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Let R be a commutative ring and G a finite abelian group. In [8], Long 
developed a Brauer group theory for G-dimodule algebras (i.e., algebras with 
a compatible G-grading and G-action) and constructed BD(R, G), the Brauer 
group of G-Azumaya algebras. Within BD(R, G) lies B(R, G), the set of classes 
of algebras which are R-Azumaya (i.e., central separable) as well as G-Azum$ya. 
B(R, G) is not always a group; we show that if every cocyle in H2(G, U(R)) is 
abelian, then it is. When B(R, G) is a group, we call it the Brauer group of 
central separable G-Azumaya algebras. If R is connected and Pit,(R) = 0 
where m is the exponent of G, and if every cocycle in H2(G, U(R)) is abelian, 
then we show that there is a short exact sequence 

1 + (BC(R, G)/B(R)) x (BM(R, G)/B(R)) -+ B(R, G)/B(R) -+ Aut(G) + 1, 

where B(R) is the usual Brauer group of R, BM(R, G) is the Brauer group of 
G-module algebras and BC(R, G) is the Brauer group of G-comodule algebras 
(cf. [S]). If either BM(R, G)/B(R) or BC(R, G)/B(R) is trivial, then the sequence 
splits. Using the above, we are able to describe BD(Z, G) for any cyclic G, and 
BD(IW, G) for any cyclic G of odd order. Our sequence provides a generalization 
of the results [9, Theorem 5.91 and [II, Theorem 4.41 and should be compared 
to the sequence in [6, Theorem 5.21 obtained under the assumptions that the 
order of G is a unit in R and R contains a primitive mth root of unity. 

PRELIMINARIES 

Let R be a connected commutative ring with unity and G a finite abelian 
group. We assume throughout that Pit,(R) = 0 where m is the exponent of G. 

All algebras and modules are understood to be R-algebras and R-modules. 
We write A @B for A OR B, Hom(A, B) for Hom,(A, B), etc. The group 
of units of an algebra A is written U(A). A0 is the usual opposite algebra of A. 
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All formulae defined only for the homogeneous elements of a graded module 
are to be extended by linearity. 

Let RG denote the group ring with basis U, , u E G. GR is the dual of RG 
and has basis V, where v,(u,) = 1 if r = u and 0 otherwise. IffE H2(G, U(R)), 
RG, denotes the module RG but with multiplication m: RG, @ RG, --f RG, 
defined by m(u, , u,) = f(a, T)u,, . If CD is a bilinear map from G x G to 
U(R), RG,@ denotes the algebra RG, with G-action defined by a(~,) = @(u, T)U, . 

A module M is called a G-dimodule if M is a G-graded module and G acts 
on M as a group of grade-preserving automorphisms. An algebra A is called 
a G-dimodule algebra if A is a G-dimodule and a G-graded algebra (i.e., 
A,A, C A,,) and G acts as algebra automorphisms on A. If A is a G-dimodule 
algebra, A is defined to be A as a G-dimodule but with multiplication defined -- 
by 3. 6 = +)a where UE A, ; A is also a G-dimodule algebra. If M is a 
G-dimodule, then End(M) is a G-dimodule algebra where, for fe End(M), 
(of)(m) = @(a-lm)) and (f),,(m) = xti (f(m,)),, . If Mand Nare G-dimodules 
(or G-dimodule algebras), then so is M @ N where u(m @ n) = (I @ u(n) 
an&(M @ N),, = CnBZo M, @ N, . 

If A and B are G-dimodule algebras, the smash product A #B is defined to 
be A @ B as a G-dimodule but with multiplication (a # b)(c # d) = au(c) # bd 
for b of grade u. A # B is also a G-dimodule algebra. If P is a G-dimodule, 
A # End(P) z A @ End(P). 

For a G-dimodule algebra A, the G-dimodule algebra maps F: A # 2i + 
End(A) and G: 2 # A - End( are defined by F(u # 6)(c) = uu(c)b 
where b has grade o and G(z# b)(c) = $(c) where g(c) = u(u) cb for c of 
grade u. If A is an R-progenerator and F and G are isomorphisms, A is 
called G-Azumaya. If A and B are G-Azumaya, so are A and A #B; if P 
is an R-progenerator and G-dimodule, End(P) is G-Azumaya. Note that 
G-Azumaya algebras are separable algebras [ll, Proposition 2.21. BD(R, G) 
is defined to be the group of equivalence classes of G-Azumaya algebras 
where A v B if there exist G-dimodule R-progenerators P and Q such 
that A # End(P) ‘v B # End(Q). Multiplication is the smash product. 

B(R, G) is defined to be the set of classes of G-Azumaya algebras in which 
one (and therefore all) algebras are also R-Azumaya. B(R, G) need not be a 
subgroup of BD(R, G) [11, Example 2.101 but we show that if every cocycle in 
H2(G, U(R)) is abelian, then it is. 

The subgroup BM(R, G) consists of those (classes of) algebras with trivial 
G-grading; similarly BC(R, G) is the group of (classes of) algebras with trivial 
G-action. B(R), the usual Brauer group of R, is embedded in all of the above 
groups as a normal subgroup since elements of B(R) are given trivial G-grading 
and action and therefore commute with all other elements of BD(R, G). For 
further discussion of BD(R, G), we refer the reader to [g]. 

Gal(R, GR) and Gal(R, RG) are the groups of isomorphism classes of Galois 
GR-objects (i.e., the usual Galois extensions of R with group G) and Galois 
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RG-objects respectively. (See [5] for definitions and details.) By [4, Remark 2.2 
and Theorem I.41 there are split short exact sequences 

and 

I ---f B(R) -+ BC(R, G) + Gal(R, GR) ---f 1 

I + B(R) + BM(R, G) -+ Gal(R, RG) + 1. 

From the second, we obtain an isomorphism 17 from Gal(R, RG) to BM(R, G)/ 
B(R) defined by 

y(S) = S # GR (1) 

where S is a Galois RG-object and S # GR has G-action induced by that on GR, 
i.e., u(s # v,) = s #v, , y = TU-l. 

Note that (in analogy to the equivalent conditions for an algebra S to be 
a Galois extension of R with group G), a G-graded algebra S is a Galois 
RG-object if and only if S, = R and for all 0, 7 E G, the map S, @ S, +,SCT 
is an R-module isomorphism [3, Proposition 1.31. Thus, for all (T E G, 
S, E Pit,(R), where m is the exponent of G. We say that S has normal basis if 
S E RG as G-graded modules; then if Pit,(R) = 0, every Galois RG-object 
has normal basis. The subgroup of Gal(R, RG) consisting of such algebras is, 
in fact, isomorphic to H2(G, U(R)), th e usual second group cohomology group 
(cf. [IO] or [3, Theorem 1.61). Thus, since we assume Pit,(R) = 0, we have an 
isomorphism F from H2(G, U(R)) to Gal(R, RG); v is defined by 

df) = RG, (2) 

forfe Ha(G, U(R)). The isomorphisms 7 and v above will be needed in the proof 
of Theorem 1.2. 

1. A SHORT EXACT SEQUENCE DESCRIPTION OF B(R,G) 

The following condition is sufficient for B(R, G) to be a group. 

PROPOSITION 1.1. Let R, G be as above. Suppose all cocycles in H2(G, U(R)) 
are abelian, i.e., for f e H2(G, U(R)), cr, T E G, f (a, T) = f (7, a). Then B(R, G) 
is a subgroup of BD(R, G). 

Proof. Let A, BE B(R, G); we must show that A #BE B(R, G). Let 
f E H2(G, U(R)) and suppose f is normalized, i.e., f(c, 1) = f(l, u) = 1 for all 
0 E G. Let B., equal B as a G-graded module but with multiplication m defined 

by 

4x 0 Y) = f (0, 7) v for xcB,,y~B,. 
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Sincef is a normalized cocycle, m defines an algebra structure on B, and, sincef 
is abelian, B is central if and only if B, is. Further suppose B has separability 
idempotent e = xi xi Byi”. We may assume e E (B @ BO), since x:i xiyi = 1; 
then using the cocycle identity, it is straight forward to check that 

e’ := -yf(q , CT;‘) x; RJ y,” 

is a separability idempotent for B, where oi is the grade of xi . 
Since Pit,(R) = 0, the elements of G act as inner automorphisms on A 

[2, Corollary 4.6, p. 1081. For CJ E G, let x, be an element of A such that 
au = .Qzx;l for every a E A, and choose xi = 1. Then x*,x,x;~ux,,x;~x~~ = a 
for all (T, 7 E G, a E A; thus x,,x$x;~ E Centre(A) = R. Hence we may define 
a normalized cocyclef: G x G - U(R) by x,x, = .f(u, T)-lx,, . 

Now we imitate the procedure in [ 11, Lemma 3.21 and define an R-module 
isomorphism j: A # B - A,@ B, by 

j(u # b) = ax, @ b for bE B,. 

Since,forbEB,,dEB,, 

A@ # b)(c ## 4) = i(44 # W 
= ax,cx;lx,, @ bd 

= f (a, a-1 ),f(d, UT)-%ZX,CX, @ bd 

=f(a,~)q,cx, @ bd 

= (ax, @ b)(cxT @ d) 

= j(a # b)i(c # 4, 

j is, in fact, an R-algebra isomorphism. Since A and B, are R-Azumaya, by 
[12, Proposition 2.3(d)], A @ B, is R-Azumaya and therefore A #B E B(R, G). 

Suppose now that every cocycle in H*(G, U(R)) is abelian so that B(R, G) 
is a subgroup of BD(R, G). In [I 1, Theorem 4.41, a map fl: B(R, G) + Am(G) 
was defined as follows. Let A E B(R, G) and, as in the proof of Proposition 1 .I, 
let x, be an element of A such that uu = X,UX;~ for u E G, a E A, and choose 
xi = 1. By [I 1, Proposition 4.21, x, is homogeneous, say of grade (~~(0). Define 
/3(A) = PA: G --f G by PA(u) = D(Q(u))-i. In [I 1, Theorem 4.41, Orzech 
proved that PA is independent of the choice of x, , is indeed a group auto- 
morphism and is well-defined on equivalence classes in B(R, G). We wish to 
show that /3 is a group epimorphism. As in the proof of Proposition 1 .I, x,x, = 
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f~$1%7 for some normalized f~ H2(G, U(R)). Therefore G acts trivially on 
o , since, for u, 7 E G, 

7(x0) = xrxox;l 

= f(T, r-1 )f(T, u)-lf(TU, +--1x, 

= (f(u, l)f(T, +))(f(u, T)f(UT, +))-% 

= x, . 

Given A, B E B(R, G) and u E G, let the action of u on A and B be given by 
conjugation by .1c, and yO respectively, where yO has grade 7. Let p = UT-~ = 
ps(u). Then the inner action of u on A # B is induced by x, #yO since, 

(XP # YJ@ # b&7 # YOF 

= (x0 # YS # 4(C # Y3 

= X&z) x,’ # y&y,-l 

= x x ax-1x,1 # o(b) 

= f;r:T)l’f.(T-l, p-yf(T, T-l)f(p, p-l)f(u, u-I)-la(a) # u(b) 

= u(u) # u(b) by the cocycle.identity. 

If x, has grade y, then x”, # y,, has grade ~7. Then 

PA&d4 = /JAB,(P) 
= pqrl 

- +--’ - 

= Pml(4 

and ,B is a group homomorphism. 
Furthermore p is onto; we sketch the proof (cf. [l 1, p. 5461). Let i E Aut(G), 

let ,JE Aut(G) be the automorphism defined by L(u) = uj(u)-l, and let RG(i) 
be the G-graded module RG but with G-action given by uu, = US, . Consider 
the G-dimodule algebra A = End(RG(j)); here, x0 = u viewed as an element 
of A, and u has grade R(u). Thus PA = i and it only remains to prove that A is 
G-Azumaya. To show that F: A # A + End(A) is an isomorphism, it suffices, 
by a dimension argument, to show F is onto. We know that the usual map from 
A @ As to End(A) is an isomorphism. Let fg End(A) and let Cfi @gio be its 
preimage in A @ A”, i.e., for all h E A, f(h) = C fi . h . gi . Now suppose gi is 
homogeneous of grade yi and let pi = i-l(rJ. Then pigi has grade &)yi = 
pi&-i(yi))-ly, = pi , and therefore 

F (~fd # PZ) (h) = cf< . pi1 . pi . h * pi1 - pi . g, 
= cfi. h .gi 

=f(h). 
Similarly G: A # A -+ End( is onto. 
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The discussion above yields a group epimorphism /I from B(R, G) to Aut(G). 
Since B(R) is a normal subgroup of B(R, G) lying in the kernel of p, we have 
a group epimorphism from B(R, G)/B(R) to Aut(G). We denote this map also 
by /3, and investigate its kernel in the following theorem. 

THEOREM 1.2. Let G and R be as above. Suppose that every cocycle in 
N2(G, U(R)) is abelian. Then there is a short exact sequence 

1 + (BC(R, G)/B(R)) x (BM(R, G)/B(R)) - B(R, G)/B(R) + Aut(G) --f 1. 

If either BC(R, G)/B(R) OY BM(R, G)/B(R) is trivial, the sequence splits. 

PYOO~. Clearly BM(R, G)/B(R) and BC(R, G)/B(R) are subgroups of Ker p. 
We show first that BM(R, G)/B(R) is a direct summand of Ker p. 

Let A E Ker p and, for u E G, let x, E U(A) be such that u(a) == x,ax;’ for 
all a E A, as above. Then we may define a cocycle fA: G x G + U(R) by 
f,$(o-1, T-1) = x,x,x;;. Suppose that for every o E G, z, is another such suitable 
unit in A, and let h, be the resulting cocycle. Then x,,z;’ E Centre(A) = R, 
i.e., X, = r,z, for some Y, E U(R). Define g: G + U(R) by g(u) = Y, , and 
then fA = (Sg)h, . Thus the element fA E H2(G, U(R)) is independent of the 
choice of the x, . 

If A = End(P), P a G-dimodule R-progenerator, then X, = u viewed as 
an element of End(P), and fA is trivial. If A E B(R), then X, = 1 for all o E G, 
and, again,f, is trivial. Let A, B E Ker /3, and for u E G, let the inner action of u 
on A and B be conjugation by X, and yO respectively. Since x, and yO are homo- 
geneous of grade 1 and are invariant under G-action, then the action of u on 
A # B is given by conjugation by x, # y, , and fASB = fAfB . Therefore 
we now have a well-defined group homomorphism p from Ker fi to H2(G, U(R)) 
given by p(A) = fA . 

To show that BM(R, G)/B(R) is a direct summand of Ker ,6I, we show that 
the composition 

H2(G, U(R)) % Gal(R, RG) -% BM(R, G)/B(R) -k Ker p % H2(G, U(R)) 

is the identity on Hs(G, U(R)) where 7 and QJ are defined by equations (1) and (2) 
respectively. 

Let f 6 H2(G, U(R)). We have that L .y . ?(f) = RG, # GR, where the 
G-action on this algebra is induced by that on GR. It is easily checked that 
the inner action of 0-l on RG, # GR is given by conjugation by u, # 1. Then 

%7x, = f(a-1, 7-1)x,, , and p(RG, # GR) = f. Therefore the inclusion 
L: BM(R, G)/B(R) - Ker p is split by 77 . q . p. 

We now have a split short exact sequence 

1 ---f Ker p --f Ker /3 -+ BM(R, G)/B(R) --f 1, 
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and we investigate Ker p. Let A E Ker p and denote by A, the G-graded 
algebra A with trivial G-action. Then 

2, # A = (A,)O @ A Y A @ (A,)O E End(A) 

as G-graded algebras. Since A E Ker p, the elements x, associated to the inner 
action of G on A may be chosen such that x,x, = x,, for all 0, 7 E G. Define A’ 
to be the G-graded module A but with G-action given by ~(a’) = (~*a)‘. It is 
easily checked that /& # A N End(A’) as G-dimodule algebras by the iso- 
morphism above. Therefore d4c #A is trivial in B(R, G)/B(R), and, since 
A, E BC(R, G)/B(R), A E BC(R, G)/B(R). Thus Ker p = BC(R, G)/B(R) and 
Ker ,8 ‘u (BM(R, G)/B(R)) x (BC(R, G)/B(R)). 

Now suppose that BC(R, G)/B(R) is t rivial. In the discussion of the map /I 
preceding the theorem, we saw that for j E Aut(G), ,8(End(RG(j))) = i;. 
Therefore, if End(RG(j)) # End(RG(k)) N End(RG(jk)) for j, RE Aut(G) 
then the map i + End(RG(j)) is a group homomorphism splitting /3. Since 
/3(End(RG(j)) # End(RG(R))) = p(End(RG(ik))) = jR, then 

-4 = End(RG(j)) # End(RG(R)) # End(RG(j4) 

is in Ker p = BM(R, G)/B(R), i.e., A = A,, the G-dimodule algebra A with 
trivial G-grading. Then 

A,,,, = (End(RG(j)) # End(RG(4)) # End(RG($))),,,, 

= ((EnWG(j)) # EndWWh # EnWG($))h 

= WWWj))~ # EndWV>)h # EnWW$)))M v 

and, since for any i E Aut(G), End(RG(i)), = End(RG), , trivial in B(R, G), 
A is trivial in B(R, G) and the sequence splits. A similar argument shows that 
the sequence also splits if BM(R, G)/B(R) is trivial. 

COROLLARY 1.3. Let R, G be as above. rf H2(G, U(R)) = 0, then B(R, G) N 
B(R) x (BC(R, G)/B(R)) x Am(G) N B(R) x Gal(R, GR) x Aut(G). 

Proof. By [I 1, Lemma 3.21, B(R) is a direct summand of B(R, G); the 
statement then follows directly from Theorem 1.2. 

COROLLARY I .4. Let G, R be as above. Suppose G cv H x K such that 

(i) H2(G, U(R)) c1 HZ(H, U(R)) x H2(K, U(R)) 

(ii) Gal(R, GR) N Gal(R, HR) x Gal(R, KR) 

(iii) Aut(G) N Am(H) x Aut(K). 

Then B(R, G)IB(R) ‘v (B(R, HP(R)) x (B(R, K)/B(R)). 
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Proof. By [8, Theorem I .8], B(R, H)/R(R) and B(R, K)/B(R) are subgroups 
of B(R, G)]B(R), and since G N H x K, elements of these subgroups commute. 
Also, if A E B(R, H)]B(R) and BE B(R, K)/B(R), then A #B = A @ B is 
nontrivial. For suppose A # End(P) ‘v A @ End(P) ‘v B # C # End(Q) e 
B @ C @ End(Q), for some C E B(R), Q, P G-dimodule R-progenerators. 
Let P’, Q’ be the modules P and Q but with trivial K-action and grading, 
and let B’ be the algebra B with trivial K-(and therefore G-)action and grading. 
Then A @ End(P’) N B’ @ C @ End(Q’) E B(R) and A is trivial in B(R, G)/ 
B(R). Therefore (B(R, H)/B(R)) x (B(R, K)/B(R)) Z B(R, G)/B(R); an appli- 
cation of the short exact sequence of the theorem then shows equality. 

Before applying the above theorem to some computations of BD(R, G), 
we need the following. 

LEMMA I .5. Let G be a finite abelian group of order n and let R be such that 
if p divides n, p is not a unit in R. Then B(R, G) = BD(R, G). 

Proof. Let A be G-Azumaya with centre Z. Let H be the group of gradings 
of Z and let JH be a maximal ideal in R. Then H is also the group of gradings 
of Z/&Z, for if AZ, = Z, then Z, is annihilated by some element 1 - Y, r E J&’ 
[ 12, Lemma 1.21, contrary to [l 1, Corollary 2.5(a)]. Now let p be a prime 
dividing the order of H and k’ a maximal ideal of A containing p; the remainder 
of the argument follows exactly as in [l I, Corollary 2.71. 

EXAMPLE 1.6. We now compute BD(Z, G) for Z the ring of integers and G 
any cyclic group. By Lemma 1.5 and the fact that B(B) = 0, BD(H, G) = 
B(Z, G), and thus we may apply the above theorem. Gal(G, GZ) = 0 since any 
Galois GZ-object would be the ring of integers of an unramified extension of Q 
(cf. [I]); thus BD(Z, G) ‘v H2(G, U(Z)) x Aut(G). Recall that for p an odd 
prime, Aut(C,,) N CD,-,,-1 where C,, denotes the cyclic group of order m, 
and Aut(C,,) N C, x C,,-2 , e > 2. Also H2(G, U(Z)) N C, if the order of G 
is even and 0 otherwise. Thus BD(Z, G) has been described explicitly. 

Another short lemma will allow us to compute BD([W, G) for G cyclic of odd 
order. 

LEMMA 1.7. Let G be a cyclic group of order n and let R be such that 1 is the 
only nth root of unity in R. Then BD(R, G) = B(R, G). 

Proof. Let A E BD(R, G) with centre Z, and let N be the group of gradings 
of Z. Then by [l 1, Proposition 2.1 l(e)], Z e RH,@ where @ is a bilinear map 
from G x H to U(R). Then if 0 generates G and ut generates H, @(u, ut) is an 
nth root of unity in R and therefore @ is trivial, i.e., Z = ZG. By [ 11, Proposition 
2.2(a)] ZG = R, and the lemma is proved. 

EXAMPLE 1.8. We compute BD(OB, G) for [w the field of real numbers and G 
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any cyclic group of odd order. By Lemma 1.7, BD(IW, G) = B(IW, G). Since 
Gal@, G/X) and Hs(G, U(R)) are trivial, by Corollary 1.3, 

BD(IW, G) E C, x Aut(G). 

2. A SIMILAR SEQUENCE FOR BD(R, G) 

We now suppose that G has order n and R contains a primitive nth root of 
unity, Pit,(R) = 0 and n is a unit in R. Then RG N GR as Hopf algebras, 
so that Gal(R, RG) ‘v Gal(R, GR) N H2(G, U(R)). Then, if G is of the form 
ni (JJ.$ GJ where Gi is cyclic of order pfi, pi # pj , Theorems 5.1 and 5.2 of 
[6] describe BD(R, G)/B(R) by the short exact sequence: 

I --t (P(G, U(R))) x (W(G, U(R))) -+ BD(R, G)/B(R) -j N + 1. 

If G = ni Gi , then N = Hi Di where Di is the dihedral group of order 
2(p9 - pp-‘) for pi odd. For a further description of N, see [6, Theorem 5.21. 

These results of Childs were obtained as a byproduct of his investigation of 
B,(R, G), the Brauer group of G-graded Azumaya algebras with @ a bilinear 
map from G x G to U(R) (cf. [7]). If G is cyclic of order n = p, . p, , pi prime, 
pi # pj , it is also possible to obtain the above short exact sequence by a straight- 
forward investigation of the subgroups of BD(R, G) and an application of the 
short exact sequence of Theorem 1.2. First suppose that G is cyclic of prime 
order. Then B(R, G) is a normal subgroup of index 2 in BD(R, G), and 

(BWRZ, WV)) x WV, WV)) is a normal subgroup of BD(R, G). 
The proof makes generous use of the fact that for A G-Azumaya with centre 
Z # R, Z is both a Galois RG-object and a Galois GR-object, and thus 
ARG#ZeAcxZ#AGR, where # is actually 0. Note that AC and A, are 
R-Azumaya algebras, and Z N RG,@ is G-Azumaya [l 1, Proposition 2.111. Then 
a commutative diagram utilizing the short exact sequence of Theorem 1.2 
yields the sequence 

1 -+ (BM(R, G)/B(R)) x (BC(R, G)/B(R)) ---f BD(R, G)/B(R) -+ IV-+ 1 

where N has order 2(p - 1). Consideration of the actual elements of N shows 
that N is the dihedral group of order 2(p - 1). The proof that for G cyclic of 
order n = p, . ..p., BD(R, G)/B(R) 2 ni BD(R, G,)/B(R), Gi cyclic of order 
pi , follows from an easy argument using Corollary 1.4; a further application 
of the properties of Z yields equality. Details may be found in [3]. 
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