atenseness of the resulting test questionnaire. After revision, the pilot questionnaire was created. Results of the acceptance allocation in Arabic-speaking countries were revised around the pleasure and health. The test questionnaire consisted of 199 items divided into six modules: “grocery shopping”, “cooking”, “places where meals are eaten”, “conviviality”, “eating and drinking”, and “eating habits and health”. Items within the first five modules were essentially disease-specific items (i.e., disease-related physical condition); the module “eating habits and health” assesses beliefs. Cognitive interviews led to minor rewordings, removal and addition of items. The resulting pilot questionnaire of 147 items divided elucidated group differences revolved around acceptance of language differences. Module: “eating habits and health” assesses beliefs. Cognitive interviews led to minor rewordings, removal and addition of items. The resulting pilot questionnaire of 147 items divided elucidated group differences revolved around acceptance of language differences. Module: “eating habits and health” assesses beliefs. Cognitive interviews led to minor rewordings, removal and addition of items. The resulting pilot questionnaire of 147 items divided elucidated group differences revolved around acceptance of language differences.

CONCLUSIONS: We developed a unique tool that comprehensively assesses the full picture of well-being related to food and eating habits in the general population. A validation study is underway to establish the scoring and ascertain the psychometrics of the instrument before it can be used in clinical studies.

PRM174 METHODOLOGY AND DEVELOPMENT OF ‘POLISH DICTIONARY OF QUALITY OF LIFE TERMS’

Gościć D1, Farkowski MM2, Grabowska-Krawieć P3, Szulczecka-Debek M4, Zawodnik S5, Baran J6, Borowicz L7, Czech M8
1Medical University of Silesia, Katowice, Poland, 2Division of Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland, 3Institute of Cardiology, Warsaw, Poland, 4Department of Immunology and Clinical Allergology, Medical University of Silesia, Katowice, Poland, 5Department of Dermatology, Military Institute of Medicine, Warsaw, Poland, 6Department of Pharmacoeconomics, Medical University of Warsaw, Warsaw, Poland, 7Postgraduate Medical School, Grochowski Hospital, Warsaw, Poland, 8Server Polska Sp. z o.o., Warsaw, Poland

Lack of an established Polish dictionary of quality of life (HRQoL) studies in Poland. **OBJECTIVES:** To develop Polish dictionary of terms used in the studies of HRQoL. **METHODS:** In February 2012, HRQoL Special Interest Group of ISPOR Poland Chapter took on the task of preparing Polish dictionary of HRQoL terms. Following procedure were planned: (1) preparation of a list of target English-language terms, (2) preparation of a reference list of translations typically used in Polish literature, (3) step-by-step translation of English terms by individual experts, (4) analysis and appraisal of proposed translations by Expert Committee, (5) re-analysis of key terms, (6) preparation of pre-final vocabulary, (7) reviews by Review Committee, (8) preparation and publication of the final version. The list of English terms was based on following sources: popular English-language HRQoL papers frequently used in clinical trials. Their use promotes a range of benefits such as improving access to patients, increasing compliance, reducing missing data and avoiding errors associated with data entry. When changing from paper and pen to electronic administration, it is important to establish their equivalence. This is the first study to evaluate the use of Rasch analysis for this purpose. **RESULTS:** Three groups of US patients with pulmonary hypertension participated. A clinical sample completed an electronic version of the CAMPHOR activity limitations and QoL scales. The three databases were analysed separately for fit to the Rasch model. Data were then combined, re-analysed and assessed for differential item functioning (DIF). Results: The three datasets were matched randomly for sample size (n=147). Mean age (years) and percentage male respondents were as follows: e-sample (51.7, 16.0%), ppi (50.0, 14.0%), pp2 (50.0, 40.0%). After minor adjustments to the three datasets, fit to the Rasch model was achieved (Chi^2 values for activity limitations and QoL respectively were e-sample (0.40, 0.30)). Fit was also achieved for the combined sample after minor adjustments (activity limitations Chi^2 = 0.21, QoL Chi^2 = 0.20). Importantly, no evidence of DIF by mode of administration was found. **CONCLUSIONS:** Equivalence of the electronic and pen and paper modes of the CAMPHOR activity limitations and QoL scales was established. This shows how the Rasch model can be utilized to determine the equivalence of alternative formats of PRO measures. This methodology has the added advantage of avoiding the need for complex study designs such as matching samples for disease severity or repeated administration of alternative formats of questionnaires.

PRM177 ASSESSING MEASUREMENT EQUIVALENCE OF DIFFERENT FORMS OF ADMINISTRATION OF THE CAMBRIDGE PULMONARY HYPERTENSION OUTCOME QUESTIONNAIRE (CAMPHOR) USING RASCH ANALYSIS

Bezard M1, Sena K2, Gramb L2, Stacan M2, Gasperi H3, Lacet S2
1Galam Research Ltd., Manchester, UK, 2Mayo Clinic, Rochester, MN, USA, 3University of Chicago Medicine, Chicago, IL, USA

OBJECTIVES: Electronic formats of patient-reported outcome (PRO) measures (e.g., PRO measures) are increasingly used in clinical trials. Their use promotes a range of benefits such as improving access to patients, increasing compliance, reducing missing data and avoiding errors associated with data entry. When changing from paper and pen to electronic administration, it is important to establish their equivalence. This is the first study to evaluate the use of Rasch analysis for this purpose. **METHODS:** Three groups of US patients with pulmonary hypertension participated. A clinical sample completed an electronic version of the CAMPHOR activity limitations and QoL scales. The three databases were analysed separately for fit to the Rasch model. Data were then combined, re-analysed and assessed for differential item functioning (DIF). Results: The three datasets were matched randomly for sample size (n=147). Mean age (years) and percentage male respondents were as follows: e-sample (51.7, 16.0%), ppi (50.0, 14.0%), pp2 (50.0, 40.0%). After minor adjustments to the three datasets, fit to the Rasch model was achieved (Chi^2 values for activity limitations and QoL respectively were e-sample (0.40, 0.30)). Fit was also achieved for the combined sample after minor adjustments (activity limitations Chi^2 = 0.21, QoL Chi^2 = 0.20). Importantly, no evidence of DIF by mode of administration was found. **CONCLUSIONS:** Equivalence of the electronic and pen and paper modes of the CAMPHOR activity limitations and QoL scales was established. This shows how the Rasch model can be utilized to determine the equivalence of alternative formats of PRO measures. This methodology has the added advantage of avoiding the need for complex study designs such as matching samples for disease severity or repeated administration of alternative formats of questionnaires.