that they satisfy assumptions (AK), (RD), (RB) and 
(RK). Let A, = {Xi: 1 < i < n and gn(Xi) > c,}, where (c~}~ is a sequence of positive numbers such 
that c, + 0, and 8, = o(c,) as n + 00. Then 

Dl.(m,) + DAK m), p-a.e. 

Proof. Since P(x,g(x) > 0} = 1 we have g(Xi) > 0 for all i, p-a.e. The definition of A, implies 

Now the assumptions (RB) imply 

llwl- ~llzl. < + 
[ 

SUPl%d4 - u(x)1 + HSUPIcL(4 - dx)l 1 > 
n x x 

which from Proposition 4.6 and the choice of (c~},, gives 

llmn - rnlli. -+ 0, p-a.e. 

Therefore, the inequality 

IDXh) - DmW>m)I .-. II < m, - mll1. + ID2.W - D,U’,dI 

shows that the theorem would be proved if the p-a.e. convergence D;.(m) --f D, (P, m) holds. 
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To show this, let M, E P”(m) (for instance, the conditional midrange), then 

E”(m) d Ilm - M,II!” d Ilm - M,II”, for all n, 

so limsup,Dlfi,(m) < lim,Ilm - M,II”, = llm - Mmllm = Doo(P,m), p-a.e. 
On the other hand, the consistency of the L,-DIP, Proposition 4.6 and the fact that 

P{x: g(x) > O> = 1, imply that: 
(a) &Km) + UP,@, p-a.e, 
(b) g(X,) > 0 for all n, p-a.e, 
(c) for every E > 0, 

{g > E} c liminf{g, > +a} c liminf{g, 2 cn}, p-a.e, 
n n 

hence 

(c’) {g > 0} c lim inf{g, > cn}, p-a.e. 
” 

Therefore (b), (c’) and the definition of A, imply that D,(Pk, m) d lim inf, o:,(m) ,u-a.e. for every k, 
and from (a): 

lim inf D$Jm) > D, (P, m) p-a.e., 
n 

which finalizes the proof. 0 
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Appendix 

The following theorem can be considered as a natural extension of the Skorohod a.s. representa- 
tion theorem for the weak convergence of probability measures on the line (see [2, p. 3431). 

Theorem A.l. Let {fn},, b e a sequence of monotone functions on the line, and let X be a r.r.v. dejined 
on the probability space (a, CT, p). Then the sequence { J,(X)jn converges in distribution if and only if it 
converges p-almost surely. Moreover, in this case, the limit r.r.v. can be written as f(X) where 
f = lim,f, Px-a.s. 

Proof. A direct proof is possible, but the following one is a very simple consequence of the 
Skorohod theorem. 

First note the easy fact that if we denote by F;‘(U) the quantile function associated with the 
distribution function F, of the r.v. f”(X), and U is a uniformly distributed in (0,l) T.v., then 
(fi (X), . . . ,fnW)) and (K ‘(U), . . . , F; l(U)) have the same distribution for every n. Therefore the 
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whole sequences {h(X)}” and {F,l(U)}, are equally distributed, so the p-a.s. convergence of 
{fn(X)},, is equivalent to the a.s. convergence of the quantile sequence {F, l(U)),, which, after the 
Skorohod theorem, is equivalent to the weak convergence of the sequence of D.F.‘s {F,},, i.e., it is 
equivalent to the convergence in distribution of (fn(X)},,. 

The second part is trivial from the first one. 0 

Some immediate consequences which arise from the given proof are collected in the following 
corollary. 

Corollary A.2. Let fi and fi be nondecreasing functions on the line, and let X be an r.v. defined on the 
probability space (a, 0, p). 

(i) Iff (X) and A(X) are equally distributed, then fi (X) =f2 (X), ,a-as. 
(ii) 1f Y and 2 are r.r.v.‘s (possibly dejined on a difirent probability space) such that fi (X) = d Y 

and f2 (X) = d 2, then 

Elf,(X)-ff,(X)(‘~EIY-Z(‘, l<r<co. 

(iii) The quantilefunction F- ’ is the (a.s.) only nondecreasing function on the unit interval whose 
D.F. is F (obviously the a.s. statement here is related to the Lebesgue measure on the unit interval). 

Proof. Statements (i) and (ii) are immediate consequences of the fact that ( fi(X), 
fi(X)) =d(F;l(U), F;l(U)) and k nown results for the quantile functions (see e.g., [16]), while (iii) 

is trivial from (i). 0 

When the involved probabilities are the sample ones, we can improve on the Skorohod theorem 
through the following proposition. 

Proposition A.3. For p-a.e. o in 9: 
(1) the empirical distribution functions converge, uniformly, to the theoretical one. 

Moreover there exists a sequence Y$, Yr, YF, . . . of r.r.v.‘s dejined in the probability space 

((0, I), P, A), w h ere A is the Lebesgue measure, such that: 
(2) YF + Y$, A-a.s., 
(3) the distribution law of Y$’ is P and that one of Yp is P,,,, n = 1,2, . . . , 
(4) let a be in [w and t in the interior of the set (Y,“)- ’ (a). Then there exists no ( = no(o)) such that if 

n > no, then Y”(t) = a. 

Proof. Let sZo be the set in which the Glivenko-Cantelli theorem is satisfied and let us denote by 
F;’ (= (F,,,)-‘), n = 1,2 ,..., and F,’ the quantile function for the empirical and theoretical 
distributions, respectively. It is well known that if we take o in Q. and 

Y$=F;‘, n=0,1,2 ,..., 

then (2) and (3) are verified (see, for instance, [2, p. 1901). 
With respect to (4), let a in [w be such that the interior of (Y$‘)- ’ (a) is not empty. (Note that this is 

equivalent to P(a) > 0.) Let to, tl, t2 be three points in the interior of the set (Y;)-‘(a) such that 
tl < to < t2. Then, by definition of F, ‘, it must be 

P(-co,a) < tl <to < tz < P(-oo,a]. 



182 J.A. Cuesta-Albertos et aLlJournal of Computational and Applied Mathematics 55 (1994) 165-182 

Now taking into account that in this o the empirical functions converge uniformly to the 
theoretical one, there exists no (= no (co)) such that if n > no then 

P,,w(- cQ4 < t1 < to < t2 < P,,,(- m,al. 

Therefore, if IZ 2 no, by definition of Y,“, we have that YF(to) = a. 17 
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