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Let R be a commutative ring and G a finite abelian group. In [§], Long
developed a Brauer group theory for G-dimodule algebras (i.e., algebras with
a compatible G-grading and G-action) and constructed BD(R, G), the Brauer
group of G-Azumaya algebras. Within BD(R, G) lies B(R, G), the set of classes
of algebras which are R-Azumaya (i.e., central separable) as well as G-Azumgya.
B(R, G) is not always a group; we show that if every cocyle in H¥G, U(R)) is
abelian, then it is. When B(R, G) is a group, we call it the Brauer group of
central separable G-Azumaya algebras. If R is connected and Pic,,(R) =0
where m is the exponent of G, and if every cocycle in H¥G, U(R)) is abelian,
then we show that there is a short exact sequence

1 — (BC(R, G)/B(R)) x (BM(R, G)/B(R)) — B(R, G)/B(R) — Aut(G) — 1,

where B(R) is the usual Brauer group of R, BM(R, G) is the Brauer group of
G-module algebras and BC(R, G) is the Brauer group of G-comodule algebras
(cf. [8]). If either BM(R, G)/B(R) or BC(R, G)/B(R) is trivial, then the sequence
splits. Using the above, we are able to describe BD(Z, G) for any cyclic G, and
BD(R, G) for any cyclic G of odd order. Our sequence provides a generalization
of the results [9, Theorem 5.9] and [11, Theorem 4.4] and should be compared
to the sequence in [6, Theorem 5.2] obtained under the assumptions that the
order of G is a unit in R and R contains a primitive mth root of unity.

PRELIMINARIES

Let R be a connected commutative ring with unity and G a finite abelian
group. We assume throughout that Pic,,(R) = 0 where m is the exponent of G.
All algebras and modules are understood to be R-algebras and R-modules.
We write 4 ® B for A ®z B, Hom(4, B) for Homg(A4, B), etc. The group
of units of an algebra A is written U(4). 4° is the usual opposite algebra of 4.
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All formulae defined only for the homogeneous elements of a graded module
are to be extended by linearity.

Let RG denote the group ring with basis u,, ¢ € G. GR is the dual of RG
and has basis v, where v (1,}) = 1 if * = o and 0 otherwise. If f € H¥G, U(R)),
RG; denotes the module RG but with multiplication m: RG; ® RG; — RG;
defined by m(u, , u,) = f(o, T)u,,. If @ is a bilinear map from G X G to
U(R), RG,® denotes the algebra RG, with G-action defined by o(u,) = P(o, 7). .

A module M is called a G-dimodule if M is a G-graded module and G acts
on M as a group of grade-preserving automorphisms. An algebra 4 is called
a G-dimodule algebra if 4 is a G-dimodule and a G-graded algebra (i.e.,
A,A,C A,.) and G acts as algebra automorphisms on 4. If 4 is a G-dimodule
algebra, 4 is defined to be 4 as a G-dimodule but with multiplication defined
by @b = o(b)a where ac A,; 4 is also a G-dimodule algebra. If M is a
G-dimodule, then End(M) is a G-dimodule algebra where, for fe End(M),
(of J(m) = o(f(o7'm)) and (f),(m) = 3, (f(m,))so - If M and N are G-dimodules
{or G-dimodule algebras), then so is M @ N where o(m @ n) = o(m) & o(n)
ane-(M @ N), = 2op0 M, @ Ng.

If 4 and B are G-dimodule algebras, the smash product 4 # B is defined to
be 4 & B as a G-dimodule but with multiplication (@ # d)(c # d) = aa(c) # bd
for b of grade o. 4 # B is also a G-dimodule algebra. If P is a G-dimodule,
A # End(P) ~ 4 @ End(P).

For a G-dimodule algebra 4, the G-dimodule algebra maps F: 4 # 4 —
End(4) and G: A # A — End(4)® are defined by F(a # b)(c) = ao(c)b
where b has grade o and G(@ # b)(c) = g%c) where g(c) = a(a) ¢cb for ¢ of
grade o. If 4 is an R-progenerator and F and G are isomorphisms, 4 is
called G-Azumaya. If 4 and B are G-Azumaya, so are 4 and A # B; if P
is an R-progenerator and G-dimodule, End(P) is G-Azumaya. Note that
G-Azumaya algebras are separable algebras [11, Proposition 2.2]. BD(R, G)
is defined to be the group of equivalence classes of G-Azumaya algebras
where 4 ~ B if there exist G-dimodule R-progenerators P and Q such
that 4 # End(P) ~ B # End(Q). Multiplication is the smash product.

B(R, G) is defined to be the set of classes of G-Azumaya algebras in which
one (and therefore all) algebras are also R-Azumaya. B(R, G) need not be a
subgroup of BD(R, G) [11, Example 2.10] but we show that if every cocycle in
H*G, U(R)) is abelian, then it is.

The subgroup BM(R, G) consists of those (classes of) algebras with trivial
G-grading; similarly BC(R, G) is the group of (classes of) algebras with trivial
G-action. B(R), the usual Brauer group of R, is embedded in all of the above
groups as a normal subgroup since elements of B(R) are given trivial G-grading
and action and therefore commute with all other clements of BD(R, G). For
further discussion of BD(R, G), we refer the reader to [8].

Gal{R, GR) and Gal(R, RG) are the groups of isomorphism classes of Galois
GR-objects (i.e., the usual Galois extensions of R with group G) and Galois
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RG-objects respectively. (See [5] for definitions and details.) By [4, Remark 2.2
and Theorem 1.4] there are split short exact sequences

I — B(R) — BC(R, G) — Gal(R, GR) — |
and

| — B(R) — BM(R, G) — Gal(R, RG) — 1.

From the second, we obtain an isomorphism 7 from Gal(R, RG) to BM(R, G)/
B(R) defined by

7(S) = S # GR )

where S is a Galois RG-object and S # GR has G-action induced by that on GR,
le,o(s #v,) =s#uv,,y =10l

Note that (in analogy to the equivalent conditions for an algebra .S to be
a Galois extension of R with group G), a G-graded algebra S is a Galois
RG-object if and only if S} = R and for all o, 7€ G, the map S, ® S, — S,,
is an R-module isomorphism [3, Proposition 1.3]. Thus, for all o E‘G,
S, € Pic,,(R), where m is the exponent of G. We say that S has normal basis if
S ~ RG as G-graded modules; then if Pic,(R) = 0, every Galois RG-object
has normal basis. The subgroup of Gal(R, RG) consisting of such algebras is,
in fact, isomorphic to H¥G, U(R)), the usual second group cohomology group
(cf. [10] or [3, Theorem 1.6}). Thus, since we assume Pic,,(R) = 0, we have an
isomorphism ¢ from H¥G, U(R)) to Gal(R, RG); ¢ is defined by

o(f) = RG, @

for f e HYG, U(R)). The isomorphisms n and ¢ above will be needed in the proof
of Theorem 1.2.

1. A SHorT ExacT SEQUENCE DESCRIPTION OF B(R, G)
The following condition is sufficient for B(R, G) to be a group.

ProposITION 1.1. Let R, G be as above. Suppose all cocycles in H¥G, U(R))
are abelian, i.e., for f€ H¥G, U(R)), o, 7€ G, f(o, 7) = f(1, o). Then B(R, G)
is a subgroup of BD(R, G).

Proof. Let A, Be B(R, G); we must show that 4 # Be B(R, G). Let
fe H¥G, U(R)) and suppose f is normalized, i.e., f(e, 1) = f(1, ¢) = 1 for all
o€ G. Let B, equal B as a G-graded module but with multiplication m defined
by

mx ®y) = f(o, 7) xy for xeB,,yeB,.
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Since f is a normalized cocycle, m defines an algebra structure on B, and, since f
is abelian, B is central if and only if B; is. Further suppose B has separability
idempotent e = 3, x; ® ¥,". We may assume ¢ € (B (9 B%), since Y, x,y, = 1;
then using the cocycle identity, it is straight forward to check that

e = Zf(‘fi voi ) % @y,

is a separability idempotent for B, where o, is the grade of x; .
Since Pic,(R) == 0, the elements of G act as inner automorphisms on A4
[2, Corollary 4.6, p. 108]. For o€ G, let x, be an element of 4 such that

oa = x,ax;" for every a€ A, and choose a; == 1. Then x x, 37 ax, x7 ' = a

for all o, 7€ G, a e 4; thus x,.x;'x;" € Centre(4) = R. Hence we may define
a normalized cocycle f: G X G — U(R) by x,x, = f(o, 7)1, .
Now we imitate the procedure in [11, Lemma 3.2] and define an R-module

isomorphism j: 4 # B — A& B; by
Jla#b) =ax, b for beB,.

Since, for be B,,d€e B, ,

j(a # b)(c # d)) = j(ao(c) # bd)
= axex; %, @ bd
= f(o, 07) f(o7}, o7)Pax,cx, @ bd
= f(o, 7) ax,cx, X bd
= (ax, ® b)(ex, ® d)
= ja # b)j(c # a),

7 is, in fact, an R-algebra isomorphism. Since 4 and B, are R-Azumaya, by
[12, Proposition 2.3(d)], 4 ® B, is R-Azumaya and therefore 4 # B € B(R, G).

Suppose now that every cocycle in H*G, U(R)) is abelian so that B(R, G)
is a subgroup of BD(R, G). In [11, Theorem 4.4], a map 8: B(R, G) — Aut(G)
was defined as follows. Let 4 € B(R, G) and, as in the proof of Proposition 1.1,
let x, be an element of 4 such that ca == x,ax;! for o € G, ae A, and choose
x; = 1. By [11, Proposition 4.2}, x, is homogeneous, say of grade a (o). Define
B(A) = By;: G— G by B,(o) = o(oy(s))™r. In [11, Theorem 4.4], Orzech
proved that B, is independent of the choice of x,, is indeed a group auto-
morphism and is well-defined on equivalence classes in B(R, G). We wish to
show that 8 is a group epimorphism. As in the proof of Proposition 1.1, x,x, =
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flo, ), for some normalized fe H¥G, U(R)). Therefore G acts trivially on
the x, , since, for o, 7€ G,

(x,) = x,%,%."
=f(r v S (7 0) (7o, 717,
= (f(o, Df(r, 7S (o, 1) f (o7, 7)) "%,
= X,.
Given 4, Be B(R, G) and ¢ € G, let the action of o on 4 and B be given by

conjugation by x, and y, respectively, where y, has grade 7. Let p = o771 =
By(o). Then the inner action of ¢ on 4 # B is induced by x, # y, since,

(%, # yo)a # b)(x, # y,)™"
= (x, # yo)a # b)(x," # v.")
= x,7(a) x;" # y,by, "
= xx.ax, %, # o(b)
= fo, )Y (L p7 ) Y (r, ) flp, p71) f (0, 07V (@) # o(b)
= o(a) # o(b) by the cocycle-identity.

If x, has grade y, then x, # v, has grade yr. Then
Ba(Bs(0)) = Balp)

= pyt

= ofyr)™

= Baxn(c)
and B is a group homomorphism.

Furthermore § is onto; we sketch the proof (cf. [11, p. 546]). Let ; € Aut(G),
let £€ Aut(G) be the automorphism defined by £(c) = c4(0) 2, and let RG(;)
be the G-graded module RG but with G-action given by ou, = wu,,), . Consider
the G-dimodule algebra 4 = End(RG( /)); here, x, = o viewed as an element
of 4, and o has grade #(¢). Thus 8, = / and it only remains to prove that 4 is
G-Azumaya. To show that F: 4 # A —> End(A4) is an isomorphism, it suffices,
by a dimension argument, to show F is onto. We know that the usual map from
A R A°® to End(A) is an isomorphism. Let f € End(A4) and let 3 f; (0 .0 be its
preimage in A ® A° i.e, fovall he A4, f(h) =3 f; - h - g, . Now suppose g; is
homogeneous of grade v, and let p; = ;7'(y;). Then p,g; has grade #(p;)y; =
P (/) Y; — pi, and therefore

F (fop?l #p—zg_t) By =Yfi p" pi-bopit pi-g
= Zfz “heg
= f(h).
Similarly G: 4 # A — End(4)° is onto.
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The discussion above yields a group epimorphism 8 from B(R, G) to Aut(G).
Since B(R) is a normal subgroup of B(R, G) lying in the kernel of 8, we have
a group epimorphism from B(R, G)/B(R) to Aut(G). We denote this map also
by 8, and investigate its kernel in the following theorem.

THEOREM 1.2. Let G and R be as above. Suppose that every cocvcle in
H¥G, U(R)) is abelian. Then there is a short exact sequence

1 — (BC(R, G)/B(R)) x (BM(R, G)/B(R)) — B(R, G)/B(R) — Aut(G) — 1.
If either BC(R, G)/B(R) or BM(R, G)/B(R) is trivial, the sequence splits.

Proof. Clearly BM(R, G)/B(R) and BC(R, G)/B(R) are subgroups of Ker .
We show first that BM(R, G)/B(R) is a direct summand of Ker .

Let 4 € Ker 8 and, for o € G, let x, € U(A) be such that o(a) = x,ax;* for
all ae A4, as above. Then we may define a cocycle f,: G X G — U(R) by
falo™, 71 = x,x,x;}. Suppose that for every o € G, 2, is another such suitable
unit in 4, and let &, be the resulting cocycle. Then x,27" € Centre(4) = R,
Le., ¥, = 1,2, for some r, e U(R). Define g: G — U(R) by g(0) = 7,, and
then f, = (8g)h, . Thus the element f, € H¥G, U(R)) is independent of the
choice of the x, .

If A = End(P), P a G-dimodule R-progenerator, then x, = o viewed as
an element of End(P), and f, is trivial. If 4 € B(R), then x, = 1 for all 6 € G,
and, again, f, is trivial. Let 4, B € Ker B, and for ¢ € G, let the inner action of ¢
on A4 and B be conjugation by x, and y, respectively. Since x, and y, are homo-
geneous of grade 1 and are invariant under G-action, then the action of ¢ on
A # B is given by conjugation by x,#7,, and f,.5 = f.fs. Therefore
we now have a well-defined group homomorphism p from Ker 8 to H¥G, U(R))
given by p(4) = f,.

To show that BM(R, G)/B(R) is a direct summand of Ker 8, we show that

the composition
H*G, U(R)) 2> Gal(R, RG) > BM(R, G)/B(R) > Ker B 2> H¥G, U(R))

is the identity on H*(G, U(R)) where n and ¢ are defined by equations (1) and (2)
respectively.

Let fe HYG, U(R)). We have that .- % ¢(f) = RG; # GR, where the
G-action on this algebra is induced by that on GR. It is easily checked that
the inner action of ¢! on RG; # GR is given by conjugation by #, # 1. Then
x2, = f(o™, v Vx,., and p(RG; # GR) == f. Therefore the inclusion
«: BM(R, G)/B(R) — Ker 8 is split by n - ¢ - p.

We now have a split short exact sequence

1 — Ker p — Ker 8 — BM(R, G)/B(R) — 1,
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and we investigate Ker p. Let A € Ker p and denote by A, the G-graded
algebra 4 with trivial G-action. Then

A # A= (A ® A~ A®(A:) ~ End(4)

as G-graded algebras. Since A4 € Ker p, the elements x, associated to the inner
action of G on 4 may be chosen such that x,x, = «,, for all o, 7 € G. Define 4’
to be the G-graded module 4 but with G-action given by o(a’) = (x,a)’. It is
easily checked that A. # A ~ End(A4’) as G-dimodule algebras by the iso-
morphism above. Therefore Ao # A is trivial in B(R, G)/B(R), and, since
Ac € BC(R, G)/B(R), A € BC(R, G)/B(R). Thus Ker p = BC(R, G)/B(R) and
Ker 8 ~ (BM(R, G)/B(R)) x (BC(R, G)/B(R)).

Now suppose that BC(R, G)/B(R) is trivial. In the discussion of the map 8
preceding the theorem, we saw that for ;e Aut(G), B(End(RG(;))) = ;.
Therefore, if End(RG(;)) # End(RG(#)) ~ End(RG(/#)) for ;, £e Auy(G)
then the map ; — End(RG(/)) is a group homomorphism splitting 8. Since
B(End(RG(/)) # End(RG(4))) = B(End(RG(/#))) = /4, then

4 = End(RG(/)) # End(RG(£)) # End(RG(;4))

is in Ker 8 = BM(R, G)/B(R), i.e., A = A4,,, the G-dimodule algebra 4 with
trivial G-grading. Then
Ay = (End(RG(/)) # End(RG($)) # End(RG7H)u
= (End(RG(;)) # End(RG(£)))m # End(RG(7#)))m
= ((End(RG(/))m # End(RG(£)s # End(RG(74)))ns »

and, since for any ; € Aut(G), End(RG( 7))y, = End(RG),,, trivial in B(R, G),
A is trivial in B(R, G) and the sequence splits. A similar argument shows that
the sequence also splits if BM(R, G)/B(R) is trivial.

CoroLLarY 1.3. Let R, G be as above. If H¥G, U(R)) = 0, then B(R, G) ~
B(R) x (BC(R, G)/|B(R)) x Aut(G) =~ B(R) x Gal(R, GR) x Aut(G).
Proof. By [11, Lemma 3.2], B(R) is a direct summand of B(R, G); the
statement then follows directly from Theorem 1.2.
CoROLLARY 1.4. Let G, R be as above. Suppose G ~ H X K such that
(i) H¥G, UR)) ~ H¥H, UR)) x H¥K, U(R))
(i) Gal(R, GR) ~ Gal(R, HR) x Gal(R, KR)
(1)  Aut(G) ~ Aut(H) x Aut(K).
Then B(R, G)/B(R) ~ (B(R, H)]B(R)) x (B(R, K)/B(R)).
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Proof. By [8, Theorem 1.8], B(R, H)/B(R) and B(R, K)/B(R) are subgroups
of B(R, G)/B(R), and since G ~ H X K, elements of these subgroups commute.
Also, if A€ B(R, H)/B(R) and Be B(R, K)/B(R), then A #B =A@ B is
nontrivial. For suppose A4 # End(P) ~ A @ End(P) ~ B # C # End(Q) ~
B ® C ® End(Q), for some Ce B(R), Q, P G-dimodule R-progenerators.
Let P, Q' be the modules P and Q but with trivial K-action and grading,
and let B be the algebra B with trivial K-(and therefore G-)action and grading.
Then 4 @ End(P') ~ B' ® C ® End(Q’) € B(R) and 4 is trivial in B(R, G)/
B(R). Therefore (B(R, H)/B(R)) X (B(R, K)/B(R)) C B(R, G)/B(R); an appli-
cation of the short exact sequence of the theorem then shows equality.

Before applying the above theorem to some computations of BI(R, G),
we need the following.

Lemma 1.5, Let G be a finite abelian group of order n and let R be such that
if p divides n, p is not a unit in R. Then B(R, G) == BD(R, G).

Proof. Let A be G-Azumaya with centre Z. Let H be the group of gradings
of Z and let 4 be a maximal ideal in R. Then H is also the group of gradings
of ZIHZ, for if M7, = Z, then Z, is annihilated by some element 1 — r, r € .#
[12, Lemma 1.2}, contrary to [I11, Corollary 2.5(a)]. Now let p be a prime
dividing the order of H and .# a maximal ideal of R containing p; the remainder
of the argument follows exactly as in {11, Corollary 2.7].

ExampLE 1.6. We now compute BD(Z, G) for Z the ring of integers and G
any cyclic group. By Lemma 1.5 and the fact that B(Z) = 0, BD(Z, G) =
B(Z, G), and thus we may apply the above theorem. Gal(G, GZ) = 0 since any
Galois GZ-object would be the ring of integers of an unramified extension of Q
(cf. {1}); thus BIXZ, G) = H¥G, U(Z)) x Aut(G). Recall that for p an odd
prime, Aut(C,.) ~ C,._,.» where C,, denotes the cyclic group of order m,
and Aut(Cy) ~ Cy X Cyoz , e = 2. Also H¥G, U(Z)) ~ C, if the order of G
is even and 0 otherwise. Thus BD(Z, G) has been described explicitly.

Another short lemma will allow us to compute BD(R, G) for G cyclic of odd
order.

LemMa 1.7. Let G be a cyclic group of order n and let R be such that 1 is the
only nth root of unity in R. Then BD(R, G) = B(R, G).

Proof. Let A € BD(R, G) with centre Z, and let H be the group of gradings
of Z. Then by [11, Proposition 2.11(e)], Z ~ RH/® where ® is a bilinear map
from G X H to U(R). Then if ¢ generates G and o' generates H, @(o, ¢t) is an
nth root of unity in R and therefore @ is trivial, i.e., Z = Z¢. By [11, Proposition
2.2(a)] Z¢ = R, and the lemma is proved.

ExampLE 1.8. We compute BD(R, G) for R the field of real numbers and G
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any cyclic group of odd order. By Lemma 1.7, BD(R, G) = B(R, G). Since
Gal(R, GR) and H*G, U(R)) are trivial, by Corollary 1.3,

BD(R, G) ~ C, x Aut(G).

2. A SiMILAR SEQUENCE FOR BD(R, G)

We now suppose that G has order n and R contains a primitive nth root of
unity, Pic,(R) = 0 and » is a unit in R. Then RG ~ GR as Hopf algebras,
so that Gal(R, RG) ~ Gal{(R, GR) ~ H*G, U(R)). Then, if G is of the form
I'l: (IT;, G) where G, is cyclic of order pf%, p; <+ p;, Theorems 5.1 and 5.2 of
[6] describe BD(R, G)/B(R) by the short exact sequence:

1 - (HXG, U(R))) x (H¥G, U(R))) — BD(R, G)/B(R) — N —» 1.

If G=T];G;, then N =T]]; D; where D, is the dihedral group of order
2(pi — pi~t) for p; odd. For a further description of N, see [6, Theorem 5.2].

These results of Childs were obtained as a byproduct of his investigation of
By(R, G), the Brauer group of G-graded Azumaya algebras with @ a bilinear
map from G X G to U(R) (cf. [7]). If G is cyclic of order n = p, - p,, p; prime,
p; # p; , it is also possible to obtain the above short exact sequence by a straight-
forward investigation of the subgroups of BD(R, G) and an application of the
short exact sequence of Theorem 1.2. First suppose that G is cyclic of prime
order. Then B(R, G) is a normal subgroup of index 2 in BD(R, G), and
(BM(R, G)/B(R)) x (BC(R, G)/B(R)) is a normal subgroup of BD(R, G).
The proof makes generous use of the fact that for 4 G-Azumaya with centre
Z # R, Z is both a Galois RG-object and a Galois GR-object, and thus
ARG H 7 ~ A ~ Z # ACR, where # is actually ®. Note that 4¢ and 4, are
R-Azumaya algebras, and Z ~ RG,? is G-Azumaya [11, Proposition 2.11]. Then
a commutative diagram utilizing the short exact sequence of Theorem 1.2
yields the sequence

1 > (BM(R, G)/B(R)) x (BC(R, G)/B(R)) — BD(R, G)/B(R) -~ N — 1

where N has order 2(p — 1). Consideration of the actual elements of N shows
that IV is the dihedral group of order 2(p — 1). The proof that for G cyclic of
order n = p, - p,, BD(R, G)/B(R) 2 [1; BD(R, G,)[B(R), G; cyclic of order
P:, follows from an easy argument using Corollary 1.4; a further application
of the properties of Z yields equality. Details may be found in [3].
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