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SUMMARY

Exhausted CD8+ T cells function poorly and are
negatively regulated by inhibitory receptors. Tran-
scriptional profiling has identified gene expression
changes associated with exhaustion. However, the
transcriptional pathways critical to the differences
between exhausted and functional memory CD8+

T cells are unclear. We thus defined transcriptional
coexpression networks to define pathways centrally
involved in exhaustion versus memory. These
studies revealed differences between exhausted
and memory CD8+ T cells including the following:
lack of coordinated transcriptional modules of quies-
cence during exhaustion, centrally connected hub
genes, pathways such as transcription factors,
genes involved in regulation of immune responses,
and DNA repair genes, as well as differential connec-
tivity for genes including T-bet, Eomes, and other
transcription factors. These data identify pathways
involved in CD8+ T cell exhaustion, and highlight
the context-dependent nature of transcription
factors in exhaustion versus memory.

INTRODUCTION

During acute viral infections, naive CD8+ T cells differentiate into

effector CD8+ T cells and, after viral control, into memory CD8+

T cells. Memory CD8+ T cells are highly functional, proliferate

rapidly upon reinfection, and persist long-term without antigen

(Williams and Bevan, 2007). In contrast, during chronic infec-

tions, CD8+ T cells become ‘‘exhausted’’ and have poor effector

function, express multiple inhibitory receptors, possess low pro-

liferative capacity, and cannot persist without antigen (Wherry,

2011). Though first observed in lymphocytic choriomeningitis

virus (LCMV) infection in mice, CD8+ T cell exhaustion is a

prominent feature of many experimental models of chronic infec-

tions, as well as in humans with chronic infections and cancer,

and this dysfunction prevents optimal control of infections and

tumors in these settings (Wherry, 2011).

Despite the importance of CD8+ T cell exhaustion during per-

sisting infections, the underlying molecular mechanisms remain
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incompletely understood. Recent studies suggest that T cell

exhaustion is orchestrated, at least in part, by regulation via

inhibitory cell surface receptors (e.g., PD-1, Lag-3, Tim-3, and

others) and soluble mediators, such as IL-10 and TGF-b (Wherry,

2011). These observations demonstrate that T cell exhaustion is

part of an active negative regulatory process and is not simply

a passive, intrinsic failure to recognize or respond to infection.

The existence of active regulatory pathways highlights the

possibility of restoring function to exhausted T cells, with clear

clinical implications. Indeed, early clinical trials blocking the

PD-1 pathway show promise against cancer (Brahmer et al.,

2012; Topalian et al., 2012).

However, functional alterations in exhausted CD8+ T cells

extend beyond inhibitory receptors and immunoregulatory path-

ways. Previous transcriptional profiling studies have demon-

strated profound changes in metabolism, cell cycle regulation,

and transcription factor expression (Wherry et al., 2007). Thus,

twomajor questions emerge: (1) what is the underlying transcrip-

tional program of exhausted CD8+ T cells, and (2) can knowledge

of this transcriptional program be used to identify genes, groups

of genes, and pathways central to the differential development of

CD8+ T cell memory versus exhaustion?

Transcriptional profiling is a powerful tool that has been used

to examine several aspects of CD8+ T cell differentiation (Kaech

et al., 2002; Hertoghs et al., 2010;Wherry et al., 2007;Wirth et al.,

2010). These and other studies used gene-centric, fold-change-

based approaches to focus on the implications of expression

differences between individual genes. More recent studies

have applied increasingly integrated methods to harness the

power of combining data sets across cell types and species

(Quigley et al., 2010). As the technologies for high-throughput

genomics become more efficient and accessible, it has become

possible to expand the use of transcriptional profiling to define

‘‘networks’’ of transcriptional interactions. Such networks have

identified groups of coordinately expressed genes involved in

disease (Chaussabel et al., 2008), hematopoietic lineage differ-

entiation (Ng et al., 2009; Novershtern et al., 2011), and T cell

differentiation (Elo et al., 2007). Several major advantages of

transcriptional coexpression networks make such studies a

next step in the genomic understanding of T cell memory and

exhaustion. First, compared to previous studies, transcriptional

network analysis is less dependent on the magnitude of change

in expression of any individual gene (Carter et al., 2004). Network

analysis allows connections between genes and pathways to be
c.
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revealed that might otherwise have been unappreciated (Dong

and Horvath, 2007). Second, network analysis reveals genes

and pathways that are predicted to be central to the biological

system being analyzed because highly connected ‘‘hub’’ genes

represent likely control points (Carter et al., 2004; Han et al.,

2004; Jeong et al., 2001). Finally, network analysis identifies

modules of highly correlated genes representing transcriptional

developmental programs that might be combined and reused

in different ways to generate cells with distinct properties or

fates (Novershtern et al., 2011). Thus, transcriptional coexpres-

sion networks can allow for a deeper understanding of complex

cellular systems.

Using the well-defined LCMV system, we have addressed key

questions about the differentiation of memory versus exhausted

CD8+ T cells by defining modular transcriptional networks of

coexpressed genes. This approach demonstrated that CD8+

T cell memory and exhaustion reflect distinct states defined

by coordinated sets of modules. Furthermore, this analysis

revealed several observations about exhausted CD8 T cells.

First, exhausted CD8+ T cells lacked modules associated with

quiescence. Additionally, altered connectivity of key negative

regulators in exhausted CD8+ T cells was associated with a pro-

longed activation program that could be distinguished from

a prolonged effector program. Specific genes and pathways

differentially implicated in exhaustion versus memory were iden-

tified including genes involved in epigenetics, DNA damage, and

WNT signaling, and specific genes including: Rtp4, Foxp1, Ikzf2,

Zeb2, Lass6, Tox, and Eomes. Finally, network analysis revealed

context-specific connectivity patterns for key transcription fac-

tors, including T-bet, demonstrated by largely nonoverlapping

sets of functionally distinct ‘‘neighbor’’ genes (genes closely

connected in the correlation-based network) in exhausted

versus memory CD8+ T cells. These studies reveal insights into

the biology of exhausted CD8+ T cells and provide a resource

that should allow for deeper understanding of CD8+ T cell differ-

entiation following acute and chronic viral infection.

RESULTS

Scale-free Transcriptional Networks for CD8+ T Cells in
Acute versus Chronic Viral Infection
CD8+ T cell exhaustion develops during chronic infections and

cancer and prevents optimal control of infections and tumors

(Wherry, 2011). Previous transcriptional profiling studies have

defined specific genes involved in exhausted versus functional

effector and memory CD8+ T cells (Wherry et al., 2007). Compu-

tational approaches, includingmodular transcriptional networks,

can provide insight into the regulation of cellular differentiation

and control of cellular processes (Zhang and Horvath, 2005)

but require more extensive sets of transcriptional data than

previously available for exhausted CD8+ T cells. Thus, we per-

formed longitudinal transcriptional profiling of virus-specific

CD8+ T cells through acutely resolved and chronic LCMV infec-

tion. Infection of adult C57BL/6 mice with the LCMV Armstrong

(Arm) strain causes an acute infection that is cleared by d8–

d10 postinfection (p.i.) and results in functional effector and

memory CD8+ T cells. Infection with LCMV clone 13, however,

causes a chronic infection resulting in CD8+ T cell exhaustion

(Wherry et al., 2003). Exhausted CD8+ T cells are characterized
Imm
by progressive and hierarchical loss of effector functions and

ineffective viral control (Fuller and Zajac, 2003; Wherry et al.,

2003). To begin to define the organization of transcriptional

networks associated with either CD8+ T cell memory or exhaus-

tion, we sorted naive CD44lo CD8+ T cells and CD8+ T cells

specific for the LCMV epitope DbGP33 on d6, d8, d15, or d30

p.i. with LCMV Arm or clone 13 (Figure 1A). Following LCMV

Arm infection, virus-specific CD8+ T cells initially were CD127lo

and PD-1+ (Figure 1A). Expression of PD-1 declined and

CD127 increased over time as memory CD8+ T cells developed

following acute infection (Figure 1A). During LCMV clone 13

infection, the initial pattern of CD127 and PD-1 expression was

similar to Arm infection, but CD127 remained low and the

expression of PD-1 further increased as these cells became ex-

hausted (Figure 1A; Wherry et al., 2007). Following LCMV Arm

infection, virus-specific CD8+ T cells remained highly functional,

whereas during chronic infection these cells lost the ability to

coproduce cytokines (data not shown; Fuller and Zajac, 2003;

Wherry et al., 2003).

We profiled global messenger RNA (mRNA) expression from

naive CD8+ T cells and H-2Db GP33-specific CD8+ T cells using

Affymetrix microarrays on d6, d8, d15, and d30 following acute

or chronic infection. Initial analysis of differentially expressed

genes, ranked by the signal to noise ratio, revealed distinct

groups corresponding to different stages of the immune re-

sponse (Figure 1B). These gene expression profiles highlight

the similarity during early LCMV Arm and clone 13 infections

(black bars in Figure 1B), consistent with the similar functional

profiles during the first week of infection (Fuller and Zajac,

2003; Wherry et al., 2007). As memory and exhausted CD8+

T cells developed following acutely resolved versus chronic

infection, there was a progressive divergence of transcriptional

profiles. This divergence occurred between d8–d30 p.i. and is

consistent with previous studies indicating more similarity in

the CD8+ T cell response to LCMV Arm and clone 13 at early

time points p.i. (Brooks et al., 2006; Fuller and Zajac, 2003;

Wherry et al., 2003, 2007; Angelosanto et al., 2012).

To obtain a more global view of the transcriptional changes in

the CD8+ T cell response to acute or chronic LCMV, we used

gene coexpression networks to identify transcriptional modules

representing distinct patterns of gene expression (Dong and

Horvath, 2007). Gene modules can function as conserved

molecular ‘‘circuits’’ responsible for specific cellular functions

that can be reused in different cell lineages (Novershtern et al.,

2011). Though transcriptional networks are, by definition, based

on correlations between the expression profiles of individual

genes, highly correlated genes often share important biological

features such as involvement in common cellular processes or

similar mechanisms of regulation (Brown and Botstein, 1999).

Here we used Pearson’s correlation coefficient to define coex-

pression relationships between all pairs of genes in our tran-

scriptional data sets. These correlations establish a network of

interconnected genes based on the strength of connections

(i.e., correlation coefficient) between all pairs of genes. Strong

relationships identify closely ‘‘neighboring’’ genes and areas

within a network where a high density of genes share strong

relationships to one another are termed modules. Within each

module, highly connected ‘‘central’’ genes are called hubs.

Genes in modules often share common regulatory mechanisms
unity 37, 1130–1144, December 14, 2012 ª2012 Elsevier Inc. 1131



Figure 1. Characterization of Effector, Memory, and Exhausted LCMV-Specific CD8+ T Cells

(A) Naive CD8+CD44lo and H2-DbGP33 tetramer+ CD8+ T cells were sorted at d0 and d6, d8, d15, and d30 p.i., respectively. Representative expression of CD127

and PD-1 at these time points is shown.

(B) Global mRNA expression profiles of naive and effector, memory, and exhausted CD8+ T cells from acutely resolved and chronic LCMV infection. The top 25

most differentially expressed genes at each time point were identified. Black bars mark effector-biased genes. Green and red represent low and high relative

expression, respectively.

(C) Gene coexpression network construction was performed. Pearson’s correlation between the expression profiles of each pair of genes, for both all naive and

acute arrays (left) and also across all naive and chronic arrays (right), were hierarchically clustered and visualized as heatmaps. Positive correlations are yellow

and negative correlations purple.

(D) Coexpression module identification. Highly coexpressed modules were defined (see Experimental Procedures).

(E) Genes of each module were hierarchically clustered and expression levels were plotted as heatmaps; blue indicates low relative expression and red high

relative expression.
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or are involved in related cellular functions. Moreover, hub genes

can function as key control points in the formation of modules

and the cellular functions they confer.

We generated two coexpression networks from virus-specific

CD8+ T cells: one from acutely resolved LCMV infection (LCMV

Arm) and one from chronic LCMV infection (LCMV clone 13),

as described (Zhang and Horvath, 2005), Figure 1C). Within

these networks we identified densely interconnected regions,

or modules, based on the topological overlap (TO), a network

metric that determines the proportion of highly coexpressed

neighbors common between two genes (Yip and Horvath,

2007). Modules are displayed here by color and number, though

color and number do not imply module similarity between the

acute and chronic networks (see below). Modules identified by

this method ranged from 20 to 776 genes (see Table S1 available

online). These modules encompassed a variety of patterns

when the expression of the individual genes in each module

was viewed over time (Figure 1E). Note that the Pearson’s corre-

lation-based approach used here depends on coordinated

changes in expression, but not the direction of that change. To

define statistical differences in temporal expression of modules,

we performed a one-way ANOVA between d6 and 30 (Fig-

ure S1A). Several modules in each network (e.g., AM9-AM13,

CM2, and CM5) display expression profiles biased toward

effector time points, consistent with the widespread changes

in gene expression as naive CD8+ T cells become activated.

Also common to both networks were late-biased modules

(AM5, AM6, AM7, AM8, and CM1), implying a possible role in

the differentiation programs of CD8+ T cell memory or exhaus-

tion. The remaining module expression patterns from both the

acute and chronic networks suggest a complex transcriptional

architecture underlying each response.

Transcriptional Module Differences and Similarities
between Acute and Chronic Networks
To identify the degree of similarity between modules from the

acute versus chronic network, we used Fisher’s Exact Test

(FET) (Figure 2A). With the exception of CM4, all modules of

the chronic network had significant similarity to at least one

module from the acute network. However, the converse was

not true; multiple acute modules lacked a counterpart in

the chronic network (i.e., AM1, AM3, AM7, AM8, AM11, and

AM12). Thus, although previous studies have identified specific

genes upregulated in exhausted CD8+ T cells, including Pdcd1

(PD-1), Prdm1 (Blimp-1), and Batf (Barber et al., 2006; Quigley

et al., 2010; Shin et al., 2009), this analysis revealed that a major

feature of CD8+ T cell exhaustion was the absence of key CD8+

T cell memory-associated modules of gene expression.

To explore the characteristics of these modules in more detail,

we compared their temporal expression profiles. The expression

pattern of each module was summarized by its module eigen-

gene (defined by the first principal component of gene expres-

sion [Langfelder and Horvath, 2007]). Modules with temporal

similarity were grouped by hierarchical clustering based on Pear-

son’s correlation coefficient between their module eigengenes

(Figure 2B). Expression of the chronic-only module CM4 was

highly biased to later time points. Acute modules absent from

the chronic network (AM1, AM3, AM7, AM8, AM11, and AM12)

were expressed at either effector (AM11 and AM12) or memory
Imm
(AM7 and AM8) phases of the response (Figure S1). AM3 and

AM1, the remaining two acute modules not preserved in the

chronic network, fit a resting or quiescent profile with high

expression in both naive and memory populations and included

genes with potential roles in regulating T cell responses such as

Rictor, Cbl-b, Rasa1, and Apobec3 (full lists in Table S2).

Notably, the chronic network lacked a quiescence module, sug-

gesting that exhausted CD8+ T cells subjected to persistent anti-

genic stimulation may be unable to ‘‘disarm’’ their activation

state and return to homeostasis despite downregulating the

effector-like modules CM5 and CM6 (Figure 2B).

We next identified centrally connected hub genes within each

module. Though based on correlations, hub genes represent

likely control points for biological processes (Carter et al.,

2004; Jeong et al., 2001). These hubs are defined by their intra-

modular connectivity (i.e., degree of coexpression) between

a gene and all other genes in the same module (Carlson et al.,

2006). The top 25 hub genes for each module were examined

using DAVID (Huang et al., 2009b) to detect over-represented

gene ontology (GO) terms. Representative terms for each

module are shown in Figure 2C (full list in Table S3). Effector

biased modules in each network (AM9, AM10, AM11, AM12,

AM13, CM2, and CM5) displayed concordant enrichment for

genes involved in cell cycle, mitosis, DNA replication, and repair,

and the immune response, all of which are consistent with the

activated and highly proliferative state of effector CD8+ T cells.

Several memory and exhaustion-biased modules (AM5, AM6,

and AM7; CM1 and CM3, respectively) were enriched for genes

regulating apoptosis and programmed cell death, in addition to

immune response genes. A highly exhaustion biased module,

CM1, was also enriched for genes involved in Wnt pathway

signaling, suggesting an previously unappreciated role for this

pathway during CD8+ T cell exhaustion. Thus, identification of

hub genes through network analysis helps define key similarities

and differences between pathways associated with develop-

ment of functional CD8 T cell memory versus exhaustion.

Delayed Resolution of the Effector Circuitry during
Chronic Infection
Many of effector-biased modules had a high degree of similarity

to at least one module from the opposite network. For example,

the robust preservation between AM10 and CM5 (Figure 2A,

p value < 10�298) suggests that similar transcriptional programs

regulate DNA replication and the cell cycle during the periods of

high CD8+ T cell proliferation for both infections. AM5 and CM2

also have highly significant overlap (Figure 2A), driven, in part, by

key effector genes such as granzyme A (Gzma), interferon-g

(Ifng), and perforin (Prf1). A key distinction between these and

other effector modules in the acute and chronic networks is

the duration that these modules were upregulated during

chronic infection. Effector modules of the acute network (AM9,

AM10, AM11, AM12, and AM13) began downregulation by d8

p.i., whereas chronic effector modules (CM2, CM5) remained

elevated through d15 p.i. despite previous studies demon-

strating similar kinetics and duration of the effector and contrac-

tion phases during acute and chronic viral infection (Badovinac

et al., 2002; Wherry et al., 2007). One potential explanation for

this difference is the persistence of antigen during chronic infec-

tion. However, the chronic network lacked a module equivalent
unity 37, 1130–1144, December 14, 2012 ª2012 Elsevier Inc. 1133



Figure 2. Modular Analysis of Acutely Resolved Versus Chronic CD8+ T Cell Networks

(A) The number of genes in common between all pairings of acute and chronic modules was determined and Fisher’s exact test used to calculate the significance

of overlap. Darker red shading identifies more significant overlap. Genes from one module that were not contained in any module of the other network were

excluded.

(B) Modules were clustered by Pearson’s correlation coefficient between module eigengenes (ME) and visualized as heatmaps. Blue and red represent low and

high relative expression, respectively.

(C) The top 25 hub genes for each module were identified by their intramodular connectivity, and overenriched GO (http://www.geneontology.org) terms were

examined using DAVID (http://david.abcc.ncifcrf.gov/). Grey shaded boxes represent modules with significant enrichment (p value < 0.05; Table S3).

(D) The expression of AM9 and CM5, effector-biased modules from each network, was plotted for both the acute and chronic arrays. Blue and red represent low

and high relative expression, respectively. Each gene was correlated with the module eigengenes of AM9 and CM5 and, above each heatmap; average

expression of positively and negatively correlated genes was plotted in red and blue, respectively.
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to AM12, which contains genes involved in regulation of T cell

activation and includes the hub genes Ctla4, Casp3, and Il2ra

(CD25). To further examine this coordinate downregulation, we
1134 Immunity 37, 1130–1144, December 14, 2012 ª2012 Elsevier In
examined the expression pattern of genes in AM9, an acute

effector module, across both acute and chronic infection (Fig-

ure 2D). We likewise visualized the expression pattern of genes
c.
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in the chronic effector module CM5. Compared to the protracted

expression pattern of the genes of the acute module AM9 during

chronic infection, the genes from the CM5module were abruptly

downregulated after the effector phase during acute infection.

Thus, the transcriptional machinery underlying the effector

phase of CD8+ T cell differentiation appears to remain active

for longer during chronic viral infection despite the known termi-

nation of the effector expansion and initiation of the contraction

(Badovinac et al., 2002; Wherry et al., 2003). Together, these

observations suggest that the temporal dynamics of module

regulation could be a key feature of the development of memory

versus exhaustion.

Network Topology Identifies Changes in Transcriptional
Circuits in Acute Versus Chronic Infection
The network models developed here provide an opportunity to

examine gene connectivity patterns that might provide insight

into differential utilization of specific genes and pathways. This

approach compares the difference in intramodular connectivity

of a particular gene between the acute and chronic networks

relative to the maximally connected gene in each network (Fuller

et al., 2007).We used a network topology statistic and ameasure

of differential expression (Welch’s t-statistic) to segregate genes

based on changes in connectivity versus changes in expression

(Figure 3A). The genes closer to the center of the plots in Fig-

ure 3A exhibit little change in either expression or connectivity.

Because genes with low variance were filtered out prior to

network creation, the genes at the center of these plots likely

represent those similarly involved in CD8+ T cell differentiation

during acute versus chronic LCMV infection. In contrast, the

peripheral sectors identify genes that have a change in connec-

tivity, a change in expression, or both (Table S4). A lower

connectivity score in either network implies that the gene in

question has fewer interactions with other genes and is pre-

dicted to be less centrally involved in the module or network

(Luscombe et al., 2004).

Genes with similarly preserved functionality can be located

in the central sector at all time points (e.g., perforin and inter-

feron-g), indicating that these genes do not change in connec-

tivity or expression between the two networks. Conversely,

Pdcd1 (PD-1) and Il-7r (CD127) are examples of genes with

distinct roles in the CD8+ response to acutely resolved or chronic

infection. In addition to the higher expression of Pdcd1 during

chronic infection, PD-1 is also more highly connected in the

chronic network at all time points (shifted to the left in Figure 3A).

In contrast, though expression of Il7r (CD127) was initially higher

in chronic infection at d6 p.i., Il7r progressively becomes more

highly expressed following acute infection as these cells become

IL-7-dependent memory T cells. Il7r is also more highly con-

nected in the acute network (shifted to the right in Figure 3A).

These two examples indicate how, independent of fold-change,

connectivity may be used to identify genes whose function might

change in different settings. Selected differentially connected

genes are listed in Figure 3B.

We next investigated how the number of genes in each sector

changed over time (Figure 3C). Sectors containing genes more

highly expressed during acute infection (sectors 1, 7, and 8)

showed a decline in the number of genes at d8, relative to d6,

consistent with d8 marking a ‘‘disarming’’ point during acutely
Imm
resolved infection. The genes highly expressed in an acute

setting at d15 and d30 include known markers of CD8+ T cell

memory such as Il7r andCd44 (Table S4). For sectors containing

genesmore highly expressed during chronic infection (sectors 3,

4, 5), the number of genes peaks at d15, suggesting this as a

key time point. At d15, for example, these sectors include the

inhibitory receptors PD-1 (Pdcd1), Lag3, Cd160, Tim3 (Havcr2),

and 2B4 (Cd244) as well as Batf and Blimp-1 (Prdm1), two tran-

scription factors associated with exhaustion (Quigley et al.,

2010; Shin et al., 2009).

We next segregated genes to identify potential differentially

regulated pathways. Here, rather than using the DAVID tool

used above, which only analyzes unranked gene sets, we

used GOrilla to examine the set of genes ranked by differential

connectivity. Genes more connected in the acute network

were highly enriched for functions such as DNA replication

and repair and cell cycle (Figure 3D). Driving this enrichment

was a collection of genes in sectors 1, 2, and 3 that included

growth factors, components of DNA repair processes, media-

tors of cell cycle control, E2F family transcription factors, and

others (Table S5). Genes more highly connected in the chronic

network (sectors 5, 6, and 7) were enriched for immune-related

functions and the regulation of apoptosis and programmed cell

death (Table S5). Contained in these sectors are cytokines, tran-

scription factors, and inhibitory receptors, all of which lead to

this enrichment pattern. Sector 5 genes were both more highly

expressed and connected during chronic infection and included

exhaustion-related genes such asCd160 andBatf. Thus, a direct

comparison between the memory- and exhaustion-specific

transcriptional networks revealed genes and pathways of differ-

ential prominence during acute versus chronic infection.

Coherent Expression of Transcription Factors in CD8+ T
Cell Memory Versus Exhaustion
We next sought to identify the transcription factor connectivity

underlying CD8+ T cell differentiation during acute versus

chronic infection. We therefore defined separate networks

restricted to just the 242 transcription factors that were con-

tained in the original network described above (Figure 4A). These

transcriptional circuits display expression patterns mirroring

those of the greater coexpression networks, again with a promi-

nent upregulation at effector time points (Figure 4B).

To examine the interconnected nature of acute and chronic

transcription factor modules (ATM and CTM respectively), we

examined temporal kinetics of each module eigengene (Fig-

ure 4B; Figure S4). These analyses identified transcription factor

modules biased to the early phase of each infection (ATM2,

ATM6, CTM1) or later memory versus exhaustion time points

(ATM1, ATM3; CTM3, respectively). Of note are two acute

transcription factor modules that were elevated in naive CD8+

T cells, declined upon activation, and were re-expressed in

memory: ATM3 and ATM4. Included in ATM4 are Foxp1 and

Klf2, two transcription factors with roles in T cell quiescence

(Feng et al., 2011; Kuo et al., 1997) (Table S6), though the precise

role of Klf2 in quiescence versus trafficking might be more

complex (Takada et al., 2011). During chronic infection, this

pattern was observed for CTM4, despite the lack of a module

with a corresponding profile in the whole-gene chronic network.

Of the transcription factors in CTM4, the majority was also found
unity 37, 1130–1144, December 14, 2012 ª2012 Elsevier Inc. 1135



Figure 3. Differential Connectivity Versus Differential Expression for Genes in CD8+ T Cells from Acutely Resolved Versus Chronic Infection

(A) Differential expression at d6, d8, d15, and d30 p.i., represented by Welch’s t-statistic, is plotted against differential connectivity. Positive or negative

differential connectivity scores represent an acute or chronic bias, respectively. Sectors are demarcated at t-statistics of ± 3 and at differential connectivity

of ± 0.285. Selected genes are identified at all time points (Table S4).

(B) Genes in sectors 1, 2, and 3 and sectors 5, 6, and 7 known to be important in T cell biology are listed.

(C) For each time point (d6, d8, d15, and d30 p.i.), the number of genes per sector was quantified and longitudinally plotted (solid line). The number of genes

common between a sector at d6 p.i. and that sector at all time points postinfection was plotted (dashed line).

(D) Differential connectivity reveals functional distinction. We used GOrilla (http://cbl-gorilla.cs.technion.ac.il/), to calculate overrepresented GO terms (http://

www.geneontology.org) at both the positive and negative ends of the differential connectivity spectrum. A selected list of terms with p value < 5e�5 was visu-

alized (Table S5).
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Figure 4. Transcription Factor Subnetworks Have Dynamically Expressed Modules

(A) Transcription factor-specific networks for 242 transcription factors were generated and modules identified as described above. Yellow and purple represent

positive and negative correlations, respectively.

(B) The module eigengene was calculated as in Figure 2B and was used to hierarchically cluster modules. The expression of these module eigengenes was

plotted; blue indicates low relative expression and red indicates high relative expression.

(C) Transcription factors assigned to the InterPro (http://www.ebi.ac.uk/interpro/) family ‘‘IPR015880: C2H2-like Zinc finger’’ were identified and visualized as

a heatmap. Blue and red represent low and high relative expression, respectively.
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in acutemodules ATM3 andATM4with the notable exceptions of

Eomes, Ikzf2, and Egr2.

Given the progressive functional differences between ex-

hausted and memory CD8+ T cells, there was an unexpected

level of reuse of transcriptional circuitry. The high degree of

preservation and the lack of an ‘‘exhaustion specific’’ transcrip-

tion factor implied that exhausted CD8+ T cells use many of the

same transcription factors used during acute infection (Fig-

ure S2). The acute transcription factor module 6 (ATM6) and

the chronic transcription factor module 3 (CTM3), for example,

show a considerable overlap including several transcription

factors central to the differentiation of effector, memory, and ex-

hausted CD8+ T cells, including T-bet (Tbx21), Batf, Stat3, and

Blimp-1 (Prdm1). However, whereas ATM6 becomes upregu-

lated following activation andmaintains a steady state level of ex-

pression, the expression of CTM3 continues to rise over time.

This observation is consistent with recent studies demonstrating

that high expression of Blimp-1 fostered aspects of CD8+ T cell

exhaustion, whereas moderate Blimp-1 expression is required

for effector functions and viral control (Shin et al., 2009). We

also explored whether any transcription factor families exhibited

family-wide differential expression and identified memory or

exhaustion biased patterns for the C2H2-like zinc finger family

(Interpro: IPR015880, Figure 4C). This family includes transcrip-

tion factors with known T cell functions like Blimp-1 (Prdm1) and

Foxp1, and those with uncharacterized roles in T cells, like Zeb2

and Trps1, which provide interesting targets for future study.

Differential Connectivity of Transcription Factors in
Acute and Chronic Infection
The modular reuse of many transcription factors suggested that

some could have distinct functions during acute versus chronic

infections. We therefore identified the most highly coexpressed

‘‘neighbors’’ for the 242 transcription factors from the acute

and chronic coexpression networks. Many transcription factors

had a large set of neighbors in common between both networks.

In contrast, other transcription factors were connected to largely

independent sets of genes (Figure 5A, Table S7). Eomesoder-

min (Eomes), in particular, was among the transcription factors

with the lowest percentage of overlapping neighbors between

networks. 2B4 (Cd244), a costimulatory or coinhibitory receptor

highly expressed on exhausted CD8+ T cells, was the only gene

found to be common among the top 150 neighbors of Eomes

(Figure 5A). This can be contrasted with T-bet (Tbx21), a tran-

scription factor showing higher (�40% overlap) neighborhood

concordance between acute and chronic settings (Figure 5A).

As a complimentary approach, we generated a ‘‘difference

network’’ (Southworth et al., 2009) where connections between

genes measure how dissimilar the connectivity pattern between

gene pairs is in the acute and chronic settings. In this difference

network, we can identify connections between pairs of genes

that are similar in both networks, preserved in the acute but

not the chronic network (blue lines in Figure 5B) or vice versa

(red lines in Figure 5B). We defined difference networks for tran-

scription factors as well as for all genes (Figure 5B; Figure S6).

The HMG-box transcription factor Tox was identified as the

most highly connected hub gene (indicated by node size); such

central prominence in this difference network is consistent with

Figure 5A demonstrating that Tox is differentially connected in
1138 Immunity 37, 1130–1144, December 14, 2012 ª2012 Elsevier In
acutely resolved and chronic infection. Though Tox has a role

in development of many lymphoid lineages (Aliahmad et al.,

2010), its role in CD8+ T cells in the periphery during infection

is unclear. This approach also identified receptor transport

protein 4 (Rtp4), an interferon responsive gene, as potentially

playing a distinct role in memory versus exhaustion (Figure S6).

Additionally, Eomes was validated by this approach as having

discrete coexpression neighborhoods in the acute versus

chronic networks. Other genes of potential interest identified

by this approach include Ikzf2, Zbp1, Lass6, Rel, and Ifit3.

To further explore transcription factor differential connectivity,

we examined the gene neighbors of Eomes and T-bet. The acute

neighbors of Eomes were effector-biased genes and many were

involved in cell cycle processes and DNA replication (DAVID,

p value < 0.05; Figure 5D). The chronic neighbors of Eomes, in

contrast, became progressively more upregulated over time

and were involved in the immune response, cytokine activity,

andCD8+ T cell differentiation (DAVID, p value < 0.05; Figure 5D).

In contrast, the gene neighbors of T-bet included both context-

independent neighbors and those specific to either the acute

or chronic network (Figures 5C and 5D). The common set of

T-bet neighbors had highly concordant patterns of expression

(Figure S3). Similar observations were made for other transcrip-

tion factors from Figure 5A (Figure S5). These results suggest

that key transcription factors can be connected to distinct

gene neighbors in different contexts.

We previously found that PD-1 expression distinguishes sub-

sets of exhausted CD8+ T cells that are either highly exhausted

and terminal (PD-1Hi) or that retain the ability to be reinvigorated

by PD-1 blockade (PD-1Int). T-bet is differentially expressed in

these PD-1Hi and PD-1Int subsets (Blackburn et al., 2008; Kao

et al., 2011). To test whether the acute or chronic neighbors

of T-bet were differentially associated with these two distinct

CD8+ T cell subsets, we took advantage of a separate gene

expression data set generated by our laboratory for sorted PD-

1Int and PD-1Hi H-2Db GP33-specific CD8+ T cells 30 days p.i.

with LCMV clone 13 (unpublished data). We performed gene

set enrichment analysis (GSEA, [Subramanian et al., 2005]) on

the PD-1Int and PD-1Hi exhausted CD8+ T cell gene expression

profiles by using the acute and chronic neighbors of T-bet

defined in Figure 5C, becausewe predicted that themore revers-

ible PD-1Int subset might retain a signature of CD8+ T cells from

acute infection related to T-bet function. The genes connected

with T-bet only during acute infection were strongly enriched

toward the PD-1Int profiles (Figure 6A). In contrast, the neighbors

of T-bet from a chronic infection were more strongly enriched in

the PD-1Hi profiles (Figure 6A). Driving the enrichment of the

acute neighbors of T-bet toward the PD-1Int subset were Klrg1,

Il-18r1, Rora, Cd80, and Cd44; alternatively, the leading edge

of the chronic neighbors biased toward the PD-1Hi subset

includes Lag3, Ctla4, Tigit, Batf, and Trps1. These observations

provide proof of principle for correlating network analysis-

defined signatures with a biological phenotype in an indepen-

dent data set. One possible alternative explanation, however,

was that acute neighbors of any transcription factor would enrich

toward the PD-1Int signatures whereas chronic neighbors would

be biased toward the PD-1Hi profiles. To test this possibility, we

used the sets of acute and chronic neighbors of all 242 transcrip-

tion factors in Figure 4 and examined the enrichment of these
c.



Figure 5. Acutely Resolved Versus Chronic Networks Differ in Transcription Factor Coexpression Relationships

(A) Genes were ranked by coexpression with each transcription factor. The top 150 (5% of total network) genes in the acute and chronic networks were retrieved

and the percentage of genes that had preserved connections for each transcription factor in acute versus chronic infection was calculated (Table S7).

(B) Gene-gene edge scores from the transcription factor-specific chronic network were subtracted from the corresponding score in the acute network, as

described (Southworth et al., 2009) to generate a difference network. Blue edges represent higher coexpression in the acute network, and red edges indicate

higher coexpression in the chronic network. Number of connections per transcription factor is represented by node size.

(C) Genes plotted in red and blue are unique to the top 150 neighbors of the acute and chronic networks, respectively; purple identifies genes common to both

sets of neighbors. Eomes or Tbx21 are at the center of the left or right plot, respectively.

(D) Neighbors unique to either the acute or chronic network were identified, hierarchically clustered and visualized as heatmaps. Blue and red represent low and

high relative expression, respectively.
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sets of genes toward either the PD-1Int or PD-1Hi profiles.

Although T-bet was not alone in having acute and chronic neigh-

bors that respectively enriched in the PD-1Int and PD-1Hi sub-

sets, there were many transcription factors whose neighbors

did not follow this pattern (Figure 6B). Whereas other transcrip-

tion factors whose gene connectivity patterns were similar to
Imm
T-bet included Prdm1 (Blimp-1) and Bhlhe40, the chronic neigh-

bors of Eomes, Batf, and several STATs enriched more toward

the PD-1Int (Figure 6B). These observations suggest that indi-

vidual transcription factors could have important context-

specific functions but that these changes in context-specific

regulation do not occur uniformly for all transcription factors.
unity 37, 1130–1144, December 14, 2012 ª2012 Elsevier Inc. 1139



Figure 6. Validation of Context-Specific Functions Predicted for T-bet

(A) Context-specific T-bet neighbors bias transcriptional signatures from PD-1-defined subsets of exhausted CD8+ T cells. Using the neighbors of T-bet

from Figure 6B, we performed GSEA to compare profiles of PD-1int versus PD-1hi LCMV-specific CD8+ T cells. The acute T-bet neighbors were strongly enriched

in the PD-1int data set (p value < 0.0001), whereas the chronic neighbors were more enriched toward PD-1hi (p value = 0.01757).
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As a proof of principle, we next tested specific predictions for

individual gene neighbors of T-bet by flow cytometry in WT and

T-bet-deficient CD8+ T cells (Figure 6C). We predicted that the

expression of the acute neighbors of T-bet would be more

impacted by loss of T-bet during acute infection and vice versa

for the chronic neighbors. We examined four acute neighbors,

Klrg1, Ly6C, Itga1, and Cd80. Expression of these proteins

was more impacted by T-bet deficiency during acute compared

to chronic infection (Figure 6C). In contrast, the chronic neigh-

bors Pdcd1 (PD-1), Tigit, Itgam, and Il18ra were more impacted

by T-bet deficiency during chronic infection. It is worth noting

that these genes included those whose expression was posi-

tively regulated by T-bet (Klrg1, Ly6C, Itga1, Itgam, Il18ra) and

some that were repressed by T-bet (Cd80, Pdcd1 [PD-1] and

Tigit). These analyses implicate T-bet as a central factor regu-

lating the differentiation of exhausted versus memory CD8+

T cells and provide direct evidence for differential function of

T-bet in exhausted and memory CD8+ T cells as predicted by

the networks.

DISCUSSION

Exhausted CD8+ T cells have a transcriptional profile profoundly

different from memory CD8+ T cells (Wherry et al., 2007). CD8+

T cell exhaustion results in widespread functional defects,

leading to impaired immunity in animal models and humans.

Previous studies defined genes upregulated or downregulated

during exhaustion (Wherry et al., 2007) leading to the discovery

of individual molecules including inhibitory receptors (PD-1,

LAG-3, etc. [Wherry, 2011]) and transcription factors (T-bet,

Blimp-1, and Batf; see Kao et al., [2011]; Shin et al., [2009]; Quig-

ley et al., [2010]). However, it has been challenging to define

which genes are most important in the difference between

exhaustion and memory. We used transcriptional network anal-

ysis to begin to define which genes and biological pathways

were central to CD8 T cell exhaustion. This approach revealed

several key insights distinguishing these two developmental

programs. These include the absence of a clear module of quies-

cence in exhausted CD8+ T cells, a framework for understanding

the distinction between a prolonged activation program and a

prolonged effector phase during exhaustion and the identifica-

tion of biological pathways and hub genes involved in exhaustion

(e.g., DNA repair, chromatin biology, zinc finger transcription

factors, Wnt signaling, Bcl2 family members, Rtp4, and tran-

scription factors including Foxp1, Ikzf2, Zeb2, Lass6, Tox, and

Eomes). In addition, a fundamental feature of key transcrip-

tion factors involved in CD8+ T cell exhaustion, including T-bet,

was specific and distinct context-dependent functions in acute

versus chronic infection. Thus, in addition to providing a frame-

work for investigating pathways involved in CD8+ T cell exhaus-

tion and revealing insights into the biology of T cell exhaustion,

these studies demonstrate that specific transcription factors

can be reused differently in distinct developmental programs in

T cells.
(B) Gene sets of context-specific neighbors for all 242 transcription factors were

(C) Flow cytometric analysis of context-specific neighbors of T-bet using T-bet d

was examined by flow cytometry onWT versus T-bet deficient DbGP33-specific C

represent SD.

Imm
Recent work has shown a widespread reuse of transcriptional

programs between cell lineages that share a common hemato-

poietic stem cell (Novershtern et al., 2011). The studies pre-

sented here extend this notion of reuse of transcriptional circuits

to CD8+ T cells from acute versus chronic infection. For example,

modules involved in the effector program and T cell activation

were used during both acute and chronic infection at early time

points. During acute infection, these modules were downregu-

lated after the first week. In contrast, during chronic infection,

a failure to return to quiescence was associated with preserved

expression of activation molecules despite downregulation of

effector modules. This split between modules that sustain

expression and those that do not highlights intriguing possibili-

ties. Modulating genes implicated in the prolonged activation

program offers the potential to force exhausted CD8+ T cells to

‘‘rest,’’ and possibly restore memory differentiation or possibly

to target missing effector modules to regain functionality. These

observations also suggest that exhausted CD8+ T cells are not

simply (poorly) sustained effectors.

A set of insights from the current study stems from our identi-

fication of hub genes central to each network, including tran-

scription factors, which would not have been identified using

previous approaches. For example, when combined with differ-

ential expression, differential connectivity predicts important

roles for several transcription factors previously unexamined in

T cell exhaustion including: Helios (Ikz2), Tox, Tcf7, Irf4, Irf7,

and Zeb2. Moreover, the network analyses predicted that

major hub transcription factors such as Blimp-1 (Prdm1), T-bet

(Tbx21), and Eomes might have distinct functions during acute

versus chronic infection. Context-specific function has been

reported for lineage-defining transcription factors, including

concentration-dependent control of hematopoiesis by PU.1

(Laslo et al., 2006) and SMAD proteins imparting context speci-

ficity on developmental transcription factors such as MyoD,

C/EBPa, and Oct4 (Mullen et al., 2011; Trompouki et al., 2011).

Our previous studies suggested distinct roles in exhaustion

versus memory for Blimp-1 as well as T-bet (Shin et al., [2009];

Kao et al., [2011]), but the mechanisms for these context-depen-

dent functions were unclear. We now provide key predictions for

how transcription factors such as Blimp-1, Eomes, and T-bet

play distinct roles in acute versus chronic infection via interac-

tions with different sets of genes. Further, we provide validation

for regulation of distinct targets by T-bet in acute versus chronic

infection. One additional implication of these observations is

that the control of cell fate decisions might not always require

a lineage specific transcription factor if, as is the case for

Eomes, Tox and others, specific transcription factors can have

almost completely distinct transcriptional interactions in differ-

ent settings. Together, these observations suggest that the

approach outlined here can provide a platform for future studies

on the role of specific hub genes in CD8+ T cell memory versus

exhaustion.

Several other unappreciated predictions about the biology of

memory and exhausted CD8+ T cells were revealed in this
compared between the PD-1Int versus PD-1hi data set using GSEA.

eficient T cells. The expression of selected acute or chronic neighbors of T-bet

D8+ T cells responding to acute or chronic LCMV infection at d30 p.i.. Error bars
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work. For example, although the Wnt-Tcf7 pathway is important

throughout T cell biology, the current analysis suggests an unex-

pected role for coordinated Wnt signaling during exhaustion.

Tcf7, a key Wnt pathway transcription factor, is downregulated

in exhausted CD8+ T cells (Wherry et al., 2007). Thus, although

many other genes are involved in Wnt signaling, the enriched

connectivity of this pathway during exhaustion was unexpected.

Tcf7 activation by Wnt signaling can induce Eomes in memory

CD8+ T cells (Zhou et al., 2010); however, it is unknown whether

Tcf7 also has a role in exhausted CD8+ T cells. The differential

connectivity observed here for both Eomes and Tcf7 raises

the possibility that ‘‘neighbors’’ of these transcription factors

could be important for context-dependent functions of the Wnt

pathway.

The association of DNA repair pathways with memory CD8+

T cells in the current studies was also unexpected. Thus, one

possible feature distinguishing memory CD8+ T cell develop-

ment from exhaustion is proper maintenance of the genome.

One prediction is that many rounds of cell division coupled

with inefficient DNA repair are linked to T cell dysfunction, an

idea that should be directly testable. The p53 and DNA damage

response pathways have recently been linked with expression

of Toll-like receptors on human T lymphocytes (Menendez

et al., 2011), suggesting a possible connection between DNA

stressors and immunity. Moreover, DNA damage was also found

to be associated with tumor infiltrating T cells using genomic

approaches (Baitsch et al., 2011). Further studies perturbing

DNA repair and examining the impact on memory and exhaus-

tion should allow direct testing of the predicted importance of

DNA repair pathways.

Together, these results illustrate a complex and dynamic

patterns of gene expression for CD8+ T cells during acutely

resolved versus chronic infection and provide insights to

the developmental processes underlying each response. Our

findings provide a resource for future examination of memory

versus exhausted CD8+ T cells and provide potential insights

into pathways that could be targets for intervention and

highly relevant for predicting the efficacy of vaccine-induced

responses.

EXPERIMENTAL PROCEDURES

Animals and Infections

Female C57BL/6 mice (4–6 weeks old) were purchased from the Jackson

Laboratories (Bar Harbor, Maine). Mice were infected with 2 3 105 pfu of

LCMV Armstrong intraperitoneally or 2 3 106 pfu of LCMV clone 13 intrave-

nously, as described (Wherry et al., 2003). Viral titers were performed by pla-

que assay as described (Wherry et al., 2003). All micewere used in accordance

with Institutional Animal Care and Use Committee guidelines for the Wistar

Institute and the University of Pennsylvania.

Cell Isolation, Sorting, and Flow Cytometry

Lymphocytes were isolated and MHC class I peptide tetramers were gener-

ated and used as previously described (Wherry et al., 2003). Naive CD44lo

CD8+ T cells were isolated and sorted from uninfected C57BL/6 mice. H2-

Db GP33-specific CD8+ T cells were sorted using MHC-I tetramers at d6, 8,

15, and 30 p.i. with either LCMV Arm or LCMV clone 13. PD-1int and PD-1hi ex-

hausted CD8+ T cells were isolated frommice 30 days p.i. with LCMV clone 13.

All sorts were performed on a FACSAria (BD Bioscience). All samples were

maintained at 4�C for the duration of the sort, 100,000 cells were collected,

and sort purity was >95% for all populations. All antibodies were obtained

fromBDBiosciences, eBioscience, or Biolegend. A LSR II (BD ImmunoCytom-
1142 Immunity 37, 1130–1144, December 14, 2012 ª2012 Elsevier In
etry Systems) was used for flow cytometry, and data were analyzed with

FlowJo 9.0.1 software (Treestar).

Microarray Data Acquisition and Processing

Total RNA was isolated from sorted CD8+ T cells using TRIzol (Invitrogen,

Carlsbad, CA). RNA was processed, amplified, labeled, and hybridized to

Affymetrix GeneChip MoGene 1.0 st microarrays (Santa Clara, CA) by the

University of Pennsylvania Microarray facility. Affymetrix Power Tools were

used to process and quantile normalize fluorescent hybridization signals using

RobustMultichip Averaging (Irizarry et al., 2003). Transcripts were log2 normal-

ized. Outlier arrays were identified and excluded using an interarray correlation

threshold (Oldham et al., 2008). Further filtering by expression and variance

thresholds, set at m> 5 and s2 > 0.15, respectively, resulted in 3005 transcripts.

Microarray Analysis

The ClassNeighbors module of GenePattern was used to rank genes by the

signal-to-noise ratio and identify class-biased genes (Reich et al., 2006).

Significance Analysis of Microarrays and Gene Set Enrichment Analysis

were performed on PD-1int and PD-1hi exhausted CD8+ T cell arrays as

described (Subramanian et al., 2005).

Weighted Coexpression Network Construction

Weighted gene coexpression network analysis was used to construct tran-

scriptional coexpression networks (Langfelder and Horvath, 2008). A coex-

pression network was defined as a set of nodes, each representing a single

transcript, and a set of edges, each equal to the Pearson’s correlation coeffi-

cient (PCC) between the expression profiles of two transcripts. The adjacency

transformationA= rb then scales the distribution of edgeweights to fit the edge

distribution of a scale-free network (Zhang and Horvath, 2005). Though other

metrics (e.g., Spearman rank correlation, biweighted midcorrelation) exist,

PCC was used for consistency with previous studies (Langfelder and Horvath,

2008). Acute and chronic transcriptional networks were generated from the

gene expression profiles of virus-specific CD8+ T cells responding to LCMV

Armstrong or LCMV clone 13. The topological overlap metric and a dynamic

tree-cutting algorithm were used to identify gene modules (Yip and Horvath,

2007). The 242 genes that both passed initial filtering criteria and were anno-

tated by the GO term ‘‘DNA binding’’ are here referred to as transcription

factors. The same methods as for the all-gene network (above) were used to

generate transcription factor-specific networks and analyses. These and all

following analyses were performed using R (Gentleman et al., 2004).

Modular Analysis

Fisher’s Exact Test used to assess the significance of overlap between

modules as described (Langfelder et al., 2011). Temporal expression profiles

were summarized by module eigengenes (ME). Pearson’s correlation coeffi-

cient between MEs was calculated and used to hierarchically cluster modules

(Langfelder and Horvath, 2007). A one-way ANOVA was used to distinguish

early from late expressed modules. Hub genes were identified and ranked

by intramodular connectivity, as defined (Zhang and Horvath, 2005). Lists of

hub genes were uploaded to the Database for Annotation, Visualization and

Integrated Discovery (http://david.abcc.ncifcrf.gov/), (Huang et al., 2009b)

to calculate significantly over-enriched Gene Ontology terms (http://www.

geneontology.org).

Differential Connectivity

We defined differential connectivity as the difference between intramodular

connectivity in the acute network, scaled relative to the maximally connected

gene in that network, and intramodular connectivity in the chronic network,

similarly scaled. Welch’s two-sample t test was used as a measure of differen-

tial expression for each gene between the acute and chronic arrays from the

same time point. GOrilla analysis for overenriched GO terms in a ranked list

was performed (Eden et al., 2009).

Context-Specific Neighbor Identification

The adjacency score (A = rb) was used to identify the most highly coexpressed

‘‘neighbors’’ to a given gene; we then identified the number and percentage of

the top 150 neighbors common between the acute and chronic networks for

each transcription factor (Langfelder and Horvath, 2008). Difference network
c.
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analysis was performed as described previously (Southworth et al., 2009). All

network graphs were produced using Cytoscape.

Statistical Analyses

Welch’s two-sample t test was used to calculate t-statistics in R (Gentleman

et al., 2004). Fisher’s exact test was used to identify overlap between modules

and also by DAVID to identify enriched GO terms (Langfelder et al., 2011).

GOrilla was used to identify enriched GO terms in a ranked list by the minimum

hypergeometric score (Eden et al., 2009). A one-way ANOVAwas used to iden-

tify prominently early and late module expression. For all applicable statistical

tests, a p value of 0.05 was the maximum threshold for significance.
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Microarray data sets are available through the Gene Expression Omnibus

(GSE41867).
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