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Abstract

We study the joint laws of the maximum and minimum of a continuous, uniformly integrable martingale.
In particular, we give explicit martingale inequalities which provide upper and lower bounds on the joint exit
probabilities of a martingale, given its terminal law. Moreover, by constructing explicit and novel solutions
to the Skorokhod embedding problem, we show that these bounds are tight. Together with previous results
of Azéma & Yor, Perkins, Jacka and Cox & Obłój, this allows us to completely characterise the upper and
lower bounds on all possible exit/no-exit probabilities, subject to a given terminal law of the martingale. In
addition, we determine some further properties of these bounds, considered as functions of the maximum
and minimum.
c⃝ 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The study of the running maximum and minimum of a martingale has a prominent place in
probability theory, starting with Doob’s maximal and L p inequalities. In seminal contributions,
Blackwell and Dubins [4], Dubins and Gilat [11] and Azéma and Yor [2,3] established that the
distribution of the maximum M∞ := supt≤∞ Mt of a uniformly integrable martingale M is
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bounded from above, in stochastic order, by the so called Hardy–Littlewood transform of the
distribution of M∞, and the bound is attained. This led to series of studies on the possible
distributions of (M∞, M∞) including Gilat and Meilijson [13], Kertz and Rösler [17–19],
Rogers [23], Vallois [24], see also Carraro, El Karoui and Obłój [6].

More recently, these problems have gained a new momentum from applications in the field
of mathematical finance. The bounds on the distribution of the maximum, given the distribution
of the terminal value, are interpreted as bounds on prices of barrier options given the prices
of (vanilla) European options. Further, the bounds are often obtained by devising pathwise
inequalities which then have the interpretation of (super) hedging strategies. This approach is
referred to as robust pricing and hedging and goes back to Hobson [14], see also Obłój [21]
and Hobson [15] for survey papers. More recently, for example in Acciaio et. al. [1], martingale
inequalities have been used to study some classical probabilistic inequalities, and are of interest
in their own right.

Here we propose to study the distribution of (M∞, M∞), where M∞ := inft≤∞ Mt is the
infimum of the process, given the distribution of M∞, for a uniformly integrable continuous
martingale M . More precisely, we present sharp lower and upper bounds on all double exit/no-
exit probabilities for M in terms of the distribution of M∞, i.e. the probabilities that M∞ is
greater/smaller than b and/or that M∞ is greater/smaller than b, for some barriers b < b.
This amounts to considering eight different events. They of course come in pairs, e.g. {M∞ ≥

b, M∞ > b} is the complement of {M∞ < b or M∞ ≤ b} and, by symmetry, it suffices to
consider only one of {M∞ ≥ b, M∞ > b} and {M∞ < b, M∞ ≤ b}. It follows that to provide
a complete description it suffices to consider the three events

{M∞ ≥ b, M∞ ≤ b}, {M∞ < b, M∞ > b} and {M∞ ≥ b, M∞ > b}. (1)

By continuity and time-change arguments, it follows that for a fixed distribution µ of M∞, our
problem is equivalent to studying these events for Mt = Bt∧τ where τ varies among all stopping
times such that M is uniformly integrable and M∞ = Bτ has distribution µ, i.e. solutions to the
Skorokhod embedding problem for µ in B, see Obłój [20]. Sharp bounds on the probability of
the first event in (1) follow from Perkins and tilted-Jacka solutions, see Section 4. The case of
the second event was treated in Cox and Obłój [9] and is also recalled in Section 4.

Our contribution here is twofold. First, we derive lower and upper bounds on P(M∞ ≥

b, M∞ > b) in terms of the distribution of M∞ and give explicit constructions of martingales
which attain the bounds. We do this by devising pathwise inequalities which give upper and lower
bounds and then by constructing two new solutions to the Skorokhod embedding problem for
which equalities are attained in our pathwise inequalities. Second, we study universal qualitative
properties of the probabilities of the events in (1) seen as surfaces in the parameters b, b. While
the techniques used to derive the bounds on P(M∞ ≥ b, M∞ > b) are not new, the explicit
constructions we need to use are novel, and our goal in the first part of the paper is to provide
those bounds which are currently not known; in this sense, we complete previous work in the
literature. The contribution in the second part of the paper is, to the best of our knowledge, the
first attempt to address questions of this nature.

1.1. Motivation

We believe that there are two natural motivations for our results. First, we believe we solve
an intrinsically interesting probabilistic question and second, our results correspond to robust
pricing and hedging of certain double barrier options in finance. We elaborate now on both.
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From the probabilistic point of view, we follow in the footsteps of seminal works mentioned
above. The results therein were typically stated for a martingale and its maximum but naturally
can be reformulated for a martingale and its minimum M∞. They grant us a full understanding
of possible joint distributions of couples (M∞, M∞) or (M∞, M∞). In contrast, much less
is known about the joint distribution of (M∞, M∞, M∞) and it proves much harder to study
(although promising recent progress has been made in this direction in a discrete time setting,
when one considers the joint law of a random walk, its maximum, minimum and signature
by [12]). Indeed, already in the case of Brownian motion B, while the distribution of (Bt , Bt ) is
readily accessible with a simply and explicit density, the distribution of the triplet (Bt , Bt , Bt ) is
described through an infinite series. Likewise, P(M∞ ≥ b) is maximised among all martingales
M with a fixed distribution of M∞, by one extremal martingale simultaneously for all b. In
contrast, as we will show here, maximising P(M∞ ≥ b, M∞ > b) will require martingales with
qualitatively different behaviour for different values of (b, b).

In terms of mathematical finance, the constructions presented here correspond to robust
pricing (and hedging) of double touch/no-touch barrier options—for a detailed discussion of
applications we refer to our earlier papers [10,9] where we studied the first two events in (1).
Such an option would pay out 1 if and only if one barrier is attained and a second given barrier
is not attained, i.e. we consider the payoff of the form {ST ≥ b, ST > b}, where (St : t ≤ T )

is a uniformly integrable martingale representing the stock price process. The double touch/no-
touch options are partially a theoretical construct—(to the best of our knowledge) they are not
commonly traded even in Foreign Exchange (FX) markets, where barriers options are most
popular. However, they prove useful as they can be represented as a sum or difference of other
barrier options. We can then interpret our results as super-/sub-hedges for sums and differences
of barrier options. More precisely, we can write

1
{ST ≥b,ST >b}

= 1
{ST ≥b}

− 1
{ST ≥b,ST ≤b}

(2)

= 1 −


1{ST ≤b} + 1

{ST <b,ST >b}


. (3)

The first decomposition (2) writes the payoff of a double touch/no-touch option as a difference of
a one-touch option (with payoff 1

{ST ≥b}
) and a double touch option. The second decomposition

(3) writes the payoff of a double touch/no-touch option as one minus the portfolio of a one-touch
option and a double no-touch (range) option with payoff 1

{ST <b,ST >b}
. This is of particular

interest as both one-touch and range options are liquidly traded in main currency pairs in FX
markets. Effectively, using the no-arbitrage prices derived in Theorems 2.2 and 2.4, we obtain
a way of checking for absence of arbitrage in the observed prices of European calls/puts, one-
touch and range options. Furthermore, if one-touch options are liquidly traded, we can then
exploit pathwise inequalities derived in this paper as super- or sub-hedging strategies for range
options or double touch options. For certain barriers this will be sharper than the hedges derived
in Cox and Obłój [10,9] which assumes only that vanilla options are liquid.

1.2. Notation

Throughout the paper M denotes a continuous uniformly integrable martingale and B a stan-
dard real-valued Brownian motion. The running maximum and minimum of a Brownian motion
B or a martingale M are denoted respectively Bt = supu≤t Bu and Bt = infu≤t Bu , and simi-
larly M t and M t . The first hitting times of levels are denoted Hx (B) := inf{t ≥ 0 : Bt = x},
x ∈ R. Likewise we will consider Hx (M) and Hx (ω), the first hitting times for a martingale M
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and a continuous path ω. Most of the time we simply write Hx as it should be clear from the
context which process/path we consider. We will use the hitting times primarily to express events
involving the running maximum and minimum, e.g. note that 1

{Bτ ≥b, Bτ >b}
= 1{Hb≤τ<Hb} a.s.

We also introduce the following notation to indicate composition of stopping times: if τ1, τ2 are
both stopping times, then the stopping time (τ2 ◦ τ1)(ω) = τ1(ω) + τ2(θτ1(ω)), where θt (ω) is
the usual shift operator, θt : C(R+) → C(R+) defined by (θt (ω))s = ωt+s .

We use the notation a ≪ b to indicate that a is much smaller than b—this is only used
to give intuition and is not rigorous. The minimum and maximum of two numbers are denoted
a∧b = min{a, b} and a∨b = max{a, b} respectively, and the positive part is denoted a+

= a∨0.
Finally, for a probability measure µ on R we let −∞ ≤ ℓµ < rµ ≤ ∞ be the bounds of the

support of µ, i.e. [ℓµ, rµ] is the smallest interval with µ([ℓµ, rµ]) = 1.

2. Bounds for the probability of double exit/no-exit

In this section we provide sharp bounds on the probability

P

M∞ ≥ b, M∞ > b


where b < 0 < b, and M = (Mt : t ≤ ∞) is a continuous uniformly integrable martingale.
Our approach will involve two steps: first we provide pathwise inequalities which induce upper
and lower bounds on the given event. Second, we show that these bounds are attained. More
specifically, consider a continuous path (ωt : 0 ≤ t ≤ T ), where T ≤ ∞. We will introduce
pathwise inequalities comparing 1

{ωT ≥b,ωT >b}
to a sum of a “static term”, some function f (ωT ),

and a “dynamic term” of the generic form β(ωT − b)1{Hb<T }. Note that such a dynamic term
is zero initially and, when b is hit, it introduces a β-rotation of f (ωT ) around b. Note also that
when evaluated on paths of a martingale, it will be a martingale. Consequently, we will construct
random variables which dominate (or are dominated by) the random variable 1

{M∞≥b,M∞>b}

and which can be decomposed into a martingale term and a function of the terminal value M∞.
Bounds on the double exit/no-exit probability above will be obtained by taking expectations in
these inequalities. We further claim that these bounds are tight. This is proven in the subsequent
section, where we build extremal martingales by designing optimal solutions to the Skorokhod
embedding problem for Brownian motion.

2.1. Pathwise inequalities: upper bounds

We need to consider three different inequalities. As we will see later, it is always optimal to
use exactly one of them, and the choice depends on the distribution of M∞ and the values of
b, b. We give the cases intuitive labels, their meaning will become clearer when we subsequently
construct extremal martingales. Throughout this and the next section we assume that 0 < T ≤ ∞

is fixed and (ωt : 0 ≤ t ≤ T ) is a given continuous function. The hitting times are relative to
ω. To keep the notation simple we do not emphasise the dependence on ω, e.g. Hb = Hb(ω) :=

inf{t ≤ T : ωt = b}, or G
I
(K ) = G

I
(K , (ωt : t ≤ T )).

G
I
: upper bound for b ≪ 0 < b.
The inequality is presented graphically in Fig. 1. We can write it as:

1
{ωT ≥b,ωT >b}

≤
1

(K − b)


(ωT − K )+ − (b − ωT )+ − (ωT − b)1{Hb<T }


+ 1{ωT >b}

=: G
I
(K ), (4)
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Fig. 1. G
I
(K ) in (4) providing an upper bound for 1

{ωT ≥b,ωT >b}
.

Fig. 2. G
I I

in (5) providing an upper bound for 1
{ωT ≥b,ωT >b}

.

where we assume K > b. We include here the special case where K = ∞, which corresponds
to the upper bound 1

{ωT ≥b,ωT >b}
≤ 1{ωT ≥b}. Note that the coefficient 1/(K − b) is taken so that

the right-hand side after rotation at time Hb is zero above K .

G
I I

: upper bound for b < 0 < b.
This is a fairly simple case: if we hit neither b nor b, the inequality is simply 0 ≤ α1(ωT − b)

for some α1 > 0, so that the value is 1 if we strike b initially, and 0 if we strike b initially. This
strategy is illustrated in Fig. 2. If the path hits either b or b we have a constant value of either 1
or 0 respectively:

1
{ωT ≥b,ωT >b}

≤ α1ωT − α0 − α1(ωT − b)1{Hb<Hb∧T } − α1(ωT − b)1{Hb<Hb∧T }

=: G
I I

. (5)

The constraints on α0, α1 correspond to the need for the function to be zero if b is struck first,
and 1 if b is struck first. We deduce that

α0 = b/(b − b)

α1 = 1/(b − b).
(6)

G
I I I

: upper bound for b < 0 ≪ b.
The final inequality uses the fact that 1

{ωT ≥b,ωT >b}
≤ 1

{ωT ≥b}
, and that the inequality for the

latter also works for the former. We can then rewrite (2.2) from Brown, Hobson and Rogers [5]



A.M.G. Cox, J. Obłój / Stochastic Processes and their Applications 125 (2015) 3280–3300 3285

as

1
{ωT ≥b,ωT >b}

≤
(ωT − K )+

b − K
+

b − ωT

b − K
1
{ωT ≥b}

=: G
I I I

(K ), (7)

where K < b.

2.2. Pathwise inequalities: lower bounds

Observe that we have 1
{ωT ≥b,ωT >b}

= 1 − 1
{ωT <b or ωT ≤b}

a.s. It follows that a pathwise
upper bound for 1

{ωT ≥b,ωT >b}
corresponds to a pathwise lower bound of 1

{ωT <b or ωT ≤b}
, and

vice versa. We will use this below to rephrase some of the lower bounds as upper bounds.

G I : lower bound for b < 0 ≪ b.
We let G I to be the trivial inequality that the probability is bounded below by zero: G I ≡ 0.

G I I : lower bound for b < 0 < b.
We describe an upper bound for 1

{ωT <b or ωT ≤b}
which, as argued above, is equivalent to a

lower bound for 1
{ωT ≥b,ωT >b}

. The inequality depends on two parameters K1 and K2 where

K1 ≥ b > K2 ≥ b. The construction starts with equality on the region [K2, b) and inequality
elsewhere. The first time the path hits b, we rotate to get equality (with zero) on [K1, ∞) and so
that the value is exactly 1 at b. If the path later hits b, we again rotate to gain equality (with 1) on
(−∞, K2] and [b, K1]. We write it as an inequality

1
{ωT <b or ωT ≤b}

≤ α2(K2 − ωT )+ + (1 − α4)1{ωT <b}
− α2(ωT − b)+

+ α1(ωT − K1)
+

+ α4 + β1(ωT − b)1{Hb<Hb∧T }

+ β2(ωT − b)1{Hb<Hb≤T } + β3(ωT − b)1{Hb<Hb∧T }

=: 1 − G I I (K1, K2), (8)

which we present graphically in Fig. 3. It follows that G I I (K1, K2) is a lower bound for
1
{ωT ≥b,ωT >b}

. We deduce immediately from the rotation conditions that β1 = α2 − α1, β2 = α1

and β3 = α2. We have to satisfy two more constraints, namely that after hitting b and rotating
the function is zero on [K1, ∞) and one at b. Working out the values we have

α1 =
1

K1 − b

α2 =
b − b

(K1 − b)(b − K2)

α4 =
K1 − b

K1 − b

β1 = α2 − α1
β2 = α1
β3 = α2.

(9)

Observe that α4 ∈ (0, 1] and 0 < α1 ≤ α2. We note that if we hit b before b we have a strict
inequality in (8). Also, in the case where K2 = b a number of the terms simplify: in particular,
the construction initially gives G I I I = 1 for ωT ∈ [b, b) for T < Hb. More generally, we can
also have K1 = b (with or without also K2 = b) and all the claims remain true.

G I I I : lower bound for b ≪ 0 < b.
As previously, we describe an upper bound for 1

{ωT <b or ωT ≤b}
. The inequality is represented

in Fig. 4 and depends on two values K1 and K2 such that b < K2 < K1 < b. The inequality
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Fig. 3. (1 − G I I (K1, K2)) in (8)–(9) providing an upper bound for 1
{ωT <b or ωT ≤b}

= 1 − 1
{ωT ≥b,ωT >b}

. The case

where we hit b before b is not shown.

Fig. 4. (1 − G I I I (K1, K2)) in (10)–(11) providing an upper bound for 1
{ωT <b or ωT ≤b}

= 1 − 1
{ωT ≥b,ωT >b}

. The

case when we hit b before b is not shown.

starts with equality (equal to 1) between K1 and b, and if we hit b initially, we rotate to get
equality (to 0) between K2 and K1. If we hit b after this, we rotate again to ensure the function is
equal to 1 below K2. If we initially hit b rather than b, we rotate to get a function that is generally
strictly greater than one. We write it as

1
{ωT <b or ωT ≤b}

≤ α2(K2 − ωT )+ + α1(K1 − ωT )+ + 1
{ωT <b}

− α1(ωT − b)+

+ β1(ωT − b)1{Hb<Hb∧T } + β2(ωT − b)1{Hb<Hb≤T } + β3(ωT − b)1{Hb<Hb∧T }

=: 1 − G I I I (K1, K2), (10)

and it follows that G I I I (K1, K2) is a lower bound for 1
{ωT ≥b,ωT >b}

. We deduce immediately
from the rotation conditions that β1 = α1, β2 = α2 and β3 = α1 + α2. We have to satisfy two
more constraints, namely that after hitting b and rotating, the function is zero on (K2, K1) and
one in b. Working out the values we have

α1 =
1

b − K1

α2 =
1

K2 − b

β1 = α1
β2 = α2
β3 = α1 + α2.

(11)

As in the previous case, we have a strict inequality in (10) if the path hits b before b.
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2.3. Probabilistic bounds

We now consider the pathwise inequalities above evaluated on a path of a continuous uni-
formly integrable martingale M = (Mt : 0 ≤ t ≤ ∞). This gives a.s. bounds on 1

{M∞≥b, M∞>b}
.

By taking expectations we obtain bounds on the double exit/no-exit probabilities in terms of the
distribution of M∞. Indeed, observe that each of the bounds we get can be decomposed into two
terms. The first of these depends on M∞ alone, for example, in (8), the sum of the four quantities
preceded by an α. The second corresponds to a martingale and disappears when taking expecta-
tions, e.g. considering again (8), the three terms which are preceded by a β sum to give a term
with expected value zero.

Proposition 2.1. Suppose M = (Mt : 0 ≤ t ≤ ∞) is a continuous uniformly integrable
martingale. Then

P

M∞ ≥ b, M∞ > b


≤ inf


E


G

I
(K )


, E


G

I I

, E


G

I I I
(K ′)


, (12)

where the infimum is taken over 0 < K ′ < b < K and where G
I
, G

I I
, G

I I I
are given

by (4), (5), (6), and (7) respectively, evaluated on paths of M.

Our goal is to show that the above bound is optimal. A key aspect of the above result is that
the right hand-side of (12) depends only on the distribution of M∞ and not on the law of the
martingale M . We let µ be a probability measure on R with finite first moment. It is clear that
we may then assume (subject to a suitable shift of the martingale) that the measure µ is centred.
We also exclude the trivial case where µ = δ0 from our arguments, so necessarily µ((−∞, 0))

and µ((0, ∞)) are both strictly positive. We write M ∈ Mµ to denote that M is a continuous
uniformly integrable martingale with M∞ ∼ µ.

In the arguments below, we will commonly want to discuss the measure µ restricted to some
interval. Moreover, in the case where there is an atom of µ at a point y, it may become necessary
to split the atom into more than one part. It will be convenient therefore to split the measure µ

according to its quantiles. We therefore introduce the notation F(x) = µ((−∞, x]) for the usual
distribution function of the measure µ, and write F−1(q) = inf{x ∈ R : F(x) ≥ q} ∨ ℓµ. Then
for p, q ∈ [0, 1] with p ≤ q we define the sub-probability measures

µ
q
p((−∞, x]) = (F(x) ∧ q − p) ∨ 0 =: Fq

p (x). (13)

In addition, we will write µq
= µ

q
0 and µp = µ1

p. Observe that µ
q
p(R) = q − p.

The barycentre of µ associates to a non-empty Borel set Γ ⊂ R the mean of µ over Γ via

µB(Γ ) =


Γ u µ(du)
Γ µ(du)

. (14)

An obvious extension is to consider the barycentre of the measure µ when restricted to µ
q
p, which

we denote by mq
p, so

mq
p =

(q − p)−1


x µ
q
p(dx) if q > p

F−1(q) otherwise.
(15)

Now fix b, b ∈ R with b < 0 < b. Of importance in our constructions will be the following
notions. Given p with p ≤ F(b−), we want to find the probability q such that mq

p = b.
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Specifically, define a function ρ− : [0, F(b−)] → [F(b), 1] by

ρ−(p) = inf{q ≥ F(b) : mq
p ≥ b}. (16)

Similarly, we can define ρ+ : [F(b), 1] → [0, F(b−)] by

ρ+(q) = sup{p ≤ F(b−) : mq
p ≤ b}. (17)

It is straightforward to see that ρ−(p) and ρ+(q) are both continuous, strictly decreasing func-
tions, and are well defined since b < 0 =


x µ(dx) < b, so that the infimum in (16) and the

supremum in (17) are both over non-empty sets. Further, note that we get:

mρ−(p)
p = b, mq

ρ+(q) = b (18)

for all p ≤ F(b−) and all q ≥ F(b). Observe that the barycentre has two nice properties: first,
if we rescale the measure µ by a constant, then the barycentre is unchanged. Second, if we wish
to show that a measure µ has barycentre b, it is sufficient to show that

(x − b) µ(dx) = 0,

independent of whether µ is a probability measure. In the case where µ is a probability measure
µB(R) is just the mean of the measure. Finally, we introduce the additional useful notation

m̃q
p = (q − p)mq

p.

Since the functions ρ+ and ρ− are both continuous and strictly decreasing, their inverses are
also continuous and strictly decreasing where defined—for example, ρ−1

+ maps [ρ+(1), F(b−)]

→ [F(b), 1].
A critical role in the construction of embeddings will be played by the following definition.

Set

π∗
= inf


p ∈ [ρ+(1) ∨ F(b), F(b−)] : ρ−1

+ (p) − p ≤
−b

b − b


∧ F(b−), (19)

where we use the standard convention that the infimum of an empty set is ∞. Since ρ−1
+ (F(b−))

= F(b), ρ−1
+ (p) is continuous and b < 0, it follows that π∗

∈ [ρ+(1) ∨ F(b), F(b−)]. Then we
have the following theorem.

Theorem 2.2 (Upper Bound). The bound in (12) is sharp. More precisely, let µ be a given
centred probability measure on R. Then exactly one of the following is true

I. ‘b ≪ 0 < b’: we have π∗
= F(b) and ρ−1

+ (π∗) − π∗ < −b(b − b)−1.
Then there is a martingale M ∈ Mµ such that

P(M∞ ≥ b, M∞ > b) = E

G

I
(z∗)


,

where G
I

is given by (4) evaluated on paths of M, and z∗
= F−1(ξ) where ξ solves

(x − b) µ
ξ

F(b) = −b. (20)

II. ‘b < 0 < b’: we have ρ−1
+ (π∗) − π∗

≥ −b(b − b)−1.
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Then there is a martingale M ∈ Mµ such that

P(M∞ ≥ b, M∞ > b) = E

G

I I


= −b(b − b)−1,

where G
I I

is given by (5)–(6) evaluated on paths of M.
III. ‘b < 0 ≪ b’: we have π∗

= ρ+(1) and 1 − π∗ < −b(b − b)−1.
Then there is a martingale M ∈ Mµ such that

P(M∞ ≥ b, M∞ > b) = E

G

I I I
(F−1(π∗))


,

where G
I I I

is given by (7) evaluated on paths of M.

In a similar manner to Proposition 2.1, the pathwise inequalities described in Section 2.2
instantly imply a lower bound on the double exit/no-exit probabilities:

Proposition 2.3. Suppose M = (Mt : 0 ≤ t ≤ ∞) is a continuous uniformly integrable
martingale. Then

P

M∞ ≥ b, M∞ > b


≥ sup


0, E


G I I (K ′

1, K2)

, E


G I I I (K1, K2)


, (21)

where the supremum is taken over b < K2 < K1 < b < K ′

1 and where G I I , G I I I are given
by (8), (9) and (10), (11) respectively, evaluated on paths of M.

We proceed to show that this lower bound is optimal. Write

γ = 1 − F(b−) + F(b), (22)

and consider the condition

m̃ F(b−)
F(b) + γ b ≥ 0. (23)

If this holds, then we can find λ ∈ (F(b), F(b−)] such that

m̃λ
F(b) + (1 − λ + F(b))b = 0 (24)

since the left-hand side is increasing in λ and runs between b and a term which is positive by
(23). If (23) fails, we can imagine moving mass from an atom at b, to the right, in the process
moving the average of the mass upwards. In this case, consider the condition

m̃ F(b−)
F(b) + γ b ≤ 0. (25)

If (23) fails, and (25) holds, then we set ξ = F(b) and we can find λ ∈ (0, γ ] such that

m̃ F(b−)
F(b) + λb + (γ − λ)b = 0. (26)

Given such a λ, we will show that there exists π∗
∈ [F(b−), 1) such that

m̃ξ
+ m̃π∗

F(b−)
= b(ξ + π∗

− F(b−)). (27)

If (25) also fails, and

either ρ−(0) ≥ F(b−) or ρ−(0) < F(b−) and

m̃ F(b−)
ρ−(0) + b(1 − F(b−) + ρ−(0)) > 0

(28)
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then there exists ξ ∈ (F(b), ρ−(0) ∧ F(b−)) such that

m̃ F(b−)
ξ + b(1 − F(b−) + ξ) = 0. (29)

Then we define π∗ as the solution to (27) again.
Finally, if (23), (25) and (28) all fail, then there exists π∗

∈ [ρ−(0), F(b−)) such that

m̃ F(b−)
π∗ + b(1 − F(b−) + π∗) = 0. (30)

Theorem 2.4 (Lower Bound). The bound in (21) is sharp. More precisely, let µ be a given
centred probability measure on R. Then exactly one of the following is true:

I. ‘b < 0 ≪ b’: condition (23) holds.
Then there is a martingale M ∈ Mµ such that P(M∞ ≥ b, M∞ > b) = 0 = E


G I


.

II. ‘b < 0 < b’: condition (23) fails, and either (25) holds or (25) fails and (28) holds.
Then there is a martingale M ∈ Mµ such that

P(M∞ ≥ b, M∞ > b) = E

G I I (π

∗, ξ)

, (31)

where G I I is given via (8) and (9), evaluated on paths of M, and π∗ solves (27).
III. ‘b ≪ 0 < b’: conditions (23), (25) and (28) fail.

Then there is a martingale M ∈ Mµ such that

P(M∞ ≥ b, M∞ > b) = E

G I I I (π

∗, ρ−(0))


(32)

where G I I is given via (10) and (11), evaluated on paths of M, and π∗ is given by (30).

Remark 2.5. Throughout the paper, we have assumed that (Mt )t≥0 has continuous paths. This
assumption can be relaxed. It is relatively simple to see that if we only assume that barriers b, b
are crossed in a continuous manner then all of our results remain true. If we only assume that
(Mt ) has càdlàg paths then the situation is more complex. The optimal behaviour will essentially
be as before, but we can use jumps to hide some of the occasions where a barrier is hit. More
precisely, consider the continuous martingale M given in Theorem 2.2 and, for ε > 0, consider
the time-change:

ρε
t = inf{u ≥ t : Mu ∈ [b + ε, ∞)}.

Then Nt = Mρε
t

is a UI martingale which excludes paths of Mt where the minimum goes below
b+ε, but which later return above b+ε. In general, any possible martingale Mt can be improved
by performing such an operation, and so this suggests that an optimal discontinuous model can
be chosen in such a manner that it is continuous on [b + ε, ∞) and only takes values on (−∞, b]

if it is the final value of the martingale. This observation can be used as a starting point for
an analysis similar to that given above to determine the optimal martingale models for a given
measure. We do not pursue the details here.

3. Proofs that the bounds are sharp via new solutions to the Skorokhod embedding
problem

In this section we prove Theorems 2.2 and 2.4. We do this by constructing new solutions to
the Skorokhod embedding problem for a Brownian motion B. Specifically, we will construct
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stopping times τ such that Bτ ∼ µ, (Bt∧τ : t ≥ 0) is UI and equalities are attained almost
surely in the inequalities of Sections 2.1–2.2. It is then straightforward to see that martingales
required in Theorems 2.2 and 2.4 are given by Mt := Bt∧τ .

We will use below some well known facts about the existence of Skorokhod embeddings.
Specifically, given a measure µ with mean m and a Brownian motion B with B0 = m, then there
exists a stopping time τ such that Bτ ∼ µ and (Bt∧τ : t ≥ 0) is uniformly integrable. Moreover,
it follows from uniform integrability that if the measure µ is supported on a bounded interval,
then the process will stop before the first exit time of the interval.

Proof of Theorem 2.2. We take B = (Bt : t ≥ 0) a standard real-valued Brownian motion. All
the hitting times H• below are for B. As described above, we will prove this result by constructing
a stopping time τ such that Bτ has the distribution µ, and such that the conjectured bounds hold
for the corresponding continuous time martingale which is the stopped process.

From the definition of π∗ in (19) it is clear that at least one of the cases holds. Clearly II
excludes the other two. To show that I and III are exclusive, as ρ−1

+ (ρ+(1)) = 1, it suffices to
argue that the following is impossible

π∗
= ρ+(1) = F(b) > b(b − b)−1. (33)

Assume (33) holds. From the last condition we get b(1 − π∗) < −bπ∗, and using the fact that
π∗

= ρ+(1), this can be expressed as


x µπ∗(dx)+ bπ∗ < 0. However π∗
≥ F(b) implies that

this is greater than or equal to


x µ(dx) = 0 giving a contradiction. We conclude that the cases
I–III are exclusive.

We now show the existence of a suitable embedding. We consider initially the case I. We first
note that the solution ξ of (20) is in (ρ−1

+ (π∗), 1]. Since
(x − b) µ

ρ−1
+ (F(b))

F(b) (dx) =


(x − b)µ

ρ−1
+ (F(b))

F(b) (dx) +


(b − b) µ

ρ−1
+ (F(b))

F(b) (dx)

= (b − b)

ρ−1

+ (F(b)) − F(b)


< −b,

we conclude that ξ > ρ−1
+ (π∗). To see that ξ ≤ 1, we note:

(x − b) µF(b)(dx) ≥


(x − b) µ(dx) = −b.

Since the expression

(x − b) µ

ξ

F(b)(dx) is strictly increasing and continuous in ξ , there is a
unique ξ . For this value of ξ , we now define a measure ν by

ν =


−

b

b − b
− (ξ − F(b))


δb + µ

ξ

F(b).

Observe that the atom at b has mass greater than or equal to zero, and by construction, ν has total
mass −b(b − b)−1 and barycentre b since

(x − b) ν(dx) =


(x − b) µ

ξ

F(b)(dx) +


−

b

b − b
− (ξ − F(b))


(b − b)

= (b − b)(ξ − F(b)) − b +


−

b

b − b
− (ξ − F(b))


(b − b)

= 0.
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We now show that this means we can construct a suitable embedding. The idea will be initially
to run until the first time we hit either of b or b. The mass that hits b first will then be used to
embed ν, and all the mass that hits b (which will include the atomic term from ν) can then be
embedded in the remaining areas, (0, b] ∪ [F−1(ξ), ∞). So suppose we are in case I, and let τ1
be first time we hit one of b or b, so τ1 = Hb ∧ Hb. Then P(Bτ1 = b) = −b(b − b)−1. Let τ2 be

a UI embedding of the probability measure −
b−b

b ν given B0 = b and let τ3 be a UI embedding
of σ given B0 = b, where

σ =


µF(b)

+ µξ


F(b) + 1 − ξ

.

It can be verified that σ has barycentre b since
(x − b)


µF(b)

+ µξ


(dx) =


(x − b) µ(dx) −


(x − b) µ

ξ

F(b)(dx) = 0.

Then (recalling the definition in Section 1.2) we set

τ := τ2 ◦ τ11{τ1=Hb}1{τ2◦τ1<Hb} + τ3 ◦ τ11{τ1=Hb} + τ3 ◦ τ2 ◦ τ11{τ1=Hb}1{τ2◦τ1=Hb}.

We see that τ is a UI embedding of µ, and moreover τ is such that 1
{Bτ ≥b, Bτ >b}

= G
I
(F−1(ξ))

a.s.
Consider now case II. Suppose initially that in addition, ρ−1

+ (π∗) − π∗
= −b(b − b)−1. We

define measures ν and σ by:

ν =
1

ρ−1
+ (π∗) − π∗

µ
ρ−1

+ (π∗)

π∗

σ =
1

1 + π∗ − ρ−1
+ (π∗)


µπ∗

+ µ
ρ−1

+ (π∗)


.

Then ν has barycentre b, while σ has barycentre b. Let τ1 be as above, τ2 be a UI embedding of
ν given B0 = b and τ3 be a UI embedding of σ given B0 = b. Then the stopping time

τ := τ2 ◦ τ11{τ1=Hb} + τ3 ◦ τ11{τ1=Hb}

is a UI embedding of µ, and Bt∧τ satisfies 1
{Bτ ≥b, Bτ >b}

= G
I I

a.s. where G
I I

is the random
variable defined in (5), evaluated on paths of B.

The case where ρ−1
+ (π∗) − π∗ > −b(b − b)−1 is almost identical—observe that in this case,

there must be an atom of µ at b with F(b) − F(b−) > −b(b − b)−1. However, the argument
above works without alteration if we take:

ν =
1

−b(b − b)−1
δb

σ =
1

1 + b(b − b)−1
(µ − ν).

Finally we consider III. Then define measures ν and σ by:

ν =
1

1 − π∗
µπ∗

σ =
1
π∗

µπ∗

.
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So the barycentre of ν is b, and the barycentre of σ is mπ∗

. Define τ1 to be the first hitting time
of {mπ∗

, b}, so τ1 = Hmπ∗ ∧ Hb, then P(Bτ1 = b) = π∗
= −mπ∗

(b − mπ∗

)−1. We may then
proceed as above, so we define τ2 to be a UI embedding of ν given B0 = b and τ3 to be a UI
embedding of σ given B0 = mπ∗

. Then the stopping time

τ := τ2 ◦ τ11{τ1=Hb} + τ3 ◦ τ11{τ1=H
mπ∗ }

is a UI embedding of µ, and satisfies 1
{Bτ ≥b, Bτ >b}

= G
I I I

(F−1(π∗)) a.s. where G
I I I

(·) is the
random variable defined in (7), evaluated on paths of B. �

Proof of Theorem 2.4. The setup, and general methodology, is analogous to the proof of
Theorem 2.2.

It follows from their respective definitions that exactly one of I–III holds.
Suppose I holds, so that (23) is true. Then, by continuity, there exists λ ∈ (F(b), F(b−)] such

that (24) holds (taking λ = F(b) gives b on the left hand side of (24)). Let τ1 be a UI embedding
of

χ = µλ
F(b) + (1 − λ + F(b))δb (34)

in the Brownian motion starting at 0, and observe that the measure

ν =
µF(b)

+ µλ

1 − λ + F(b)

has mean b, which follows since:

(1 − λ + F(b))


xν(dx) = m̃ F(b)

+ m̃λ

= −m̃λ
F(b) = b(1 − λ + F(b)).

Let τ2 be a UI embedding of ν in a Brownian motion starting from B0 = b. Finally define

τ := τ11{Bτ1 ≠b} + τ2 ◦ τ11{Bτ1=b},

which is a UI embedding of µ in the Brownian motion B. Note that Bτ ≥ b only if Bτ ≤ b. It
follows that 1

{Bτ ≥b, Bτ >b}
= 0 = G I a.s.

Suppose now that II holds. We consider separately the case where (23) fails and (25) holds,
and the case where both (23) and (25) fail, but (28) holds. First suppose (25) holds. Then

λ → m̃ F(b−)
F(b) + λb + (γ − λ)b

is continuous, and strictly negative for λ = 0 and positive for λ = γ . Hence there exists
λ ∈ (0, γ ] such that (26) holds. Fix ξ = F(b) and consider

[F(b−), 1) ∋ π∗
→ m̃ξ

+ m̃π∗

F(b−)
− b(ξ + π∗

− F(b−)).

In the limit as π∗
→ 1, the expression simplifies to −m̃ F(b−)

F(b) − γ b which is strictly positive

since (23) is assumed to fail, while if π∗
= F(b−) the expression simplifies to m̃ F(b)

− bF(b),
which is non-positive, since m̃ F(b)

=


x µF(b)(dx) ≤


b µF(b)(dx). Hence there is a unique
π∗ satisfying (27).

Now define a measure

χ = µ
F(b−)
F(b) + λδb + (γ − λ)δb.
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From (26) it follows that χ is centred, and we embed this initially. The mass which arrives at b
will then run to the measure

ν =
(γ − λ − (1 − π∗))δb + µπ∗

γ − λ

which has mean b by the following computation:

(γ − λ)


x ν(dx) = b(γ − λ − (1 − π∗)) + m̃π∗

= b(γ − λ − (1 − π∗)) − m̃π∗

F(b−)
− m̃ F(b−)

F(b) − m̃ F(b)

= b(γ − λ − (1 − π∗)) − b(ξ + π∗
− F(b−)) + λb + (γ − λ)b

= b(γ − 1 − ξ + F(b−)) + b(γ − λ).

Here we have used (26), (27) and the fact that ξ = F(b). From the definition of γ in (22), the
desired conclusion follows.

Finally, we embed the remaining part of µ from the mass that finishes at b after either the first
or second step, which has total probability γ − λ + π∗

− 1 + λ = ξ + π∗
− F(b−). Set

σ =

µξ
+ µπ∗

F(b−)

ξ + π∗ − F(b−)
, (35)

and σ has mean b:

(ξ + π∗
− F(b−))


x σ(dx) = m̃ξ

+ m̃π∗

F(b−)

= b(ξ + π∗
− F(b−))

by (27). The final stopping time will be of the same form both in this case and in the case where
(25) holds, and when (25) fails but (28) holds. So before constructing the embedding, we give a
description of the relevant measures in the second case.

Suppose (25) fails, but (28) holds. Then in a similar manner to above, we can find ξ ∈

(F(b), ρ−(0) ∧ F(b−)) such that (29) holds. Define

χ = µ
F(b−)
ξ + (1 − F(b−) + ξ)δb

and choose π∗ as before as the solution to (27). Then set

ν =
(π∗

− F(b−) + ξ)δb + µπ∗

1 − F(b−) + ξ

and we verify that ν has mean b:

(1 − F(b−) + ξ)


x ν(dx) = b(π∗

− F(b−) + ξ) + m̃π∗

= b(π∗
− F(b−) + ξ) − m̃π∗

F(b−)
− m̃ F(b−)

ξ − m̃ξ

= b(π∗
− F(b−) + ξ) − b(ξ + π∗

− F(b−)) + b(1 − F(b−) + ξ)

= b(1 − F(b−) + ξ).

Finally, setting σ as in (35) we again have σ with mean b.
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In both cases, we construct an embedding as follows: let τ1 be a UI embedding of χ (starting
from 0). Then let τ2 be a UI embedding of ν (starting from b). Finally, we let τ 3 be a UI
embedding of σ (starting from b). We then define the complete embedding by:

τ := τ11
{Bτ1∈(b,b)} + τ2 ◦ τ11

{Bτ1=b}
1{Bτ2◦τ1>b}

+ τ3 ◦


τ11{Bτ1=b} + τ2 ◦ τ11

{Bτ1=b}
1{Bτ2◦τ1=b}


,

and it follows from our construction that τ is a UI embedding of µ which moreover satisfies
1
{Bτ ≥b, Bτ >b}

= G I I (π
∗, ξ).

Suppose finally we are in case III, so that (23), (25) and (28) all fail. Then there exists π∗
∈

[ρ−(0), F(b−)) such that (30) holds.
Define the probability measure

χ = µ
F(b−)
π∗ + (1 − F(b−) − π∗)δb,

which has mean 0 by the definition of π∗. Define also

ν =

ρ−(0)δb + µπ∗

ρ−(0) + µF(b−)

1 − F(b−) + π∗

and we confirm that ν has mean b:

(1 − F(b−) + π∗)


x ν(dx) = m̃ρ−(0)

+ m̃π∗

ρ−(0) + m̃ F(b−)

= m̃π∗

+ m̃ F(b−)

= −m̃ F(b−)
π∗

= b(1 − F(b−) + π∗).

Finally, any mass which is at b we finally embed to the measure σ = (ρ−(0))−1µρ−(0). That is,
we define the stopping times τ1 which is a UI embedding of χ starting at 0. Then let τ2 be a UI
embedding of ν, given initial value b, and τ3 an embedding of σ given initial value b. Finally, we
define

τ := τ11
{Bτ1 ≠b}

+ τ2 ◦ τ11
{Bτ1=b}

1{Bτ2◦τ1>b} + τ3 ◦ τ2 ◦ τ11
{Bτ1=b}

1{Bτ2◦τ1=b},

to get a UI embedding of µ in B. Furthermore, it follows from the construction that
1
{Bτ ≥b, Bτ >b}

= G I I I (π
∗, ρ−(0)). �

4. On joint distribution of the maximum and minimum of a continuous UI martingale

We turn now to studying the properties of joint distribution of the maximum and minimum of a
continuous UI martingale. As previously, (Mt : 0 ≤ t ≤ ∞) is a uniformly integrable continuous
martingale. We let µ be its terminal distribution, µ ∼ M∞, and recall that −∞ ≤ ℓµ < rµ ≤ ∞

are the bounds of the support of µ, i.e. [ℓµ, rµ] is the smallest interval with µ([ℓµ, rµ]) = 1.
Using Theorems 2.2 and 2.4, as well as existing results, we study the functions

p(b, b) = P

M∞ > b and M∞ < b


(36)

q(b, b) = P

M∞ > b and M∞ ≥ b


(37)

r(b, b) = P

M∞ ≤ b and M∞ ≥ b


(38)
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for b ≤ 0 ≤ b. Note that with no restrictions on M0, when looking at extrema of the functions
above, it is enough to consider M0 a constant (e.g. when maximising r ) or M0 ≡ M∞ (e.g. when
minimising r ). The latter is degenerate and henceforth we assume M0 is a constant a.s. Further, as
our results are translation invariant, we may and will take M0 = 0 a.s. It follows that µ is centred.

It follows from Dambis, Dubins–Schwarz Theorem that M is a (continuous) time change
of Brownian motion, i.e. we can write Mt = Bτt , t ≤ ∞, for some Brownian motion and an
increasing family of stopping times (τt ) with Bτ∞

∼ M∞, (Bt∧τ∞
: t ≥ 0) UI and M∞ = Bτ∞

,
M∞ = Bτ∞

. In consequence, the problem reduces to studying the maximum and minimum of
Brownian motion stopped at τ = τ∞, which is a solution the Skorokhod embedding problem.
We can deduce results about the optimal properties of the martingales from corresponding results
about Skorokhod embeddings. Our first result concerns the embeddings of Perkins and the
‘tilted-Jacka’ construction, which we now recall using the notation established previously. These
constructions have been considered in [10], and we will need some results from this paper;
however both constructions have a long history—see for example [22,7,16,8]. For the Perkins
embedding we define1

γ+(p) = q where q solves m̃q
+ m̃ p = (1 − p + q)F(p), p > F(0)

γ+(q) = p where p solves m̃q
+ m̃ p = (1 − p + q)F(q), q < F(0−).

(39)

The stopping time τP is then defined via:

τP = inf{t ≥ 0 : F(Bt ) ∉ (γ+(F(Bt )), γ−(F(Bt )))}. (40)

In a similar spirit, the tilted-Jacka construction is given as follows. Choose π∗
∈ [0, 1] such

that (b − mπ∗

)(mπ∗ − b) ≥ 0—this is always possible, since we can always find π∗ such that
mπ∗

= b say. Then set χ = π∗δmπ∗ + (1 − π∗)δmπ∗ . The construction is as follows: we first
embed the distribution χ , then, given we hit mπ∗

, we embed µπ∗

using the reversed Azéma–Yor
construction (cf. [20]); if we hit mπ∗ then we embed µπ∗ using the Azéma–Yor construction.

Finally, we observe that both cases give rise to martingales with certain optimality properties
using the fact that the stopped Brownian motion is a continuous martingale.

Proposition 4.1. We have the following properties:

(i) p(0, b) = 0 = p(b, 0), q(0, b) = 0 = q(b, rµ) and r(ℓµ, b) = 0 = r(b, rµ);
(ii) p(b, b) = 1 on [−∞, ℓµ) × (rµ, ∞], q(b, b) = 1 on [−∞, ℓµ) × {0}, and r(0, 0) = 1;

(iii) p and q are non-increasing in b ∈ (ℓµ, 0) and p is non-decreasing in b ∈ (0, rµ); r is
non-decreasing in b ∈ (ℓµ, 0) and q and r are non-decreasing in b ∈ (0, rµ);

(iv) for ℓµ ≤ b < 0 < b ≤ rµ we have

P

BτJ

> b and BτJ < b


≤ p(b, b) ≤ P

BτP

> b and BτP < b

, (41)

where (Bt ) is a standard Brownian motion with B0 = 0, τP is the Perkins stopping time [10,
(4.4)] embedding µ and τJ is the ‘tilted-Jacka’ stopping time [10, (4.6)], for barriers (b, b),
embedding µ;

(v) for ℓµ ≤ b < 0 < b ≤ rµ, the lower bound on q(b, b) is given by (12), and the upper bound
is given by (21). Moreover these bounds are attained by the constructions in Theorems 2.2
and 2.4 respectively;

1 Strictly, we only consider the case where µ({0}) = 0. If this is not the case, then the optimal embedding requires
independent randomisation to stop some mass at zero initially.
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(vi) for ℓµ ≤ b < 0 < b ≤ rµ, the lower bound on r(b, b) is given by Proposition 2.3 of [9],
and the upper bound is given by Proposition 2.1 of [9]. Moreover these bounds are attained
by the constructions in Theorems 2.4 and 2.2 of [9] respectively.

The first three assertions of the proposition are clear. Assertion (iv) is a reformulation of Lemmas
4.2 and 4.3 of [10]—it suffices to note that (Bt∧τJ ), (Bt∧τP ), (Mt ) are all UI martingales starting
at 0 and with the same terminal law µ for t = ∞. Likewise, part (vi) is a reinterpretation of
the results of [9]. We note that therein the results were formulated for the case of non-atomic µ.
They extend readily, with methods used in Section 3, specifically by characterising the stopping
distributions via quantiles of the underlying measures, to the general case.

We can think of any of the functions p(·, ·), q(·, ·), and r(·, ·) as a surface defined over
the quarter-plane [−∞, 0] × [0, ∞]. Proposition 4.1 describes boundary values of the surface,
monotonicity properties and gives an upper and a lower bound on the surface. However we note
that – most obviously in (iv) – there is a substantial difference between the bounds linked to
the fact that τP does not depend on (b, b) while τJ does. In consequence, the upper bound is
attainable: there is a martingale (Mt ), namely Mt = (Bt∧τP ), for which p is equal to the upper
bound for all (b, b). In contrast a martingale (Mt ) for which p would be equal to the lower
bound does not exist. For the martingale Mt = (Bt∧τJ ), where τJ is defined for some pair (b, b),
p will attain the lower bound in some neighbourhood of (b, b) which will be strictly contained in
(ℓµ, 0)× (0, rµ). More generally, the latter case is more typical of all the constructions which are
used in the result; however, with some careful construction, it seems likely that one can usually
find a construction which will be optimal for all values of (b, b) which lie in some small open set
(for example, this is true of the tilted-Jacka construction), but there will be limits on how large
the region on which a given construction is optimal can be made.

We now give a result which provides some further insight into the structure of the bounds dis-
cussed above. In particular, we can show some finer properties of the functions p, q, r and their
upper and lower bounds. We state and prove the result for the function p, but the corresponding
versions for q and r will follow in a clear manner.

Theorem 4.2. The function p(b, b) is càglàd in b and càdlàg in b. Moreover, if p is discon-
tinuous at (b, b), then µ must have an atom at one of b or b. Further:

(i) if there is a discontinuity at (b, b) of the form:

lim sup
w→b

p(b, w) > p(b, b)

then the function g defined by

g(u) = lim sup
w→b

p(u, w) − p(u, b), u ≤ b

is non-increasing.
(ii) if there is a discontinuity at (b, b) of the form:

lim sup
u→b

p(u, b) > p(b, b)

then the function h defined by

h(w) = lim sup
u→b

p(u, w) − p(b, w), w ≥ b

is non-decreasing.
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And, at any discontinuity, we will be in at least one of the above cases.
In addition the lower bound (corresponding to the tilted-Jacka construction) is continuous in

(ℓµ, 0) × (0, rµ), and continuous at the boundary (b = rµ and b = ℓµ) unless there is an atom
of µ at either rµ or ℓµ, while the upper bound (which corresponds to the Perkins construction)
has a discontinuity corresponding to every atom of µ.

Remark 4.3. (i) Considering q instead of p, the function will be càdlàg in both arguments, and
the directions of the convergence results needs to be adapted suitably. We also observe that
discontinuities in the upper bound occur only if there is an atom of µ at b, and we are in
case I of Theorem 2.2. Similarly, there is a discontinuity in the lower bound at b if there is
an atom of µ at b, and we are in either of cases II or III of Theorem 2.4.

(ii) Considering r instead of p, the function will be càglàd in b and càdlàg in b. We also observe
that discontinuities in the upper bound never occur, while there are discontinuities in the
lower bound at b and/or b if there is an atom of µ at either of these values.

Before we prove the above result, we note the following useful result, which is a simple con-
sequence of the martingale property:

Proposition 4.4. Suppose that (Mt )t≥0 is a UI martingale with M∞ ∼ µ. Then P(M∞ = b) > 0
implies µ({b}) ≥ P(M∞ = b) and

{M∞ = b} = {Mt = b, ∀t ≥ Hb} ⊆ {M∞ = b} a.s.

Proof of Theorem 4.2. We begin by noting that by definition of p(b, b), we necessarily have the
claimed continuity and limiting properties. Further,

lim inf
(s,v)→(u,w)

p(s, v) ≥ P(M∞ > b and M∞ < b)

and

lim sup
(s,v)→(u,w)

p(s, v) ≤ P(M∞ ≥ b and M∞ ≤ b).

It follows that the function p is continuous at (b, b) if P(M∞ = b) = P(M∞ = b) = 0. By
Proposition 4.4, this is true when µ({b, b}) = 0.

Note that we can now see that at a discontinuity of p, we must be in at least one of the cases
(i) or (ii). This is because discontinuity at (b, b) is equivalent to

P(M∞ ≥ b and M∞ ≤ b) > P(M∞ > b and M∞ < b),

from which we can deduce that at least one of the events

{M∞ > b and M∞ = b}, {M∞ = b and M∞ < b}, {M∞ = b and M∞ = b}

is assigned positive mass. However, by Proposition 4.4 the final event implies both M∞ = b and
M∞ = b which is impossible. Consequently, at least one of the first two events must be assigned
positive mass, and these are precisely the cases (i) and (ii).

Consider now case (i). We can rewrite the statement as: if g(b) > 0, then g(u) is decreasing
for u < b. Note however that

g(u) = P(M∞ > u and M∞ ≤ b) − P(M∞ > u and M∞ < b)

= P(M∞ > u and M∞ = b)
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which is clearly non-increasing in u. In fact, provided that g(b) < P(M∞ = b), it follows from
e.g. [23, Theorem 4.1] that g is strictly decreasing for b > u > sup{u ≥ −∞ : g(u) = P(M∞ =

b)}. A similar proof holds in case (ii).
We now consider the lower bounds corresponding to the tilted-Jacka construction. We wish to

show that

P(M∞ ≥ b and M∞ ≤ b) = P(M∞ > b and M∞ < b),

for any (b, b) except those excluded in the statement of the theorem. We note that it is sufficient
to show that P(M∞ = b) = P(M∞ = b) = 0, and by Proposition 4.4 it is only possible to
have an atom in the law of the maximum or the minimum if the process stops at the maximum
with positive probability; we note however that the stopping time τJ , due to properties of the
Azéma–Yor embedding precludes such behaviour except at the points ℓµ, rµ.

Considering now the Perkins construction, we note from (40) and the fact that the function
γ+ is decreasing, that we will stop at b only if γ+(F(M t )) = b and Mt = M t = b. It follows
from (39) that there is a range of values (b∗, b

∗
) for which γ+(F(b)) = b, and consequently,

we must have h(b) = P(M∞ = b, M∞ < b) increasing in b as b goes from b∗ to b
∗
, with

h(b∗) = P(M∞ = b, M∞ < b∗) = 0 and h(b
∗
) = P(M∞ = b, M∞ < b

∗
) = µ({b}).2 Similar

results for the function g also follow. �

Conclusions

In this paper, we studied the possible joint distributions of (M∞, M∞) given the law of M∞,
and were able to obtain number of qualitative properties and sharp quantitative bounds. It follows
from our results that the interaction between the maximum and minimum is highly non-trivial
which makes the pair above much harder to study than M∞ and M∞ on their own. This is best
seen in the case of Brownian motion where Bt has an easily accessible distribution while the
description of the joint distribution of (Bt , Bt ) is much more involved. A further natural question
arising from our work is to characterise the joint distributions of the triple (M∞, M∞, M∞). At
present it is not clear to us if, and to what extent, a complete characterisation of the possible joint
distributions of this triple, in the spirit of Rogers [23] and Vallois [24], is feasible. It remains an
open and challenging problem.
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integrable martingale, in: Séminaire de Probabilités, XXII, in: Lecture Notes in Math., vol. 1321, Springer, Berlin,
1988, pp. 214–216.

[14] D.G. Hobson, Robust hedging of the lookback option, Finance Stoch. 2 (4) (1998) 329–347.
[15] D. Hobson, The skorokhod embedding problem and model-independent bounds for option prices, in: R.A. Carmona,
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