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a b s t r a c t

The toroidalization conjecture of D. Abramovich, K. Karu, K.Matsuki, and J.Wlodarczyk asks
whether any given morphism of nonsingular varieties over an algebraically closed field of
characteristic zero can be modified into a toroidal morphism. Following a suggestion by
Dale Cutkosky, we define the notion of locally toroidal morphisms and ask whether any
locally toroidal morphism can be modified into a toroidal morphism. In this paper, we
answer the question in the affirmativewhen themorphism is between any arbitrary variety
and a surface.
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1. Introduction

Fix an algebraically closed field k of characteristic 0. A variety is an open subset of an irreducible proper k-scheme.
A simple normal crossing (SNC) divisor on a nonsingular variety is a divisor D on X , all of whose irreducible components

are nonsingular and whenever r irreducible components Z1, . . . , Zr of Dmeet at a point p, then local equations x1, . . . , xr of
Zi form part of a regular system of parameters in OX,p.
If D is a SNC divisor and a point p ∈ D belongs to exactly k components of D, then we say that p is a k point.
A toroidal structure on a nonsingular variety X is a SNC divisor DX .
The divisor DX specifies a toric chart (Vp, σp) at every closed point p ∈ X where p ∈ Vp ⊂ X is an open neighborhood

and σp : Vp → Xp is an étale morphism to a toric variety Xp such that under σp the ideal of DX at p corresponds to the ideal
of the complement of the torus in Xp.
The idea of a toroidal structure is fundamental to algebraic geometry. It is developed in the classic book ‘‘Toroidal

Embeddings I’’ [9] by G. Kempf, F. Knudsen, D. Mumford and B. Saint-Donat.

Definition 1.1 ([9,1]). Suppose that DX and DY are toroidal structures on X and Y respectively. Let p ∈ X be a closed point.
A dominant morphism f : X → Y is toroidal at p (with respect to the toroidal structures DX and DY ) if the germ of f at p
is formally isomorphic to a toric morphism between the toric charts at p and f (p). f is toroidal if it is toroidal at all closed
points in X .

A nonsingular subvariety V of X is a possible center for DX if V ⊂ DX and V intersects DX transversally. That is, V makes
SNCs with DX , as defined before Lemma 2.3. The blowup π : X1 → X of a possible center is called a possible blowup.
DX1 = π

−1(DX ) is then a toroidal structure on X1.
Let Sing(f ) be the set of points p in X where f is not smooth. It is a closed set.
The following ‘‘toroidalization conjecture’’ is the strongest possible general structure theorem formorphisms of varieties.

Conjecture 1.2. Suppose that f : X −→ Y is a dominant morphism of nonsingular varieties. Suppose also that there is a SNC
divisor DY on Y such that DX = f −1(DY ) is a SNC divisor on X which contains the singular locus, Sing(f ), of the map f .
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Then there exists a commutative diagram of morphisms

X1
f1 //

π1

��

Y1

π

��
X

f // Y

where π , π1 are possible blowups for the preimages of DY and DX respectively, such that f1 is toroidal with respect to DY1 =
π−1(DY ) and DX1 = π1

−1(DX )

A slightly weaker version of the conjecture is stated in the paper [2] of D. Abramovich, K. Karu, K. Matsuki, and
J. Wlodarczyk.
When Y is a curve, this conjecture follows easily from embedded resolution of hypersurface singularities, as shown in

the introduction of [5]. The case when X and Y are surfaces has been known before (see Corollary 6.2.3 [2], [3,7]). The case
when X has dimension 3 is completely resolved by Dale Cutkosky in [5,6]. A special case of dim(X) arbitrary and dim(Y ) = 2
is done in [8].
For detailed history and applications of this conjecture, see [6].
A related but weaker question asked by Dale Cutkosky is the following Question 1.4.
To state the question we need the following definition.

Definition 1.3. Let f : X → Y be a dominant morphism of nonsingular varieties. Suppose that the following are true.

1. There exist open coverings {U1, . . . ,Um} and {V1, . . . , Vm} of X and Y respectively such that the morphism f restricted
to Ui maps into Vi for all i = 1, . . . ,m.

2. There exist simple normal crossings divisors Di and Ei in Ui and Vi respectively such that f −1(Ei) ∩ Ui = Di and
Sing(f |Ui) ⊂ Di for all i = 1, . . . ,m.

3. The restriction of f to Ui, f |Ui : Ui → Vi, is toroidal with respect to Di and Ei for all i = 1, . . . ,m.

Then we say that f is locally toroidalwith respect to the open coverings Ui and Vi and SNC divisors Di and Ei.

For the remainder, when we say ‘‘f is locally toroidal’’, it is to be understood that f is locally toroidal with respect to the
open coverings Ui and Vi and SNC divisors Di and Ei as in the definition. We will usually not mention Ui, Vi, Di and Ei.
We have the following.

Question 1.4. Suppose that f : X −→ Y is locally toroidal. Does there exist a commutative diagram of morphisms

X1
f1 //

π1

��

Y1

π

��
X

f // Y

where π , π1 are blowups of nonsingular varieties such that there exist SNC divisors E, D on Y1 and X1 respectively such that
Sing(f1) ⊂ D, f1−1(E) = D and f1 is toroidal with respect to E and D?

The aim of this paper is to give a positive answer to this question when Y is a surface and X is arbitrary. The result is
proved in Theorem 4.2.
Brief outline of the proof:
The core results (Theorems 4.1 and 4.2) are proved in Section 4. Sections 2 and 3 consist of preparatory material.
Let f : X → Y be a locally toroidal morphism with the notation as in Definition 1.3. The essential observation is this:

if there is a SNC divisor E on Y such that Ei ⊂ E for all i, then f is toroidal with respect to E and f −1(E). A proof of this
observation is contained in the proof of Theorem 4.2.
The main task, then, is to construct the divisor E. This is not hard: consider the divisor E ′ = Ē1 + · · · + Ēm where Ēi is

the Zariski closure of Ei in Y . By embedded resolution of singularities, there exists a finite sequence of blowups of points
π : Y1 → Y such that π−1(E ′) is a SNC divisor on Y1.
The problem now reduces to constructing a sequence of blowups π1 : X1 → X such that there is a locally toroidal

morphism f1 : X1 → Y1. This is done in Theorem 4.1.
Sections 2 and 3 prepare the ground for Theorem 4.1.
Given the sequence of blowups π : Y1 → Y as above, there exist principalization algorithms which give a sequence of

blowups π1 : X1 → X so that there exists a morphism f1 : X1 → Y1. The main difficulty we face is that such a morphism f1
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may not be locally toroidal. So a blanket appeal to existing principalizing algorithms can not be made. In Sections 2 and 3,
we construct a specific algorithm that works in our situation.
Section 2 deals with the blowups that preserve the local toroidal structure. We call these permissible blowups

(Definition 2.4). The main result of Section 2 is Lemma 2.5 which analyzes the effect of a permissible sequence of blowups.
In Section 3, we define invariants on nonprincipal locus of the morphism f . These invariants are positive integers and we

prescribe permissible sequences of blowups under which these invariants drop (Theorems 3.3 and 3.4). Finally we achieve
principalization in Theorem 3.6.

2. Permissible blowups

Let f : X −→ Y be a locally toroidal morphism from a nonsingular n-fold X to a nonsingular surface Y with respect to
open coverings {U1, . . . ,Um} and {V1, . . . , Vm} of X and Y respectively and SNC divisors Di and Ei in Ui and Vi respectively.
Then we have the following

Lemma 2.1. Let p ∈ Di. Then there exist regular parameters x1, . . . , xn in ÔX,p and regular parameters u, v in OY ,q such that
one of the following forms holds:
1 ≤ k ≤ n− 1 : u = 0 is a local equation of Ei, x1 · · · xk = 0 is a local equation of Di and

u = x1a1 · · · xkak , v = xk+1, (1)

where a1, . . . , ak > 0.
1 ≤ k ≤ n− 1 : uv = 0 is a local equation for Ei, x1 · · · xk = 0 is a local equation of Di and

u = (x1a1 · · · xkak)m, v = (x1a1 · · · xkak)t(α + xk+1), (2)

where a1, . . . , ak,m, t > 0 and α ∈ K − {0}.
2 ≤ k ≤ n : uv = 0 is a local equation of Ei, x1 · · · xk = 0 is a local equation of Di and

u = x1a1 · · · xkak , v = x1b1 · · · xkbk , (3)

where a1, . . . , ak, b1, . . . , bk ≥ 0, ai + bi > 0 for all i and rank
[
a1 . . ak
b1 . . bk

]
= 2.

Proof. This follows from Lemma 4.2 in [8]. �

Definition 2.2. Suppose that D is a SNC divisor on a variety X , and V is a nonsingular subvariety of X . We say that V makes
SNCs with D at p ∈ X if there exist regular parameters x1, . . . , xn in OX,p and e, r ≤ n such that x1 · · · xe = 0 is a local
equation of D at p and xσ(1) = · · · = xσ(r) = 0 is a local equation of V at p for some injection σ : {1, . . . , r} → {1, . . . , n}.
We say that V makes SNCs with D if V makes SNCs with D at all points p ∈ X .

Let q ∈ Y and letmq be the maximal ideal of OY ,q.
DefineWq = {p ∈ X | mqOX,p is not principal}. Note that the closed subsetWq ⊂ f −1(q) and that mqOX,p is principal if

and only ifmqÔX,p is principal.

Lemma 2.3. For all q ∈ Y , Wq is a union of nonsingular codimension 2 subvarieties of X, which make SNCs with each divisor Di
on Ui.

Proof. Let us fix a q ∈ Y and denoteW = Wq. Let IW be the reduced ideal sheaf ofW in X , and let Iq be the reduced ideal
sheaf of q in Y .
Since the conditions thatW is nonsingular and has codimension 2 in X are both local properties, we need only check that

for all p ∈ W , IW ,p is an intersection of height 2 prime ideals which are regular.
Since X is nonsingular, IqOX = OX (−F)Iwhere F is an effective Cartier divisor on X and I is an ideal sheaf such that the

support of OX/I has codimension at least 2 on X . We haveW = supp(OX/I). The ideal sheaf ofW is IW =
√

I.
Let p ∈ W . We have that p ∈ Ui for some 1 ≤ i ≤ m.
Suppose first that q 6∈ Ei. Then f is smooth at p because it is locally toroidal. This means that there are regular

parameters u, v at q which form a part of a regular sequence at p. So we have regular parameters x1, . . . , xn in OX,p such
that u = x1, v = x2.

IqOX,p = (u, v)OX,p = (x1, x2)OX,p. It follows that IW ,p = (x1, x2)OX,p. This gives us the lemma.
Suppose now that q ∈ Ei.
Since p ∈ Wq, there exist regular parameters x1, . . . , xn in ÔX,p and u, v inOY ,q such that one of the forms (1) or (3) holds.
Suppose that (1) holds. Since Dj is a SNC divisor, there exist regular parameters y1, . . . , yn in OX,p and some e such that

y1 · · · ye = 0 is a local equation of Dj.
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Since x1 · · · xk = 0 is a local equation for Dj in ÔX,p, there exists a unit series δ ∈ ÔX,p such that y1 · · · ye = δx1 · · · xk.
Since the xi and yi are irreducible in ÔX,p, it follows that e = k, and there exist unit series δi ∈ ÔX,p such that xi = δiyi for
1 ≤ i ≤ k, after possibly re-indexing the yi.
Note that y1, . . . , yk, xk+1, yk+2, . . . , yn is a regular system of parameters in ÔX,p, after possibly permuting yk+1, . . . , yn.
So the ideal (y1, . . . , yk, xk+1, yk+2, . . . , yn)ÔX,p is the maximal ideal of ÔX,p. Since xk+1 = v ∈ OX,p,

y1, . . . , yk, xk+1, yk+2, . . . , yn generate an ideal J inOX,p. Since ÔX,p is faithfully flat overOX,p, and JÔX,p ismaximal, it follows
that J is the maximal ideal of OX,p. Hence y1, . . . , yk, xk+1, yk+2, . . . , yn is a regular system of parameters in OX,p.
Rewriting (1), we have u = y1a1 · · · ykak δ̄, where δ̄ is a unit in ÔX,p.
Since δ̄ = u

y1a1 ···ykak
, δ̄ ∈ QF (OX,p) ∩ ÔX,p, where QF (OX,p) is the quotient field of OX,p. By Lemma 2.1 in [4], it follows

that δ̄ ∈ OX,p.
Since δ̄ is a unit in ÔX,p, it is a unit in OX,p.
We have

IW ,p =
√

IqOX,p =
√
(u, v)OX,p =

√
(y1a1 · · · ykak , xk+1)

= (y1, xk+1) ∩ (y2, xk+1) ∩ · · · ∩ (yk, xk+1),

as required.
We argue similarly when (3) holds at p. �

Let Z be a nonsingular codimension 2 subvariety of X such that Z ⊂ Wq for some q. Let π1 : X1 → X be the blowup of Z .
Denote by (W1)q the set {p ∈ X1 | mqÔX1,p is not invertible}.
Given any sequence of blowups Xn → Xn−1 → · · · → X1 → X , we define (Wi)q for each Xi as above.

Definition 2.4. Let q ∈ Y . A sequence of blowups Xk → Xk−1 → · · · → X1 → X is called a permissible sequence with respect
to q if for all i, each blowup Xi+1 → Xi is centered at a nonsingular codimension 2 subvariety Z of Xi such that Z ⊂ (Wi)q.

We will often write simply permissible sequence without mentioning q if there is no scope for confusion.

Lemma 2.5. Let f : X → Y be a locally toroidal morphism. Let π1 : X1 → X be a permissible sequence with respect to a q ∈ Y .
I. Suppose that 1 ≤ i ≤ m and p ∈ (f ◦ π1)−1(q) ∩ π1−1(Ui) and q ∈ Ei. Then I.A and I.B as below hold.
I.A. There exist regular parameters x1, . . . , xn in ÔX1,p and (u, v) in OY ,q such that one of the following forms holds:

1≤ k ≤ n− 1: u = 0 is a local equation of Ei, x1 · · · xk = 0 is a local equation of π1−1(Di) and

u = x1a1 · · · xkak , v = x1b1 · · · xkbkxk+1, (4)

where bi ≤ ai.
1≤ k ≤ n− 1: u = 0 is a local equation of Ei, x1 · · · xkxk+1 = 0 is a local equation of π1−1(Di) and

u = x1a1 · · · xkakxk+1ak+1 , v = x1b1 · · · xkbkxk+1bk+1 , (5)

where bi ≤ ai for i = 1, . . . , k and bk+1 < ak+1.
1≤ k ≤ n− 1: u = 0 is a local equation of Ei, x1 · · · xk = 0 is a local equation of π1−1(Di) and

u = x1a1 · · · xkak , v = x1b1 · · · xkbk(xk+1 + α), (6)

where bi ≤ ai for all i and 0 6= α ∈ K .
1≤ k ≤ n− 1: uv = 0 is a local equation for Ei, x1 · · · xk = 0 is a local equation of π1−1(Di) and

u = (x1a1 · · · xkak)m, v = (x1a1 · · · xkak)t(α + xk+1), (7)

where a1, . . . , ak,m, t > 0 and α ∈ K − {0}.
2≤ k ≤ n: uv = 0 is a local equation of Ei, x1 · · · xk = 0 is a local equation of π1−1(Di) and

u = x1a1 · · · xkak , v = x1b1 · · · xkbk , (8)

where a1, . . . , ak, b1, . . . , bk ≥ 0, ai + bi > 0 for all i and rank
[
a1 . . ak
b1 . . bk

]
= 2.

I.B. Suppose that p1 ∈ (W1)q. There exist regular parameters x1, . . . , xn in ÔX1,p and (u, v) inOY ,q such that one of the following
forms holds:

1 ≤ k ≤ n− 1: u = 0 is a local equation of Ei, x1 · · · xk = 0 is a local equation of π1−1(Di) and

u = x1a1 · · · xkak , v = x1b1 · · · xkbkxk+1, (9)

where bi ≤ ai and bi < ai for some i. Moreover, the local equations of (W1)q are xi = xk+1 = 0 where bi < ai.
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2 ≤ k ≤ n: uv = 0 is a local equation of Ei, x1 · · · xk = 0 is a local equation of π1−1(Di) and

u = x1a1 · · · xkak , v = x1b1 · · · xkbk , (10)

where a1, . . . , ak, b1, . . . , bk ≥ 0, ai+ bi > 0 for all i, u does not divide v, v does not divide u, and rank
[
a1 . . ak
b1 . . bk

]
= 2.

Moreover, the local equations of (W1)q are xi = xj = 0 where (ai − bi)(bj − aj) > 0.

II. Suppose that 1 ≤ i ≤ m and p ∈ (f ◦ π1)−1(q) ∩ π1−1(Ui) and q 6∈ Ei. Then II.A and II.B as below hold.
II.A. There exist regular parameters x1, . . . , xn in ÔX1,p and (u, v) in OY ,q such that one of the following forms holds:

u = x1, v = x2 (11)
u = x1, v = x1(x2 + α) for some α ∈ K . (12)
u = x1x2, v = x2. (13)

II.B. Suppose that p1 ∈ (W1)q. There exist regular parameters x1, . . . , xn in ÔX1,p and (u, v) inOY ,q such that the following form
holds:

u = x1, v = x2. (14)

The local equations of (W1)q are x1 = x2 = 0.
III. (W1)q is a union of nonsingular codimension 2 subvarieties of X1.

Proof. I. We prove this part by induction on the number of blowups in the sequence π1 : X1 → X . In X the conclusions
hold because of Lemma 2.3 and f is locally toroidal. Suppose that the conclusions of the lemma hold after any sequence of l
permissible blowups where l ≥ 0.
Let π1 : X1 → X be a permissible sequence (with respect to q) of l blowups. Let π2 : X2 → X1 be the blowup of a

nonsingular codimension 2 subvariety Z of X1 such that Z ⊂ (W1)q.
Let p ∈ π2−1(π1−1(Ui)) ∩ (f ◦ π1 ◦ π2)−1(q) for some 1 ≤ i ≤ m.
If p1 = π2(p) 6∈ Z then π2 is an isomorphism at p and we have nothing to prove. Suppose then that p1 ∈ π1−1(Ui)∩ Z ⊂

π1
−1(Ui) ∩ (W1)q.
Then by induction hypothesis (I.B) p1 has the form (9) or (10). Suppose first that it has the form (9).
Then the local equations of Z at p1 are xi = xk+1 = 0 for some 1 ≤ i ≤ k. Note that bi < ai.
As in the proof of Lemma 2.3, there exist regular parameters y1, . . . , yk, xk+1, yk+2, . . . , yn in OX1,p1 and unit series

δi ∈ ÔX1,p1 such that yi = δixi for 1 ≤ i ≤ k.
Then OX2,p has one of the following two forms:

(a) OX2,p = OX1,p1 [
xk+1
yi
]
(yi,

xk+1
yi
−α)
for some α ∈ K , or

(b) OX2,p = OX1,p1 [
yi
xk+1
]
(xk+1,

yi
xk+1

)

In case (a), set ȳk+1 =
xk+1
yi
− α. Then y1, . . . , yk, ȳk+1, yk+2, . . . , yn are regular parameters in OX2,p and so ÔX2,p =

k[[y1, . . . , yk, ȳk+1, yk+2, . . . , yn]].
Let c 6= 0 be the constant term of the unit series δi.
Then evaluating δi in the local ring OX2,p we get,

δi(y1, . . . , yk, xk+1, yk+2, . . . , yn) = δi(y1, . . . , yk, yi(ȳk+1 + α), yk+1, . . . , yn)
= c +∆1y1 + · · · +∆kyk +∆k+2yk+2 + · · · +∆nyn

for some∆i ∈ OX2,p.
Set ᾱ = cα. Note that xk+1xi − ᾱ = δi

xk+1
yk
− cα = δi(ȳk+1 + α)− cα = δiȳk+1 + (δi − c)α.

Since y1, . . . , yk, ȳk+1, yk+2, . . . , yn are regular parameters in ÔX2,p the above calculations imply that x1, . . . , xk,
xk+1
xi
−

ᾱ, yk+2, . . . , yn are regular parameters in ÔX2,p.
Set x̄k+1 =

xk+1
xk
− ᾱ.

We get u = x1a1 · · · xkak , v = x1b1 · · · x̄ibi+1 · · · xkbk(x̄k+1 + α).
This is the form (6) if α 6= 0 and form (4) if α = 0.
In case (b), set ȳk+1 =

yi
xk+1
. Then y1, . . . , yk, ȳk+1, yk+2, . . . , yn are regular parameters in OX2,p and so ÔX2,p =

k[[y1, . . . , yk, ȳk+1, yk+2, . . . , yn]].
Then x1, . . . , xk,

xi
xk+1

, yk+2, . . . , yn are regular parameters in ÔX2,p. Set x̄i =
xi
xk+1
.

u = x1a1 · · · x̄iai · · · xkakxk+1ai , v = x1b1 · · · x̄ibi+1 · · · xkbkxk+1.
This is the form (5).
By the above analysis, when p1 = π2(p) has form (9), if p ∈ (W2)q, then it also has to be of the form (9).
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Suppose now that p1 has the form (10). Then the local equations of Z at p1 are xi = xj = 0 for some 1 ≤ i, j ≤ k.
Then as in the above analysis there exist regular parameters y1, . . . , . . . , yn inOX1,p1 and unit series δi ∈ ÔX1,p1 such that

yi = δixi for 1 ≤ i ≤ k.
Then OX2,p has one of the following two forms:

(a) OX2,p = OX1,p1 [
yi
yj
]
(yj,

yi
yj
−α)
for some α ∈ K , or

(b) OX2,p = OX1,p1 [
yj
yi
]
(yi,

yj
yj
)
.

Arguing as above in case (a) we obtain regular parameters x1, . . . , x̄i, . . . , xn in ÔX2,p so that

u = x1a1 · · · (x̄i + α)ai · · · xjai+aj · · · xkak , v = x1b1 · · · (x̄i + α)bi · · · xjbi+bj · · · xkbk .

This is the form (8) if α = 0.
If α 6= 0, we obtain either the form (8) or the form (7) according as rank of[

a1 . . ai + aj . . aj−1 aj+1 . . ak
b1 . . bi + bj . . bj−1 bj+1 . . bk

]
is= 2 or< 2.

Again arguing as above in case (b) we obtain regular parameters x1, . . . , x̄j, . . . , xn in ÔX2,p so that

u = x1a1 · · · xiai+aj · · · x̄jaj · · · xkak , v = x1b1 · · · xibi+bj · · · x̄jbj · · · xkbk .

This is the form (8).
By the above analysis, when p1 = π2(p) has the form (10), if p ∈ (W2)q, then it also has to be of the form (10).
This completes the proof of I.A for X2. Now I.B is clear as the forms (9) and (10) are just the forms (4) and (8) from I.A.

II. We prove this part by induction on the number of blowups in the sequence π1 : X1 → X .
Since q 6∈ Ei and f is locally toroidal, f is smooth at any point p1 ∈ f −1(q). This means that the regular parameters

at q form a part of a regular sequence at p. So we have regular parameters x1, . . . , xn in ÔX,p1 and u, v in OY ,q such that
u = x1, v = x2. This is the form (11). Thus the conclusions hold in X . Suppose that the conclusions of the lemma hold after
any sequence of l permissible blowups where l ≥ 0.
Let π1 : X1 → X be a permissible sequence (with respect to q) of l blowups. Let π2 : X2 → X1 be the blowup of a

nonsingular codimension 2 subvariety Z of X1 such that Z ⊂ (W1)q.
Let p ∈ π2−1(π1−1(Ui)) ∩ (f ◦ π1 ◦ π2)−1(q) for some 1 ≤ i ≤ m.
If p1 = π2(p) 6∈ Z then π2 is an isomorphism at p and we have nothing to prove. Suppose then that p1 ∈ π1−1(Ui)∩ Z ⊂

π1
−1(Ui) ∩ (W1)q.
Then by induction hypothesis (II.B) p1 has the form (14). Then the local equations of Z at p1 are x1 = x2 = 0.
There exist regular parameters x̄1, x̄2 in ÔX2,p such that one of the following forms holds:
x1 = x̄1, x2 = x̄1(x̄2 + α) for some α ∈ K or x1 = x̄1x̄2, x2 = x̄2. These two cases give the forms (12) and (13).
Now II.B is clear as the form (14) is just the form (11) from II.A.

III. Since {π1−1(Ui)} for 1 ≤ i ≤ m is an open cover of X1 and π1−1(Ui) ∩ (W1)q is a union of nonsingular codimension 2
subvarieties of X1 for all i by I and II, (W1)q is a union of nonsingular codimension 2 subvarieties of X1. �

3. Principalization

Let f : X −→ Y be a locally toroidal morphism from a nonsingular n-fold X to a nonsingular surface Y with respect to
open coverings {U1, . . . ,Um} and {V1, . . . , Vm} of X and Y respectively and SNC divisors Di and Ei in Ui and Vi respectively.
In this section we fix an i between 1 andm and a q ∈ Y .
Letπ1 : X1 → X be a permissible sequencewith respect to q. Our aim is to construct a permissible sequenceπ2 : X2 → X1

such that π2 ◦ π1 : X2 → X is a permissible sequence and π2−1(π1−1(Ui)) ∩ (W2)q is empty.
First suppose that q 6∈ Ei. If p ∈ π1−1(Ui), then by Lemma 2.5 one of the forms (11) and (12) or (13) holds at p.

Theorem 3.1. Let π1 : X1 → X be a permissible sequence with respect to q ∈ Y . Let i be such that q 6∈ Ei. Then there exists a
permissible sequence π2 : X2 → X1 with respect to q such that π2−1(π1−1(Ui)) ∩ (W2)q is empty.

Proof. If π1−1(Ui) ∩ (W2)q is empty, then there is nothing to prove. So suppose that π1−1(Ui) ∩ (W2)q 6= ∅. By Lemma 2.3,
it is a union of codimension 2 subvarieties of π1−1(Ui).
Let Z ⊂ π1−1(Ui) ∩ (W1)q be a subvariety of π1−1(Ui) of codimension 2.
Let π2 : X2 → X1 be the blowup of the Zariski closure Z̄ of Z in X1. Let Z1 ⊂ π2−1(Z) be a codimension 2 subvariety of

π2
−1(π1

−1(Ui)) such that Z1 ⊂ π2−1(π1−1(Ui)) ∩ (W2)q.
By the proof of Lemma 2.5 it follows that Z1 ∩ (W2)q = ∅.
The theorem now follows by induction on the number of codimension 2 subvarieties Z in π1−1(Ui) ∩ (W1)q. �

Now we suppose that q ∈ Ei.
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Remark 3.2. Suppose that π1 : X1 → X is a permissible sequence with respect to some q ∈ Ei. Let π2 : X2 → X1 be a
permissible blowup with respect to q. Let p1 ∈ π2−1(π1−1(Ui)) ∩ (W2)q. Then clearly p = π2(p1) ∈ π1−1(Ui) ∩ (W1)q.
Suppose that p1 is a 1 point. Then the analysis in the proof of Lemma 2.5 shows that p also is a 1 point.
Suppose that p1 is a 2 point where the form (10) holds. Then the analysis in the proof of Lemma 2.5 shows that p is a 2 or

3 point where the from (10) holds.

Suppose that π1 : X1 → X is a permissible sequence with respect to q ∈ Ei.
Let p ∈ π1−1(Ui) ∩ (W1)q be a 1 point. By Lemma 2.5, there exist regular parameters x1, . . . , xn in ÔX1,p and u, v in OY ,q

such that u = x1a, v = x1bx2 where a > b.
DefineΩi(p) = a− b > 0.
Let Z ⊂ π1−1(Ui) ∩ (W1)q be a codimension 2 subvariety of π1−1(Ui).
Define Ωi(Z) = Ωi(p) if there exists a 1 point p ∈ Z . This is well defined because Ωi(p) = Ωi(p′) for any two points

p, p′ ∈ Z .
If Z contains no 1 points, we defineΩi(Z) = 0.
Finally, define

Ωi(f ◦ π1) = max{Ωi(Z)|Z ⊂ π1−1(Ui) ∩ (W1)q is an irreducible subvariety of π1−1(Ui) of codimension 2}

Theorem 3.3. Let π1 : X1 → X be a permissible sequence with respect to q ∈ Ei. There exists a permissible sequence
π2 : X2 → X1 with respect to q such that Ωi(f ◦ π1 ◦ π2) = 0.

Proof. Suppose that Ωi(f ◦ π1) > 0. Let Z ⊂ π1
−1(Ui) ∩ (W1)q be a subvariety of π1−1(Ui) of codimension 2 such that

Ωi(f ◦ π1) = Ωi(Z).
Let π2 : X2 → X1 be the blowup of the Zariski closure Z̄ of Z in X1. Let Z1 ⊂ π2−1(Z) be a codimension 2 subvariety of

π2
−1(π1

−1(Ui)) such that Z1 ⊂ π2−1(π1−1(Ui)) ∩ (W2)q. We claim thatΩi(Z1) < Ωi(Z).
If there are no 1 points of Z1 then we have nothing to prove. Otherwise, let p1 ∈ Z1 be a 1 point. Then π1(p1) = p is a 1

point of Z by Remark 3.2.
There are regular parameters x1, . . . , xn in ÔX1,p and u, v in OY ,q such that u = x1a, v = x1bx2. There exist regular

parameters x1, x̄2, . . . , xn in ÔX2,p1 such that x2 = x1(x2 + α).
u = x1a, v = x1b+1(x2 + α). Since p1 ∈ (W2)q, α = 0.
Ωi(Z1) = Ωi(p1) = a− b− 1 < a− b = Ωi(Z).
The theorem now follows by induction on the number of codimension 2 subvarieties Z in π1−1(Ui) ∩ (W1)q such that

Ωi(f ◦ π1) = Ωi(Z) and induction onΩi(f ◦ π1). �

Let π1 : X1 → X be a permissible sequence with respect to q ∈ Ei.
Let Z ⊂ π1−1(Ui) ∩ (W1)q be a codimension 2 subvariety of π1−1(Ui). Let p ∈ Z be a 2 point where the form (10) holds.
There exist regular parameters x1, . . . , xn in ÔX1,p and u, v in OY ,q such that u = x1a1x2a2 and v = x1b1x2b2 .
Define ωi(p) = (a1 − b1)(b2 − a2). Then since p ∈ (W1)q, ωi(p) > 0.
Now define ωi(Z) = ωi(p) if p ∈ Z is a 2 point where the form (10) holds. If there are no 2 points of the form (10) in Z

define ωi(Z) = 0. Then ωi(Z) is well-defined.
Finally, define

ωi(f ◦ π1) = max{ωi(Z)|Z ⊂ π1−1(Ui) ∩ (W1)q is an irreducible subvariety of π1−1(Ui) of codimension 2}.

Theorem 3.4. Let π1 : X1 → X be a permissible sequence with respect to q ∈ Ei. Suppose that Ωi(f ◦ π1) = 0. There exists a
permissible sequence π2 : X2 → X1 with respect to q such that Ωi(f ◦ π1 ◦ π2) = 0 and ωi(f ◦ π1 ◦ π2) = 0.

Proof. SinceΩi(f ◦ π1) = 0, there are no 1 points in π1−1(Ui) ∩ (W1)q. Let X2 → X1 be any permissible blowup. Then by
Remark 3.2 it follows that π2−1(π1−1(Ui)) ∩ (W2)q has no 1 points. HenceΩi(f ◦ π1 ◦ π2) = 0.
Suppose that ωi(f ◦ π1) > 0. Let Z ⊂ π1−1(Ui) ∩ (W1)q be a codimension 2 irreducible subvariety of π1−1(Ui) such that

ωi(f ◦ π1) = ωi(Z).
Let π2 : X2 → X1 be the blowup of the Zariski closure Z̄ of Z in X1. Let Z1 ⊂ π2−1(Z) be a codimension 2 subvariety of

π2
−1(π1

−1(Ui)) such that Z1 ⊂ π2−1(π1−1(Ui)) ∩ (W2)q. We prove that ωi(Z1) < ωi(Z) = ωi(f ◦ π1).
If there are no 2 points of the form (10) in Z1 then ωi(Z1) = 0 and we have nothing to prove. Otherwise let p1 ∈ Z1 be a

2 point of the form (10).
By Remark 3.2, p = π2(p1) ∈ Z is a 2 or 3 point of form (10).
Suppose that p ∈ Z is a 2 point. There exist regular parameters x1, . . . , xn in ÔX1,p and u, v inOY ,q such that u = x1a1x2a2

and v = x1b1x2b2 . Also the local equations of Z are x1 = x2 = 0.
Then there exist regular parameters x1, x̄2, x3 . . . , xn in ÔX2,p1 such that x2 = x1x̄2 and u = x1a1+a2 x̄2a2 and v =

x1b1+b2 x̄2b2 .

ωi(Z1) = ωi(p1) = (a1 + a2 − b1 − b2)(b2 − a2)
= (a1 − b1)(b2 − a2)+ (a2 − b2)(b2 − a2)
< (a1 − b1)(b2 − a2) = ωi(p) = ωi(Z) = ωi(f ◦ π1).
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Suppose that p ∈ Z is a 3 point. There exist regular parameters x1, . . . , xn in ÔX1,p and u, v inOY ,q such that u = x1a1x2a2x3a3
and v = x1b1x2b2x3b3 . After permuting x1, x2, x3 if necessary, we can suppose that the local equations of Z are x2 = x3 = 0.
Then there exist regular parameters x1, x2, x̄3 · · · , xn in ÔX2,p1 such that x3 = x2(x̄3 + α) and u = x1

a1x2a2+a3(x̄3 + α)a3
and v = x1b1x2b2+b3(x̄3 + α)b3 .
Since p1 is a 2 point, we have α 6= 0 and a1(b2 + b3) − b1(a2 + a3) 6= 0. After an appropriate change of variables x1, x2

we obtain regular parameters x̄1, x̄2, x̃3, x4, . . . , xn in ÔX2,p1 .
u = x̄1a1 x̄2a2+a3 and v = x̄1b1 x̄2b2+b3 .
Since the local equations of Z ⊂ π1−1(Ui) ∩ (W1)q are x2 = x3 = 0, b2 − a2 and b3 − a3 have different signs. So a1 − b1

has the same sign as exactly one of b2 − a2 or b3 − a3. Without loss of generality suppose that (a1 − b1)(b2 − a2) > 0 and
(a1 − b1)(b3 − a3) < 0.
Let Z ′ be the codimension 2 variety whose local equations are x1 = x2 = 0 defined in an appropriately small

neighborhood in π1−1(Ui). Then the closure Z̄ ′ of Z ′ in π1−1(Ui) is an irreducible codimension 2 subvariety contained in
π1
−1(Ui) ∩ (W1)q.

ωi(Z1) = ωi(p1) = (a1 − b1)(b2 + b3 − a2 − a3)
= (a1 − b1)(b2 − a2)+ (a1 − b1)(b3 − a3)
< (a1 − b1)(b2 − a2) = ωi(Z̄ ′) ≤ ωi(f ◦ π1).

The theorem now follows by induction on the number of codimension 2 subvarieties Z in π1−1(Ui) ∩ (W1)q such that
ωi(f ◦ π1) = ωi(Z) and induction on ωi(f ◦ π1). �

Remark 3.5. Let π1 : X1 → X be a permissible sequence with respect to q. Let i be such that 1 ≤ i ≤ m.
If q ∈ Ei, then it follows from Theorems 3.3 and 3.4 that there exists a permissible sequence π2 : X2 → X1 with respect

to q such thatΩi(f ◦ π1 ◦ π2) = 0 and ωi(f ◦ π1 ◦ π2) = 0.

Theorem 3.6. Let f : X −→ Y be a locally toroidal morphism between a nonsingular n-fold X and a nonsingular surface Y . Let
q ∈ Y .
Then there exists a permissible sequence π1 : X1 → X with respect to q such that (W1)q is empty.

Proof. First we apply Theorem 3.1 and Remark 3.5 to X and i = 1.
Suppose that q 6∈ E1. Then by Theorem 3.1, there exists a permissible sequence π1 : X1 → X with respect to q such that

π1
−1(U1) ∩ (W1)q = ∅.
Now suppose that q ∈ E1. It follows from Remark 3.5 that there exists a permissible sequence π1 : X1 → X with respect

to q such thatΩ1(f ◦ π1) = 0 and ω1(f ◦ π1) = 0. So there are no 1 points or 2 points of the form (10) in π1−1(U1)∩ (W1)q.
But if Z ⊂ π1−1(U1) ∩ (W1)q is any codimension 2 irreducible subvariety of π1−1(Ui), then a generic point of Z must either
be a 1 point or a 2 point of the form (10). It follows then that π1−1(U1) ∩ (W1)q is empty.
Now we apply Theorem 3.1 and Remark 3.5 to the permissible sequence π1 : X1 → X and i = 2.
If q 6∈ E2, then by Theorem 3.1, there exists a permissible sequence π2 : X2 → X1 such that π2−1(π1−1(U2))∩ (W2)q = ∅.
If q ∈ E2, then as above there exists a permissible sequence π2 : X2 → X1 such that π2−1(π1−1(U2)) ∩ (W2)q is empty.
Notice that we also have π2−1(π1−1(U1)) ∩ (W2)q = ∅.
Repeating the argument for i = 3, 4, . . . ,mwe obtain the desired permissible sequence. �

4. Toroidalization

Theorem 4.1. Let f : X −→ Y be a locally toroidalmorphism fromanonsingular n-fold X to a nonsingular surface Y with respect
to open coverings {U1, . . . ,Um} and {V1, . . . , Vm} of X and Y respectively and SNC divisors Di and Ei in Ui and Vi respectively.
Let π : Y1 → Y be the blowup of a point q ∈ Y .
Then there exists a permissible sequence π1 : X1 → X such that there is a locally toroidal morphism f1 : X1 → Y1 such that

π ◦ f1 = f ◦ π1.

Proof. By Theorem 3.6 there is a permissible sequence π1 : X1 → X such that there exists a morphism f1 : X1 → Y1 and
π ◦ f1 = f ◦ π1.
Let p ∈ X1. Suppose that p ∈ π1−1(Ui) for some i such that 1 ≤ i ≤ m. If π1(p) 6∈ f −1(q) then we have nothing to prove.

So we assume that π1(p) ∈ f −1(q).
Suppose first that q 6∈ Ei. Then by Lemma 2.5 one of the forms (12) or (13) holds at p. So there exist regular parameters

x1, . . . , xn in ÔX1,p and u, v in OY ,q such that

u = x1, v = x1(x2 + α) for some α ∈ K , or u = x1y1, v = x2.

Let f1(p) = q1. There exist regular parameters u1, v1 ∈ OY1,q1 such that

u = u1, v = u1(v1 + α) or u = u1v1, v = v1

according as the form (12) or the form (13) holds. In either case, we have u1 = x1, v1 = x2, and f1 is smooth at p.
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Now suppose that q ∈ Ei.
By Lemma 2.5 there exist regular parameters x1, . . . , xn in ÔX1,p and u, v inOY ,q such that one of the forms (4)–(7), or (8)

of Lemma 2.5 holds.
Suppose first that the form (4) holds. Then sincemqÔX1,p is invertible, there exist regular parameters x1, . . . , xn in ÔX1,p

and u, v in OY ,q such that u = x1a1 · · · xkak , v = x1a1 · · · xkakxk+1 for some 1 ≤ k ≤ n− 1.
Further x1 · · · xk = 0 is a local equation of π1−1(Di) and u = 0 is a local equation for Ei.
Let f1(p) = q1. There exist regular parameters (u1, v1) inOY1,q1 such that u = u1 and v = u1v1. Hence the local equation

of π−1(Ei) at q1 is u1 = 0.

u1 = x1a1 · · · xkak , v1 = xk+1.

This is the form (1).
Suppose now that the form (5) holds at p for f ◦ π1. There exist regular parameters x1, . . . , xn in ÔX1,p and u, v in OY ,q

and 1 ≤ k ≤ n− 1 such that u = 0 is a local equation of Ei, x1 · · · xkxk+1 = 0 is a local equation of π1−1(Di) and

u = x1a1 · · · xkakxk+1ak+1 , v = x1b1 · · · xkbkxk+1bk+1 ,

where bi ≤ ai for i = 1, . . . , k and bk+1 < ak+1.
Let f1(p) = q1. There exist regular parameters u1, v1 in OY1,q1 such that u = u1v1 and v = v1. Hence the local equation

of π−1(Ei) at q1 is u1v1 = 0.

u1 = x1a1−b1 · · · xkak−bkxk+1ak+1−bk+1 , v1 = x1b1 · · · xkbkxk+1bk+1 .

This is the form (3). Note that the rank condition follows from the dominance of the map f1.
Suppose now that the form (6) holds. There exist regular parameters x1, . . . , xn in ÔX1,p and u, v inOY ,q and 1 ≤ k ≤ n−1

such that u = 0 is a local equation of Ei, x1 · · · xk = 0 is a local equation of π1−1(Di) and

u = x1a1 · · · xkak , v = x1b1 · · · xkbk(xk+1 + α),

where bi ≤ ai for all i and 0 6= α ∈ K .
Let f1(p) = q1. There exist regular parameters u1, v1 in OY1,q1 such that u = u1v1 and v = v1. Hence the local equation

of π−1(Ei) at q1 is u1v1 = 0.

u1 = x1a1−b1 · · · xkak−bk(xk+1 + α)−1, v1 = x1b1 · · · xkbk(xk+1 + α).

If rank
[
a1 − b1 . . ak − bk
b1 . . bk

]
= 2 then there exist regular parameters x̄1, . . . , x̄n in ÔX1,p such that u1 =

x̄1a1−b1 · · · x̄kak−bk , v1 = x̄1b1 · · · x̄kbk . This is the form (3).
If rank

[
a1 − b1 . . ak − bk
b1 . . bk

]
< 2 then there exist regular parameters x̄1, . . . , x̄n in ÔX1,p such that u1 =

(x̄1a1 · · · x̄kak)m, v = (x̄1a1 · · · x̄kak)t(xk+1 + β), with β 6= 0. This is the form (2).
Suppose that the form (7) holds. There exist regular parameters x1, . . . , xn in ÔX1,p and u, v in OY ,q and 1 ≤ k ≤ n − 1

such that uv = 0 is a local equation for Ei, x1 · · · xk = 0 is a local equation of π1−1(Di) and

u = (x1a1 · · · xkak)m, v = (x1a1 · · · xkak)t(α + xk+1),

where a1, . . . , ak,m, t > 0 and α ∈ K − {0}.
Suppose thatm ≤ t . There exist regular parameters u1, v1 inOY1,q1 such that u = u1 and v = u1(v1+β) for some β ∈ K .

u1 = (x1a1 · · · xkak)m, v1 = (x1a1 · · · xkak)t−m(α + xk+1)− β.

Ifm < t then β = 0. So u1v1 = 0 is a local equation of π−1(Ei) and we have the form (2). Ifm = t then α = β 6= 0 and
u1 is a local equation of π−1(Ei). In this case we have the form (1).
Suppose thatm > t . Then there exist regular parameters u1, v1 in OY1,q1 such that u = u1v1 and v = v1.

u1 = (x1a1 · · · xkak)m−t(α + xk+1)−1, v1 = (x1a1 · · · xkak)t(α + xk+1).

We obtain the form (2).
Finally suppose that the form (8) holds. There exist regular parameters x1, . . . , xn in ÔX1,p and u, v inOY ,q and 2 ≤ k ≤ n

such that uv = 0 is a local equation of Ei and x1 · · · xk = 0 is a local equation of π1−1(Di) and u = x1a1 · · · xkak , v =
x1b1 · · · xkbk , where rank

[
a1 . . ak
b1 . . bk

]
= 2.

We have either ai ≥ bi for all i or ai ≤ bi for all i. Without loss of generality, suppose that ai ≤ bi for all i.
Let f1(p) = q1. There exist regular parameters u1, v1 in OY1,q1 such that u = u1 and v = u1v1. Hence the local equation

of π−1(Ei) at q1 is u1v1 = 0.

u1 = x1a1 · · · xkak , v1 = x1b1−a1 · · · xkbk−ak .

Further, rank
[
a1 . . ak

b1 − a1 . . bk − ak

]
= 2. This is the form (1). �
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Now we are ready to prove our main theorem.

Theorem 4.2. Suppose that f : X −→ Y is a locally toroidal morphism between a variety X and a surface Y . Then there exists a
commutative diagram of morphisms

X1
f1 //

π1

��

Y1

π

��
X

f // Y

where π , π1 are blowups of nonsingular varieties such that there exist SNC divisors E, D on Y1 and X1 respectively such that
Sing(f1) ⊂ D, f1−1(E) = D and f1 is toroidal with respect to E and D.

Proof. Let E ′ = Ē1 + · · · + Ēm where Ēi is the Zariski closure of Ei in Y . There exists a finite sequence of blowups of points
π : Y1 → Y such that π−1(E ′) is a SNC divisor on Y1.
By Theorem 4.1, there exists a sequence of blowups π1 : X1 → X such that there is a locally toroidal morphism

f1 : X1 → Y1 with f ◦ π1 = π ◦ f1.
Let E = π−1(E ′) and D = f1−1(E).
We now verify that E and D are SNC divisors on Y1 and X1 respectively and that f1 : X1 → Y1 is toroidal with respect to

D and E.
Let p ∈ X1 and let q = f1(p).
Suppose that p 6∈ D, so that q 6∈ E. There exists i such that 1 ≤ i ≤ m and p ∈ π1−1(Ui). Then q 6∈ E = π−1(E ′) ⇒ q 6∈

π−1(Ei). So p 6∈ f1−1(π−1(Ei)) = π1−1(Di). Then f1 is smooth at p because f1|π1−1(Ui) is toroidal.
Thus Sing(f1) ⊂ D.
Suppose now that p ∈ D. Let p ∈ π1−1(Ui) for some i between 1 and m. If q 6∈ π−1(Ei) then f1 is smooth at p and then

D = f1−1(E) is a SNC divisor at p. We assume then that q ∈ π−1(Ei).
Case 1 q ∈ E is a 1 point.
q is necessarily a 1 point of π−1(Ei).
Then π−1(Ei) and E are equal in a neighborhood of q. Hence π1−1(Di) and D are equal in a neighborhood of p. Since

π1
−1(Di) is a SNC divisor in a neighborhood of p, D is a SNC divisor in a neighborhood of p.
Since f1|π1−1(Ui) is toroidal there exist regular parameters u, v in OY1,q and regular parameters x1, . . . , xn in ÔX1,p such

that the the form (1) holds at pwith respect to E and D.
Case 2 q ∈ E is a 2 point.
q is either a 1 point or a 2 point of π−1(Ei).
Case 2(a) q is a 1 point of π−1(Ei).
There exists regular parameters u, v in OY1,q and regular parameters x1, . . . , xn in ÔX1,p such that the form (1) holds at

p. There exists ṽ ∈ OY1,q such that u, ṽ are regular parameters in OY1,q, uṽ = 0 is a local equation for E at q, u = 0 is a local
equation of π−1(Ei) at q, and

ṽ = αu+ βv + higher degree terms in u and v,

for some β ∈ K with β 6= 0.
Since π1−1(Di) is a SNC divisor in a neighborhood of p, there exist regular parameters x̄1, . . . , x̄n in OX1,p such that

x̄1 · · · x̄k = 0 is a local equation of π1−1(Di) at p. Since x1 · · · xk = 0 is also a local equation of π1−1(Di) at p, there exist
units δ1, . . . , δk ∈ ÔX1,p such that, after possibly permuting the xj, xj = δjx̄j for 1 ≤ j ≤ k.

ṽ = αu+ βv + higher degree terms in u and v
= αx1a1 · · · xkak + βxk+1 + higher degree terms in u and v
= αδ1

a1 · · · δk
ak x̄a11 · · · x̄

ak
k + βxk+1 + higher degree terms in u and v

Let m be the maximal ideal of OX1,p and let m̂ = mÔX1,p be the maximal ideal of ÔX1,p.
Since β 6= 0, x̄1, . . . , x̄k, ṽ are linearly independent in m̂/m̂2 ∼= m/m2, so that they extend to a system of regular

parameters in OX1,p.
Say x̄1, . . . , x̄k, ṽ, x̃k+2, . . . , x̃n.
uṽ = x̄1 · · · x̄kṽ = 0 is a local equation of D at p, so D is a SNC divisor in a neighborhood of p, and u, ṽ give the form (3)

with respect to the formal parameters x1, . . . , xk, ṽ, x̃k+2, . . . , x̃n.
Case 2(b) q is a 2 point of π−1(Ei).
Then π−1(Ei) and E are equal in a neighborhood of q. Hence π1−1(Di) and D are equal in a neighborhood of p. Since

π1
−1(Di) is a SNC divisor in a neighborhood of p, D is a SNC divisor in a neighborhood of p.
Since f1|π1−1(Ui) is toroidal there exist regular parameters u, v in OY1,q and regular parameters x1, . . . , xn in ÔX1,p such

that the one of the forms (2) or (3) holds at pwith respect to E and D. �



K. Hanumanthu / Journal of Pure and Applied Algebra 213 (2009) 349–359 359

Acknowledgment

I am sincerely grateful to my advisor Dale Cutkosky for his continued support and help with this work.

References

[1] D. Abramovich, K. Karu, Weak semistable reduction in characteristic 0, Invent. Math. 139 (2000) 241–273.
[2] D. Abramovich, K. Karu, K. Matsuki, J. Wlodarczyk, Torification and factorization of birational maps, JAMS 15 (2002) 531–572.
[3] S. Akbulut, H. King, Topology of Algebraic Sets, in: MSRI Publications, vol. 25, Springer-Verlag, Berlin.
[4] S.D. Cutkosky, Local Monomialization and Factorization of Morphisms, in: Asterisque, vol. 260, Societe Mathematique de France, 1999.
[5] S.D. Cutkosky, Monomialization of Morphisms From 3-folds to Surfaces, in: Lecture Notes in Mathematics, vol. 1786, Springer Verlag, 2002.
[6] S.D. Cutkosky, Toroidalization of Dominant Morphisms of 3-folds, in: Memoirs of the American Mathematical Society, vol. 190, Amer. Math. Soc., 2007,
Number 890.

[7] S.D. Cutkosky, O. Piltant, Monomial resolutions of morphisms of algebraic surfaces, Commun. Algebra 28 (2002) 5935–5959.
[8] S.D. Cutkosky, O. Kascheyeva, Monomialization of strongly prepared morphisms from nonsingular n-folds to surfaces, J. Algebra 275 (2004) 275–320.
[9] G. Kempf, F. Knudsen, D. Mumford, B. Saint-Donat, Toroidal Embeddings I, in: Lecture Notes in Mathematics, vol. 339, Springer-Verlag, Berlin,
Heidelberg, New York, 1973.


	Toroidalization of locally toroidal morphisms from N-folds to surfaces
	Introduction
	Permissible blowups
	Principalization
	Toroidalization
	Acknowledgment
	References


