DISCRETE
APPLIED
MATHEMATICS

On the connectivity of close to regular multipartite tournaments

Lutz Volkmann*, Stefan Winzen
Lehrstuhl II für Mathematik, RWTH Aachen, Germany

Received 30 September 2003; received in revised form 31 August 2004; accepted 6 September 2004
Available online 24 January 2006

Abstract

If x is a vertex of a digraph D, then we denote by $d^{+}(x)$ and $d^{-}(x)$ the outdegree and the indegree of x, respectively. The global irregularity of a digraph D is defined by $i_{\mathrm{g}}(D)=\max \left\{d^{+}(x), d^{-}(x)\right\}-\min \left\{d^{+}(y), d^{-}(y)\right\}$ over all vertices x and y of D (including $x=y$) and the local irregularity of a digraph D is $i_{l}(D)=\max \left|d^{+}(x)-d^{-}(x)\right|$ over all vertices x of D. Clearly, $i_{l}(D) \leqslant i_{\mathrm{g}}(D)$. If $i_{\mathrm{g}}(D)=0$, then D is regular and if $i_{\mathrm{g}}(D) \leqslant 1$, then D is almost regular.

A c-partite tournament is an orientation of a complete c-partite graph. Let $V_{1}, V_{2}, \ldots, V_{c}$ be the partite sets of a c-partite tournament such that $\left|V_{1}\right| \leqslant\left|V_{2}\right| \leqslant \cdots \leqslant\left|V_{c}\right|$. In 1998, Yeo proved

$$
\kappa(D) \geqslant\left\lceil\frac{|V(D)|-\left|V_{c}\right|-2 i_{l}(D)}{3}\right\rceil
$$

for each c-partite tournament D, where $\kappa(D)$ is the connectivity of D. Using Yeo's proof, we will present the structure of those multipartite tournaments, which fulfill the last inequality with equality. These investigations yield the better bound

$$
\kappa(D) \geqslant\left\lceil\frac{|V(D)|-\left|V_{c}\right|-2 i_{l}(D)+1}{3}\right\rceil
$$

in the case that $\left|V_{c}\right|$ is odd. Especially, we obtain a 1980 result by Thomassen for tournaments of arbitrary (global) irregularity. Furthermore, we will give a shorter proof of the recent result of Volkmann that

$$
\kappa(D) \geqslant\left\lceil\frac{|V(D)|-\left|V_{c}\right|+1}{3}\right\rceil
$$

for all regular multipartite tournaments with exception of a well-determined family of regular $(3 q+1)$-partite tournaments. Finally we will characterize all almost regular tournaments with this property.
© 2005 Elsevier B.V. All rights reserved.
Keywords: Multipartite tournaments; Almost regular multipartite tournaments; Connectivity

1. Terminology and introduction

In this paper all digraphs are finite without loops and multiple arcs. The vertex set and arc set of a digraph D is denoted by $V(D)$ and $E(D)$, respectively. If $x y$ is an arc of a digraph D, then we write $x \rightarrow y$ and say that x dominates y, and if

[^0]X and Y are two disjoint vertex sets or subdigraphs of D such that every vertex of X dominates every vertex of Y, then we say that X dominates Y, denoted by $X \rightarrow Y$. Furthermore, $X \rightsquigarrow Y$ denotes the fact that there is no arc leading from Y to X. For the number of arcs from X to Y we write $d(X, Y)$. Furthermore, let $E(X, Y)=d(X, Y)+d(Y, X)$. If D is a digraph, then the out-neighborhood $N_{D}^{+}(x)=N^{+}(x)$ of a vertex x is the set of vertices dominated by x and the in-neighborhood $N_{D}^{-}(x)=N^{-}(x)$ is the set of vertices dominating x. Therefore, if there is the arc $x y \in E(D)$, then y is an outer neighbor of x and x is an inner neighbor of y. The numbers $d_{D}^{+}(x)=d^{+}(x)=\left|N^{+}(x)\right|$ and $d_{D}^{-}(x)=d^{-}(x)=\left|N^{-}(x)\right|$ are called the outdegree and indegree of x, respectively. For a vertex set X of D, we define $D[X]$ as the subdigraph induced by X. If we replace in a digraph D every arc $x y$ by $y x$, then we call the resulting digraph the converse of D, denoted by D^{-1}.

There are several measures of how much a digraph differs from being regular. In [11], Yeo defines the global irregularity of a digraph D by

$$
i_{\mathrm{g}}(D)=\max _{x \in V(D)}\left\{d^{+}(x), d^{-}(x)\right\}-\min _{y \in V(D)}\left\{d^{+}(y), d^{-}(y)\right\}
$$

and the local irregularity by $i_{l}(D)=\max \left\{\mid d^{+}(x)-d^{-}(x) \| x \in V(D)\right\}$. Clearly $i_{l}(D) \leqslant i_{\mathrm{g}}(D)$. If $i_{\mathrm{g}}(D)=0$, then D is regular and if $i_{\mathrm{g}}(D) \leqslant 1$, then D is called almost regular.
A digraph D is strongly connected or strong if, for each pair of vertices u and v, there are a directed path from u to v, and a directed path from v to u in D. A digraph D with at least $k+1$ vertices is k-connected if for any set A of at most $k-1$ vertices, the subdigraph $D-A$ obtained by deleting A is strong. The connectivity of D, denoted by $\kappa(D)$, is then defined to be the largest value of k such that D is k-connected. If S is a set of vertices of D such that the subdigraph $D-S$ is not strongly connected, then S is called a separating set.

A c-partite or multipartite tournament is an orientation of a complete c-partite graph. A tournament is a c-partite tournament with exactly c vertices. A semicomplete multipartite digraph is obtained by replacing each edge of a complete multipartite graph by an arc or by a pair of two mutually opposite arcs. If $V_{1}, V_{2}, \ldots, V_{c}$ are the partite sets of a c-partite tournament D and the vertex x of D belongs to the partite set V_{i}, then we define $V(x)=V_{i}$. If D is a c-partite tournament with the partite sets $V_{1}, V_{2}, \ldots, V_{c}$ such that $\left|V_{1}\right| \leqslant\left|V_{2}\right| \leqslant \cdots \leqslant\left|V_{c}\right|$, then $\left|V_{c}\right|=\alpha(D)$ is the independence number of D, and we define $\gamma(D)=\left|V_{1}\right|$. Note that especially for tournaments, the global and the local irregularity have the same value. Hence, in this case we shortly speak of the $\operatorname{irregularity~} i(T)$ of a tournament T.

In 1998, Yeo [10] proved the following useful bound.
Theorem 1.1 (Yeo [10]). Let D be a c-partite tournament. Then

$$
\begin{equation*}
\kappa(D) \geqslant\left\lceil\frac{|V(D)|-\alpha(D)-2 i_{l}(D)}{3}\right\rceil . \tag{1}
\end{equation*}
$$

In general, this bound cannot be improved as the following example demonstrates (see also [6]).
Example 1.2 (Volkmann [6]). Let $q \geqslant 1$ be an integer, and let $c=3 q+1$. We define the families \mathscr{F}_{q} of c-partite tournaments with the partite sets $W_{1}, W_{2}, \ldots, W_{q}$ and

$$
W_{q+1}=A_{q+1} \cup B_{q+1}, W_{q+2}=A_{q+2} \cup B_{q+2}, \ldots, W_{c}=A_{c} \cup B_{c}
$$

with $2\left|A_{i}\right|=2\left|B_{i}\right|=\left|W_{j}\right|=2 t$ for $i=q+1, q+2, \ldots, c$ and $j=1,2, \ldots, q$ as follows. The partite sets $W_{1}, W_{2}, \ldots, W_{q}$ induce a $t(q-1)$-regular q-partite tournament H, the sets $A_{q+1}, A_{q+2}, \ldots, A_{c}$ induce a $t q$-regular ($2 q+1$)-partite tournament A, and the sets $B_{q+1}, B_{q+2}, \ldots, B_{c}$ induce a $t q$-regular $(2 q+1)$-partite tournament B. In addition, let $H \rightarrow A \rightsquigarrow B \rightarrow H$. Obviously, if $D \in \mathscr{F}_{q}$, then D is a $3 q t$-regular c-partite tournament with the separating set $V(H)$ and thus $\kappa(D)=2 q t=q \alpha(D)$.

Since Yeo's result is often used to solve problems depending on the global irregularity, it would be interesting to solve the following general problem.

Problem 1.3. For each integer $i \geqslant 0$ find all multipartite tournaments D with $i_{\mathrm{g}}(D)=i$ and the property that

$$
\kappa(D)=\left\lceil\frac{|V(D)|-\left|V_{c}\right|-2 i}{3}\right\rceil .
$$

In Section 2, we will analyze the proof of Theorem 1.1. With this method we will extend this result by working out-for each given integer $j \geqslant 0$ —the structure of those multipartite tournaments D with $i_{l}(D)=j$ for which the bound (1) is tight. This structure implies a well-known bound of Thomassen [4] on the connectivity of tournaments of given irregularity. Furthermore, the results of Section 2 will be useful for Section 3 and to prove a result in [9] about Hamiltonian paths through a given arc.

In Section 3, we will study Problem 1.3 for $i=0$ and $i=1$. For the case that D is a regular tournament, Volkmann [6] proved the following bound, which solves Problem 1.3 for $i=0$.

Theorem 1.4 (Volkmann [6]). Let D be a regular c-partite tournament with $c \geqslant 2$. Then,

$$
\kappa(D) \geqslant\left\lceil\frac{|V(D)|-\alpha(D)+1}{3}\right\rceil
$$

with exception of the case that D is a member of the families \mathscr{F}_{q}.
Using the structure of the multipartite tournaments, which fulfill (1) with equality, in the beginning of Section 3, we will present a shorter proof of Theorem 1.4. Note that Theorem 1.4 generalizes Theorem 2.10 in [7], which is needed to prove a theorem about complementary cycles. Furthermore, we will extend Theorem 1.4 to almost regular multipartite tournaments, which means that we will present a solution of Problem 1.3 for $i=1$.

For more information on multipartite tournaments we refer the reader to Bang-Jensen and Gutin [1], Gutin [2], and Volkmann [5].

2. An analysis of Yeo's result

The following results were given in [10] and [11]. The information about the cases of equality can implicitly be found in the proofs of the lemmas.

Lemma 2.1 (Yeo [11]). Let $\vec{v}=\left(v_{1}, v_{2}, \ldots, v_{c}\right)$ be c integers with $\sum_{i=1}^{c} v_{i}=B$ and $v_{i} \geqslant 1$ for all $i=1,2, \ldots, c$. For any set of c reals $\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{c}\right)$ with $0 \leqslant x_{i} \leqslant v_{i}(i=1,2, \ldots, c)$ and $0<\sum_{i=1}^{c} x_{i}=A \leqslant B / 2$ we have the following:

$$
\begin{equation*}
\frac{e(\vec{x}, \vec{v})}{A}+\frac{e(\vec{x}, \vec{v})}{B-A} \geqslant B-\max \left\{v_{i} \mid i=1,2, \ldots, c\right\} \tag{2}
\end{equation*}
$$

where $e(\vec{x}, \vec{v})=A(B-A)-\sum_{i=1}^{c} x_{i}\left(v_{i}-x_{i}\right)$.
Furthermore, if equality holds above, then $v_{i}-2 x_{i}=v_{j}-2 x_{j}$ and $v_{j}-x_{j}=v_{i}-x_{i}$ for all $1 \leqslant i, j \leqslant c$.
Lemma 2.2 (Yeo [11]). Let D be a semicomplete multipartite digraph with the partite sets $V_{1}, V_{2}, \ldots, V_{c}$. Let $X \subseteq$ $Y \subseteq V(D)$ be arbitrary. Let $x_{i}=\left|V_{i} \cap X\right|$ and $v_{i}=\left|Y \cap V_{i}\right|$ for all $i=1,2, \ldots, c$. This implies the following:

$$
\begin{equation*}
\frac{E(X, Y-X)}{|X|}+\frac{E(X, Y-X)}{|Y-X|} \geqslant|Y|-\max \left\{v_{i} \mid i=1,2, \ldots, c\right\} \tag{3}
\end{equation*}
$$

In the case of equality in (3) we have also equality in (2) with x_{i} and v_{i} defined here.
Lemma 2.3 (Yeo [10]). If D is a digraph and $X \subset V(D)$ is non-empty, then

$$
\begin{equation*}
i_{l}(D) \geqslant \frac{|d(X, V(D)-X)-d(V(D)-X, X)|}{|X|} \tag{4}
\end{equation*}
$$

If equality holds above, then it follows that $d^{+}(x)=d^{-}(x)+i_{l}(D)$ for all $x \in X$ or $d^{-}(x)=d^{+}(x)+i_{l}(D)$ for all $x \in X$.

Theorem 2.4 (Yeo [10]). Let D be a semicomplete multipartite digraph with the partite sets $V_{1}, V_{2}, \ldots, V_{c}$, and let S be a separating set in D. Let Q_{1} and Q_{2} be a partition of $V(D)-S$, such that $Q_{1} \rightsquigarrow Q_{2}$, and let
$v^{\prime}=\max \left\{\mid V_{i} \cap(V(D)-S) \| i=1,2, \ldots, c\right\}$. Then the following holds:

$$
\begin{equation*}
i_{l}(D) \geqslant \frac{|V(D)|-3|S|-v^{\prime}}{2} \tag{5}
\end{equation*}
$$

In the case of equality in (5) we have also equality in (3) with $X=Q_{1}$ and $Y=V(D)-S$. Furthermore, it follows that $\left|Q_{1}\right|=\left|Q_{2}\right|, S \rightarrow Q_{1}$ and $d\left(Q_{1}, V(D)-Q_{1}\right) \geqslant\left|Q_{1}\right||S|$, and we have equality in (4) with $X=Q_{1}$.

This immediately leads to Yeo's main result.
Theorem 2.5 (Yeo [10]). If D is a semicomplete multipartite digraph, then (1) holds.
Furthermore, if equality holds in (1), then we observe that (5) is fulfilled with equality and there is a partite set V_{i} such that $\left|V_{i}\right|=\alpha(D)$ and $V_{i} \subseteq V(D)-S$.

The following slight extension of a result of the authors [8] is useful to structure the multipartite tournaments that fulfill (1) with equality.

Lemma 2.6 (Volkmann and Winzen [8]). If D is a multipartite tournament with $i_{l}(D) \leqslant l$ and $x \in V(D)$ such that $|V(x)|=p$, then

$$
\frac{|V(D)|-p-l}{2} \leqslant d^{+}(x), d^{-}(x) \leqslant \frac{|V(D)|-p+l}{2} .
$$

All results above yield the following corollary.
Corollary 2.7. Let D be a multipartite tournament with $\kappa(D)=\left(|V(D)|-2 i_{l}(D)-\alpha(D)\right) / 3$ and let S be a separating set with $|S|=\kappa(D)$. Then the following holds:
(i) $\left(|V(D)|-2 i_{l}(D)-\alpha(D)\right) / 3 \in \mathbb{N}_{0}$.
(ii) There is no partite set V_{i} of D such that $V_{i} \cap(V(D)-S) \neq \emptyset$ and $V_{i} \cap S \neq \emptyset$.
(iii) For all partite sets V_{i} of D with $V_{i} \subseteq V(D)-S$ it follows that $\left|V_{i}\right|=\alpha(D)$.
(iv) $V(D)-S$ can be partitioned in the sets Q_{1} and Q_{2} with $Q_{1} \rightsquigarrow Q_{2}$ such that $\left|Q_{1}\right|=\left|Q_{2}\right|, Q_{2} \rightarrow S \rightarrow Q_{1}$ and $D\left[Q_{1}\right]$ and $D\left[Q_{2}\right]$ are strong.
(v) $d^{+}\left(q_{1}\right)=d^{-}\left(q_{1}\right)+i_{l}(D)=\left(|V(D)|-\alpha(D)+i_{l}(D)\right) / 2$ for all $q_{1} \in Q_{1}$ and $d^{-}\left(q_{2}\right)=d^{+}\left(q_{2}\right)+i_{l}(D)=$ $\left(|V(D)|-\alpha(D)+i_{l}(D)\right) / 2$ for all $q_{2} \in Q_{2}$.
(vi) $\alpha(D)$ is even.
(vii) Every partite set V_{i} of D with $V_{i} \subseteq V(D)-S$ can be partitioned in two disjoined sets of vertices V_{i}^{\prime} and $V_{i}^{\prime \prime}$ such that $\left|V_{i}^{\prime}\right|=\left|V_{i}^{\prime \prime}\right|, V_{i}^{\prime} \subseteq Q_{1}$ and $V_{i}^{\prime \prime} \subseteq Q_{2}$.
(viii) $D\left[Q_{1}\right]$ and $D\left[Q_{2}\right]$ are regular multipartite tournaments.

Proof. Since $\kappa(D)$ is a non-negative integer, (i) follows immediately. Let Q_{1} and Q_{2} be a partition of $V(D)-S$ such that $Q_{1} \rightsquigarrow Q_{2}$. According to Theorem 2.5, there is a partite set V_{i} of D such that $V_{i} \subseteq V(D)-S$ and $\left|V_{i}\right|=\alpha(D)$. Now Lemma 2.1 with $x_{i}=\left|Q_{1} \cap V_{i}\right|$ and $v_{i}=\left|V_{i} \cap(V(D)-S)\right|$ yields that

$$
\left|V_{i} \cap(V(D)-S)\right|-2\left|V_{i} \cap Q_{1}\right|=\left|V_{j} \cap(V(D)-S)\right|-2\left|V_{j} \cap Q_{1}\right|
$$

and

$$
\left|V_{i} \cap(V(D)-S)\right|-\left|V_{i} \cap Q_{1}\right|=\left|V_{j} \cap(V(D)-S)\right|-\left|V_{j} \cap Q_{1}\right|
$$

for all indices j with $V_{j} \cap(V(D)-S) \neq \emptyset$. This is possible only if $\left|V_{i} \cap Q_{1}\right|=\left|V_{j} \cap Q_{1}\right|$ and $\left|V_{i} \cap(V(D)-S)\right|=$ $\left|V_{i}\right|=\alpha(D)=\left|V_{j} \cap(V(D)-S)\right|$ for all these indices j. This implies (ii) and (iii).

According to Theorem 2.4, we have $\left|Q_{1}\right|=\left|Q_{2}\right|$. If $D-S$ does not consist of two strong components of the same cardinality, then we can choose a partition Q_{1} and Q_{2} of $V(D)-S$ such that $Q_{1} \rightsquigarrow Q_{2}$ and $\left|Q_{1}\right| \neq\left|Q_{2}\right|$, a contradiction. Furthermore, Theorem 2.4 leads to $S \rightarrow Q_{1}$. Observing the converse D^{-1} of D, we arrive at $Q_{2} \rightarrow S$. Altogether we have shown (iv).

Since, according to Theorem 2.4, $d\left(Q_{1}, V(D)-Q_{1}\right) \geqslant\left|Q_{1}\right||S|=d\left(V(D)-Q_{1}, Q_{1}\right)$, Lemma 2.3 yields $d^{+}\left(q_{1}\right)=$ $d^{-}\left(q_{1}\right)+i_{l}(D)$ for all $q_{1} \in Q_{1}$ and, caused by symmetry, $d^{-}\left(q_{2}\right)=d^{+}\left(q_{2}\right)+i_{l}(D)$ for all $q_{2} \in Q_{2}$. Using Lemma 2.6 with $p=\alpha(D)$, we arrive at (v).

As seen above, Lemma 2.1 implies $\left|V_{i} \cap Q_{1}\right|=\left|V_{j} \cap Q_{1}\right|$ for all indices i and j with $V_{i}, V_{j} \subseteq V(D)-S$. Because of $\left|Q_{1}\right|=\left|Q_{2}\right|$, this exactly means (vii) and thus with (iii) we deduce that (vi) is valid.

According to (vii), we have $d\left(x, Q_{2}\right)=d\left(y, Q_{2}\right)$ for all $x, y \in Q_{1}$. Because of (v), $D\left[Q_{1}\right]$ has to be a regular multipartite tournament. Caused by symmetry, $D\left[Q_{2}\right]$ is also a regular multipartite tournament, which means that (viii) is valid.

This completes the proof of this corollary.
This result yields a simple method to check, whether the inequality (1) can be improved.
Corollary 2.8. Let D be a multipartite tournament. If $\alpha(D)$ is odd, then it follows that:

$$
\kappa(D) \geqslant\left\lceil\frac{|V(D)|-2 i_{l}(D)-\alpha(D)+1}{3}\right\rceil .
$$

In the case of a tournament T we observe that $\alpha(T)=1$ is odd and $i_{\mathrm{g}}(T)=i_{l}(T)=i(T)$. Hence, Corollary 2.8 implies the following result of Thomassen [4].

Theorem 2.9 (Thomassen [4]). If T is a tournament with $i(T) \leqslant k$, then

$$
\kappa(D) \geqslant\left\lceil\frac{|V(T)|-2 k}{3}\right\rceil .
$$

Another consequence of Corollary 2.8 is the following result.
Corollary 2.10. Let D be a c-partite tournament with $c \geqslant 2, i_{\mathrm{g}}(D)=2 k+1$ for an integer $k \geqslant 0$ and $\alpha(D)=\gamma(D)$. Then the following holds:

$$
\kappa(D) \geqslant\left\lceil\frac{|V(D)|-\alpha(D)-2 i_{l}(D)+1}{3}\right\rceil=\left\lceil\frac{|V(D)|-\alpha(D)-4 k-1}{3}\right\rceil .
$$

3. Connectivity in almost regular multipartite tournaments

With the results of the last section we are able to present a shorter proof of Theorem 1.4.
Theorem 3.1 (Volkmann [6]). Let D be a regular c-partite tournament with $c \geqslant 2$. Then,

$$
\kappa(D) \geqslant\left\lceil\frac{|V(D)|-\alpha(D)+1}{3}\right\rceil,
$$

with exception of the case that D is a member of the families \mathscr{F}_{q}.
Proof. If $V_{1}, V_{2}, \ldots, V_{c}$ are the partite sets of D, then $\left|V_{1}\right|=\left|V_{2}\right|=\cdots=\left|V_{c}\right|=r, \alpha(D)=r$, and $i_{l}(D)=0$. Suppose that $\kappa(D)=(|V(D)|-\alpha(D)) / 3=(c-1) r / 3$. It follows that (i)-(viii) of Corollary 2.7 holds. Especially (ii) yields that $|S|=s r$ for an integer s. On the other hand, we see that $|S|=\kappa(D)=(c-1) r / 3$ and thus $s=(c-1) / 3 \in \mathbb{N}$, which means that $c=3 q+1$ for an integer q and $|S|=q r=q \alpha(D)$. Since, according to (iv), $Q_{2} \rightarrow S \rightarrow Q_{1}$ with $\left|Q_{1}\right|=\left|Q_{2}\right|$ and D is regular, $D[S]$ has also to be regular. With Corollary 2.7 (vii) and (viii) we conclude that D belongs to the families \mathscr{F}_{q}.

Now we will examine almost regular multipartite tournaments. At first we want to derive a result that will help us in the following. According to Tewes, Volkmann and Yeo [3], the following lemma holds.

Lemma 3.2 (Tewes, Volkmann and Yeo [3]). If $V_{1}, V_{2}, \ldots, V_{c}$ are the partite sets of a c-partite tournament D such that $\left|V_{1}\right| \leqslant\left|V_{2}\right| \leqslant$ $\cdots \leqslant\left|V_{c}\right|$, then $\left|V_{c}\right| \leqslant\left|V_{1}\right|+2 i_{\mathrm{g}}(D)$.

The following lemma presents a lower bound for the degree of a vertex.
Lemma 3.3. Let D be a multipartite tournament with $i_{\mathrm{g}}(D) \leqslant l$ and $\gamma(D)=r$. Then we have

$$
\frac{|V(D)|-\gamma(D)-2 l}{2} \leqslant d^{+}(x), d^{-}(x)
$$

for all $x \in V(D)$. If furthermore $|V(x)|=r+2 l$, then it follows that:

$$
d^{+}(x), d^{-}(x)=\frac{|V(D)|-r-2 l}{2} .
$$

Proof. Let $x \in V(D)$ be arbitrary. If $|V(x)| \leqslant r+l$, then the first assertion holds by Lemma 2.6. Hence, let $\left|V\left(x_{1}\right)\right| \geqslant r+$ $l+1$. Suppose that $d^{+}\left(x_{1}\right) \leqslant(|V(D)|-r-2 l-1) / 2$. Because of $i_{\mathrm{g}}(D) \leqslant l$, we conclude that $d^{+}(y), d^{-}(y) \leqslant(|V(D)|-$ $r-1) / 2$ for all $y \in V(D)$. If we take a vertex $x_{2} \in V(D)$ with $\left|V\left(x_{2}\right)\right|=r$, then we arrive at the contradiction

$$
|V(D)|=d^{+}\left(x_{2}\right)+d^{-}\left(x_{2}\right)+r \leqslant|V(D)|-r-1+r=|V(D)|-1 .
$$

Hence, it has to be $d^{+}(x) \geqslant(|V(D)|-\gamma(D)-2 l) / 2$ for all vertices $x \in V(D)$. Since the proof for $d^{-}(x)$ follows the same lines, the first assertion of this lemma is completed.
Now, let $x \in V(D)$ with $|V(x)|=r+2 l$. Suppose that $d^{+}(x) \geqslant(|V(D)|-r-2 l+1) / 2$. The fact that $|V(D)|=$ $d^{+}(x)+d^{-}(x)+r+2 l$ yields that $d^{-}(x) \leqslant(|V(D)|-r-2 l-1) / 2$, a contradiction to the first assertion of this lemma. This completes the proof of the lemma.

Together with Corollary 2.7, this yields the following result.
Corollary 3.4. Let D be a multipartite tournament such that $\kappa(D)=\left(|V(D)|-2 i_{l}(D)-\alpha(D)\right) / 3$ and $i_{\mathrm{g}}(D)=i_{l}(D) \geqslant 1$. Then it follows that $\alpha(D)<\gamma(D)+2 i_{\mathrm{g}}(D)$.

Proof. According to (iii) and (v) in Corollary 2.7, we observe that

$$
d^{+}\left(q_{1}\right)=d^{-}\left(q_{1}\right)+i_{\mathrm{g}}(D)=\frac{|V(D)|-\alpha(D)+i_{\mathrm{g}}(D)}{2}
$$

and $\left|V\left(q_{1}\right)\right|=\alpha(D)$ for all $q_{1} \in Q_{1}$. Assume that $\alpha(D) \geqslant \gamma(D)+2 i_{\mathrm{g}}(D)$. Lemma 3.2 yields that $\alpha(D)=\gamma(D)+2 i_{\mathrm{g}}(D)$. Now Lemma 3.3 leads to the contradiction

$$
d^{+}\left(q_{1}\right)=\frac{|V(D)|-\gamma(D)-2 i_{\mathrm{g}}(D)}{2}=\frac{|V(D)|-\alpha(D)}{2} .
$$

The following examples will present the families of the multipartite tournaments with $i_{\mathrm{g}}(D)=1$, which realize (1).
Example 3.5. Let the integers k, m, r, p, l, v, q, c and k_{1} fulfill one of the following properties:
(1) $r=2 p+1 \geqslant 1, k=3 m \geqslant 3, l=2 v, 0 \leqslant v \leqslant(m-1) /(4 p+2), k_{1}=m-1-2 v(2 p+1), q=2 v+2 v p+m$ and $c=3 q+1$.
(2) $r=4 p+3 \geqslant 3, k=3 m \geqslant 3,0 \leqslant l \leqslant(m-1) /(4 p+3), k_{1}=m-1-l(4 p+3), q=2 l+2 l p+m$ and $c=3 q+1$.
(3) $r=12 p+3 \geqslant 3, k=3 m, m \geqslant 8 p+3,1 \leqslant l \leqslant(4 p+m) /(12 p+3), k_{1}=4 p+m-l(12 p+3), q=m-2 p-1+l(6 p+2)$ and $c=3 q+2$.
(4) $r=6 p+3 \geqslant 3, k=3 m, m \geqslant 4 p+3, l=2 v+1 \geqslant 1,0 \leqslant v \leqslant(m-4 p-3) /(12 p+6), k_{1}=2 p+m-(2 v+1)(6 p+3)$, $q=m-p-1+(2 v+1)(3 p+2)$ and $c=3 q+2$.
(5) $r=12 p+11 \geqslant 11, k=3 m+1, m \geqslant 8 p+8,1 \leqslant l \leqslant(m+4 p+3) /(12 p+11), k_{1}=4 p+3+m-l(12 p+11)$, $q=m-2 p-2+l(6 p+6)$ and $c=3 q+2$.
(6) $r=6 p+5 \geqslant 5, k=3 m+1, m \geqslant 4 p+4, l=2 v+1,0 \leqslant v \leqslant(m-4 p-4) /(12 p+10), k_{1}=2 p+1+m-(2 v+1)(6 p+5)$, $q=m-p-1+(2 v+1)(3 p+3)$ and $c=3 q+2$.
(7) $r=12 p+7 \geqslant 7, k=3 m+2, m \geqslant 8 p+5,1 \leqslant l \leqslant(m+4 p+2) /(12 p+7), k_{1}=4 p+2+m-l(12 p+7)$, $q=m-2 p-1+l(6 p+4)$ and $c=3 q+2$.
(8) $r=6 p+1 \geqslant 1, k=3 m+2, m \geqslant 4 p+1, l=2 v+1,0 \leqslant v \leqslant(m-4 p-1) /(12 p+2), k_{1}=2 p+m-(2 v+1)(6 p+1)$, $q=m-p+(2 v+1)(3 p+1)$ and $c=3 q+2$.
(9) $r=12 p+3 \geqslant 3, k=3 m, m \geqslant 4 p+2,0 \leqslant l \leqslant(m-4 p-2) /(12 p+3), k_{1}=m-4 p-2-l(12 p+3)$, $q=m+2 p+1+l(6 p+2)$ and $c=3 q$.
(10) $r=6 p+3 \geqslant 3, k=3 m, m \geqslant 8 p+5, l=2 v+1,0 \leqslant v \leqslant(m-8 p-5) /(12 p+6), k_{1}=m-2 p-2-(2 v+1)(6 p+3)$, $q=m+p+1+(2 v+1)(3 p+2)$ and $c=3 q$.
(11) $r=6 p+1 \geqslant 1, k=3 m+1, m \geqslant 8 p+2, l=2 v+1,0 \leqslant v \leqslant(m-8 p-2) /(12 p+2), k_{1}=m-2 p-1-(2 v+1)(6 p+1)$, $q=m+p+1+(2 v+1)(3 p+1)$ and $c=3 q$.
(12) $r=12 p+7 \geqslant 7, k=3 m+1, m \geqslant 4 p+3,0 \leqslant l \leqslant(m-4 p-3) /(12 p+7), k_{1}=m-4 p-3-l(12 p+7)$, $q=m+2 p+2+l(6 p+4)$ and $c=3 q$.
(13) $r=6 p+5 \geqslant 5, k=3 m+2, m \geqslant 8 p+7, l=2 v+1,0 \leqslant v \leqslant(m-8 p-7) /(12 p+10), k_{1}=m-2 p-2-(2 v+1)(6 p+5)$, $q=m+2+p+(2 v+1)(3 p+3)$ and $c=3 q$.
(14) $r=12 p+11 \geqslant 11, k=3 m+2, m \geqslant 4 p+4,0 \leqslant l \leqslant(m-4 p-4) /(12 p+11), k_{1}=m-4 p-4-l(12 p+11)$, $q=m+3+2 p+l(6 p+6)$ and $c=3 q$.

If the properties in (i) are valid $(i=1,2, \ldots, 14)$ for the indices k, m, r, p, l, v, q, c and k_{1}, then we define the families \mathscr{G}_{q}^{i} of c-partite tournaments with the partite sets $W_{1}=A_{1} \cup B_{1}, W_{2}=A_{2} \cup B_{2}, \ldots, W_{k-k_{1}}=A_{k-k_{1}} \cup B_{k-k_{1}}$ and $W_{k-k_{1}+1}, W_{k-k_{1}+2}, \ldots, W_{c}$ with $2\left|A_{i}\right|=2\left|B_{i}\right|=\left|W_{j}\right|=r+1$ for $i=1,2, \ldots, k-k_{1}$ and $j=k-k_{1}+1, k-k_{1}+2, \ldots, k$ and $\left|W_{k+1}\right|=\left|W_{k+2}\right|=\cdots=\left|W_{c}\right|=r$ as follows.

The partite sets $W_{k-k_{1}+1}, W_{k-k_{1}+2}, \ldots, W_{c}$ induce a $(q+l)$-partite tournament H such that $d_{H}^{+}(x)=d_{H}^{-}(x)$ for all $x \in W_{k+1} \cup W_{k+2} \cup \cdots \cup W_{c}$ and $\left|d_{H}^{+}(x)-d_{H}^{-}(x)\right|=1$ for all $x \in W_{k-k_{1}+1} \cup W_{k-k_{1}+2} \cup \cdots \cup W_{k} ;$ the sets A_{1}, A_{2}, \ldots, $A_{k-k_{1}}$ induce a $[(c-q-l-1)(r+1) / 4]$-regular $(c-q-l)$-partite tournament A; and analogously the sets $B_{1}, B_{2}, \ldots, B_{k-k_{1}}$ induce a $[(c-q-l-1)(r+1) / 4]$-regular $(c-q-l)$-partite tournament B. In addition, let $H \rightarrow A \rightsquigarrow B \rightarrow H$. If $D \in \mathscr{G}_{q}^{i}$ for $i=1,2, \ldots, 14$, then it is straightforward to show that D is a c-partite tournament with $i_{\mathrm{g}}(D)=i_{l}(D)=1$ containing the separating set $V(H)$ such that $|V(H)|=\kappa(D)=\left(c-k+k_{1}\right) r+k_{1}=(|V(D)|-$ $\alpha(D)-2) / 3$.

Example 3.6. Let the integers k, m, r, p, l, v, q, c and k_{1} fulfill one of the following properties:
(1) $r=2+4 p \geqslant 2, k=3 m+1, m \geqslant 1+2 p, 1 \leqslant l \leqslant m /(1+2 p), k_{1}=m-l(1+2 p), q=m+l(1+p)$ and $c=3 q+1$.
(2) $r=4+4 p \geqslant 4, k=3 m+1, m \geqslant 4+4 p, l=2 v+2,0 \leqslant v \leqslant(m-4-4 p) /(4+4 p), k_{1}=m-(2 v+2)(2 p+2)$, $q=m+(v+1)(2 p+3)$ and $c=3 q+1$.
(3) $r=6+12 p \geqslant 6, k=3 m+1, m \geqslant 5+10 p, l=2 v, 1 \leqslant v \leqslant \frac{1}{6}(1+(m /(1+2 p))), k_{1}=1+2 p+m-6 v-12 p v$, $q=4 v+6 p v+m-p-1$ and $c=3 q+2$.
(4) $r=10+12 p \geqslant 10, k=3 m+2, m \geqslant 10 p+8, l=2 v, 1 \leqslant v \leqslant(m+2 p+2) /(12 p+10), k_{1}=2 p+2+m-12 p v-10 v$, $q=6 v+6 p v+m-p-1$ and $c=3 q+2$.
(5) $r=2+12 p \geqslant 2, k=3 m, m \geqslant 10 p+2, l=2 v, 1 \leqslant v \leqslant(m+2 p) /(12 p+2), k_{1}=2 p+m-2 v-12 p v$, $q=2 v+6 p v+m-p-1$ and $c=3 q+2$.
(6) $r=6 p+2 \geqslant 2, k=3 m, m \geqslant 2 p+1, l=2 v+1,0 \leqslant v \leqslant(m-2 p-1) /(6 p+2), k_{1}=m-2 p-2 v-6 p v-1$, $q=2 v+3 p v+m+p$ and $c=3 q+2$.
(7) $r=6+6 p \geqslant 6, k=3 m+1, m \geqslant 2 p+2, l=2 v+1,0 \leqslant v \leqslant \frac{1}{6}((m /(p+1))-2), k_{1}=m-2 p-6 p v-6 v-2$, $q=4 v+3 v p+m+p+1$ and $c=3 q+2$.
(8) $r=4+6 p \geqslant 4, k=3 m+2, m \geqslant 2 p+1, l=2 v+1,0 \leqslant v \leqslant(m-2 p-1) /(4+6 p), k_{1}=m-2 p-1-6 p v-4 v$, $q=3 v+3 p v+m+p+1$ and $c=3 q+2$.
(9) $r=10+12 p \geqslant 10, k=3 m, m \geqslant 2 p+2, l=2 v, 0 \leqslant v \leqslant(m-2 p-2) /(10+12 p), k_{1}=m-2-2 p-10 v-12 p v$, $q=6 v+6 p v+m+1+p$ and $c=3 q$.
(10) $r=6+12 p \geqslant 6, k=3 m+1, m \geqslant 2 p+1, l=2 v, 0 \leqslant v \leqslant(m-2 p-1) /(6+12 p), k_{1}=m-2 p-1-12 p v-6 v$, $q=4 v+6 p v+m+p+1$ and $c=3 q$.
(11) $r=2+12 p \geqslant 2, k=3 m+2, m \geqslant 2 p, l=2 v, 0 \leqslant v \leqslant(m-2 p) /(2+12 p), k_{1}=m-2 p-2 v-12 p v$, $q=2 v+6 p v+m+1+p$ and $c=3 q$.
(12) $r=6 p+4 \geqslant 4, k=3 m, m \geqslant 3+4 p, l=2 v+1,0 \leqslant v \leqslant(m-3-4 p) /(4+6 p), k_{1}=m-3-4 p-4 v-6 p v$, $q=3 v+2+3 p v+m+2 p$ and $c=3 q$.
(13) $r=6+6 p \geqslant 6, k=3 m+1, m \geqslant 4+4 p, l=2 v+1,0 \leqslant v \leqslant(m-4-4 p) /(6+6 p), k_{1}=m-4-4 p-6 v-6 p v$, $q=4 v+3 p v+2 p+m+3$ and $c=3 q$.
(14) $r=2+6 p \geqslant 2, k=3 m+2, m \geqslant 4 p+1, l=2 v+1,0 \leqslant v \leqslant(m-4 p-1) /(2+6 p), k_{1}=m-4 p-2 v-6 p v-1$, $q=2 v+2+3 p v+m+2 p$ and $c=3 q$.

If the properties in (i) are valid $(i=1,2, \ldots, 14)$ for the indices k, m, r, p, l, v, q, c and k_{1}, then we define the families \mathscr{H}_{q}^{i} of c-partite tournaments with the partite sets $W_{1}=A_{1} \cup B_{1}, W_{2}=A_{2} \cup B_{2}, \ldots, W_{k-k_{1}}=A_{k-k_{1}} \cup B_{k-k_{1}}$ and $W_{k-k_{1}+1}, W_{k-k_{1}+2}, \ldots, W_{c}$ with $2\left|A_{i}\right|=2\left|B_{i}\right|=\left|W_{j}\right|=r+2$ for $i=1,2, \ldots, k-k_{1}$ and $j=k-k_{1}+1, k-k_{1}+2, \ldots, k$ and $\left|W_{k+1}\right|=\left|W_{k+2}\right|=\cdots=\left|W_{c}\right|=r$ as follows.

The partite sets $W_{k-k_{1}+1}, W_{k-k_{1}+2}, \ldots, W_{c}$ induce a local regular $(q+l)$-partite tournament H; the sets A_{1}, A_{2}, \ldots, $A_{k-k_{1}}$ induce a $[(c-q-l-1)(r+2) / 4]$-regular $(c-q-l)$-partite tournament A; and the sets $B_{1}, B_{2}, \ldots, B_{k-k_{1}}$ induce a $[(c-q-l-1)(r+2) / 4]$-regular $(c-q-l)$-partite tournament B. In addition, let $H \rightarrow A \rightsquigarrow B \rightarrow H$. If $D \in \mathscr{H}_{q}^{i}$ for $i=1,2, \ldots, 14$, then it is left to the reader to show that D is a c-partite tournament with $i_{\mathrm{g}}(D)=1$ and $i_{l}(D)=0$ containing the separating set $V(H)$ such that $|V(H)|=\kappa(D)=\left(c-k+k_{1}\right) r+2 k_{1}=(|V(D)|-\alpha(D)) / 3$.

There are no other c-partite tournaments with $i_{\mathrm{g}}(D)=1$ and $\kappa(D)=\left(|V(D)|-\alpha(D)-2 i_{l}(D)\right) / 3$ as we can see in the following theorem.

Theorem 3.7. Let D be an almost regular c-partite tournament with $c \geqslant 2$. Then,

$$
\kappa(D) \geqslant\left\lceil\frac{|V(D)|-\alpha(D)-2 i_{l}(D)+1}{3}\right\rceil,
$$

with exception of the case that D is a member of one of the families $\mathscr{F}_{q}, \mathscr{G}_{q}^{i}$ or \mathscr{H}_{q}^{i} with $i \in\{1,2, \ldots, 14\}$.
Proof. If $i_{\mathrm{g}}(D)=0$, then the assertion follows from Theorem 3.1. Hence, let D be a c-partite tournament with $i_{\mathrm{g}}(D)=1$ and the partite sets $V_{1}, V_{2}, \ldots, V_{c}$ such that $r=\left|V_{1}\right| \leqslant\left|V_{2}\right| \leqslant \cdots \leqslant\left|V_{c}\right|=\alpha(D)$. According to Lemma 3.2, we have $r \leqslant \alpha(D) \leqslant r+2$. Suppose that $\kappa(D)=\left(|V(D)|-2 i_{l}(D)-\alpha(D)\right) / 3$. Let S, Q_{1} and Q_{2} be defined as in Corollary 2.7 and observe that (i)-(viii) of this corollary holds. Now we distinguish different cases.

Case 1. Let $\alpha(D)=r$. In this case, Corollary 2.10 yields a contradiction.
Case 2. Assume that $\alpha(D)=r+1$. This implies that $i_{l}(D)=i_{\mathrm{g}}(D)=1$ and according to Corollary 2.7 (vi), r is odd. Hence, we may suppose that $r=2 p+1$ for an integer $p \geqslant 0$. Let $|V(D)|=c r+k$ with $0<k<c$. Because of Corollary 2.7 (v), we deduce that the number of partite sets with the cardinality r has to be odd, which means that $c-k$ is odd. Again with Corollary 2.7 we see that S consists of all the $c-k$ partite sets of cardinality r and of $k_{1} \geqslant 0$ partite sets of cardinality $r+1$. This yields that $|S|=\left(c-k+k_{1}\right) r+k_{1}$. Since $\left|Q_{1}\right|=\left|Q_{2}\right|$ and $Q_{2} \rightarrow S \rightarrow Q_{1}$, it follows that $d_{D[S]}^{+}(x)=d_{D[S]}^{-}(x)$ for all vertices x belonging to a partite set of cardinality r and $\left|d_{D[S]}^{+}(x)-d_{D[S]}^{-}\right|=1$ for all vertices $x \in S$ belonging to a partite set of cardinality $r+1$.

Subcase 2.1. Let $c=3 q+1$. If $D[S]$ is $(q+l)$-partite, then we arrive at

$$
\begin{aligned}
|S| & =\left(c-k+k_{1}\right) r+k_{1}=(q+l) r+k_{1}=\frac{c r+k-2-(r+1)}{3} \\
& =q r+\frac{k}{3}-1=(q+l) r+\frac{k}{3}-1-l r .
\end{aligned}
$$

This implies that $k=3 m$ for an integer $m \geqslant 1, c-k+k_{1}=q+l$ and $k_{1}=m-1-l(2 p+1) \geqslant 0$. It follows that $l \leqslant(m-1) /(2 p+1)$ and

$$
\begin{aligned}
& c-k+k_{1}=3 q+1-3 m+m-1-l(2 p+1)=q+l \\
& \quad \Leftrightarrow 2 q=2 l+2 l p+2 m \Rightarrow q=l+l p+m .
\end{aligned}
$$

This leads to

$$
\begin{aligned}
c= & 3 q+1=3 l+3 l p+3 m+1=k+1+3 l+3 l p<c+1+3 l+3 l p \\
& \Rightarrow 1+3 l+3 l p>0 \Rightarrow l>-\frac{1}{3+3 p} \Rightarrow l \geqslant 0 .
\end{aligned}
$$

Since $c-k=1+3 l+3 l p=1+3 l(p+1)$ has to be odd, it follows that l is even or p is odd.
If $l=2 v$, then we deduce that $0 \leqslant v \leqslant(m-1) /(4 p+2), m \geqslant 1, k_{1}=m-1-2 v(2 p+1)$ and $q=2 v+2 v p+m$. Corollary 2.7 yields that D belongs to the families \mathscr{G}_{q}^{1}.

If $p=2 s+1 \geqslant 1$, then it follows that $r=4 s+3 \geqslant 3, m \geqslant 1,0 \leqslant l \leqslant(m-1) /(4 s+3)$ and $q=2 l+2 l s+m$. Corollary 2.7 implies that D is an element of the families \mathscr{G}_{q}^{2}.

Subcase 2.2. Suppose that $c=3 q+2$ for an integer $q \geqslant 0$. If $D[S]$ is $(q+l)$-partite, then we observe that

$$
\begin{aligned}
|S| & =\left(c-k+k_{1}\right) r+k_{1}=(q+l) r+k_{1}=\frac{c r+k-r-3}{3} \\
& =q r+\frac{r+k}{3}-1=(q+l) r+\frac{r+k}{3}-1-l r,
\end{aligned}
$$

and thus $c-k+k_{1}=q+l$ and $k_{1}=((r+k) / 3)-1-l r$. This leads to

$$
\begin{aligned}
3 q & +2-k+\frac{r+k}{3}-1-l r=3 q+1+\frac{r-2 k}{3}-l r=q+l \\
& \Rightarrow 2 q=\frac{2 k-r}{3}-1+l(r+1) \Rightarrow q=\frac{2 k-r-3}{6}+l \frac{r+1}{2} .
\end{aligned}
$$

Since $r=2 p+1$, we have

$$
\begin{equation*}
q=\frac{2 k-2 p-4}{6}+l(p+1)=\frac{k-p-2}{3}+l(p+1) . \tag{6}
\end{equation*}
$$

Subcase 2.2.1. Let $k=3 m$ for an integer $m \geqslant 1$. With (6) we arrive at $q=m-((p+2) / 3)+l(p+1)$ and thus $p=3 s+1, r=6 s+3$ and $q=m-s-1+l(3 s+2)$ for an $s \in \mathbb{N}_{0}$. Furthermore we see that

$$
\begin{aligned}
& c=3 q+2=3 m-3 s-3+3 l(3 s+2)+2=k-3 s-1+3 l(3 s+2)<c-3 s-1+3 l(3 s+2) \\
& \Rightarrow-3 s-1+3 l(3 s+2)>0 \Rightarrow l>\frac{3 s+1}{9 s+6} \Rightarrow l \geqslant 1
\end{aligned}
$$

and

$$
k_{1}=\frac{r+k}{3}-1-l r=2 s+m-l(6 s+3) \geqslant 0 \Rightarrow l \leqslant \frac{2 s+m}{6 s+3} .
$$

Since $c-k=-3 s-1+3 l(3 s+2)=3(3 l s+2 l-s)-1$ is odd, we conclude that $3 l s-s=s(3 l-1)$ is even and thus s is even or l is odd.

If $s=2 n$ with $n \in \mathbb{N}_{0}$, then we arrive at $r=12 n+3, q=m-2 n-1+l(6 n+2), k_{1}=4 n+m-l(12 n+3)$, $1 \leqslant l \leqslant(4 n+m) /(12 n+3)$ and thus $m \geqslant 8 n+3$. According to Corollary $2.7, D$ is a member of the families \mathscr{G}_{q}^{3}.

If $l=2 v+1$ for an integer v, then it follows that $0 \leqslant v \leqslant(m-4 s-3) /(12 s+6), m \geqslant 4 s+3, q=m-s-1+(2 v+1)(3 s+2)$ and $k_{1}=2 s+m-(2 v+1)(6 s+3)$. Again with Corollary 2.7 we deduce that D is an element of the families \mathscr{G}_{q}^{4}.

Subcase 2.2.2. Assume that $k=3 m+1$ with $m \in \mathbb{N}_{0}$. According to (6), we have $q=m-((p+1) / 3)+l(p+1)$ and thus $p=3 s+2$ for an integer $s \geqslant 0, r=6 s+5$ and $q=m-s-1+l(3 s+3)$. Furthermore we conclude that

$$
\begin{aligned}
c= & 3 q+2=3 m-3 s-3+3 l(3 s+3)+2=k-2-3 s+3 l(3 s+3) \\
& \Rightarrow-2-3 s+3 l(3 s+3)>0 \Rightarrow l>\frac{3 s+2}{3(3 s+3)} \Rightarrow l \geqslant 1
\end{aligned}
$$

and

$$
k_{1}=\frac{r+k}{3}-1-l r=2 s+1+m-l(6 s+5) \geqslant 0 \Rightarrow l \leqslant \frac{m+2 s+1}{6 s+5} .
$$

Since $c-k=-2-3 s+3 l(3 s+3)=-2+3(3 l s+3 l-s)$ is odd, we observe that $3 l s+3 l-s$ is odd. This is possible only if s is odd or l is odd.

If $s=2 n+1$ for an integer $n \geqslant 0$, then it follows that $r=12 n+11,1 \leqslant l \leqslant(m+4 n+3) /(12 n+11), m \geqslant 8 n+8$, $k_{1}=4 n+3+m-l(12 n+11)$ and $q=m-2 n-2+l(6 n+6)$. According to Corollary 2.7 , we deduce that D belongs to the families \mathscr{G}_{q}^{5}.
If $l=2 v+1$ for an integer v, then it follows that $0 \leqslant v \leqslant(m-4 s-4) /(12 s+10), m \geqslant 4 s+4, k_{1}=2 s+1+m-$ $(2 v+1)(6 s+5)$ and $q=m-s-1+(2 v+1)(3 s+3)$. Hence, using Corollary 2.7 we conclude that D is a member of the families \mathscr{G}_{q}^{6}.

Subcase 2.2.3. Suppose that $k=3 m+2$ with $m \in \mathbb{N}_{0}$. According to (6), we observe that $q=m-(p / 3)+l(p+1)$, and thus $p=3 s, r=6 s+1$ and $q=m-s+l(3 s+1)$ with $s \geqslant 0$. Furthermore we see that

$$
\begin{aligned}
c= & 3 q+2=3 m-3 s+3 l(3 s+1)+2=k-3 s+3 l(3 s+1) \\
& \Rightarrow-3 s+3 l(3 s+1)>0 \Rightarrow l>\frac{3 s}{9 s+3} \Rightarrow l \geqslant 1
\end{aligned}
$$

and

$$
k_{1}=\frac{r+k}{3}-1-l r=2 s+m-l(6 s+1) \geqslant 0 \Rightarrow l \leqslant \frac{m+2 s}{6 s+1} .
$$

Since $c-k=-3 s+3 l(3 s+1)=3(3 l s+l-s)$ is odd, we see that $3 l s+l-s$ is odd. This is possible only if s is odd or l is odd.

If $s=2 n+1$ with $n \in \mathbb{N}_{0}$, then it follows that $r=12 n+7,1 \leqslant l \leqslant(m+4 n+2) /(12 n+7), m \geqslant 8 n+5$, $q=m-2 n-1+l(6 n+4)$ and $k_{1}=4 n+2+m-l(12 n+7)$. Using Corollary 2.7 we deduce that D is an element of the families \mathscr{G}_{q}^{7}.

If $l=2 v+1$ for an integer v, then we have $0 \leqslant v \leqslant(m-4 s-1) /(12 s+2), m \geqslant 4 s+1, q=m-s+(2 v+1)(3 s+1)$ and $k_{1}=2 s+m-(2 v+1)(6 s+1)$. Again with Corollary 2.7 we conclude that D is a member of the families \mathscr{G}_{q}^{8}.

Subcase 2.3. Let $c=3 q$ for an integer $q \geqslant 1$. If S is $(q+l)$-partite, then it follows that:

$$
\begin{aligned}
|S| & =\left(c-k+k_{1}\right) r+k_{1}=(q+l) r+k_{1}=\frac{c r+k-r-3}{3} \\
& =q r+\frac{k-r}{3}-1=(q+l) r+\frac{k-r}{3}-1-l r,
\end{aligned}
$$

and thus $c-k+k_{1}=q+l$ and $k_{1}=((k-r) / 3)-1-l r$. This implies that

$$
\begin{aligned}
& 3 q-k+\frac{k-r}{3}-1-l r=q+l \Rightarrow 2 q=\frac{r+2 k}{3}+1+l(r+1) \\
& \quad \Rightarrow q=\frac{r+2 k+3}{6}+l \frac{r+1}{2} .
\end{aligned}
$$

Because of $r=2 p+1$ this means that

$$
\begin{equation*}
q=\frac{2 k+2 p+4}{6}+l(p+1)=\frac{k+p+2}{3}+l(p+1) . \tag{7}
\end{equation*}
$$

Subcase 2.3.1. Assume that $k=3 m$ with $m \in \mathbb{N}$. According to (7), this leads to $q=m+((p+2) / 3)+l(p+1)$, and thus $p=3 s+1, r=6 s+3$ and $q=m+s+1+l(3 s+2)$ for an integer $s \geqslant 0$. Furthermore we observe that

$$
\begin{aligned}
c= & 3 q=3 m+3 s+3+3 l(3 s+2)=k+3 s+3+3 l(3 s+2) \\
& \Rightarrow 3 s+3+3 l(3 s+2)>0 \Rightarrow l>\frac{-s-1}{3 s+2} \Rightarrow l \geqslant 0
\end{aligned}
$$

and

$$
k_{1}=\frac{k-r}{3}-1-l r=m-2 s-2-l(6 s+3) \geqslant 0 \Rightarrow l \leqslant \frac{m-2 s-2}{6 s+3} .
$$

Since $c-k=3 s+3+3 l(3 s+2)=3+3(s+3 l s+2 l)$ is odd, we deduce that $s+3 l s=s(1+3 l)$ is even, which means that s is even or l is odd.

If $s=2 n$ with $s \in \mathbb{N}_{0}$, then it follows that $r=12 n+3, q=m+2 n+1+l(6 n+2), 0 \leqslant l \leqslant(m-4 n-2) /(12 n+3)$, $m \geqslant 4 n+2$ and $k_{1}=m-4 n-2-l(12 n+3)$. According to Corollary 2.7 , we see that D is member of the families \mathscr{G}_{q}^{9}. If $l=2 v+1$ for an integer v, then we arrive at $0 \leqslant v \leqslant(m-8 s-5) /(12 s+6), m \geqslant 8 s+5, q=m+s+1+(2 v+1)(3 s+2)$ and $k_{1}=m-2 s-2-(2 v+1)(6 s+3)$. Again with Corollary 2.7 we observe that D belongs to the families \mathscr{G}_{q}^{10}.

Subcase 2.3.2. Suppose that $k=3 m+1$ for an integer $m \geqslant 0$. With (7) this yields $q=m+(p / 3)+1+l(p+1)$ and thus $p=3 s, r=6 s+1$ and $q=m+s+1+l(3 s+1)$ with $s \in \mathbb{N}_{0}$. Furthermore, we conclude that

$$
\begin{aligned}
c= & 3 q=3 m+3 s+3+3 l(3 s+1)=k+3 s+2+3 l(3 s+1) \\
& \Rightarrow 3 s+2+3 l(3 s+1)>0 \Rightarrow l>-\frac{3 s+2}{9 s+3} \Rightarrow l \geqslant 0
\end{aligned}
$$

and

$$
k_{1}=\frac{k-r}{3}-1-l r=m-2 s-1-l(6 s+1) \geqslant 0 \Rightarrow l \leqslant \frac{m-2 s-1}{6 s+1} .
$$

Since $c-k=3 s+2+3 l(3 s+1)=2+3(3 l s+l+s)$ is odd, it follows that $3 l s+l+s$ is odd. This is possible only if s is odd or l is odd.
If $l=2 v+1$ for an integer v, then we arrive at $0 \leqslant v \leqslant(m-8 s-2) /(12 s+2), m \geqslant 8 s+2, q=m+s+1+(2 v+1)(3 s+1)$ and $k_{1}=m-2 s-1-(2 v+1)(6 s+1)$. According to Corollary 2.7, D is an element of the families \mathscr{G}_{q}^{11}.

If $s=2 n+1$ for an integer $n \geqslant 0$, then it follows that $r=12 n+7,0 \leqslant l \leqslant(m-4 n-3) /(12 n+7), m \geqslant 4 n+3$, $q=m+2 n+2+l(6 n+4)$ and $k_{1}=m-4 n-3-l(12 n+7)$. Again with Corollary 2.7 we see that D belongs to the families \mathscr{G}_{q}^{12}.

Subcase 2.3.3. Let $k=3 m+2$ with $m \in \mathbb{N}_{0}$. Using (7), we observe that $q=m+1+((p+1) / 3)+l(p+1)$, and thus $p=3 s+2, r=6 s+5$ and $q=m+2+s+l(3 s+3)$. Furthermore we have

$$
\begin{aligned}
c & =3 q=3 m+6+3 s+3 l(3 s+3)=k+4+3 s+3 l(3 s+3) \\
& \Rightarrow 4+3 s+3 l(3 s+3)>0 \Rightarrow l>-\frac{4+3 s}{9 s+9} \Rightarrow l \geqslant 0
\end{aligned}
$$

and

$$
k_{1}=\frac{k-r}{3}-1-l r=m-2 s-2-l(6 s+5) \geqslant 0 \Rightarrow l \leqslant \frac{m-2 s-2}{6 s+5} .
$$

The fact that $c-k=4+3(3 l s+3 l+s)$ is odd implies that $3 l s+3 l+s=s(3 l+1)+3 l$ is odd. This is possible only if l is odd or if s is odd.

If $l=2 v+1$ for an integer v, then we deduce that $0 \leqslant v \leqslant(m-8 s-7) /(12 s+10), m \geqslant 8 s+7, q=m+2+s+$ $(2 v+1)(3 s+3)$ and $k_{1}=m-2 s-2-(2 v+1)(6 s+5)$. According to Corollary 2.7, we have that D is a member of the families \mathscr{G}_{q}^{13}.

If $s=2 n+1$ for an integer $n \geqslant 0$, then we observe that $r=12 n+11,0 \leqslant l \leqslant(m-4 n-4) /(12 n+11), m \geqslant 4 n+4$, $q=m+3+2 n+l(6 n+6)$ and $k_{1}=m-4 n-4-l(12 n+11)$. Using Corollary 2.7 it follows that D belongs to the families \mathscr{G}_{q}^{14}.

Case 3. Let $\alpha(D)=r+2$. According to Corollary 3.4 we have $i_{l}(D)<i_{\mathrm{g}}(D)$ and hence $i_{l}(D)=0$. Because of $Q_{2} \rightarrow S \rightarrow Q_{1}, D[S]$ has to be local regular. Since $V_{i} \subseteq D$ for all partite sets V_{i} with $\left|V_{i}\right| \leqslant r+1$, this implies that D does not contain any partite set of order $r+1$. Hence, let $|V(D)|=c r+2 k$ such that $0<k<c$. Using Corollary 2.7 we observe that S contains all the $c-k$ partite sets of order r. If S contains additionally k_{1} partite sets of order $r+2$, then it follows that $|S|=\left(c-k+k_{1}\right) r+2 k_{1}$.

Subcase 3.1. Suppose that $c=3 q+1$ with $q \in \mathbb{N}$. If S is $(q+l)$-partite, then it follows that:

$$
\begin{aligned}
|S| & =\left(c-k+k_{1}\right) r+2 k_{1}=(q+l) r+2 k_{1}=\frac{c r+2 k-(r+2)}{3} \\
& =q r+\frac{2 k-2}{3}=(q+l) r+\frac{2 k-2}{3}-l r .
\end{aligned}
$$

Since $|S| \in \mathbb{N}_{0}$, we observe that $k=3 m+1$ for an integer $m \geqslant 0$, and thus $c-k+k_{1}=q+l$ and $k_{1}=m-l(r / 2)$. This yields that

$$
\begin{gathered}
3 q+1-(3 m+1)+m-l \frac{r}{2}=3 q-2 m-l \frac{r}{2}=q+l \\
\Rightarrow 2 q=2 m+l\left(1+\frac{r}{2}\right) \Rightarrow q=m+l \frac{r+2}{4} .
\end{gathered}
$$

If $l \leqslant 0$, then we arrive at $q \leqslant m$ and thus $c \leqslant k$, a contradiction. Hence, let $l \geqslant 1$. Because of $q \in \mathbb{N}$, we conclude that $l(r+2) / 4 \in \mathbb{N}$. Since r is even this implies that $r=2+4 p$ or $r=4+4 p$ and $l=2 v+2$ for integers $p, v \geqslant 0$.

If $r=2+4 p$, then we see that $q=m+l(1+p)$ and $k_{1}=m-l(1+2 p)$. The fact that $k_{1} \geqslant 0$ yields that $1 \leqslant l \leqslant m /(1+2 p)$ and thus $m \geqslant 1+2 p$. Using Corollary 2.7, it is obvious that D belongs to the families \mathscr{H}_{q}^{1}.
If $r=4+4 p$ and $l=2 v+2$, then it follows that $q=m+(v+1)(2 p+3)$ and $k_{1}=m-(2 v+2)(2 p+2)$. Because of $k_{1} \geqslant 0$ we have $0 \leqslant v \leqslant(m-4-4 p) /(4+4 p)$ and thus $m \geqslant 4+4 p$. Again with Corollary 2.7 we deduce that D is a member of the families \mathscr{H}_{q}^{2}.

Subcase 3.2. Assume that $c=3 q+2$ for an integer $q \geqslant 0$. Let $r=2+2 p$ with $p \in \mathbb{N}_{0}$. If S is $(q+l)$-partite, then we observe that

$$
\begin{aligned}
|S| & =\left(c-k+k_{1}\right) r+2 k_{1}=(q+l) r+2 k_{1}=\frac{c r+2 k-r-2}{3} \\
& =q r+\frac{r+2 k-2}{3}=(q+l) r+\frac{r+2 k-2}{3}-l r,
\end{aligned}
$$

and thus $c-k+k_{1}=q+l$ and $k_{1}=((r+2 k-2) / 6)-l(r / 2)$. This implies

$$
\begin{aligned}
3 q & +2-k+\frac{r+2 k-2}{6}-l \frac{r}{2}=3 q+2+\frac{r-4 k-2}{6}-l \frac{r}{2}=q+l \\
& \Rightarrow 2 q=l\left(1+\frac{r}{2}\right)-2+\frac{4 k+2-r}{6} \\
& \Rightarrow q=\frac{r+2}{4} l+\frac{4 k-r+2}{12}-1=\frac{3 l r+6 l+4 k-r+2}{12}-1 .
\end{aligned}
$$

This leads to

$$
\begin{aligned}
c= & 3 q+2=k+\frac{3 l r+6 l-r+2}{4}-1<c+\frac{3 l r+6 l-r+2}{4}-1 \\
& \Rightarrow \frac{3 l r+6 l-r+2}{4}-1>0 \Rightarrow 3 l r+6 l-r+2>4 \\
& \Rightarrow 3 l(r+2)>r+2 \Rightarrow l>\frac{1}{3} \Rightarrow l \geqslant 1,
\end{aligned}
$$

which means that $v \geqslant 1$, if $l=2 v$, and $v \geqslant 0$, if $l=2 v+1$. Since $r=2+2 p$, we observe that

$$
\begin{equation*}
q=l-1+\frac{3 l p+2 k-p}{6} . \tag{8}
\end{equation*}
$$

Subcase 3.2.1. Let $l=2 v$ for an integer v. Then (8) leads to

$$
\begin{equation*}
q=2 v+v p+\frac{2 k-p}{6}-1 \tag{9}
\end{equation*}
$$

Subcase 3.2.1.1. Assume that $k=3 m+1$ with $m \in \mathbb{N}_{0}$. Now (9) yields

$$
q=2 v+v p+m+\frac{2-p}{6}-1
$$

and thus $p=6 s+2, r=6+12 s$ and $q=4 v+6 v s+m-s-1$ for an integer $s \geqslant 0$. Furthermore, we conclude that

$$
\begin{aligned}
k_{1} & =\frac{r+2 k-2}{6}-l \frac{r}{2}=1+2 s+m-6 v-12 v s \geqslant 0 \\
& \Rightarrow 1 \leqslant v \leqslant \frac{1+2 s+m}{6+12 s}=\frac{1}{6}\left(1+\frac{m}{1+2 s}\right)
\end{aligned}
$$

and thus $m \geqslant 5+10$ s. Using Corollary 2.7 we see that D is an element of the families \mathscr{H}_{q}^{3}.
Subcase 3.2.1.2. Let $k=3 m+2$ with $m \in \mathbb{N}_{0}$. Using (9) we arrive at

$$
q=2 v+v p+m+\frac{4-p}{6}-1,
$$

and thus $p=6 s+4, r=12 s+10$ and $q=6 v+6 v s+m-s-1$ for an integer $s \geqslant 0$. Furthermore we observe that

$$
k_{1}=\frac{r+2 k-2}{6}-l \frac{r}{2}=2 s+2+m-12 v s-10 v \geqslant 0 \Rightarrow 1 \leqslant v \leqslant \frac{2 s+2+m}{10+12 s}
$$

which implies that $m \geqslant 10 s+8$. According to Corollary 2.7, D belongs to the families \mathscr{H}_{q}^{4}.
Subcase 3.2.1.3. Suppose that $k=3 m$ with $m \in \mathbb{N}$. Then (9) leads to

$$
q=2 v+v p+m-\frac{p}{6}-1
$$

and thus $p=6 s, r=2+12 s$ and $q=2 v+6 v s+m-s-1$ for an integer $s \geqslant 0$. Furthermore we see that

$$
k_{1}=\frac{r+2 k-2}{6}-l \frac{r}{2}=2 s+m-2 v-12 v s \geqslant 0 \Rightarrow 1 \leqslant v \leqslant \frac{2 s+m}{12 s+2},
$$

which yields that $m \geqslant 10 s+2$. Using Corollary 2.7 it follows that D is a member of the families \mathscr{H}_{q}^{5}.
Subcase 3.2.2. Assume that $l=2 v+1$ for an integer v. In this case (8) yields that

$$
\begin{equation*}
q=2 v+v p+\frac{p+k}{3} . \tag{10}
\end{equation*}
$$

Subcase 3.2.2.1. Let $k=3 m$ with $m \in \mathbb{N}$. Using (10) we deduce that

$$
q=2 v+v p+m+\frac{p}{3},
$$

which leads to $p=3 s, r=2+6 s$ and $q=2 v+3 v s+m+s$ for an integer $s \geqslant 0$. Furthermore it follows that:

$$
k_{1}=\frac{r+2 k-2}{6}-l \frac{r}{2}=m-2 s-2 v-6 v s-1 \geqslant 0 \Rightarrow 0 \leqslant v \leqslant \frac{m-2 s-1}{2+6 s},
$$

and thus $m \geqslant 2 s+1$. According to Corollary 2.7, D is an element of the families \mathscr{H}_{q}^{6}.
Subcase 3.2.2.2. Suppose that $k=3 m+1$ with $m \in \mathbb{N}_{0}$. With (10) we arrive at

$$
q=2 v+v p+m+\frac{p+1}{3}
$$

and thus $p=3 s+2, r=6 s+6$ and $q=4 v+3 v s+m+s+1$ for an integer $s \geqslant 0$. Furthermore we see that

$$
k_{1}=\frac{r+2 k-2}{6}-l \frac{r}{2}=m-2 s-6 v s-6 v-2 \geqslant 0 \Rightarrow 0 \leqslant v \leqslant \frac{1}{6}\left(\frac{m}{s+1}-2\right),
$$

which implies that $m \geqslant 2 s+2$. Hence, again with Corollary 2.7 we observe that D belongs to the families \mathscr{H}_{q}^{7}.

Subcase 3.2.2.3. Let $k=3 m+2$ with $m \in \mathbb{N}_{0}$. According to (10), we have

$$
q=2 v+v p+m+\frac{p+2}{3}
$$

and thus $p=3 s+1, r=6 s+4$ and $q=3 v+3 v s+m+s+1$ for an integer $s \geqslant 0$. Furthermore, we observe that

$$
k_{1}=\frac{r+2 k-2}{6}-l \frac{r}{2}=m-2 s-1-6 v s-4 v \geqslant 0 \Rightarrow 0 \leqslant v \leqslant \frac{m-2 s-1}{4+6 s}
$$

which means that $m \geqslant 2 s+1$. Using Corollary 2.7 we conclude that D is a member of the families \mathscr{H}_{q}^{8}.
Subcase 3.3. Assume that $c=3 q$ with $q \in \mathbb{N}$. Let $r=2+2 p$ for an integer $p \geqslant 0$. If S is $(q+l)$-partite, then we conclude that

$$
\begin{aligned}
|S| & =\left(c-k+k_{1}\right) r+2 k_{1}=(q+l) r+2 k_{1}=\frac{c r+2 k-(r+2)}{3} \\
& =q r+\frac{2 k-2-r}{3}=(q+l) r+\frac{2 k-2-r}{3}-l r .
\end{aligned}
$$

This implies that $c-k+k_{1}=q+l$ and $k_{1}=((2 k-2-r) / 6)-l(r / 2)$, and thus

$$
\begin{aligned}
& 3 q-k+\frac{2 k-2-r}{6}-l \frac{r}{2}=3 q-\frac{4 k+2+r}{6}-l \frac{r}{2}=q+l \\
& \Rightarrow 2 q=\frac{r+2+4 k}{6}+l \frac{r+2}{2} \Rightarrow q=\frac{r+2+4 k+3 l r+6 l}{12}
\end{aligned}
$$

This leads to

$$
\begin{aligned}
c= & 3 q=k+\frac{r+2+3 l r+6 l}{4}<c+\frac{r+2+3 l r+6 l}{4} \\
& \Rightarrow \frac{r+2+3 l r+6 l}{4}>0 \Rightarrow l>-\frac{1}{3} \Rightarrow l \geqslant 0
\end{aligned}
$$

which means that $v \geqslant 0$, if $l=2 v$ or $l=2 v+1$ for an integer v. Furthermore, since $r=2+2 p$, we deduce that

$$
\begin{equation*}
q=l+\frac{2+p+2 k+3 l p}{6} . \tag{11}
\end{equation*}
$$

Subcase 3.3.1. Let $l=2 v$ for an integer v. Using (11) we see that

$$
\begin{equation*}
q=2 v+v p+\frac{2+p+2 k}{6} \tag{12}
\end{equation*}
$$

Subcase 3.3.1.1. Assume that $k=3 m$ with $m \in \mathbb{N}$. According to (12), we have

$$
q=2 v+v p+m+\frac{2+p}{6}
$$

and thus $p=6 s+4, r=10+12 s$ and $q=6 v+6 v s+m+1+s$ for an integer $s \geqslant 0$. Furthermore it follows that:

$$
k_{1}=\frac{2 k-2-r}{6}-l \frac{r}{2}=m-2-2 s-10 v-12 v s \geqslant 0 \Rightarrow 0 \leqslant v \leqslant \frac{m-2-2 s}{10+12 s},
$$

which yields that $m \geqslant 2 s+2$. Using Corollary 2.7 we conclude that D belongs to the families \mathscr{H}_{q}^{9}.
Subcase 3.3.1.2. Suppose that $k=3 m+1$ with $m \in \mathbb{N}_{0}$. Using (12) we see that

$$
q=2 v+v p+m+\frac{p+4}{6}
$$

and thus $p=6 s+2, r=12 s+6$ and $q=4 v+6 v s+m+s+1$ for an integer $s \geqslant 0$. Furthermore we observe that

$$
k_{1}=\frac{2 k-2-r}{6}-l \frac{r}{2}=m-2 s-1-12 v s-6 v \geqslant 0 \Rightarrow 0 \leqslant v \leqslant \frac{m-2 s-1}{6+12 s} \text {, }
$$

which means that $m \geqslant 2 s+1$. According to Corollary 2.7 , we deduce that D is an element of the families \mathscr{H}_{q}^{10}.
Subcase 3.3.1.3. Let $k=3 m+2$ with $m \in \mathbb{N}_{0}$. According to (12), we arrive at

$$
q=2 v+v p+m+1+\frac{p}{6}
$$

and thus $p=6 s, r=2+12 s$ and $q=2 v+6 v s+m+1+s$ for an integer $s \geqslant 0$. Furthermore we conclude that

$$
k_{1}=\frac{2 k-2-r}{6}-l \frac{r}{2}=m-2 s-2 v-12 v s \geqslant 0 \Rightarrow 0 \leqslant v \leqslant \frac{m-2 s}{2+12 s},
$$

which leads to $m \geqslant 2 s$. Using Corollary 2.7 we observe that D is a member of the families \mathscr{H}_{q}^{11}.
Subcase 3.3.2. Assume that $l=2 v+1$ for an integer v. According to (11), this yields

$$
\begin{equation*}
q=2 v+1+v p+\frac{1+2 p+k}{3} . \tag{13}
\end{equation*}
$$

Subcase 3.3.2.1. Suppose that $k=3 m$ with $m \in \mathbb{N}$. Using (13) we observe that

$$
q=2 v+1+v p+m+\frac{1+2 p}{3}
$$

and thus $p=3 s+1, r=4+6 s$ and $q=3 v+2+3 v s+m+2 s$. Furthermore we see that

$$
k_{1}=\frac{2 k-2-r}{6}-l \frac{r}{2}=m-3-4 s-4 v-6 v s \geqslant 0 \Rightarrow 0 \leqslant v \leqslant \frac{m-3-4 s}{4+6 s}
$$

which leads to $m \geqslant 3+4 s$. According to Corollary 2.7, D belongs to the families \mathscr{H}_{q}^{12}.
Subcase 3.3.2.2. Let $k=3 m+1$ with $m \in \mathbb{N}_{0}$. Using (13) we have

$$
q=2 v+1+v p+m+\frac{2 p+2}{3}
$$

and thus $p=3 s+2, r=6 s+6$ and $q=4 v+3 v s+2 s+m+3$ for an integer $s \geqslant 0$. Furthermore we see that

$$
k_{1}=\frac{2 k-2-r}{6}-l \frac{r}{2}=m-4-4 s-6 v-6 v s \geqslant 0 \Rightarrow 0 \leqslant v \leqslant \frac{m-4-4 s}{6+6 s},
$$

which yields that $m \geqslant 4+4 s$, According to Corollary 2.7 , it follows that D is an element of the families \mathscr{H}_{q}^{13}.
Subcase 3.3.2.3. Assume that $k=3 m+2$ with $m \in \mathbb{N}_{0}$. Using (13) we observe that

$$
q=2 v+2+v p+m+\frac{2 p}{3},
$$

and thus $p=3 s, r=6 s+2$ and $q=2 v+2+3 v s+m+2 s$. Furthermore it follows that:

$$
k_{1}=\frac{2 k-2-r}{6}-l \frac{r}{2}=m-4 s-2 v-6 v s-1 \geqslant 0 \Rightarrow 0 \leqslant v \leqslant \frac{m-4 s-1}{2+6 s}
$$

which means that $m \geqslant 4 s+1$. According to Corollary 2.7, we conclude that D belongs to the families \mathscr{H}_{q}^{14}. This completes the proof of the theorem.

References

[1] J. Bang-Jensen, G. Gutin, Digraphs: Theory, Algorithms and Applications, Springer, London, 2000.
[2] G. Gutin, Cycles and paths in semicomplete multipartite digraphs, theorems, and algorithms: a survey, J. Graph Theory 19 (1995) $481-505$.
[3] M. Tewes, L. Volkmann, A. Yeo, Almost all almost regular c-partite tournaments with $c \geqslant 5$ are vertex pancyclic, Discrete Math. 242 (2002) 201-228.
[4] C. Thomassen, Hamiltonian-connected tournaments, J. Combin. Theory B 28 (1980) 142-163.
[5] L. Volkmann, Cycles in multipartite tournaments: results and problems, Discrete Math. 245 (2002) 19-53.
[6] L. Volkmann, On the connectivity of regular multipartite tournaments, 2002 (unpublished manuscript).
[7] L. Volkmann, Complementary cycles in regular multipartite tournaments, where one cycle has length 4, Kyungpook Math. J. 44 (2) (2004) 219-247.
[8] L. Volkmann, S. Winzen, Cycles through a given arc in almost regular multipartite tournaments, Austral. J. Combin. 27 (2003) $223-245$.
[9] S. Winzen, Close to regular multipartite tournaments, Ph. D. Thesis, RWTH Aachen University, 2004.
[10] A. Yeo, Semicomplete multipartite digraphs, Ph. D. Thesis, Odense University, 1998.
[11] A. Yeo, How close to regular must a semicomplete multipartite digraph be to secure Hamiltonicity?, Graphs Combin. 15 (1999) $481-493$.

[^0]: * Corresponding author.

 E-mail addresses: volkm@math2.rwth-aachen.de (L. Volkmann), winzen@math2.rwth-aachen.de (S. Winzen).

