The Brauer Group of Central Separable G-Azumaya Algebras

Margaret Beattie
Universität Mannheim, Lehrstuhl für Mathematik I, 6800 Mannheim, Germany*
Communicated by A. Frölich

Received December 12, 1977

Let R be a commutative ring and G a finite abelian group. In [8], Long developed a Brauer group theory for G-dimodule algebras (i.e., algebras with a compatible G-grading and G-action) and constructed $B D(R, G)$, the Brauer group of G-Azumaya algebras. Within $B D(R, G)$ lies $B(R, G)$, the set of classes of algebras which are R-Azumaya (i.e., central separable) as well as G-Azımaya. $B(R, G)$ is not always a group; we show that if every cocyle in $H^{2}(G, U(R))$ is abelian, then it is. When $B(R, G)$ is a group, we call it the Brauer group of central separable G-Azumaya algebras. If R is connected and $\operatorname{Pic}_{m}(R)=0$ where m is the exponent of G, and if every cocycle in $H^{2}(G, U(R))$ is abelian, then we show that there is a short exact sequence

$$
1 \rightarrow(B C(R, G) / B(R)) \times(B M(R, G) / B(R)) \rightarrow B(R, G) / B(R) \rightarrow \operatorname{Aut}(G) \rightarrow 1
$$

where $B(R)$ is the usual Brauer group of $R, B M(R, G)$ is the Brauer group of G-module algebras and $B C(R, G)$ is the Brauer group of G-comodule algebras (cf. [8]). If either $B M(R, G) / B(R)$ or $B C(R, G) / B(R)$ is trivial, then the sequence splits. Using the above, we are able to describe $B D(\mathbb{Z}, G)$ for any cyclic G, and $B D(\mathbb{R}, G)$ for any cyclic G of odd order. Our sequence provides a generalization of the results [9, Theorem 5.9] and [11, Theorem 4.4] and should be compared to the sequence in [6, Theorem 5.2] obtained under the assumptions that the order of G is a unit in R and R contains a primitive m th root of unity.

Preliminaries

Let R be a connected commutative ring with unity and G a finite abelian group. We assume throughout that $\mathrm{Pic}_{m}(R)=0$ where m is the exponent of G.

All algebras and modules are understood to be R-algebras and R-modules. We write $A \otimes B$ for $A \otimes_{R} B, \operatorname{Hom}(A, B)$ for $\operatorname{Hom}_{R}(A, B)$, etc. The group of units of an algebra A is written $U(A) . A^{0}$ is the usual opposite algebra of A.

[^0]All formulae defined only for the homogeneous elements of a graded module are to be extended by linearity.

Let $R G$ denote the group ring with basis $u_{\sigma}, \sigma \in G . G R$ is the dual of $R G$ and has basis v_{τ} where $v_{\tau}\left(u_{\sigma}\right)=1$ if $\tau=\sigma$ and 0 otherwise. If $f \in H^{2}(G, U(R)$), $R G_{f}$ denotes the module $R G$ but with multiplication $m: R G_{f} \otimes R G_{f} \rightarrow R G_{f}$ defined by $m\left(u_{\sigma}, u_{\tau}\right)=f(\sigma, \tau) u_{\sigma \tau}$. If Φ is a bilinear map from $G \times G$ to $U(R), R G_{f}^{\Phi}$ denotes the algebra $R G_{f}$ with G-action defined by $\sigma\left(u_{\tau}\right)=\Phi(\sigma, \tau) u_{\tau}$.

A module M is called a G-dimodule if M is a G-graded module and G acts on M as a group of grade-preserving automorphisms. An algebra A is called a G-dimodule algebra if A is a G-dimodule and a G-graded algebra (i.e., $\left.A_{\sigma} A_{\tau} \underline{C} A_{\sigma \tau}\right)$ and G acts as algebra automorphisms on A. If A is a G-dimodule algebra, \bar{A} is defined to be A as a G-dimodule but with multiplication defined by $\bar{a} \cdot \bar{b}=\overline{\sigma(b) a}$ where $a \in A_{\sigma} ; \bar{A}$ is also a G-dimodule algebra. If M is a G-dimodule, then $\operatorname{End}(M)$ is a G-dimodule algebra where, for $f \in \operatorname{End}(M)$, $(\sigma f)(m)=\sigma\left(f\left(\sigma^{-1} m\right)\right)$ and $(f)_{\sigma}(m)=\sum_{\alpha}\left(f\left(m_{\alpha}\right)\right)_{\alpha \sigma}$. If M and N are G-dimodules (or G-dimodule algebras), then so is $M \otimes N$ where $\sigma(m \otimes n)=\sigma(m) \otimes \sigma(n)$ $\operatorname{anc}(M \otimes N)_{\alpha}=\sum_{\alpha \beta=\sigma} M_{\alpha} \otimes N_{\beta}$.

If A and B are G-dimodule algebras, the smash product $A \# B$ is defined to be $A \otimes B$ as a G-dimodule but with multiplication $(a \# b)(c \# d)=a \sigma(c) \# b d$ for b of grade $\sigma . A \# B$ is also a G-dimodule algebra. If P is a G-dimodule, $A \# \operatorname{End}(P) \sim A \otimes \operatorname{End}(P)$.

For a G-dimodule algebra A, the G-dimodule algebra maps $F: A \# \bar{A} \rightarrow$ $\operatorname{End}(A)$ and $G: \bar{A} \# A \rightarrow \operatorname{End}(A)^{0}$ are defined by $F(a \# \bar{b})(c)=a \sigma(c) b$ where b has grade σ and $G(\bar{a} \# b)(c)=g^{0}(c)$ where $g(c)=\sigma(a) c b$ for c of grade σ. If A is an R-progenerator and F and G are isomorphisms, A is called G-Azumaya. If A and B are G-Azumaya, so are \bar{A} and $A \# B$; if P is an R-progenerator and G-dimodule, $\operatorname{End}(P)$ is G-Azumaya. Note that G-Azumaya algebras are separable algebras [11, Proposition 2.2]. $B D(R, G)$ is defined to be the group of equivalence classes of G-Azumaya algebras where $A \sim B$ if there exist G-dimodule R-progenerators P and Q such that $A \# \operatorname{End}(P) \simeq B \# \operatorname{End}(Q)$. Multiplication is the smash product.
$B(R, G)$ is defined to be the set of classes of G-Azumaya algebras in which one (and therefore all) algebras are also R-Azumaya. $B(R, G)$ need not be a subgroup of $B D(R, G)$ [11, Example 2.10] but we show that if every cocycle in $H^{2}(G, U(R))$ is abelian, then it is.

The subgroup $B M(R, G)$ consists of those (classes of) algebras with trivial G-grading; similarly $B C(R, G)$ is the group of (classes of) algebras with trivial G-action. $B(R)$, the usual Brauer group of R, is embedded in all of the above groups as a normal subgroup since elements of $B(R)$ are given trivial G-grading and action and therefore commute with all other elements of $B D(R, G)$. For further discussion of $B D(R, G)$, we refer the reader to [8].
$\operatorname{Gal}(R, G R)$ and $\operatorname{Gal}(R, R G)$ are the groups of isomorphism classes of Galois $G R$-objects (i.e., the usual Galois extensions of R with group G) and Galois
$R G$-objects respectively. (See [5] for definitions and details.) By [4, Remark 2.2 and Theorem 1.4] there are split short exact sequences

$$
1 \rightarrow B(R) \rightarrow B C(R, G) \rightarrow \operatorname{Gal}(R, G R) \rightarrow 1
$$

and

$$
1 \rightarrow B(R) \rightarrow B M(R, G) \rightarrow \operatorname{Gal}(R, R G) \rightarrow 1
$$

From the second, we obtain an isomorphism η from $\operatorname{Gal}(R, R G)$ to $B M(R, G) /$ $B(R)$ defined by

$$
\begin{equation*}
\eta(S)=S \# G R \tag{1}
\end{equation*}
$$

where S is a Galois $R G$-object and $S \# G R$ has G-action induced by that on $G R$, i.e., $\sigma\left(s \# v_{\tau}\right)=s \# v_{\gamma}, \gamma=\tau \sigma^{-1}$.

Note that (in analogy to the equivalent conditions for an algebra S to be a Galois extension of R with group G), a G-graded algebra S is a Galois $R G$-object if and only if $S_{1}=R$ and for all $\sigma, \tau \in G$, the map $S_{\sigma} \otimes S_{\tau} \rightarrow S_{\sigma \tau}$ is an R-module isomorphism [3, Proposition 1.3]. Thus, for all $\sigma \dot{G} G$, $S_{\sigma} \in \operatorname{Pic}_{m}(R)$, where m is the exponent of G. We say that S has normal basis if $S \simeq R G$ as G-graded modules; then if $\operatorname{Pic}_{m}(R)=0$, every Galois $R G$-object has normal basis. The subgroup of $\operatorname{Gal}(R, R G)$ consisting of such algebras is, in fact, isomorphic to $H^{2}(G, U(R))$, the usual second group cohomology group (cf. [10] or [3, Theorem 1.6]). Thus, since we assume $\mathrm{Pic}_{m}(R)=-0$, we have an isomorphism φ from $H^{2}(G, U(R))$ to $\operatorname{Gal}(R, R G) ; \varphi$ is defined by

$$
\begin{equation*}
p(f)=R G_{f} \tag{2}
\end{equation*}
$$

for $f \in H^{2}(G, U(R))$. The isomorphisms η and φ above will be needed in the proof of Theorem 1.2.

1. A Short Exact Sequence Description of $B(R, G)$

The following condition is sufficient for $B(R, G)$ to be a group.
Proposition 1.1. Let R, G be as above. Suppose all cocycles in $H^{2}(G, U(R))$ are abelian, i.e., for $f \in H^{2}(G, U(R)), \sigma, \tau \in G, f(\sigma, \tau)=f(\tau, \sigma)$. Then $B(R, G)$ is a subgroup of $B D(R, G)$.

Proof. Let $A, B \in B(R, G)$; we must show that $A \# B \in B(R, G)$. Let $f \in H^{2}(G, U(R))$ and suppose f is normalized, i.e., $f(\sigma, 1)=f(1, \sigma)=1$ for all $\sigma \in G$. Let B_{f} equal B as a G-graded module but with multiplication m defined by

$$
m(x \otimes y)=f(\sigma, \tau) x y \quad \text { for } \quad x \in B_{\sigma}, y \in B_{\tau} .
$$

Since f is a normalized cocycle, m defines an algebra structure on B, and, since f is abelian, B is central if and only if B_{f} is. Further suppose B has separability idempotent $e=\sum_{i} x_{i} \otimes y_{i}{ }^{0}$. We may assume $e \in\left(B \otimes B^{0}\right)_{1}$ since $\sum_{i} x_{i} y_{i}=1$; then using the cocycle identity, it is straight forward to check that

$$
e^{\prime}==\sum_{i} f\left(\sigma_{i}, \sigma_{i}^{-1}\right) x_{i} \otimes y_{i}^{0}
$$

is a separability idempotent for B_{f} where σ_{i} is the grade of x_{i}.
Since $\operatorname{Pic}_{m}(R)=0$, the elements of G act as inner automorphisms on A [2, Corollary 4.6, p. 108]. For $\sigma \in G$, let x_{σ} be an element of A such that $\sigma a=x_{\sigma} a x_{\sigma}^{-1}$ for every $a \in A$, and choose $x_{1}=1$. Then $x_{\sigma} x_{r} x_{\sigma \tau}^{-1} a x_{\sigma \tau} x_{\tau}^{-1} x_{\sigma}^{-1}=a$ for all $\sigma, \tau \in G, a \in A$; thus $x_{\sigma \tau} x_{\tau}^{-1} x_{\sigma}^{-1} \in \operatorname{Centre}(A)=R$. Hence we may define a normalized cocycle $f: G \times G \rightarrow U(R)$ by $x_{\sigma} x_{\tau}=f(\sigma, \tau)^{-1} x_{\sigma \tau}$.

Now we imitate the procedure in [11, Lemma 3.2] and define an R-module isomorphism $j: A \# B \rightarrow A\left(\otimes B_{f}\right.$ by

$$
j(a \# b)=a x_{a} \otimes b \quad \text { for } \quad b \in B_{\sigma} .
$$

Since, for $b \in B_{\sigma}, d \in B_{\tau}$,

$$
\begin{aligned}
j((a \# b)(c \# d)) & =j(a \sigma(c) \# b d) \\
& =a x_{\sigma} c x_{\sigma}^{-1} x_{\sigma \tau} \otimes b d \\
& =f\left(\sigma, \sigma^{-1}\right) f\left(\sigma^{-1}, \sigma \tau\right)^{-1} a x_{\sigma} c x_{\tau} \otimes b d \\
& =f(\sigma, \tau) a x_{\sigma} c x_{\tau} \otimes b d \\
& =\left(a x_{\sigma} \otimes b\right)\left(c x_{\tau} \otimes d\right) \\
& =j(a \# b) j(c \# d)
\end{aligned}
$$

j is, in fact, an R-algebra isomorphism. Since A and B_{f} are R-Azumaya, by [12, Proposition 2.3(d)], $A \otimes B_{f}$ is R-Azumaya and therefore $A \# B \in B(R, G)$.

Suppose now that every cocycle in $H^{2}(G, U(R))$ is abelian so that $B(R, G)$ is a subgroup of $B D(R, G)$. In [11, Theorem 4.4], a map $\beta: B(R, G) \rightarrow \operatorname{Aut}(G)$ was defined as follows. Let $A \in B(R, G)$ and, as in the proof of Proposition 1.1, let x_{σ} be an element of A such that $\sigma a=x_{\sigma} a x_{\sigma}^{-1}$ for $\sigma \in G, a \in A$, and choose $x_{1}=1$. By [11, Proposition 4.2], x_{α} is homogeneous, say of grade $\alpha_{A}(\sigma)$. Define $\beta(A)=\beta_{A}: G \rightarrow G$ by $\beta_{A}(\sigma)=\sigma\left(\alpha_{A}(\sigma)\right)^{-1}$. In [11, Theorem 4.4], Orzech proved that β_{A} is independent of the choice of x_{σ}, is indeed a group automorphism and is well-defined on equivalence classes in $B(R, G)$. We wish to show that β is a group epimorphism. As in the proof of Proposition 1.1, $x_{\sigma} x_{\tau}=$
$f(\sigma, \tau)^{-1} x_{\sigma \tau}$ for some normalized $f \in H^{2}(G, U(R))$. Therefore G acts trivially on the x_{σ}, since, for $\sigma, \tau \in G$,

$$
\begin{aligned}
\tau\left(x_{\sigma}\right) & =x_{\tau} x_{\sigma} x_{\tau}^{-1} \\
& =f\left(\tau, \tau^{-1}\right) f(\tau, \sigma)^{-1} f\left(\tau \sigma, \tau^{-1}\right)^{-1} x_{\sigma} \\
& =\left(f(\sigma, 1) f\left(\tau, \tau^{-1}\right)\right)\left(f(\sigma, \tau) f\left(\sigma \tau, \tau^{-1}\right)\right)^{-1} x_{\sigma} \\
& =x_{\sigma}
\end{aligned}
$$

Given $A, B \in B(R, G)$ and $\sigma \in G$, let the action of σ on A and B be given by conjugation by x_{σ} and y_{σ} respectively, where y_{σ} has grade τ. Let $\rho=\sigma \tau^{-1}=$ $\beta_{B}(\sigma)$. Then the inner action of σ on $A \# B$ is induced by $x_{\rho} \# y_{\sigma}$ since,

$$
\begin{aligned}
\left(x_{\rho} \#\right. & \left.y_{\sigma}\right)(a \# b)\left(x_{o} \# y_{\sigma}\right)^{-1} \\
& =\left(x_{\rho} \# y_{\sigma}\right)(a \# b)\left(x_{o}^{-1} \# y_{\sigma}^{-1}\right) \\
& =x_{\rho} \tau(a) x_{\rho}^{-1} \# y_{\sigma} b y_{\sigma}^{-1} \\
& =x_{\rho} x_{\tau} a x_{\tau}^{-1} x_{o}^{-1} \# \sigma(b) \\
& =f(\rho, \tau)^{-1} f\left(\tau^{-1}, \rho^{-1}\right)^{-1} f\left(\tau, \tau^{-1}\right) f\left(\rho, \rho^{-1}\right) f\left(\sigma, \sigma^{-1}\right)^{-1} \sigma(a) \# \sigma(b) \\
& =\sigma(a) \# \sigma(b) \text { by the cocycle-identity. }
\end{aligned}
$$

If x_{ρ} has grade γ, then $x_{\rho} \# y_{\sigma}$ has grade $\gamma \tau$. Then

$$
\begin{aligned}
\beta_{A}\left(\beta_{B}(\sigma)\right) & =\beta_{A}(\rho) \\
& =\rho \gamma^{-1} \\
& =\sigma(\gamma \tau)^{-1} \\
& =\beta_{A \neq B}(\sigma),
\end{aligned}
$$

and β is a group homomorphism.
Furthermore β is onto; we sketch the proof (cf. [11, p. 546]). Let $j \in \operatorname{Aut}(G)$, let $k \in \operatorname{Aut}(G)$ be the automorphism defined by $k(\sigma)=\sigma j(\sigma)^{-1}$, and let $R G(j)$ be the G-graded module $R G$ but with G-action given by $\sigma u_{\tau}=u_{f(\sigma) \tau}$. Consider the G-dimodule algebra $A=\operatorname{End}(R G(j))$; here, $x_{\sigma}=\sigma$ viewed as an element of A, and σ has grade $\ell(\sigma)$. Thus $\beta_{A}=j$ and it only remains to prove that A is G-Azumaya. To show that $F: A \# \bar{A} \rightarrow \operatorname{End}(A)$ is an isomorphism, it suffices, by a dimension argument, to show F is onto. We know that the usual map from $A(\otimes) A^{0}$ to $\operatorname{End}(A)$ is an isomorphism. Let $f \in \operatorname{End}(A)$ and let $\sum f_{i} \otimes g_{i}{ }^{0}$ be its preimage in $A \otimes A^{0}$, i.e., for all $h \in A, f(h)=\sum f_{i} \cdot h \cdot g_{i}$. Now suppose g_{i} is homogeneous of grade γ_{i} and let $\rho_{i}=j^{-1}\left(\gamma_{i}\right)$. Then $\rho_{i} g_{i}$ has grade $k\left(\rho_{i}\right) \gamma_{i}=$ $\rho_{i j}\left(j^{-1}\left(\gamma_{i}\right)\right)^{-1} \gamma_{i}=\rho_{i}$, and therefore

$$
\begin{aligned}
F\left(\sum f_{i} \rho_{i}^{-1} \# \overline{\rho_{i} g_{i}}\right)(h) & =\sum f_{i} \cdot \rho_{i}^{-1} \cdot \rho_{i} \cdot h \cdot \rho_{i}^{-1} \cdot \rho_{i} \cdot g_{i} \\
& =\sum f_{i} \cdot h \cdot g_{i} \\
& =f(h) .
\end{aligned}
$$

Similarly $G: \bar{A} \# A \rightarrow \operatorname{End}(A)^{0}$ is onto.

The discussion above yields a group epimorphism β from $B(R, G)$ to $\operatorname{Aut}(G)$. Since $B(R)$ is a normal subgroup of $B(R, G)$ lying in the kernel of β, we have a group epimorphism from $B(R, G) / B(R)$ to $\operatorname{Aut}(G)$. We denote this map also by β, and investigate its kernel in the following theorem.

Theorem 1.2. Let G and R be as above. Suppose that every cocycle in $H^{2}(G, U(R))$ is abelian. Then there is a short exact sequence

$$
1 \rightarrow(B C(R, G) / B(R)) \times(B M(R, G) / B(R)) \rightarrow B(R, G) / B(R) \rightarrow \operatorname{Aut}(G) \rightarrow 1
$$

If either $B C(R, G) / B(R)$ or $B M(R, G) \mid B(R)$ is trivial, the sequence splits.
Proof. Clearly $B M(R, G) / B(R)$ and $B C(R, G) / B(R)$ are subgroups of Ker β. We show first that $B M(R, G) / B(R)$ is a direct summand of Ker β.

Let $A \in \operatorname{Ker} \beta$ and, for $\sigma \in G$, let $x_{\sigma} \in U(A)$ be such that $\sigma(a)=x_{o} a x_{\sigma}^{-1}$ for all $a \in A$, as above. Then we may define a cocycle $f_{A}: G \times G \rightarrow U(R)$ by $f_{A}\left(\sigma^{-1}, \tau^{-1}\right)=x_{\sigma} x_{\tau} x_{\sigma \tau}^{-1}$. Suppose that for every $\sigma \in G, z_{\sigma}$ is another such suitable unit in A, and let h_{A} be the resulting cocycle. Then $x_{\sigma} z_{\sigma}^{-1} \in \operatorname{Centre}(A)=R$, i.e., $x_{\sigma}=r_{\sigma} z_{\sigma}$ for some $r_{\sigma} \in U(R)$. Define $g: G \rightarrow U(R)$ by $g(\sigma)=r_{\sigma}$, and then $f_{A}=(\delta g) h_{A}$. Thus the element $f_{A} \in H^{2}(G, U(R))$ is independent of the choice of the x_{σ}.

If $A=\operatorname{End}(P), P$ a G-dimodule R-progenerator, then $x_{\sigma}=\sigma$ viewed as an element of $\operatorname{End}(P)$, and f_{A} is trivial. If $A \in B(R)$, then $x_{\sigma}=1$ for all $\sigma \in G$, and, again, f_{A} is trivial. Let $A, B \in \operatorname{Ker} \beta$, and for $\sigma \in G$, let the inner action of σ on A and B be conjugation by x_{σ} and y_{σ} respectively. Since x_{σ} and y_{σ} are homogeneous of grade 1 and are invariant under G-action, then the action of σ on $A \# B$ is given by conjugation by $x_{\sigma} \# y_{o}$, and $f_{A \neq B}=f_{A} f_{B}$. Therefore we now have a well-defined group homomorphism ρ from $\operatorname{Ker} \beta$ to $H^{2}(G, U(R))$ given by $\rho(A)=f_{A}$.

To show that $B M(R, G) / B(R)$ is a direct summand of $\operatorname{Ker} \beta$, we show that the composition

$$
H^{2}(G, U(R)) \xrightarrow{\varphi} \operatorname{Gal}(R, R G) \xrightarrow{\eta} B M(R, G) / B(R) \xrightarrow{\llcorner } \operatorname{Ker} \beta \xrightarrow{\rho} H^{2}(G, U(R))
$$

is the identity on $H^{2}(G, U(R))$ where η and φ are defined by equations (1) and (2) respectively.
Let $f \in H^{2}(G, U(R))$. We have that $\iota \cdot \eta \cdot \varphi(f)=R G_{f} \# G R$, where the G-action on this algebra is induced by that on $G R$. It is easily checked that the inner action of σ^{-1} on $R G_{f} \# G R$ is given by conjugation by $u_{\sigma} \# 1$. Then $x_{\sigma} x_{\tau}=f\left(\sigma^{-1}, \tau^{-1}\right) x_{\sigma \tau}$, and $\rho\left(R G_{f} \# G R\right)=f$. Therefore the inclusion $\iota: B M(R, G) / B(R) \rightarrow \operatorname{Ker} \beta$ is split by $\eta \cdot \varphi \cdot \rho$.

We now have a split short exact sequence

$$
1 \rightarrow \operatorname{Ker} \rho \rightarrow \operatorname{Ker} \beta \rightarrow B M(R, G) \mid B(R) \rightarrow 1
$$

and we investigate $\operatorname{Ker} \rho$. Let $A \in \operatorname{Ker} \rho$ and denote by A_{C} the G-graded algebra A with trivial G-action. Then

$$
\bar{A}_{C} \# A=\left(A_{C}\right)^{0} \otimes A \simeq A \otimes\left(A_{C}\right)^{0} \simeq \operatorname{End}(A)
$$

as G-graded algebras. Since $A \in \operatorname{Ker} \rho$, the elements x_{o} associated to the inner action of G on A may be chosen such that $x_{\sigma} x_{\tau}=x_{\sigma \tau}$ for all $\sigma, \tau \in G$. Define A^{\prime} to be the G-graded module A but with G-action given by $\sigma\left(a^{\prime}\right)=\left(x_{\mathrm{v}} a\right)^{\prime}$. It is easily checked that $\bar{A}_{C} \# A \simeq \operatorname{End}\left(A^{\prime}\right)$ as G-dimodule algebras by the isomorphism above. Therefore $\bar{A}_{C} \# A$ is trivial in $B(R, G) / B(R)$, and, since $A_{C} \in B C(R, G) / B(R), A \in B C(R, G) / B(R)$. Thus Ker $\rho=B C(R, G) / B(R)$ and Ker $\beta \simeq(B M(R, G) / B(R)) \times(B C(R, G) / B(R))$.

Now suppose that $B C(R, G) / B(R)$ is trivial. In the discussion of the map β preceding the theorem, we saw that for $j \in \operatorname{Aut}(G), \beta(\operatorname{End}(R G(j)))=j$. Therefore, if $\operatorname{End}(R G(j)) \# \operatorname{End}(R G(k)) \sim \operatorname{End}(R G(j k))$ for $j, \nless \in \operatorname{Aut}(G)$ then the map $j \rightarrow \operatorname{End}(R G(j))$ is a group homomorphism splitting β. Since $\beta(\operatorname{End}(R G(j)) \# \operatorname{End}(R G(k)))=\beta(\operatorname{End}(R G(j k)))=j k$, then

$$
A=\operatorname{End}(R G(j)) \# \operatorname{End}(R G(k)) \# \overline{\operatorname{End}(R G(j k)})
$$

is in $\operatorname{Ker} \beta=B M(R, G) / B(R)$, i.e., $A=A_{M}$, the G-dimodule algebra A with trivial G-grading. Then

$$
\begin{aligned}
A_{M} & =(\operatorname{End}(R G(j)) \# \operatorname{End}(R G(k)) \# \overline{\operatorname{End}(R G(j k))})_{M} \\
& =\left((\operatorname{End}(R G(j)) \# \operatorname{End}(R G(k)))_{M} \# \overline{\operatorname{End}(R G(j k))}\right)_{M} \\
& =\left(\left(\operatorname{End}(R G(j))_{M} \# \operatorname{End}(R G(k))\right)_{M} \# \overline{\operatorname{End}(R G(j k))}\right)_{M},
\end{aligned}
$$

and, since for any $j \in \operatorname{Aut}(G), \operatorname{End}(R G(j))_{M}=\operatorname{End}(R G)_{M}, \operatorname{trivial}$ in $B(R, G)$, A is trivial in $B(R, G)$ and the sequence splits. A similar argument shows that the sequence also splits if $B M(R, G) / B(R)$ is trivial.

Corollary 1.3. Let R, G be as above. If $H^{2}(G, U(R))=0$, then $B(R, G) \simeq$ $B(R) \times(B C(R, G) / B(R)) \times \operatorname{Aut}(G) \simeq B(R) \times \operatorname{Gal}(R, G R) \times \operatorname{Aut}(G)$.

Proof. By [11, Lemma 3.2], $B(R)$ is a direct summand of $B(R, G)$; the statement then follows directly from Theorem 1.2.

Corollary 1.4. Let G, R be as above. Suppose $G \simeq H \times K$ such that
(i) $H^{2}(G, U(R)) \simeq H^{2}(H, U(R)) \times H^{2}(K, U(R))$
(ii) $\operatorname{Gal}(R, G R) \simeq \operatorname{Gal}(R, H R) \times \operatorname{Gal}(R, K R)$
(iii) $\operatorname{Aut}(G) \simeq \operatorname{Aut}(H) \times \operatorname{Aut}(K)$.

Then $B(R, G) / B(R) \simeq(B(R, H) / B(R)) \times(B(R, K) / B(R))$.

Proof. By $[8$, Theorem 1.8], $B(R, H) / B(R)$ and $B(R, K) / B(R)$ are subgroups of $B(R, G) \mid B(R)$, and since $G \simeq H \times K$, elements of these subgroups commute. Also, if $A \in B(R, H) \mid B(R)$ and $B \in B(R, K) \mid B(R)$, then $A \# B=A \otimes B$ is nontrivial. For suppose $A \# \operatorname{End}(P) \simeq A \otimes \operatorname{End}(P) \simeq B \# C \# \operatorname{End}(Q) \simeq$ $B \otimes C \otimes \operatorname{End}(Q)$, for some $C \in B(R), Q, P G$-dimodule R-progenerators. Let P^{\prime}, Q^{\prime} be the modules P and Q but with trivial K-action and grading, and let B^{\prime} be the algebra B with trivial K-(and therefore G-)action and grading. Then $A \otimes \operatorname{End}\left(P^{\prime}\right) \simeq B^{\prime} \otimes C \otimes \operatorname{End}\left(Q^{\prime}\right) \in B(R)$ and A is trivial in $B(R, G) /$ $B(R)$. Therefore $(B(R, H) \mid B(R)) \times(B(R, K) \mid B(R)) \subseteq B(R, G) \mid B(R)$; an application of the short exact sequence of the theorem then shows equality.

Before applying the above theorem to some computations of $B D(R, G)$, we need the following.

Lemma 1.5. Let G be a finite abelian group of order n and let R be such that if p divides n, p is not a unit in R. Then $B(R, G)=B D(R, G)$.

Proof. Let A be G-Azumaya with centre Z. Let H be the group of gradings of Z and let \mathscr{M} be a maximal ideal in R. Then H is also the group of gradings of $Z / \mathscr{M} Z$, for if $\mathscr{M} Z_{\sigma}=Z_{\sigma}$ then Z_{σ} is annihilated by some element $1-r, r \in \mathscr{M}$ [12, Lemma 1.2], contrary to [11, Corollary 2.5(a)]. Now let p be a prime dividing the order of H and \mathscr{M} a maximal ideal of R containing p; the remainder of the argument follows exactly as in [11, Corollary 2.7].

Example 1.6. We now compute $B D(\mathbb{Z}, G)$ for \mathbb{Z} the ring of integers and G any cyclic group. By Lemma 1.5 and the fact that $B(\mathbb{Z})=0, B D(\mathbb{Z}, G)=$ $B(\mathbb{Z}, G)$, and thus we may apply the above theorem. $\operatorname{Gal}(G, G \mathbb{Z})=0$ since any Galois $G \mathbb{Z}$-object would be the ring of integers of an unramified extension of \mathbb{Q} (cf. [1]); thus $B D(\mathbb{Z}, G) \simeq H^{2}(G, U(\mathbb{Z})) \times \operatorname{Aut}(G)$. Recall that for p an odd prime, $\operatorname{Aut}\left(C_{p e}\right) \simeq C_{p^{e-p^{e-1}}}$ where C_{m} denotes the cyclic group of order m, and $\operatorname{Aut}\left(C_{2^{2}}\right) \simeq C_{2} \times C_{2^{6-2}}, e \geqslant 2$. Also $H^{2}(G, U(\mathbb{Z})) \simeq C_{2}$ if the order of G is even and 0 otherwise. Thus $B D(\mathbb{Z}, G)$ has been described explicitly.
Another short lemma will allow us to compute $B D(\mathbb{R}, G)$ for G cyclic of odd order.

Lemma 1.7. Let G be a cyclic group of order n and let R be such that 1 is the only nth root of unity in R. Then $B D(R, G)=B(R, G)$.

Proof. Let $A \in B D(R, G)$ with centre Z, and let H be the group of gradings of Z. Then by [11, Proposition $2.11(\mathrm{e})$], $Z \simeq R H_{f}{ }^{\Phi}$ where Φ is a bilinear map from $G \times H$ to $U(R)$. Then if σ generates G and σ^{t} generates $H, \Phi\left(\sigma, \sigma^{t}\right)$ is an nth root of unity in R and therefore Φ is trivial, i.e., $Z=Z^{G}$. By [11, Proposition $2.2(\mathrm{a})] Z^{G}=R$, and the lemma is proved.

Example 1.8. We compute $B D(\mathbb{R}, G)$ for \mathbb{R} the field of real numbers and G
any cyclic group of odd order. By Lemma $1.7, B D(\mathbb{R}, G)=B(\mathbb{R}, G)$. Since $\operatorname{Gal}(\mathbb{R}, G \mathbb{R})$ and $H^{2}(G, U(\mathbb{R}))$ are trivial, by Corollary 1.3,

$$
B D(\mathbb{R}, G) \simeq C_{2} \times \operatorname{Aut}(G)
$$

2. A Similar Sequence for $B D(R, G)$

We now suppose that G has order n and R contains a primitive nth root of unity, $\operatorname{Pic}_{n}(R)=0$ and n is a unit in R. Then $R G \simeq G R$ as Hopf algebras, so that $\operatorname{Gal}(R, R G) \simeq \operatorname{Gal}(R, G R) \simeq H^{2}(G, U(R))$. Then, if G is of the form $\prod_{i}\left(\prod_{r_{i}} G_{i}\right)$ where G_{i} is cyclic of order $p_{i}^{e_{i}}, p_{i} \neq p_{j}$, Theorems 5.1 and 5.2 of [6] describe $B D(R, G) / B(R)$ by the short exact sequence:

$$
1 \rightarrow\left(H^{2}(G, U(R))\right) \times\left(H^{2}(G, U(R))\right) \rightarrow B D(R, G) / B(R) \rightarrow N \rightarrow 1
$$

If $G=\prod_{i} G_{i}$, then $N=\prod_{i} D_{i}$ where D_{i} is the dihedral group of order $2\left(p_{i}^{e_{i}}-p_{i}^{e_{i}-1}\right)$ for p_{i} odd. For a further description of N, see [6, Theorem 5.2].

These results of Childs were obtained as a byproduct of his investigation of $B_{\Phi}(R, G)$, the Brauer group of G-graded Azumaya algebras with Φ a bilinear map from $G \times G$ to $U(R)$ (cf. [7]). If G is cyclic of order $n=p_{1} \cdots p_{t}, p_{i}$ prime, $p_{i} \neq p_{j}$, it is also possible to obtain the above short exact sequence by a straightforward investigation of the subgroups of $B D(R, G)$ and an application of the short exact sequence of Theorem 1.2. First suppose that G is cyclic of prime order. Then $B(R, G)$ is a normal subgroup of index 2 in $B D(R, G)$, and $(B M(R, G) / B(R)) \times(B C(R, G) / B(R))$ is a normal subgroup of $B D(R, G)$. The proof makes generous use of the fact that for $A G$-Azumaya with centre $Z \neq R, Z$ is both a Galois $R G$-object and a Galois $G R$-object, and thus $A^{R G} \# Z \simeq A \simeq Z \# A^{G R}$, where $\#$ is actually \otimes. Note that A^{G} and A_{1} are R-Azumaya algebras, and $Z \simeq R G_{f}{ }^{\Phi}$ is G-Azumaya [11, Proposition 2.11]. 'I'hen a commutative diagram utilizing the short exact sequence of Theorem 1.2 yields the sequence

$$
1 \rightarrow(B M(R, G) / B(R)) \times(B C(R, G) / B(R)) \rightarrow B D(R, G) / B(R) \rightarrow N \rightarrow 1
$$

where N has order $2(p-1)$. Consideration of the actual elements of N shows that N is the dihedral group of order $2(p-1)$. The proof that for G cyclic of order $n=p_{1} \cdots p_{t}, B D(R, G) / B(R) \supseteq \prod_{i} B D\left(R, G_{i}\right) / B(R), G_{i}$ cyclic of order p_{i}, follows from an easy argument using Corollary 1.4 ; a further application of the properties of Z yields equality. Details may be found in [3].

Acknowledgment

[^1]
References

1. M. Auslander and D. Buchsbaum, On ramification theory in Noetherian rings, Amer. J. Math. 81 (1959), 749-765.
2. H. Bass, "Lectures on Topics in Algebraic K-Theory," Tata Institute for Fundamental Research, Bombay, 1967.
3. M. Beattie, "Brauer Groups of H-Module and H-Dimodule Algebras," Ph.D. 'Thesis, Queen's University, Kingston, 1976.
4. M. Beattie, A direct sum decomposition for the Brauer group of H-module algebras, J. Algebra 43 (1976), 686-693.
5. S. U. Chase and M. E. Sweedler, "Hopf Algebras and Galois Theory," Lecture Notes in Mathematics 97, Springer-Verlag, Berlin, 1969.
6. L. N. Childs, The Brauer group of graded algebras II. Graded Galois extensions, Trans. Amer. Math. Soc. 204 (1975), 137-160.
7. L. N. Childs, G. Garfinkel, and M. Orzech, The Brauer group of graded Azumaya algebras, Trans. Amer. Math. Soc. 175 (1973), 299-325.
8. F. W. Long, A generalization of the Brauer group of graded algebras, Proc. London Math. Soc. 29 (1974), 237-256.
9. F. W. Long, The Brauer group of dimodule algebras, J. Algebra 30 (1974), 559-601.
10. A. Nakajima, On generalized Harrison cohomology and Galois object, Math. J. Okayama Univ. 17 (1975), 135-148.
11. M. Orzech, On the Brauer group of modules having a grading and an action, Canad. J. Math. 28 (1976), 533-552.
12. M. Orzech and C. Small, "The Brauer Group of Commutative Rings," Lecture Notes in Pure and Applied Mathematics, No. 11, Dekker, New York, 1975.

[^0]: * Current address: Carleton University, Ottawa, Ont., Canada K1S 5B6.

[^1]: Most of the work reported here appeared in my doctoral thesis (Queen's University, 1976). I would like to thank my supervisor, Dr. M. Orzech, for his help throughout.

