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Abstract

If x is a vertex of a digraph D, then we denote by d+(x) and d−(x) the outdegree and the indegree of x, respectively. The global
irregularity of a digraph D is defined by ig(D)=max{d+(x), d−(x)}−min{d+(y), d−(y)} over all vertices x and y of D (including
x = y) and the local irregularity of a digraph D is il (D) = max |d+(x) − d−(x)| over all vertices x of D. Clearly, il (D)� ig(D). If
ig(D) = 0, then D is regular and if ig(D)�1, then D is almost regular.

A c-partite tournament is an orientation of a complete c-partite graph. Let V1, V2, . . . , Vc be the partite sets of a c-partite tournament
such that |V1|� |V2|� · · · � |Vc|. In 1998, Yeo proved

�(D)�
⌈ |V (D)| − |Vc| − 2il (D)

3

⌉

for each c-partite tournament D, where �(D) is the connectivity of D. Using Yeo’s proof, we will present the structure of those
multipartite tournaments, which fulfill the last inequality with equality. These investigations yield the better bound

�(D)�
⌈ |V (D)| − |Vc| − 2il (D) + 1

3

⌉

in the case that |Vc| is odd. Especially, we obtain a 1980 result by Thomassen for tournaments of arbitrary (global) irregularity.
Furthermore, we will give a shorter proof of the recent result of Volkmann that

�(D)�
⌈ |V (D)| − |Vc| + 1

3

⌉

for all regular multipartite tournaments with exception of a well-determined family of regular (3q + 1)-partite tournaments. Finally
we will characterize all almost regular tournaments with this property.
© 2005 Elsevier B.V. All rights reserved.
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1. Terminology and introduction

In this paper all digraphs are finite without loops and multiple arcs. The vertex set and arc set of a digraph D is denoted
by V (D) and E(D), respectively. If xy is an arc of a digraph D, then we write x → y and say that x dominates y, and if
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X and Y are two disjoint vertex sets or subdigraphs of D such that every vertex of X dominates every vertex of Y, then we
say that X dominatesY, denoted by X → Y . Furthermore, X�Y denotes the fact that there is no arc leading fromY to X.
For the number of arcs from X to Y we write d(X, Y ). Furthermore, let E(X, Y )=d(X, Y )+d(Y, X). If D is a digraph,
then the out-neighborhood N+

D(x)=N+(x) of a vertex x is the set of vertices dominated by x and the in-neighborhood
N−

D(x)=N−(x) is the set of vertices dominating x. Therefore, if there is the arc xy ∈ E(D), then y is an outer neighbor
of x and x is an inner neighbor of y. The numbers d+

D(x) = d+(x) = |N+(x)| and d−
D(x) = d−(x) = |N−(x)| are called

the outdegree and indegree of x, respectively. For a vertex set X of D, we define D[X] as the subdigraph induced by X.
If we replace in a digraph D every arc xy by yx, then we call the resulting digraph the converse of D, denoted by D−1.

There are several measures of how much a digraph differs from being regular. In [11], Yeo defines the global
irregularity of a digraph D by

ig(D) = max
x∈V (D)

{d+(x), d−(x)} − min
y∈V (D)

{d+(y), d−(y)}

and the local irregularity by il(D) = max{|d+(x) − d−(x)||x ∈ V (D)}. Clearly il(D)� ig(D). If ig(D) = 0, then D
is regular and if ig(D)�1, then D is called almost regular.

A digraph D is strongly connected or strong if, for each pair of vertices u and v, there are a directed path from u to v,
and a directed path from v to u in D. A digraph D with at least k + 1 vertices is k-connected if for any set A of at most
k − 1 vertices, the subdigraph D − A obtained by deleting A is strong. The connectivity of D, denoted by �(D), is then
defined to be the largest value of k such that D is k-connected. If S is a set of vertices of D such that the subdigraph
D − S is not strongly connected, then S is called a separating set.

A c-partite or multipartite tournament is an orientation of a complete c-partite graph. A tournament is a c-partite
tournament with exactly c vertices. A semicomplete multipartite digraph is obtained by replacing each edge of a
complete multipartite graph by an arc or by a pair of two mutually opposite arcs. If V1, V2, . . . , Vc are the partite sets of
a c-partite tournament D and the vertex x of D belongs to the partite set Vi , then we define V (x)=Vi . If D is a c-partite
tournament with the partite sets V1, V2, . . . , Vc such that |V1|� |V2|� · · · � |Vc|, then |Vc|=�(D) is the independence
number of D, and we define �(D) = |V1|. Note that especially for tournaments, the global and the local irregularity
have the same value. Hence, in this case we shortly speak of the irregularity i(T ) of a tournament T.

In 1998, Yeo [10] proved the following useful bound.

Theorem 1.1 (Yeo [10]). Let D be a c-partite tournament. Then

�(D)�
⌈ |V (D)| − �(D) − 2il(D)

3

⌉
. (1)

In general, this bound cannot be improved as the following example demonstrates (see also [6]).

Example 1.2 (Volkmann [6]). Let q�1 be an integer, and let c = 3q + 1. We define the families Fq of c-partite
tournaments with the partite sets W1, W2, . . . , Wq and

Wq+1 = Aq+1 ∪ Bq+1, Wq+2 = Aq+2 ∪ Bq+2, . . . , Wc = Ac ∪ Bc

with 2|Ai |=2|Bi |=|Wj |=2t for i=q+1, q+2, . . . , c and j =1, 2, . . . , q as follows. The partite sets W1, W2, . . . , Wq

induce a t (q − 1)-regular q-partite tournament H, the sets Aq+1, Aq+2, . . . , Ac induce a tq-regular (2q + 1)-partite
tournament A, and the sets Bq+1, Bq+2, . . . , Bc induce a tq-regular (2q + 1)-partite tournament B. In addition, let
H → A�B → H . Obviously, if D ∈ Fq , then D is a 3qt-regular c-partite tournament with the separating set V (H)

and thus �(D) = 2qt = q�(D).

Since Yeo’s result is often used to solve problems depending on the global irregularity, it would be interesting to
solve the following general problem.

Problem 1.3. For each integer i�0 find all multipartite tournaments D with ig(D) = i and the property that

�(D) =
⌈ |V (D)| − |Vc| − 2i

3

⌉
.
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In Section 2, we will analyze the proof of Theorem 1.1. With this method we will extend this result by working
out—for each given integer j�0—the structure of those multipartite tournaments D with il(D) = j for which the
bound (1) is tight. This structure implies a well-known bound of Thomassen [4] on the connectivity of tournaments of
given irregularity. Furthermore, the results of Section 2 will be useful for Section 3 and to prove a result in [9] about
Hamiltonian paths through a given arc.

In Section 3, we will study Problem 1.3 for i = 0 and i = 1. For the case that D is a regular tournament, Volkmann
[6] proved the following bound, which solves Problem 1.3 for i = 0.

Theorem 1.4 (Volkmann [6]). Let D be a regular c-partite tournament with c�2. Then,

�(D)�
⌈ |V (D)| − �(D) + 1

3

⌉
,

with exception of the case that D is a member of the families Fq .

Using the structure of the multipartite tournaments, which fulfill (1) with equality, in the beginning of Section 3, we
will present a shorter proof of Theorem 1.4. Note that Theorem 1.4 generalizes Theorem 2.10 in [7], which is needed to
prove a theorem about complementary cycles. Furthermore, we will extend Theorem 1.4 to almost regular multipartite
tournaments, which means that we will present a solution of Problem 1.3 for i = 1.

For more information on multipartite tournaments we refer the reader to Bang-Jensen and Gutin [1], Gutin [2], and
Volkmann [5].

2. An analysis of Yeo’s result

The following results were given in [10] and [11]. The information about the cases of equality can implicitly be
found in the proofs of the lemmas.

Lemma 2.1 (Yeo [11]). Let �v = (v1, v2, . . . , vc) be c integers with
∑c

i=1 vi = B and vi�1 for all i = 1, 2, . . . , c.
For any set of c reals �x = (x1, x2, . . . , xc) with 0�xi�vi (i = 1, 2, . . . , c) and 0 <

∑c
i=1 xi = A�B/2 we have the

following:

e(�x, �v)

A
+ e(�x, �v)

B − A
�B − max{vi |i = 1, 2, . . . , c}, (2)

where e(�x, �v) = A(B − A) − ∑c
i=1xi(vi − xi).

Furthermore, if equality holds above, then vi − 2xi = vj − 2xj and vj − xj = vi − xi for all 1� i, j�c.

Lemma 2.2 (Yeo [11]). Let D be a semicomplete multipartite digraph with the partite sets V1, V2, . . . , Vc. Let X ⊆
Y ⊆ V (D) be arbitrary. Let xi = |Vi ∩ X| and vi = |Y ∩ Vi | for all i = 1, 2, . . . , c. This implies the following:

E(X, Y − X)

|X| + E(X, Y − X)

|Y − X| � |Y | − max{vi |i = 1, 2, . . . , c}. (3)

In the case of equality in (3) we have also equality in (2) with xi and vi defined here.

Lemma 2.3 (Yeo [10]). If D is a digraph and X ⊂ V (D) is non-empty, then

il(D)� |d(X, V (D) − X) − d(V (D) − X, X)|
|X| . (4)

If equality holds above, then it follows that d+(x) = d−(x) + il(D) for all x ∈ X or d−(x) = d+(x) + il(D) for all
x ∈ X.

Theorem 2.4 (Yeo [10]). Let D be a semicomplete multipartite digraph with the partite sets V1, V2, . . . , Vc, and let
S be a separating set in D. Let Q1 and Q2 be a partition of V (D) − S, such that Q1�Q2, and let
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v′ = max{|Vi ∩ (V (D) − S)||i = 1, 2, . . . , c}. Then the following holds:

il(D)� |V (D)| − 3|S| − v′

2
. (5)

In the case of equality in (5) we have also equality in (3) with X = Q1 and Y = V (D) − S. Furthermore, it follows
that |Q1| = |Q2|, S → Q1 and d(Q1, V (D) − Q1)� |Q1||S|, and we have equality in (4) with X = Q1.

This immediately leads to Yeo’s main result.

Theorem 2.5 (Yeo [10]). If D is a semicomplete multipartite digraph, then (1) holds.
Furthermore, if equality holds in (1), then we observe that (5) is fulfilled with equality and there is a partite set Vi

such that |Vi | = �(D) and Vi ⊆ V (D) − S.

The following slight extension of a result of the authors [8] is useful to structure the multipartite tournaments that
fulfill (1) with equality.

Lemma 2.6 (Volkmann and Winzen [8]). If D is a multipartite tournament with il(D)� l and x ∈ V (D) such that
|V (x)| = p, then

|V (D)| − p − l

2
�d+(x), d−(x)� |V (D)| − p + l

2
.

All results above yield the following corollary.

Corollary 2.7. Let D be a multipartite tournament with �(D)= (|V (D)|−2il(D)−�(D))/3 and let S be a separating
set with |S| = �(D). Then the following holds:

(i) (|V (D)| − 2il(D) − �(D))/3 ∈ N0.
(ii) There is no partite set Vi of D such that Vi ∩ (V (D) − S) 
= ∅ and Vi ∩ S 
= ∅.

(iii) For all partite sets Vi of D with Vi ⊆ V (D) − S it follows that |Vi | = �(D).
(iv) V (D) − S can be partitioned in the sets Q1 and Q2 with Q1�Q2 such that |Q1| = |Q2|, Q2 → S → Q1 and

D[Q1] and D[Q2] are strong.
(v) d+(q1) = d−(q1) + il(D) = (|V (D)| − �(D) + il(D))/2 for all q1 ∈ Q1 and d−(q2) = d+(q2) + il(D) =

(|V (D)| − �(D) + il(D))/2 for all q2 ∈ Q2.
(vi) �(D) is even.

(vii) Every partite set Vi of D with Vi ⊆ V (D)−S can be partitioned in two disjoined sets of vertices V ′
i and V ′′

i such
that |V ′

i | = |V ′′
i |, V ′

i ⊆ Q1 and V ′′
i ⊆ Q2.

(viii) D[Q1] and D[Q2] are regular multipartite tournaments.

Proof. Since �(D) is a non-negative integer, (i) follows immediately. Let Q1 and Q2 be a partition of V (D) − S such
that Q1�Q2. According to Theorem 2.5, there is a partite set Vi of D such that Vi ⊆ V (D) − S and |Vi | = �(D). Now
Lemma 2.1 with xi = |Q1 ∩ Vi | and vi = |Vi ∩ (V (D) − S)| yields that

|Vi ∩ (V (D) − S)| − 2|Vi ∩ Q1| = |Vj ∩ (V (D) − S)| − 2|Vj ∩ Q1|
and

|Vi ∩ (V (D) − S)| − |Vi ∩ Q1| = |Vj ∩ (V (D) − S)| − |Vj ∩ Q1|
for all indices j with Vj ∩ (V (D) − S) 
= ∅. This is possible only if |Vi ∩ Q1| = |Vj ∩ Q1| and |Vi ∩ (V (D) − S)| =
|Vi | = �(D) = |Vj ∩ (V (D) − S)| for all these indices j. This implies (ii) and (iii).

According to Theorem 2.4, we have |Q1| = |Q2|. If D − S does not consist of two strong components of the same
cardinality, then we can choose a partition Q1 and Q2 of V (D)−S such that Q1�Q2 and |Q1| 
= |Q2|, a contradiction.
Furthermore, Theorem 2.4 leads to S → Q1. Observing the converse D−1 of D, we arrive at Q2 → S. Altogether we
have shown (iv).
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Since, according to Theorem 2.4, d(Q1, V (D) − Q1)� |Q1||S| = d(V (D) − Q1, Q1), Lemma 2.3 yields d+(q1) =
d−(q1) + il(D) for all q1 ∈ Q1 and, caused by symmetry, d−(q2) = d+(q2) + il(D) for all q2 ∈ Q2. Using Lemma
2.6 with p = �(D), we arrive at (v).

As seen above, Lemma 2.1 implies |Vi ∩ Q1| = |Vj ∩ Q1| for all indices i and j with Vi, Vj ⊆ V (D) − S. Because
of |Q1| = |Q2|, this exactly means (vii) and thus with (iii) we deduce that (vi) is valid.

According to (vii), we have d(x, Q2) = d(y, Q2) for all x, y ∈ Q1. Because of (v), D[Q1] has to be a regular
multipartite tournament. Caused by symmetry, D[Q2] is also a regular multipartite tournament, which means that (viii)
is valid.

This completes the proof of this corollary. �

This result yields a simple method to check, whether the inequality (1) can be improved.

Corollary 2.8. Let D be a multipartite tournament. If �(D) is odd, then it follows that:

�(D)�
⌈ |V (D)| − 2il(D) − �(D) + 1

3

⌉
.

In the case of a tournament T we observe that �(T )=1 is odd and ig(T )= il(T )= i(T ). Hence, Corollary 2.8 implies
the following result of Thomassen [4].

Theorem 2.9 (Thomassen [4]). If T is a tournament with i(T )�k, then

�(D)�
⌈ |V (T )| − 2k

3

⌉
.

Another consequence of Corollary 2.8 is the following result.

Corollary 2.10. Let D be a c-partite tournament with c�2, ig(D) = 2k + 1 for an integer k�0 and �(D) = �(D).
Then the following holds:

�(D)�
⌈ |V (D)| − �(D) − 2il(D) + 1

3

⌉
=

⌈ |V (D)| − �(D) − 4k − 1

3

⌉
.

3. Connectivity in almost regular multipartite tournaments

With the results of the last section we are able to present a shorter proof of Theorem 1.4.

Theorem 3.1 (Volkmann [6]). Let D be a regular c-partite tournament with c�2. Then,

�(D)�
⌈ |V (D)| − �(D) + 1

3

⌉
,

with exception of the case that D is a member of the families Fq .

Proof. If V1, V2, . . . , Vc are the partite sets of D, then |V1| = |V2| = · · · = |Vc| = r , �(D) = r , and il(D) = 0. Suppose
that �(D) = (|V (D)| − �(D))/3 = (c − 1)r/3. It follows that (i)–(viii) of Corollary 2.7 holds. Especially (ii) yields
that |S| = sr for an integer s. On the other hand, we see that |S| = �(D) = (c − 1)r/3 and thus s = (c − 1)/3 ∈ N,
which means that c = 3q + 1 for an integer q and |S| = qr = q�(D). Since, according to (iv), Q2 → S → Q1 with
|Q1|= |Q2| and D is regular, D[S] has also to be regular. With Corollary 2.7 (vii) and (viii) we conclude that D belongs
to the families Fq . �

Now we will examine almost regular multipartite tournaments. At first we want to derive a result that will help us in
the following. According to Tewes, Volkmann and Yeo [3], the following lemma holds.
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Lemma 3.2 (Tewes, Volkmann andYeo [3]). If V1, V2, . . . , Vc are the partite sets of a c-partite tournament D such that
|V1|� |V2|�
· · · � |Vc|, then |Vc|� |V1| + 2ig(D).

The following lemma presents a lower bound for the degree of a vertex.

Lemma 3.3. Let D be a multipartite tournament with ig(D)� l and �(D) = r . Then we have

|V (D)| − �(D) − 2l

2
�d+(x), d−(x)

for all x ∈ V (D). If furthermore |V (x)| = r + 2l, then it follows that:

d+(x), d−(x) = |V (D)| − r − 2l

2
.

Proof. Let x ∈ V (D) be arbitrary. If |V (x)|�r+l, then the first assertion holds by Lemma 2.6. Hence, let |V (x1)|�r+
l+1. Suppose that d+(x1)�(|V (D)|−r−2l−1)/2. Because of ig(D)� l, we conclude that d+(y), d−(y)�(|V (D)|−
r − 1)/2 for all y ∈ V (D). If we take a vertex x2 ∈ V (D) with |V (x2)| = r , then we arrive at the contradiction

|V (D)| = d+(x2) + d−(x2) + r� |V (D)| − r − 1 + r = |V (D)| − 1.

Hence, it has to be d+(x)�(|V (D)| − �(D) − 2l)/2 for all vertices x ∈ V (D). Since the proof for d−(x) follows the
same lines, the first assertion of this lemma is completed.

Now, let x ∈ V (D) with |V (x)| = r + 2l. Suppose that d+(x)�(|V (D)| − r − 2l + 1)/2. The fact that |V (D)| =
d+(x) + d−(x) + r + 2l yields that d−(x)�(|V (D)| − r − 2l − 1)/2, a contradiction to the first assertion of this
lemma. This completes the proof of the lemma. �

Together with Corollary 2.7, this yields the following result.

Corollary 3.4. Let D be a multipartite tournament such that �(D)=(|V (D)|−2il(D)−�(D))/3 and ig(D)=il(D)�1.
Then it follows that �(D) < �(D) + 2ig(D).

Proof. According to (iii) and (v) in Corollary 2.7, we observe that

d+(q1) = d−(q1) + ig(D) = |V (D)| − �(D) + ig(D)

2

and |V (q1)|=�(D) for all q1 ∈ Q1. Assume that �(D)��(D)+2ig(D). Lemma 3.2 yields that �(D)=�(D)+2ig(D).
Now Lemma 3.3 leads to the contradiction

d+(q1) = |V (D)| − �(D) − 2ig(D)

2
= |V (D)| − �(D)

2
. �

The following examples will present the families of the multipartite tournaments with ig(D) = 1, which realize (1).

Example 3.5. Let the integers k, m, r, p, l, v, q, c and k1 fulfill one of the following properties:

(1) r = 2p + 1�1, k = 3m�3, l = 2v, 0�v�(m − 1)/(4p + 2), k1 = m − 1 − 2v(2p + 1), q = 2v + 2vp + m

and c = 3q + 1.
(2) r = 4p + 3�3, k = 3m�3, 0� l�(m− 1)/(4p + 3), k1 =m− 1 − l(4p + 3), q = 2l + 2lp +m and c = 3q + 1.
(3) r=12p+3�3, k=3m, m�8p+3, 1� l�(4p+m)/(12p+3), k1=4p+m−l(12p+3), q=m−2p−1+l(6p+2)

and c = 3q + 2.
(4) r=6p+3�3, k=3m, m�4p+3, l=2v+1�1, 0�v�(m−4p−3)/(12p+6), k1=2p+m−(2v+1)(6p+3),

q = m − p − 1 + (2v + 1)(3p + 2) and c = 3q + 2.
(5) r = 12p + 11�11, k = 3m + 1, m�8p + 8, 1� l�(m + 4p + 3)/(12p + 11), k1 = 4p + 3 + m − l(12p + 11),

q = m − 2p − 2 + l(6p + 6) and c = 3q + 2.
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(6) r=6p+5�5, k=3m+1, m�4p+4, l=2v+1, 0�v�(m−4p−4)/(12p+10), k1=2p+1+m−(2v+1)(6p+5),
q = m − p − 1 + (2v + 1)(3p + 3) and c = 3q + 2.

(7) r = 12p + 7�7, k = 3m + 2, m�8p + 5, 1� l�(m + 4p + 2)/(12p + 7), k1 = 4p + 2 + m − l(12p + 7),
q = m − 2p − 1 + l(6p + 4) and c = 3q + 2.

(8) r=6p+1�1, k=3m+2, m�4p+1, l=2v+1, 0�v�(m−4p−1)/(12p+2), k1=2p+m−(2v+1)(6p+1),
q = m − p + (2v + 1)(3p + 1) and c = 3q + 2.

(9) r = 12p + 3�3, k = 3m, m�4p + 2, 0� l�(m − 4p − 2)/(12p + 3), k1 = m − 4p − 2 − l(12p + 3),
q = m + 2p + 1 + l(6p + 2) and c = 3q.

(10) r=6p+3�3, k=3m, m�8p+5, l=2v+1, 0�v�(m−8p−5)/(12p+6), k1=m−2p−2−(2v+1)(6p+3),
q = m + p + 1 + (2v + 1)(3p + 2) and c = 3q.

(11) r=6p+1�1, k=3m+1, m�8p+2, l=2v+1, 0�v�(m−8p−2)/(12p+2), k1=m−2p−1−(2v+1)(6p+1),
q = m + p + 1 + (2v + 1)(3p + 1) and c = 3q.

(12) r = 12p + 7�7, k = 3m + 1, m�4p + 3, 0� l�(m − 4p − 3)/(12p + 7), k1 = m − 4p − 3 − l(12p + 7),
q = m + 2p + 2 + l(6p + 4) and c = 3q.

(13) r=6p+5�5, k=3m+2, m�8p+7, l=2v+1, 0�v�(m−8p−7)/(12p+10), k1=m−2p−2−(2v+1)(6p+5),
q = m + 2 + p + (2v + 1)(3p + 3) and c = 3q.

(14) r = 12p + 11�11, k = 3m + 2, m�4p + 4, 0� l�(m − 4p − 4)/(12p + 11), k1 = m − 4p − 4 − l(12p + 11),
q = m + 3 + 2p + l(6p + 6) and c = 3q.

If the properties in (i) are valid (i = 1, 2, . . . , 14) for the indices k, m, r, p, l, v, q, c and k1, then we define the
families Gi

q of c-partite tournaments with the partite sets W1 =A1 ∪B1, W2 =A2 ∪B2, . . . , Wk−k1 =Ak−k1 ∪Bk−k1 and
Wk−k1+1, Wk−k1+2, . . . , Wc with 2|Ai |=2|Bi |=|Wj |=r+1 for i=1, 2, . . . , k−k1 and j =k−k1+1, k−k1+2, . . . , k

and |Wk+1| = |Wk+2| = · · · = |Wc| = r as follows.
The partite sets Wk−k1+1, Wk−k1+2, . . . , Wc induce a (q + l)-partite tournament H such that d+

H (x) = d−
H (x) for all

x ∈ Wk+1 ∪Wk+2 ∪· · ·∪Wc and |d+
H (x)−d−

H (x)|=1 for all x ∈ Wk−k1+1 ∪Wk−k1+2 ∪· · ·∪Wk; the sets A1, A2, . . . ,

Ak−k1 induce a [(c − q − l − 1)(r + 1)/4]-regular (c − q − l)-partite tournament A; and analogously the sets
B1, B2, . . . , Bk−k1 induce a [(c − q − l − 1)(r + 1)/4]-regular (c − q − l)-partite tournament B. In addition, let
H → A�B → H . If D ∈ Gi

q for i = 1, 2, . . . , 14, then it is straightforward to show that D is a c-partite tournament
with ig(D)= il(D)=1 containing the separating set V (H) such that |V (H)|=�(D)= (c−k +k1)r +k1 = (|V (D)|−
�(D) − 2)/3.

Example 3.6. Let the integers k, m, r, p, l, v, q, c and k1 fulfill one of the following properties:

(1) r =2+4p�2, k =3m+1, m�1+2p, 1� l�m/(1+2p), k1 =m− l(1+2p), q =m+ l(1+p) and c=3q +1.
(2) r = 4 + 4p�4, k = 3m+ 1, m�4 + 4p, l = 2v + 2, 0�v�(m− 4 − 4p)/(4 + 4p), k1 =m− (2v + 2)(2p + 2),

q = m + (v + 1)(2p + 3) and c = 3q + 1.
(3) r = 6 + 12p�6, k = 3m + 1, m�5 + 10p, l = 2v, 1�v� 1

6 (1 + (m/(1 + 2p))), k1 = 1 + 2p + m − 6v − 12pv,
q = 4v + 6pv + m − p − 1 and c = 3q + 2.

(4) r=10+12p�10, k=3m+2, m�10p+8, l=2v, 1�v�(m+2p+2)/(12p+10), k1=2p+2+m−12pv−10v,
q = 6v + 6pv + m − p − 1 and c = 3q + 2.

(5) r = 2 + 12p�2, k = 3m, m�10p + 2, l = 2v, 1�v�(m + 2p)/(12p + 2), k1 = 2p + m − 2v − 12pv,
q = 2v + 6pv + m − p − 1 and c = 3q + 2.

(6) r = 6p + 2�2, k = 3m, m�2p + 1, l = 2v + 1, 0�v�(m − 2p − 1)/(6p + 2), k1 = m − 2p − 2v − 6pv − 1,
q = 2v + 3pv + m + p and c = 3q + 2.

(7) r = 6 + 6p�6, k = 3m + 1, m�2p + 2, l = 2v + 1, 0�v� 1
6 ((m/(p + 1)) − 2), k1 = m − 2p − 6pv − 6v − 2,

q = 4v + 3vp + m + p + 1 and c = 3q + 2.
(8) r =4+6p�4, k =3m+2, m�2p +1, l =2v +1, 0�v�(m−2p −1)/(4+6p), k1 =m−2p −1−6pv −4v,

q = 3v + 3pv + m + p + 1 and c = 3q + 2.
(9) r =10+12p�10, k=3m, m�2p+2, l =2v, 0�v�(m−2p−2)/(10+12p), k1 =m−2−2p−10v−12pv,

q = 6v + 6pv + m + 1 + p and c = 3q.
(10) r =6+12p�6, k =3m+1, m�2p +1, l =2v, 0�v�(m−2p −1)/(6+12p), k1 =m−2p −1−12pv −6v,

q = 4v + 6pv + m + p + 1 and c = 3q.
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(11) r = 2 + 12p�2, k = 3m + 2, m�2p, l = 2v, 0�v�(m − 2p)/(2 + 12p), k1 = m − 2p − 2v − 12pv,
q = 2v + 6pv + m + 1 + p and c = 3q.

(12) r = 6p + 4�4, k = 3m, m�3 + 4p, l = 2v + 1, 0�v�(m − 3 − 4p)/(4 + 6p), k1 = m − 3 − 4p − 4v − 6pv,
q = 3v + 2 + 3pv + m + 2p and c = 3q.

(13) r =6+6p�6, k =3m+1, m�4+4p, l =2v +1, 0�v�(m−4−4p)/(6+6p), k1 =m−4−4p −6v −6pv,
q = 4v + 3pv + 2p + m + 3 and c = 3q.

(14) r =2+6p�2, k =3m+2, m�4p +1, l =2v +1, 0�v�(m−4p −1)/(2+6p), k1 =m−4p −2v −6pv −1,
q = 2v + 2 + 3pv + m + 2p and c = 3q.

If the properties in (i) are valid (i=1, 2, . . . , 14) for the indices k, m, r, p, l, v, q, c and k1, then we define the families
Hi

q of c-partite tournaments with the partite sets W1 = A1 ∪ B1, W2 = A2 ∪ B2, . . . , Wk−k1 = Ak−k1 ∪ Bk−k1 and
Wk−k1+1, Wk−k1+2, . . . , Wc with 2|Ai |=2|Bi |=|Wj |=r+2 for i=1, 2, . . . , k−k1 and j =k−k1+1, k−k1+2, . . . , k

and |Wk+1| = |Wk+2| = · · · = |Wc| = r as follows.
The partite sets Wk−k1+1, Wk−k1+2, . . . , Wc induce a local regular (q + l)-partite tournament H; the sets A1, A2, . . . ,

Ak−k1 induce a [(c − q − l − 1)(r + 2)/4]-regular (c − q − l)-partite tournament A; and the sets B1, B2, . . . , Bk−k1

induce a [(c − q − l − 1)(r + 2)/4]-regular (c − q − l)-partite tournament B. In addition, let H → A�B → H . If
D ∈ Hi

q for i = 1, 2, . . . , 14, then it is left to the reader to show that D is a c-partite tournament with ig(D) = 1 and
il(D) = 0 containing the separating set V (H) such that |V (H)| = �(D) = (c − k + k1)r + 2k1 = (|V (D)| − �(D))/3.

There are no other c-partite tournaments with ig(D) = 1 and �(D) = (|V (D)| − �(D) − 2il(D))/3 as we can see in
the following theorem.

Theorem 3.7. Let D be an almost regular c-partite tournament with c�2. Then,

�(D)�
⌈ |V (D)| − �(D) − 2il(D) + 1

3

⌉
,

with exception of the case that D is a member of one of the families Fq , Gi
q or Hi

q with i ∈ {1, 2, . . . , 14}.

Proof. If ig(D)=0, then the assertion follows from Theorem 3.1. Hence, let D be a c-partite tournament with ig(D)=1
and the partite sets V1, V2, . . . , Vc such that r = |V1|� |V2|� · · · � |Vc| = �(D). According to Lemma 3.2, we have
r��(D)�r + 2. Suppose that �(D) = (|V (D)| − 2il(D) − �(D))/3. Let S, Q1 and Q2 be defined as in Corollary 2.7
and observe that (i)–(viii) of this corollary holds. Now we distinguish different cases.

Case 1. Let �(D) = r . In this case, Corollary 2.10 yields a contradiction.
Case 2. Assume that �(D) = r + 1. This implies that il(D) = ig(D) = 1 and according to Corollary 2.7 (vi), r is

odd. Hence, we may suppose that r = 2p + 1 for an integer p�0. Let |V (D)| = cr + k with 0 < k < c. Because of
Corollary 2.7 (v), we deduce that the number of partite sets with the cardinality r has to be odd, which means that c − k

is odd. Again with Corollary 2.7 we see that S consists of all the c − k partite sets of cardinality r and of k1�0 partite
sets of cardinality r + 1. This yields that |S| = (c − k + k1)r + k1. Since |Q1| = |Q2| and Q2 → S → Q1, it follows
that d+

D[S](x) = d−
D[S](x) for all vertices x belonging to a partite set of cardinality r and |d+

D[S](x) − d−
D[S]| = 1 for all

vertices x ∈ S belonging to a partite set of cardinality r + 1.
Subcase 2.1. Let c = 3q + 1. If D[S] is (q + l)-partite, then we arrive at

|S| = (c − k + k1)r + k1 = (q + l)r + k1 = cr + k − 2 − (r + 1)

3

= qr + k

3
− 1 = (q + l)r + k

3
− 1 − lr .

This implies that k = 3m for an integer m�1, c − k + k1 = q + l and k1 = m − 1 − l(2p + 1)�0. It follows that
l�(m − 1)/(2p + 1) and

c − k + k1 = 3q + 1 − 3m + m − 1 − l(2p + 1) = q + l

⇔ 2q = 2l + 2lp + 2m ⇒ q = l + lp + m.
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This leads to

c = 3q + 1 = 3l + 3lp + 3m + 1 = k + 1 + 3l + 3lp < c + 1 + 3l + 3lp

⇒ 1 + 3l + 3lp > 0 ⇒ l > − 1

3 + 3p
⇒ l�0.

Since c − k = 1 + 3l + 3lp = 1 + 3l(p + 1) has to be odd, it follows that l is even or p is odd.
If l = 2v, then we deduce that 0�v�(m − 1)/(4p + 2), m�1, k1 = m − 1 − 2v(2p + 1) and q = 2v + 2vp + m.

Corollary 2.7 yields that D belongs to the families G1
q .

If p = 2s + 1�1, then it follows that r = 4s + 3�3, m�1, 0� l�(m− 1)/(4s + 3) and q = 2l + 2ls +m. Corollary
2.7 implies that D is an element of the families G2

q .
Subcase 2.2. Suppose that c = 3q + 2 for an integer q�0. If D[S] is (q + l)-partite, then we observe that

|S| = (c − k + k1)r + k1 = (q + l)r + k1 = cr + k − r − 3

3

= qr + r + k

3
− 1 = (q + l)r + r + k

3
− 1 − lr ,

and thus c − k + k1 = q + l and k1 = ((r + k)/3) − 1 − lr . This leads to

3q + 2 − k + r + k

3
− 1 − lr = 3q + 1 + r − 2k

3
− lr = q + l

⇒ 2q = 2k − r

3
− 1 + l(r + 1) ⇒ q = 2k − r − 3

6
+ l

r + 1

2
.

Since r = 2p + 1, we have

q = 2k − 2p − 4

6
+ l(p + 1) = k − p − 2

3
+ l(p + 1). (6)

Subcase 2.2.1. Let k = 3m for an integer m�1. With (6) we arrive at q = m − ((p + 2)/3) + l(p + 1) and thus
p = 3s + 1, r = 6s + 3 and q = m − s − 1 + l(3s + 2) for an s ∈ N0. Furthermore we see that

c = 3q + 2 = 3m − 3s − 3 + 3l(3s + 2) + 2 = k − 3s − 1 + 3l(3s + 2) < c − 3s − 1 + 3l(3s + 2)

⇒ −3s − 1 + 3l(3s + 2) > 0 ⇒ l >
3s + 1

9s + 6
⇒ l�1

and

k1 = r + k

3
− 1 − lr = 2s + m − l(6s + 3)�0 ⇒ l� 2s + m

6s + 3
.

Since c − k = −3s − 1 + 3l(3s + 2) = 3(3ls + 2l − s) − 1 is odd, we conclude that 3ls − s = s(3l − 1) is even and
thus s is even or l is odd.

If s = 2n with n ∈ N0, then we arrive at r = 12n + 3, q = m − 2n − 1 + l(6n + 2), k1 = 4n + m − l(12n + 3),
1� l�(4n + m)/(12n + 3) and thus m�8n + 3. According to Corollary 2.7, D is a member of the families G3

q .
If l=2v+1 for an integerv, then it follows that 0�v�(m−4s−3)/(12s+6),m�4s+3,q=m−s−1+(2v+1)(3s+2)

and k1 = 2s + m − (2v + 1)(6s + 3). Again with Corollary 2.7 we deduce that D is an element of the families G4
q .

Subcase 2.2.2. Assume that k = 3m + 1 with m ∈ N0. According to (6), we have q = m − ((p + 1)/3) + l(p + 1)

and thus p = 3s + 2 for an integer s�0, r = 6s + 5 and q = m − s − 1 + l(3s + 3). Furthermore we conclude that

c = 3q + 2 = 3m − 3s − 3 + 3l(3s + 3) + 2 = k − 2 − 3s + 3l(3s + 3)

⇒ −2 − 3s + 3l(3s + 3) > 0 ⇒ l >
3s + 2

3(3s + 3)
⇒ l�1

and

k1 = r + k

3
− 1 − lr = 2s + 1 + m − l(6s + 5)�0 ⇒ l�m + 2s + 1

6s + 5
.
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Since c − k =−2 − 3s + 3l(3s + 3)=−2 + 3(3ls + 3l − s) is odd, we observe that 3ls + 3l − s is odd. This is possible
only if s is odd or l is odd.

If s = 2n + 1 for an integer n�0, then it follows that r = 12n + 11, 1� l�(m + 4n + 3)/(12n + 11), m�8n + 8,
k1 = 4n+ 3 +m− l(12n+ 11) and q =m− 2n− 2 + l(6n+ 6). According to Corollary 2.7, we deduce that D belongs
to the families G5

q .
If l = 2v + 1 for an integer v, then it follows that 0�v�(m − 4s − 4)/(12s + 10), m�4s + 4, k1 = 2s + 1 + m −

(2v + 1)(6s + 5) and q = m − s − 1 + (2v + 1)(3s + 3). Hence, using Corollary 2.7 we conclude that D is a member
of the families G6

q .
Subcase 2.2.3. Suppose that k = 3m + 2 with m ∈ N0. According to (6), we observe that q = m − (p/3) + l(p + 1),

and thus p = 3s, r = 6s + 1 and q = m − s + l(3s + 1) with s�0. Furthermore we see that

c = 3q + 2 = 3m − 3s + 3l(3s + 1) + 2 = k − 3s + 3l(3s + 1)

⇒ −3s + 3l(3s + 1) > 0 ⇒ l >
3s

9s + 3
⇒ l�1

and

k1 = r + k

3
− 1 − lr = 2s + m − l(6s + 1)�0 ⇒ l�m + 2s

6s + 1
.

Since c − k = −3s + 3l(3s + 1) = 3(3ls + l − s) is odd, we see that 3ls + l − s is odd. This is possible only if s is
odd or l is odd.

If s = 2n + 1 with n ∈ N0, then it follows that r = 12n + 7, 1� l�(m + 4n + 2)/(12n + 7), m�8n + 5,
q = m − 2n − 1 + l(6n + 4) and k1 = 4n + 2 + m − l(12n + 7). Using Corollary 2.7 we deduce that D is an element
of the families G7

q .
If l =2v +1 for an integer v, then we have 0�v�(m−4s −1)/(12s +2), m�4s +1, q =m− s + (2v +1)(3s +1)

and k1 = 2s + m − (2v + 1)(6s + 1). Again with Corollary 2.7 we conclude that D is a member of the families G8
q .

Subcase 2.3. Let c = 3q for an integer q�1. If S is (q + l)-partite, then it follows that:

|S| = (c − k + k1)r + k1 = (q + l)r + k1 = cr + k − r − 3

3

= qr + k − r

3
− 1 = (q + l)r + k − r

3
− 1 − lr ,

and thus c − k + k1 = q + l and k1 = ((k − r)/3) − 1 − lr . This implies that

3q − k + k − r

3
− 1 − lr = q + l ⇒ 2q = r + 2k

3
+ 1 + l(r + 1)

⇒ q = r + 2k + 3

6
+ l

r + 1

2
.

Because of r = 2p + 1 this means that

q = 2k + 2p + 4

6
+ l(p + 1) = k + p + 2

3
+ l(p + 1). (7)

Subcase 2.3.1. Assume that k = 3m with m ∈ N. According to (7), this leads to q = m + ((p + 2)/3) + l(p + 1),
and thus p = 3s + 1, r = 6s + 3 and q = m + s + 1 + l(3s + 2) for an integer s�0. Furthermore we observe that

c = 3q = 3m + 3s + 3 + 3l(3s + 2) = k + 3s + 3 + 3l(3s + 2)

⇒ 3s + 3 + 3l(3s + 2) > 0 ⇒ l >
−s − 1

3s + 2
⇒ l�0

and

k1 = k − r

3
− 1 − lr = m − 2s − 2 − l(6s + 3)�0 ⇒ l�m − 2s − 2

6s + 3
.

Since c − k = 3s + 3 + 3l(3s + 2) = 3 + 3(s + 3ls + 2l) is odd, we deduce that s + 3ls = s(1 + 3l) is even, which
means that s is even or l is odd.
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If s = 2n with s ∈ N0, then it follows that r = 12n+ 3, q =m+ 2n+ 1 + l(6n+ 2), 0� l�(m− 4n− 2)/(12n+ 3),
m�4n+ 2 and k1 =m− 4n− 2 − l(12n+ 3). According to Corollary 2.7, we see that D is member of the families G9

q .
If l=2v+1 for an integer v, then we arrive at 0�v�(m−8s−5)/(12s+6), m�8s+5, q=m+s+1+(2v+1)(3s+2)

and k1 = m − 2s − 2 − (2v + 1)(6s + 3). Again with Corollary 2.7 we observe that D belongs to the families G10
q .

Subcase 2.3.2. Suppose that k = 3m + 1 for an integer m�0. With (7) this yields q = m + (p/3) + 1 + l(p + 1) and
thus p = 3s, r = 6s + 1 and q = m + s + 1 + l(3s + 1) with s ∈ N0. Furthermore, we conclude that

c = 3q = 3m + 3s + 3 + 3l(3s + 1) = k + 3s + 2 + 3l(3s + 1)

⇒ 3s + 2 + 3l(3s + 1) > 0 ⇒ l > − 3s + 2

9s + 3
⇒ l�0

and

k1 = k − r

3
− 1 − lr = m − 2s − 1 − l(6s + 1)�0 ⇒ l�m − 2s − 1

6s + 1
.

Since c − k = 3s + 2 + 3l(3s + 1) = 2 + 3(3ls + l + s) is odd, it follows that 3ls + l + s is odd. This is possible only
if s is odd or l is odd.

If l=2v+1 for an integer v, then we arrive at 0�v�(m−8s−2)/(12s+2), m�8s+2, q=m+s+1+(2v+1)(3s+1)

and k1 = m − 2s − 1 − (2v + 1)(6s + 1). According to Corollary 2.7, D is an element of the families G11
q .

If s = 2n + 1 for an integer n�0, then it follows that r = 12n + 7, 0� l�(m − 4n − 3)/(12n + 7), m�4n + 3,
q = m + 2n + 2 + l(6n + 4) and k1 = m − 4n − 3 − l(12n + 7). Again with Corollary 2.7 we see that D belongs to
the families G12

q .
Subcase 2.3.3. Let k = 3m + 2 with m ∈ N0. Using (7), we observe that q = m + 1 + ((p + 1)/3) + l(p + 1), and

thus p = 3s + 2, r = 6s + 5 and q = m + 2 + s + l(3s + 3). Furthermore we have

c = 3q = 3m + 6 + 3s + 3l(3s + 3) = k + 4 + 3s + 3l(3s + 3)

⇒ 4 + 3s + 3l(3s + 3) > 0 ⇒ l > − 4 + 3s

9s + 9
⇒ l�0

and

k1 = k − r

3
− 1 − lr = m − 2s − 2 − l(6s + 5)�0 ⇒ l�m − 2s − 2

6s + 5
.

The fact that c − k = 4 + 3(3ls + 3l + s) is odd implies that 3ls + 3l + s = s(3l + 1) + 3l is odd. This is possible only
if l is odd or if s is odd.

If l = 2v + 1 for an integer v, then we deduce that 0�v�(m − 8s − 7)/(12s + 10), m�8s + 7, q = m + 2 + s +
(2v + 1)(3s + 3) and k1 = m − 2s − 2 − (2v + 1)(6s + 5). According to Corollary 2.7, we have that D is a member
of the families G13

q .
If s = 2n + 1 for an integer n�0, then we observe that r = 12n + 11, 0� l�(m − 4n − 4)/(12n + 11), m�4n + 4,

q = m + 3 + 2n + l(6n + 6) and k1 = m − 4n − 4 − l(12n + 11). Using Corollary 2.7 it follows that D belongs to the
families G14

q .
Case 3. Let �(D) = r + 2. According to Corollary 3.4 we have il(D) < ig(D) and hence il(D) = 0. Because of

Q2 → S → Q1, D[S] has to be local regular. Since Vi ⊆ D for all partite sets Vi with |Vi |�r + 1, this implies that D
does not contain any partite set of order r + 1. Hence, let |V (D)| = cr + 2k such that 0 < k < c. Using Corollary 2.7
we observe that S contains all the c − k partite sets of order r. If S contains additionally k1 partite sets of order r + 2,
then it follows that |S| = (c − k + k1)r + 2k1.

Subcase 3.1. Suppose that c = 3q + 1 with q ∈ N. If S is (q + l)-partite, then it follows that:

|S| = (c − k + k1)r + 2k1 = (q + l)r + 2k1 = cr + 2k − (r + 2)

3

= qr + 2k − 2

3
= (q + l)r + 2k − 2

3
− lr .
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Since |S| ∈ N0, we observe that k = 3m + 1 for an integer m�0, and thus c − k + k1 = q + l and k1 = m − l(r/2).
This yields that

3q + 1 − (3m + 1) + m − l
r

2
= 3q − 2m − l

r

2
= q + l

⇒ 2q = 2m + l
(

1 + r

2

)
⇒ q = m + l

r + 2

4
.

If l�0, then we arrive at q�m and thus c�k, a contradiction. Hence, let l�1. Because of q ∈ N, we conclude that
l(r + 2)/4 ∈ N. Since r is even this implies that r = 2 + 4p or r = 4 + 4p and l = 2v + 2 for integers p, v�0.

If r=2+4p, then we see that q=m+l(1+p) and k1=m−l(1+2p). The fact that k1�0 yields that 1� l�m/(1+2p)

and thus m�1 + 2p. Using Corollary 2.7, it is obvious that D belongs to the families H1
q .

If r = 4 + 4p and l = 2v + 2, then it follows that q = m + (v + 1)(2p + 3) and k1 = m − (2v + 2)(2p + 2). Because
of k1�0 we have 0�v�(m − 4 − 4p)/(4 + 4p) and thus m�4 + 4p. Again with Corollary 2.7 we deduce that D is
a member of the families H2

q .
Subcase 3.2. Assume that c = 3q + 2 for an integer q�0. Let r = 2 + 2p with p ∈ N0. If S is (q + l)-partite, then

we observe that

|S| = (c − k + k1)r + 2k1 = (q + l)r + 2k1 = cr + 2k − r − 2

3

= qr + r + 2k − 2

3
= (q + l)r + r + 2k − 2

3
− lr ,

and thus c − k + k1 = q + l and k1 = ((r + 2k − 2)/6) − l(r/2). This implies

3q + 2 − k + r + 2k − 2

6
− l

r

2
= 3q + 2 + r − 4k − 2

6
− l

r

2
= q + l

⇒ 2q = l
(

1 + r

2

)
− 2 + 4k + 2 − r

6

⇒ q = r + 2

4
l + 4k − r + 2

12
− 1 = 3lr + 6l + 4k − r + 2

12
− 1.

This leads to

c = 3q + 2 = k + 3lr + 6l − r + 2

4
− 1 < c + 3lr + 6l − r + 2

4
− 1

⇒ 3lr + 6l − r + 2

4
− 1 > 0 ⇒ 3lr + 6l − r + 2 > 4

⇒ 3l(r + 2) > r + 2 ⇒ l >
1

3
⇒ l�1,

which means that v�1, if l = 2v, and v�0, if l = 2v + 1. Since r = 2 + 2p, we observe that

q = l − 1 + 3lp + 2k − p

6
. (8)

Subcase 3.2.1. Let l = 2v for an integer v. Then (8) leads to

q = 2v + vp + 2k − p

6
− 1. (9)

Subcase 3.2.1.1. Assume that k = 3m + 1 with m ∈ N0. Now (9) yields

q = 2v + vp + m + 2 − p

6
− 1,
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and thus p = 6s + 2, r = 6 + 12s and q = 4v + 6vs + m − s − 1 for an integer s�0. Furthermore, we conclude that

k1 = r + 2k − 2

6
− l

r

2
= 1 + 2s + m − 6v − 12vs�0

⇒ 1�v� 1 + 2s + m

6 + 12s
= 1

6

(
1 + m

1 + 2s

)
,

and thus m�5 + 10s. Using Corollary 2.7 we see that D is an element of the families H3
q .

Subcase 3.2.1.2. Let k = 3m + 2 with m ∈ N0. Using (9) we arrive at

q = 2v + vp + m + 4 − p

6
− 1,

and thus p = 6s + 4, r = 12s + 10 and q = 6v + 6vs + m − s − 1 for an integer s�0. Furthermore we observe that

k1 = r + 2k − 2

6
− l

r

2
= 2s + 2 + m − 12vs − 10v�0 ⇒ 1�v� 2s + 2 + m

10 + 12s
,

which implies that m�10s + 8. According to Corollary 2.7, D belongs to the families H4
q .

Subcase 3.2.1.3. Suppose that k = 3m with m ∈ N. Then (9) leads to

q = 2v + vp + m − p

6
− 1,

and thus p = 6s, r = 2 + 12s and q = 2v + 6vs + m − s − 1 for an integer s�0. Furthermore we see that

k1 = r + 2k − 2

6
− l

r

2
= 2s + m − 2v − 12vs�0 ⇒ 1�v� 2s + m

12s + 2
,

which yields that m�10s + 2. Using Corollary 2.7 it follows that D is a member of the families H5
q .

Subcase 3.2.2. Assume that l = 2v + 1 for an integer v. In this case (8) yields that

q = 2v + vp + p + k

3
. (10)

Subcase 3.2.2.1. Let k = 3m with m ∈ N. Using (10) we deduce that

q = 2v + vp + m + p

3
,

which leads to p = 3s, r = 2 + 6s and q = 2v + 3vs + m + s for an integer s�0. Furthermore it follows that:

k1 = r + 2k − 2

6
− l

r

2
= m − 2s − 2v − 6vs − 1�0 ⇒ 0�v�m − 2s − 1

2 + 6s
,

and thus m�2s + 1. According to Corollary 2.7, D is an element of the families H6
q .

Subcase 3.2.2.2. Suppose that k = 3m + 1 with m ∈ N0. With (10) we arrive at

q = 2v + vp + m + p + 1

3
,

and thus p = 3s + 2, r = 6s + 6 and q = 4v + 3vs + m + s + 1 for an integer s�0. Furthermore we see that

k1 = r + 2k − 2

6
− l

r

2
= m − 2s − 6vs − 6v − 2�0 ⇒ 0�v� 1

6

(
m

s + 1
− 2

)
,

which implies that m�2s + 2. Hence, again with Corollary 2.7 we observe that D belongs to the families H7
q .
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Subcase 3.2.2.3. Let k = 3m + 2 with m ∈ N0. According to (10), we have

q = 2v + vp + m + p + 2

3
,

and thus p = 3s + 1, r = 6s + 4 and q = 3v + 3vs + m + s + 1 for an integer s�0. Furthermore, we observe that

k1 = r + 2k − 2

6
− l

r

2
= m − 2s − 1 − 6vs − 4v�0 ⇒ 0�v�m − 2s − 1

4 + 6s
,

which means that m�2s + 1. Using Corollary 2.7 we conclude that D is a member of the families H8
q .

Subcase 3.3. Assume that c = 3q with q ∈ N. Let r = 2 + 2p for an integer p�0. If S is (q + l)-partite, then we
conclude that

|S| = (c − k + k1)r + 2k1 = (q + l)r + 2k1 = cr + 2k − (r + 2)

3

= qr + 2k − 2 − r

3
= (q + l)r + 2k − 2 − r

3
− lr .

This implies that c − k + k1 = q + l and k1 = ((2k − 2 − r)/6) − l(r/2), and thus

3q − k + 2k − 2 − r

6
− l

r

2
= 3q − 4k + 2 + r

6
− l

r

2
= q + l

⇒ 2q = r + 2 + 4k

6
+ l

r + 2

2
⇒ q = r + 2 + 4k + 3lr + 6l

12
.

This leads to

c = 3q = k + r + 2 + 3lr + 6l

4
< c + r + 2 + 3lr + 6l

4

⇒ r + 2 + 3lr + 6l

4
> 0 ⇒ l > − 1

3
⇒ l�0,

which means that v�0, if l = 2v or l = 2v + 1 for an integer v. Furthermore, since r = 2 + 2p, we deduce that

q = l + 2 + p + 2k + 3lp

6
. (11)

Subcase 3.3.1. Let l = 2v for an integer v. Using (11) we see that

q = 2v + vp + 2 + p + 2k

6
. (12)

Subcase 3.3.1.1. Assume that k = 3m with m ∈ N. According to (12), we have

q = 2v + vp + m + 2 + p

6
,
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and thus p = 6s + 4, r = 10 + 12s and q = 6v + 6vs + m + 1 + s for an integer s�0. Furthermore it follows that:

k1 = 2k − 2 − r

6
− l

r

2
= m − 2 − 2s − 10v − 12vs�0 ⇒ 0�v�m − 2 − 2s

10 + 12s
,

which yields that m�2s + 2. Using Corollary 2.7 we conclude that D belongs to the families H9
q .

Subcase 3.3.1.2. Suppose that k = 3m + 1 with m ∈ N0. Using (12) we see that

q = 2v + vp + m + p + 4

6
,

and thus p = 6s + 2, r = 12s + 6 and q = 4v + 6vs + m + s + 1 for an integer s�0. Furthermore we observe that

k1 = 2k − 2 − r

6
− l

r

2
= m − 2s − 1 − 12vs − 6v�0 ⇒ 0�v�m − 2s − 1

6 + 12s
,

which means that m�2s + 1. According to Corollary 2.7, we deduce that D is an element of the families H10
q .

Subcase 3.3.1.3. Let k = 3m + 2 with m ∈ N0. According to (12), we arrive at

q = 2v + vp + m + 1 + p

6
,

and thus p = 6s, r = 2 + 12s and q = 2v + 6vs + m + 1 + s for an integer s�0. Furthermore we conclude that

k1 = 2k − 2 − r

6
− l

r

2
= m − 2s − 2v − 12vs�0 ⇒ 0�v� m − 2s

2 + 12s
,

which leads to m�2s. Using Corollary 2.7 we observe that D is a member of the families H11
q .

Subcase 3.3.2. Assume that l = 2v + 1 for an integer v. According to (11), this yields

q = 2v + 1 + vp + 1 + 2p + k

3
. (13)

Subcase 3.3.2.1. Suppose that k = 3m with m ∈ N. Using (13) we observe that

q = 2v + 1 + vp + m + 1 + 2p

3
,

and thus p = 3s + 1, r = 4 + 6s and q = 3v + 2 + 3vs + m + 2s. Furthermore we see that

k1 = 2k − 2 − r

6
− l

r

2
= m − 3 − 4s − 4v − 6vs�0 ⇒ 0�v�m − 3 − 4s

4 + 6s
,

which leads to m�3 + 4s. According to Corollary 2.7, D belongs to the families H12
q .

Subcase 3.3.2.2. Let k = 3m + 1 with m ∈ N0. Using (13) we have

q = 2v + 1 + vp + m + 2p + 2

3
,

and thus p = 3s + 2, r = 6s + 6 and q = 4v + 3vs + 2s + m + 3 for an integer s�0. Furthermore we see that

k1 = 2k − 2 − r

6
− l

r

2
= m − 4 − 4s − 6v − 6vs�0 ⇒ 0�v�m − 4 − 4s

6 + 6s
,

which yields that m�4 + 4s, According to Corollary 2.7, it follows that D is an element of the families H13
q .

Subcase 3.3.2.3. Assume that k = 3m + 2 with m ∈ N0. Using (13) we observe that

q = 2v + 2 + vp + m + 2p

3
,

and thus p = 3s, r = 6s + 2 and q = 2v + 2 + 3vs + m + 2s. Furthermore it follows that:

k1 = 2k − 2 − r

6
− l

r

2
= m − 4s − 2v − 6vs − 1�0 ⇒ 0�v�m − 4s − 1

2 + 6s
,
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which means that m�4s + 1. According to Corollary 2.7, we conclude that D belongs to the families H14
q . This

completes the proof of the theorem. �
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