
Theoretical Computer Science 114 (1993) 317-330

Elsevier

317

Note

A simple sequent calculus for
partial functions

Morten Elvang-Garansson
Centre of Cognitive Informatics. Roskilde University Center. P.O. Box 260. DK-4000 Roskilde,

Denmark

Olaf Owe

Department of Informarics, University of Oslo. P.O. BO.X 1080, ~-0316 Oslo, NorKlay

Communicated by M. Nivat

Received February 1992

Revised August 1992

Abstract

Elvang-Gsransson, M. and 0. Owe, A simple sequent calculus for partial functions, Theoretical

Computer Science 114 (1993) 317-330.

Usually, the extension of classical logic to a three-valued logic results in a complicated calculus, with

side-conditions on the rules of logic in order to ensure consistency. One reason for the necessity of

side-conditions is the presence of nonmonotonic operators. Another reason is the choice of

consequence relation. Side-conditions severely violate the symmetry of the logic. By limiting the

extension to monotonic cases and by choosing an appropriate consequence relation, a simple

calculus for three-valued logic arises. The logic has strong correspondences to ordinary classical

logic and, in particular, the symmetry of the Genzen sequent calculus (LK) is preserved, leading to
a simple proof for cut elimination.

1. Introduction

Over the past years, numerous logics for handling partial functions and a “gap” in

the truth values have been defined. Most of these so-called three-valued logics are

obtained by extending the interpretation of the usual classical connectives, for in-

stance, as suggested by Kleene, and by adding new connectives to reflect the increased

Correspondence to: 0. Owe, Department of Informatics, University of Oslo, P.O. Box 1080 Blindern,

N-0316 Oslo, Norway. Email addresses of the authors: elvang@cog.ruc.dk and olaf@ifi.uio.no.

0304-3975/93/%06.00 0 1993-El sevier Science Publishers B.V. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82697635?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

expressive power needed to capture well-definedness properties, and then define

a calculus which is complete with respect to such interpretations. In computer science

applications, gaps may exist not only for truth values but also for all types involved,

corresponding to “undefined” values. Thus, the term “three-valued” is not quite

appropriate. We are interested primarily in formalisms where “gaps” correspond to

meaningless values (or rather nonexisting values), for instance, caused by run-time

errors or nontermination.

In this paper we question whether all these efforts have resulted in the “right”

three-valued logic. Our response will be a three-valued calculus which has never

seriously been considered before. The logic arises as a natural extension of the

two-valued classical case to the three-valued monotonic case. As we shall see, its

validity concept-together with an inductive definition of definedness - gives rise to

a very simple proof system.

Section 2 justifies our interest in the calculus, which then is formally introduced

through Sections 3 and 4. A few interesting properties of the calculus are described in

Section 5 and some final remarks are placed in Section 6.

We assume that the reader is familiar with standard definitions from logic and

denotational semantics. The applicability for three-valued logics is well motivated by

others (refer e.g. [S]). We refer readers looking for a survey of three-valued logics to

[l, 3, 5, 9, 14, 161.

2. Motivation and background

In order to formalize the use of assumptions (hypotheses) in a convenient way, we

consider sequents of the form A E B, expressing that if the hypothesis A is true, then we

can entail that the consequent B is true as well. For now, we assume that A and B are

single formulas (taking true as the default hypothesis). Thus, one entails true con-

sequents from true hypotheses; however, in the classical setting we could as well have

read that from nonfalse hypotheses we entail true consequents. This distinction is

without importance in classical logic, but in logics with a third value this distinction

is important, and we see it as the philosophical motivation for the logic discussed in

this paper.

In a three-valued setting, there are four obvious ways of reading A k B. Apart from

the two possibilities mentioned above, one may say that nonfalse consequents are

entailed from nonfalse hypotheses or that nonfalse consequents are entailed from true

hypotheses. We shall use the terminology that hypotheses and consequents are

interpreted weakly (strongly) if they are taken to be nonfalse (true). Thus, we have the

four possible interpretations of A F B, leading to four different consequence relations.

These are subsequently referred to as “ss”, “ws”, “ww”, and “SW”, respectively.

It follows that ws is the most restrictive (in the sense that all sequents valid in ws are

valid with the other consequence relations) and SW the least restrictive. Furthermore,

ss and ww are dual in the sense that the validity of the sequent A I- B in one is

A simple sequent calculusfor partialfunctions 319

equivalent to 1 B k 1 A in the other. For instance, sequents like I- l/O # l/O are valid

in SW and ww, and sequents like l/O= l/O l- l/O# l/O are valid in SW, ww and ss

(assuming division by zero is undefined and that = is strict); however, none of them

are valid in ws. And l-A * A is not valid in ws and ss with Kleene’s implication

operator. With his interpretation, A * B is true when A is false or B is true, is false

when A is false and B is true, and is undefined otherwise. Other implication operators

may be defined, but are not natural for computer science reasoning, and will not be

considered.

As examples of logics of the different kinds we have: ss [2,4], called LPE; SW

[ll, 12,9], called PFOL in the latter; ww [13,15], called WL; and ws [7, 16-J. The four

consequence relations defined above are the ones most commonly identified by

authors [9,14]. Other consequence relations can be defined, and more possibilities are

discussed in [l, 161. In Cl], one searches for a mathematically natural partial logic,

restricting oneself to reflexive and transitive consequence relations, whereas the

implication operator need not be as suggested by Kleene. In contrast, we restrict the

implication operator, as explained, but not the consequence relation. In fact, the

consequence relation of SW is not transitive, and that of ws is not reflexive.

For consequence relations that give the same interpretation of hypotheses and

consequents, it is possible to define natural deduction [17] predicate calculi (in the

style of e.g. [2, 151, where hypotheses occur only in premises), but for consequence

relations that do not have this property, it may be necessary to use proof rules with

premises as well as conclusions expressed by means of sequents. For instance, consider

the following two versions of “modus ponens”:

k-A=-B t-A

and

t-A*B

At-B

Only the latter rule is sound in SW. Both are sound in ws and is ss, whereas neither is

sound in ww. In particular, in SW one may not conclude t- B from l- A and A F-B.

The consequence relation of ws preserves the classical duality between the logical

implication and the consequence relation, the duality principle, i.e. the validity of

A k B is equivalent to that of k A a B. In contrast, ww and ss do not satisfy this

equivalence. It turns out that all classical rules of many sorted logic are sound in ws

without any modification! Thus, ws provides reasoning closer to classical logic than

the other consequence relations.

Also from an intuitive point of view, ws appears attractive: In ws nothing can be

proved from or about undefinedness since an undefined hypothesis gives no informa-

tion and may be ignored, whereas an undefined consequent is impossible to prove and

may be replaced by false. An undefined formula occurring in (the hypothesis or in the

consequent of) a sequent may be replaced by anything without losing validity.

320 M. E/vampGoronsson. 0. Owe

We will investigate below the advantages of ws further, and we will discuss a formal

system for ws logic (WSL).

Correspondence to the LK-calc~dus

Consider sequents where the hypothesis consists of a list of formulas (interpreting

commas as A’S. with true as default), and where the consequent consists of a list of

formulas (interpreting commas as v’s, with false as default). The duality principle

may not be formalized as: f 1, A t B, r, is equivalent to rI t- A * B, TZ, which again is

equivalent to r, I- -I A, B, r2 (letting indexed T’s denote arbitrary lists of formulas,

possibly empty).

As stated, WSL has the property that strongly true consequents are entailed from

the hypothesis. Thus, I--A,lA is not valid, reflecting the gap in truth values, but

I- 1 d [A], A,1 A is valid, where d [A] is the condition for the definedness of A. By

the duality principle, this may be rephrased as: A I-A is not valid, but d [A], A FA is

valid. The latter (in one of its formulations) is the logical axiom (schema) of WSL,

which replaces the trivial sequent A t.4 of classical logic.

As a consequence of the duality principle, we have that the sequent I-r, A E f, is

equivalent to I-r F 1 A, r,, and rI I-A, r, is equivalent to I-r, 1 A F I-,. Thus, for-

mulas in a sequent may be moved around as in classical logic. As a direct consequence,

a sequent may be rewritten as one without hypotheses. A sound and complete set of

proof rules for such sequents is quite simple, and a sound and complete set of proof

rules for sequents with hypotheses is easily derived. It turns out that the classical rules

of LK-calculus [IO] are sound in ws without any modification. The requirement that

substitutions must be well-defined may be expressed through the typing premises

needed in the many-sorted version of LK-calculus. Together with the WSL axiom and

rules for well-definedness, they form a sound and complete system. WSL without

logical axioms and without the well-definedness operator is equivalent to many-

sorted LK-calculus without logical axioms. The LK-calculus without logical axioms

is also considered by Stark [1 S] (who pointed out this fact to us).

The symbol d will be defined by structural induction over the language of WSL.

This is possible because we will allow (nonlogical) function symbols to range over only

strict functions. (With a more complicated definition of A, it is possible to let functions

range over monotonic functions [7].) To achieve this, we have a restrictive definition

of “standard structures” which results in a limited expressive power compared to

other logics [4,13,9]. We claim that the expressive power is sufficient in computer

science applications, where one is interested in limiting the use of nonmonotonic

functions (since they, in general, are nonexecutable) to a few essential operators, such

as d, strong equality and the approximation relation, which are useful for reasoning

about monotonic functions (corresponding to implemented programs). In WSL, these

nonmonotonic operators can be constructively defined by means of the d-operator.

The resulting WSL system is simple, and many interesting properties of WSL can be

established by relatively simple modifications of the proofs for similar properties of

A simple sequent calculus for partial functions 321

classical logic. As such, we find WSL a promising candidate for a three-valued logic,

since the main achievement of logic must be to define systems that are as simple as

possible and yet have a sufficient expressive power.

Relation to other three-valued logics

The calculus we suggest has been discarded by others without further investigation

because of the invalidity of the trivial sequent, i.e. A t-A. Against this criticism, we can

argue that the trivial sequent is not so obvious in a three-valued setting. For instance,

is it desirable that O/O= 1 + O/O=0 is valid? Since this is equivalent to the trivial

sequent _L k I (assuming division by zero is undefined and = strict), such sequents

are valid in ww, ss and SW!

Furthermore, the “deduction theorem” and “modus ponens”’ are sound in WSL,

but not in LPF, WL, and PFOL. These rules may be formalized as

In LPF the rule =-I has the side-condition that A must be defined, and in WL and

PFOL the rule =+E has the side-condition that A must be defined. A further problem

with PFOL is that the cut rule does not hold without a similar side-con-

dition. The presence of such side-conditions violates the symmetry of the calculus.2

WL and PFOL have basically3 the same expressive power as WSL, but the expressive

power of LPF covers also nonmonotonic operators (since d is primitive in LPF).

Nonmonotonicity necessitates a side-condition on the rule:

(3-I 1
rl k- r,dwxi

rI t r2, 3x: T.A

(where [t/x] denotes substitution of x by t), namely rI k TZ, d,t. It is not sufficient

that t is a well-formed term of type T. For instance, from k 1 A [I] one may not

conclude that I- 3x: T.1 A[x].

’ Here we mean modus ponens in the form of 3-E and not in the form A, A =+ B t- B considered in [9]. As
pointed out there, the latter version is not valid in WSL.

‘To be fair, the problem is not as intricate for the basic calculus of WL as it is for LPF and PFOL. The

--E rule is not part of the basic calculus needed to establish completeness. A pure calculus for WL would

be exactly as the one for classical logic, but the problem is that one would (or could after some small
modifications of the interpretation of the j-quantifier) have no information at all about undefinedness,

because of the weak interpretation! This problem appears when one wants to use nonlogical axioms, cf. the
=-E rule.

-‘In WL and PFOL, function symbols are interpreted as strict functions, but in both logics the
nonmonotonic definedness operator, represented by .4 in this paper, is considered primitive.

322 hf. Elrany-Goransson, 0. Owe

By the requirement that free variables range over defined values only, and by the

inductive definition of definedness, we avoid the introduction of nonmonotonic

connectives in the base logic. However, essential nonmonotonic connectives may be

defined constructively by means of the well-definedness operator. Thus, nonmono-

tonic formulas may be transformed into monotonic ones. One may extend WSL by

taking the nonmonotonic connectives as logical symbols. The constructive relation-

ship to the monotonic part of the logic may be exploited to derive sound and complete

rules for the extended logic.

A more comprehensive comparison of WSL with other logics may be found

in [16].

3. Classification of terms and formulas

In this section we first formalize the language of the logic and its interpretation. We

define the well-definedness operator by structural induction. We end the section by

some more formal considerations about the expressive power of the logic.

Syntax

WSL is many-sorted and the language is defined for a finite number S, T, . . . of

different sorts. However, the sorts do not play an essential role in this paper.

Formulas are always taken to be of sort Boo/ (boolean). The language is defined by

logical and nonlogical symbols. The (minimal set of) logical symbols consists of true

(true), undefined (I), negation (1) conjunction (A), and, for each sort T, a universal

quantifier (VT) and an equality relation (==). The nonlogical symbols consist of

a countable number of

l function symbols (f: T--+S),

o a characteristic predicate Df : T+Bool for eachf;

l variables (xT) for each sort T.

(Functions with co-domain Boo/, i.e. predicates, will often be denoted with a

P instead of an 1:) The characteristic predicate of f’will be used to express when

,f is well-defined, such that of(f) is true when f(t) is well-defined for well-defined

t. The characteristic predicate of a total function is true. All characteristic pre-

dicates are by definition total. (Therefore, the characteristic predicate of a char-

acteristic predicate is not needed.) It is also strict and, thus, monotonic - in contrast

to A.

The classes of well-formed terms and well-formed formulas are defined as usual.

Terms and formulas involving typing conflicts are not considered well-formed. A for-

mula or term is closed if it does not contain any free variables (in the usual sense).

Substitution is defined as usual: A[t/x] means that all free occurrences of x are

replaced by t (renaming bound variables in A in order to avoid name clashes with free

variables of t).

A simple sequent culculus fir partial functions 323

Monotonic extensions of the language

Other logical symbols may be introduced by the following abbreviations:

falsesitrue

3x: T.A=lV_x: T.-IA

AvB-l(lA~lB)

(existential quantification)

(disjunction)

A-B=(lA)vB (implication)

AoB=(A-B)A(B-A) (bi-implication).

It turns out that A o B is equivalent to A = B.

A nonstrict boolean conditional can be introduced by the following abbreviation:

(ifAthenBelseC)-(Ar\(A*B))v(iAr\(iA=C)).

Note that (A A 1 B) v (1 A A B) is total and strict with respect to A and B, and gives

rise to an exclusive-or operator.

Standard structures

A standard structure for the language L with sorts S, T, . . . is defined as follows.

Each sort S, T, . . . is assigned a nonempty, countable set of objects ST, . . . Further-

more, S’ (S-lifted) is equal to S u{ Is}, where Is is a distinguished “undefined” object

for each S. In particular, BooI’= {true, false, lBool}.

A structure over L is defined as the tuple

({SL,TL,...},F,h 4)>

where

F maps each function symbol ,f to strict function f :T’+S’ and maps each

characteristic predicate symbol D, to a strict and total function Df : T’-+ Bool’, such

that Df is true whenever f is defined and false otherwise.

[Jc classifies any term of type T (including Bool) into a value of T’ under the

“assignment” (substitution) (T of the free variables in the term (defined below).

For each variable x of type T, an assignment CJ assigns a value in T, denoted as XD. The

classification of closed terms does not depend on 6.

Classijication of terms and formulas

The classification of formulas is based on Kleene’s extended interpretations

[x]b=xa for variable x

D(t)ll0=(W))(1rID0) f or nonlogical functions (and characteristic

predicates) f

324 M. Eltang-Goransson, 0. Owr

true if [AjO =false,

[[lA],= false if [A].=true,

I BOOI otherwise.

:

true if [A],=true and [Bjo=true,

[AA B]~= false if [A],=false or [B],=false,

1 BOO1 otherwise.

true if, for all CET, [A].+lci.x,=true,

[Vx: T. Ajo = false if, for some CET, [AJ.+~c,!~~l=false,

_L Boo1 otherwise.

[rtruej, = true,

ulno = L

where g1 +a2 denotes overwriting ~r by ~7~.

Validity of sequents and soundness qf kference rules

A sequent l-r F r2 is valid iff for all assignments cr, there is some AEON such that

[A],=false or some Aer2 such that [rAj,=true. A sequent is invalid ifit is not valid.

An inference rule is sound if validity of all the premises implies validity of the

conclusion.

Well-de$nedness

The A-symbol is a metasymbol that can be eliminated by repeated application of

the following rewrite rules:

d[Vx: T.A]=(Vx: T,d[A])v(3x: T.(d[A]/\lA))

d,[f(t)]=d.[t] AD,-(~) (where .f: T-S)

d[D,(t)]rd,[t] (where D,: T-+Bool)

A simple sequent calculus for partial functions 325

dT[cT] = true (for all constants of type T)

AT [xT] = true (for all variables of type T)

A[l_] -false

Any formula involving a A-symbol can always be replaced with a monotonic equiva-

lent. In this sense there is a part of the logic that is monotonic and any formula in the

logic can be rewritten to a normal form, inside this monotonic part.

The simple definition of definedness over the standard structures gives rise to some

nice closure properties: by structural induction over the language, it can be justified

that the above definitions are both necessary and sufficient requirements for the

definedness of a formula or a term, in the sense that for any structure, [Aa0 # lBOOl iff

[AIA]JO=true. Similarly, it holds for terms, i.e. [Tibet iff [A,[t]j,=true for any

term of type T. Note that these properties depend on the requirement that each

function and predicate is associated with a characteristic predicate.

Furthermore, it follows that [A [A [t]] _Uc = true for any term t. (This can be proved

by structural induction over the language.) Thus, we can accept the following axiom as

consistent with the above system:

t- A CA Ctll.

Note that a total and strict and-operator may be defined as a nonlogical function

(predicate) and with the nonlogical axiom I- Vx, y: Bool . and (x, y) =(x A y).

Other nonmonotonic operators

Nonmonotonic connectives like strong equality and an approximation relation can

be defined constructively by means of the well-definedness operator:

A-B = A[A]=A[B]A(A[A]=P(A=B)) (strongequality),

A LB = A[A] =>(A[B] r\(A=B)) (approximation).

Examples of strong equalities are already given above.

On expressive completeness

Cheng [4] proves his basic set of connectives expressive complete for all truth-

valued n-ary functions. However, as already discussed, we are interested only in the

monotonic truth-valued functions.

Theorem 3.1 (Expressive completeness). L is expressively complete for any n-ary

monotone function in Bool;+Booll.

326 M. Elvang-Goransson, 0. Owe

Proof (sketch ~4~). Blarney [3, Section 4.11 proves that the set (1, v, A, x , true,

false) is expressively complete (in the above sense). Interjunction can be defined in

WSL as

AwB-((AAB)V(AAI)V(BAI)). 0

The expressive power of WSL could be increased by taking the d-symbol as

a primitive, and by skipping the requirements of the basic functions to be strict. This

modification would leave WSL with an expressive power equal to that of LPF, and

still its basic system would be simpler than those discussed in Section 2. Apart from

the problem with the 3-I rule for LPF, none of the asymmetries of the logics [2,9, 131

discussed in Section 2 have anything to do with their additional expressive power, and

the description of the d-operator given above could be adopted in those logics as well.

The asymmetries are due to the choice of consequence relation.

4. Minimal proof system

In the minimal system we consider sequents with empty left-hand sides, and we

omit the sequent symbol in the proof rules. It is understood that a formula of the form

d [t] has been reduced to its normal form. The rules given below are sufficient to

establish the completeness of the system with equality:

Logical axioms

(Ax)
lLl[A],A,lA

The d-symbol is a metasymbol

Section 3.

Logical rules

(11)
r, A

I-,11/4

(CM)
r,A 1-,B

l-,Ar\B

that can be eliminated by applying the definitions of

(Neg-Conj)
l-1 A,lB

r,l(A/\B)

(All) r’ A
1-,Vx: T. A

x (of type T) not free in r (eigenvariable condition)

(Neg-All)
r,l A [t/xl

T,lVx: T.A
t of type T

A simple sequent calculus for partial functions 32-l

Those familiar with LPF [4] will remember that usually t in “Neg-All” (also

known as 3-1, cf. Section 2) is required to be well-defined. This is not necessary here,

because in the case where t is undefined, it can be replaced with any other term of

that sort without changing anything. It is exactly at this point that we can see what

we gain by considering only the monotonic cases. If we increased the expressive

power as discussed in the end of Section 3, then we would need to add a side-

condition AT[t] to the “Neg-All” rule, thereby destroying the symmetry of the basic

calculus.

Equality

The basic equality relation is strict and monotonic (which can be seen from the

definition of standard structures):

(=I
lAT[t], t=t

This axiom has a definedness condition similar to that of the trivial sequent. In WSL

all axioms must be well-defined, or have conditions ensuring definedness:

(= -subst)
r,s=t l-3 ACslxl

r,AL-tlxl

Other rules

r,itrue
(false) r

I-
(Weak) ~

r, A

(Cont)
r,A,A
r,.

Theorem 4.1 (Soundness and completeness). Let r be a sequent over L. r is provable iff
r is valid.

The completeness and soundness of the system is proved in the usual way [S], and

we omit the details.

When nonlogical axioms are introduced, elimination rules are needed as well as the

following “well-definedness” rule:

(Def) z
r,AA’

(As mentioned earlier, the elimination rules are the classical ones, but V-elimination

must require well-defined substitutions.)

328 M. Elvany-Garansson, 0. Owe

5. Some properties of WSL

In this section we show that WSL without equality has the cut elimination property

and that WSL supports rewriting in the sense of “folding” and “unfolding” definitions.

Both these properties are essential, but for different reasons. The cut elimination

property ensures that the logic is symmetric, and gives rise to simple decision

procedures. Rewriting is essential for reasoning about nonlogical axioms used for

defining programs, etc.

Cut elimination

The cut rule is not part of the minimal proof system (and if it was, it could always be

eliminated):

(Cut) Tl,A r f’,JA
13 2

Theorem 5.1 (Cut elimination). Any proof in the basic system without equality using

cuts can be transformed to a cut-free proof.

Proof (sketch only). As remarked in [lS], any proof in the basic system without

equality using cuts can be reduced to a proof with only atomic cuts. This can be proved

in the usual way by pushing atomic cuts up into the nodes of the proof trees, and

by eliminating all other cuts in the usual way. This is possible because the basic proof

rules are equivalent to the similar proof rules in the LK-calculus (refer e.g. [lo]). Thus,

we will always end up with cuts consisting only of axioms, and they are redundant. 0

Rewriting

The =-subst rule can be changed into a more convenient form, which can be used

for “folding” and “unfolding” definitions (formalizing the use of = in Section 3).

(= -subst)
r,s-t r, ACslxl

r, A [t/xl

The approximation relation (“less-than-or-equally-defined-as”) is practically useful

for formulation of nonlogical axioms. For instance, the axiom x/x E 1 is consistent

with the intented semantics, whereas x/x E 1 (or x/x = 1) is not (it would follow that

division is total). Since rewrite rules, typically, have right-hand sides better defined

than the left-hand sides, the approximation relation gives rise to unconditional rewrite

rules. With such rules, rewriting of monotonic terms may be performed as usual:

(F -subst)
r,sct r,ACslxl

1-,A[t/x]

Note that = satisfies trt, and c satisfies t L t and I E t.

A simple sequent calculus for partial functions 329

6. Final remarks

WSL offers reasoning close to classical logic in the sense that the classical proof

rules are preserved. In particular, it is appealing that the symmetry of classical logic is

not destroyed by adding definedness premises in the rules.

We believe WSL handles the gap in truth values, resulting from undefined terms,

where it is most natural to handle it; namely, at the level of the logical axioms. Thus,

by avoiding nonmonotonicity and accepting that A F A does not hold, we have got

a calculus which is strong enough to ensure strong validity of consequents and at the

same time is simple and elegant. The constructive definition of nonmonotonic oper-

ators enables nonmonotonic formulas to be reduced to monotonic ones.

As for the restricted interpretation of functions, the full expressive power offered by

some three-valued logics does not seem to be needed in computer science applications,

as long as reasoning about strong equality, approximations and well-definedness is

possible. Although we have required functions to be strict, this requirement can be

relaxed to just a requirement for monotonicity; cf. [7]. Since executable functions and

constructs in most programming languages are monotonic, these may be modeled by

monotonic functions.

In particular, reasoning about recursively defined functions is described in [16].

One may reason about approximations of recursive functions without touching

well-definedness issues or characteristic predicates. However, the characteristic predi-

cates simplify reasoning about well-definedness issues. Applications of WSL to other

areas of computer science, such as abstract data types, term rewriting and Hoare logic,

are demonstrated in [6].

Acknowledgment

The authors are greatly indebted to Ole-Johan Dahl for motivation and for fruitful

discussions on WSL. Anne B. Salvesen has provided useful feedback through careful

reading of a draft version.

References

[l] A. Avron, Natural 3-valued logics-characterization and proof theory, J. Symbolic Logic 56 (1991)
276294.

[2] H. Barringer, J.H. Cheng and C.B. Jones, A logic covering undefinedness in program proofs, Acta

Inform. 21 (1984) 251-269.

[3] S. Blarney, Partial logic, in: Handbook of Philosophical Logic, Vol. III (1986) l-70.

[4] J.H. Cheng, A logic for partial functions, Tech. Report Series UMCS-86-7-1, Department of

Computer Science, University of Manchester, 1986.

[S] J.H. Cheng and C.B. Jones, On the usability of logics which handle partial functions, in: C. Morgan

and J.C.P. Woodcock, eds., Proc. 3rd Rclfinement Workshop (Springer, Berlin, 1991).
167 O.-J. Dahl, Verijiable Programming (Prentice-Hall, Englewood Cliffs, NJ, 1992).

330 M. Elvanq-Garansson, 0. Owe

[7] O.-J. Dahl and 0. Owe, Formal development with ABEL, Lecture Notes jn Computer Science, Vol.

552 (Springer, Berlin, 1991) 320-362.

[S] M. Elvang-Goransson, Some properties of WSL, 1991-6, Department of Informatics, University of

Oslo, 1991, preprint 1991-6.

[9] A. Gavilanes-Franc0 and F. Lucia-Carrasco, A first order logic for partial functions, Throrer. Compur.

Sci. 74 (1990) 37769.

[lo] J.-Y. Girard, Y. Lafont and P. Taylor, Proofs and Types (Cambridge Univ. Press, Cambridge 1989).

[1 l] A. Hoogewijs, On a formalization of the non-definedness notion, 2. Loyik Grundlag. Math. 25 (1979)

213-217.

[121 A. Hoogewijs, A partial predicate calculus in a two-valued logic, 2. Loyik Grundlag. Math. 29 (1983)

2399243.
1131 M. Holden, Weak logic theory, Theorer. Comput. Sci. 79 (1991) 2955321.

[14] B. Konikowska, A. Tarlecki and A. Blikle. A three-valued logic for software specification and

validation, Lecture Notes in Computer Science, Vol. 328 (Springer, Berlin, 1988) 218-242.
1151 0. Owe, An approach to program reasoning based on a first order logic for partial functions, Report

CS-081, Department of EECS, University of California, San Diego, 1984.
[16] 0. Owe, Partial logics reconsidered: a conservative approach, Research Report 155, Department of

Informatics, University of Oslo, 1991; Formal Aspects qj’ Comput. 5 (1993) to appear.

1171 D. Prawitz, Natural Deduction (Almqvist & Wiksell, Stockholm, 1965).
[18] R.L. Stark, A complete axiomatization of the three-valued completion of logic programs, J. Logic and

Comput. l(l991) 811-834.

