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In this paper we consider the open complement U of a hypersurface Y = V �a�
in an affine scheme X. We study the relations between the affineness of U , the
intersection of Y with closed subschemes, the property that every closed surface
in U is affine, the property that every analytic closed surface is Stein, and the
superheight of a defining ideal a.  2002 Elsevier Science

1. INTRODUCTION

Let A be a noetherian ring with an ideal a ⊆ A and let X = SpecA,
Y = V �a�. We consider the complement U = D�a� = X − Y . The purpose
of this paper is to find geometric conditions for U to be affine. It is well
known that if U is affine then Y must be a hypersurface, i.e., ht a ≤ 1; see
Proposition 2.4. Note that the converse is by no means true, yet the height
condition on Y has a stronger generalization based on the following simple
observation.

Let X ′ = SpecA′ be another affine scheme and f � X ′ −→ X be a mor-
phism corresponding to the ring homomorphism A −→ A′. If U = D�a� ⊆
X is affine then the preimage U ′ = f−1�U� = D�aA′� is also an affine
scheme. Since Y ′ = f−1�Y � = V �aA′� this means that the height condition
must also hold for all minimal primes of the extended ideal a′ = aA′.

It is a general observation, first studied by Neeman [27], that the non-
affineness can often be shown by giving a ring homomorphism violating
the height condition on the extended ideal of a. In order to illustrate this
technique we give the following example.
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Example 1.1. Let K be a field, A = K
R
 S
 T
Z�/�RS−TZ�, and X =
SpecA. A is a normal three-dimensional domain, the ideal a = �R
T �
is prime of height one. Let Y = V �R
T �. Under the reduction A −→
A/�Z
 S� = K
R
T � the extended ideal is �R
T � in K
R
T � which is of
height two. Since the complement of a point in the plane is not affine it
follows that U = X − Y cannot be affine either.

In this paper we study the connection between the affineness of U =
D�a� and the property that the codimension of Y ′ under every ring homo-
morphism is restricted by one. This property can be expressed in terms of
the superheight of the ideal, namely supht a ≤ 1. This notion was first intro-
duced by Hochster in 1975 [19]. We give an intrinsic definition of super-
height depending only on the open set D�a� (not on the ideal) so that the
notion of superheight can be extended to arbitrary schemes (2).

In Section 3 we describe situations where the affineness can be obtained
from superheight conditions. We show that the affineness of D�a� is equiv-
alent to the property that for all ring homomorphisms A −→ A′ where A′

is a Krull domain the height of the extended ideal is ≤ 1. For a noetherian
domain we characterize the affineness in terms of finite superheight under
the additional condition that the ring of global sections is finitely generated,
generalizing a result of Neeman [27]. Furthermore, in the two-dimensional
case and in the case of monoid rings the affineness can be read off directly
from the behaviour of the height in only one special ring extension.

In Section 4 we consider schemes of finite type over the complex numbers
C and define the notion of analytic superheight and compare it with the
algebraic notions of superheight. It will turn out that if U is Stein as a
complex space then the analytic and the algebraic superheight is one. We
recover the result of Bingener and Storch [3] that, under the condition that
the ring of global sections is finitely generated, affineness and Stein are the
same.

In Section 5 we consider finitely generated K-Algebras and relate the
superheight one condition to the property that every closed subscheme of U
of dimension ≤ 2 is affine. We show that in the complex case this property
is equivalent to the property that any closed analytic surface in U is Stein.
The question whether this last property implies the Stein property for U is
the so called hypersurface (or hypersection) problem answered negatively
by Coltoiu and Diederich [5, 6].

Finally, in Section 6, we give two classes of examples of non-affine open
subsets with superheight one. The first class is constructed from certain
curves on smooth projective surfaces, using the intrinsic characterization of
superheight and a criterion à la “Riemannscher Fortsetzbarkeitssatz” for
superheight one. The other is built from non-torsion divisor classes of a
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local two-dimensional normal ring, related to a construction of Rees and
yielding counterexamples to the hypersurface problem.

2. THE SUPERHEIGHT OF AN IDEAL AND OF A SCHEME

Let a ⊆ A be an ideal in a commutative ring and A −→ A′ a ring homo-
morphism. The extended ideal aA′ describes the preimage of the open set
D�a� under the mapping SpecA′ −→ SpecA. The height of an ideal a ⊂ A
is defined as the minimal height of a minimal prime of a. The maximal
height of the minimal primes is called the big height or the altitude of a.
We put ht�A� = 1 in case A �= 0, otherwise = 0.

Definition. For an ideal a ⊆ A in a commutative ring we call

supht a = max�ht aA′ � A −→ A′ with A′ noetherian� the superheight
of a or the noetherian superheight.

suphtfina = max�ht aA′ � A −→ A′ with A′ of finite type� the finite
superheight of a.

suphtkrulla = max�ht aA′ � A −→ A′ with A′ Krull domain� the super-
height with respect to Krull domains.

This notion goes back to Hochster and was developed in connection with
the direct summand conjecture [19]. This conjecture states that a local reg-
ular ring A is a direct summand in any finite extension A ⊆ B. The conjec-
ture is known to be true if A contains a field. In general it is equivalent to
the monomial conjecture, which can be stated as a proposition about the
superheight of an ideal, namely that the ideal �X1
 � � � 
Xn� in

Z
X1
 � � � 
Xn
Y1
 � � � 
 Yn�(
�X1 · · · Xn�k − Y1X

k+1
1 − · · · − YnXk+1

n

)

has superheight n− 1 (for every kεN); see [20, 21] and below for the treat-
ment of the two-dimensional case �n = 2� via affineness. There are some
important results of Koh [23, 24] on superheight which we will use in the
following.

Proposition 2.1. Let a be an ideal in a noetherian ring A. Then the fol-
lowing statements are true (in (2) and (3) suppose a �= A):

(1) Given

ht a ≤ bight a ≤ suphtfin a ≤ supht a ≤ ara a�
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(2) The finite superheight equals

suphtfin a = max�htm � m is a maximal ideal of A′
A −→ A′

is of finite type and V �aA′� = V �m���
(3) The superheight equals

supht a = max�dimA′ � A′ is a noetherian local complete normal domain


A −→ A′ is a ring homomorphism with V �aA′� = V �m���
Proof. (1) The first and third inequalities are clear; the second is

proved below. ara a denotes the minimal number of functions f1
 � � � 
 fk
with V �a� = V �f1
 � � � 
 fk�, so the fourth inequality follows from the
general Krull Hauptidealsatz [7, Theorem 10.2].

(2) and (3) Let aA′ ⊆ p be a minimal prime ideal in A′, and
p1
 � � � 
 pr the others. Prime avoidance shows that there exists f �∈ p and
f ∈ pi for i = 1
 � � � 
 r. After the change A′ −→ A′

f the prime ideal pA′
f

is the only minimal prime over aA′
f , and the height is the height of p.

This proves the second inequality of (1). If the height of p is taken over
the prime q of height zero, we get modulo q a domain. So in both cases
we can restrict to morphisms where A′ is a domain and V �aA′� = V �p�
irreducible.

We show that for a prime ideal p of height n in a noetherian ring there
exists a residue class domain where p extends geometrically (as a radical)
to a maximal ideal of height n. If p is maximal we are done, so let q be
a direct prime over p. Let x �∈ p, x ∈ q. Then q is modulo x a minimal
prime over pA′/x (and over aA′/x), and we have in A′/x the relations
(with q′ = q�A′/x�)

ht q′ = dim�A′/x�q′ = dim�A′
q/x� ≥ dim�A′

q� − 1 ≥ ht p


cf. [7, Corollary 10.9]. Sucessively we arrive at a maximal ideal. This
proves (2).

(3) Localization at p yields a local ring; there the extended ideal
describes geometrically exactly the maximal ideal, and the dimension is the
superheight of a. Under completion the dimension does not change and in
considering a component of maximal dimension we have a complete local
domain R. R is excellent, and therefore [15, 7.6.2] its normalization is again
noetherian complete and local of the same dimension.

Theorem 2.2. Let A be a noetherian ring and a ⊆ A an ideal. Then

suphtfin a = sup�bight aA′ � A′ is the normalization of

a residue class domain��
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Proof. See [23].

Theorem 2.3. Let K be a field and A a finitely generated K-Algebra,
a ⊆ A an ideal. Then suphtfin a = supht a.

Proof. See [24, Theorem 1].

We extend the notion of superheight to an arbitrary scheme.

Definition. Let X be a scheme. The superheight of X is the biggest
number d such that there exists

(i) a noetherian affine scheme T with a closed point P ∈ T of
height d.

(ii) an affine morphism f � T − �P� −→ X.

If X is a variety over a field K, we call the same number, under the
restriction that T be an affine variety, the finite superheight of X.

Remark. In determining the superheight of a scheme one may only look
at local complete normal noetherian domains T =SpecA. For this, first
localize at P and then do the same steps as in the proof of 2.1 (3).

If X is empty we have suphtX = 0, because then T − �P� has to be
empty, hence dimT = 0. On the other hand, a non-empty scheme X has
superheight ≥ 1. For a point SpecK −→ X (K a field) the morphism

SpecK
Y ��Y � ⊇ D�Y � = SpecK�Y � −→ SpecK −→ X

is affine and T = SpecK
Y ��Y � is one-dimensional.
If X is affine, we have suphtX ≤ 1, because in this case the affineness of

T − �P� −→ X implies the affineness of T − �P�. The following proposi-
tion, which is the starting point of this whole subject, shows that dimT ≤ 1.

Proposition 2.4. Let X be a noetherian separated scheme and U ⊆ X
an affine open subscheme. Then every component of Y = X − U has codi-
mension ≤ 1. The same is true for X = SpecA where A is a Krull domain.

Proof. Let η be the generic point of a component of Y
A = �η. Since
X is separated, i � SpecA ↪→ X is an affine morphism and thus D�η� =
i−1�U� is again affine. So we have to show that in a local noetherian ring
A the complement of the closed point is affine only in case dimA ≤ 1. We
may assume that A is a domain. The normalization Anor of A is a semilocal
Krull domain (see [25]), so we are led to a local Krull domain A. But for
a Krull domain with dimA ≥ 2 we have ��D�m�
�X� = A, hence D�m� is
not affine.

The assumption in the following criterion for supht �X� ≤ 1 says that X
satisfies as target the “Riemannscher Fortsetzbarkeitssatz.”
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Lemma 2.5. Let X be a noetherian separated scheme satisfying the follow-
ing property: For any normal noetherian scheme T and any closed point P ∈ T
with htP ≥ 2, every morphism T − �P� −→ X is extendible to T .
Then supht�X� ≤ 1.
If X is quasi-affine, the converse is also true.

Proof. Let T be affine. If X is separated, an affine morphism f � T −
�P� −→ X with htP ≥ 2 cannot be extended to the whole of T . An exten-
sion f̄ � T −→ X would be an affine morphism, and for an affine open
neighbourhood f̄ �P� ∈ V the sets f̃−1�V � and f−1�V � must both be affine.
But f̄−1�V � = f−1�V � ∪ �P� and P is a point of height ≥ 2, so this is not
possible. Therefore an affine morphism T − �P� −→ X with htP ≥ 2 and
T normal contradicts the assumption.

Let X ⊆ SpecA quasi-affine with superheight ≤ 1 and f � T − �P� −→
X a morphism with T normal and affine, ht�P� ≥ 2. f is not affine, but
there is an affine extension f̄ � T −→ SpecA, corresponding to the ring
homomorphism A→��T − �P�
�T � = ��T
�T �. If f̃ �P� /∈ X
 f would be
the restriction of f̄ on X, hence affine. So f̄ �P� ∈ X and f is extendible as
a mapping to X.

As the following proposition shows, the superheight of an ideal a and the
superheight of the open set D�a� coincide.

Proposition 2.6. For an ideal a ⊆ A the equality suphtD�a� = supht a
holds.

Proof. Let A −→ R be a ring homomorphism in a local normal noethe-
rian domain of dimension m = supht a with V �aR� = V �mR� = �P�. Let
U = D�a�. Then the mapping f−1�U� = SpecR− �P� −→ U is affine and
therefore suphtU ≥ supht a.

For the converse inequality let f � T − �P� −→ U be affine morphism
where T is local normal noetherian and d = dimT = suphtU . If d = 0,
there is nothing to show. If d = 1, it follows that U is not empty. Let q ∈ U
be a prime ideal and consider A −→ Aq = A′. Then we have aAq = Aq
and therefore supht a ≥ 1 follows from the definition.

So let d ≥ 2� Since T = SpecR is normal, we have ��T − �P�
�T � =
��T
�T � = R and f corresponds to the global ring homomorphism A→ R,
so the mapping is extendible to a mapping f̄ � SpecR −→ SpecA. f̄ �P� ∈
U is not possible, for otherwise the mapping would be extendible as a
mapping into U , but this is excluded by the proof of the previous lemma.
So underA −→ R the extended ideal describes V �aR� = �P� and therefore
supht a ≥ d = suphtU .

We gather together some properties of the superheight of a scheme.
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Proposition 2.7. (1) For an affine morphism X ′ −→ X we have
suphtX ′ ≤ suphtX.

(2) The superheight of X equals the maximum of the superheights of
the irreducible components of X.

(3) Suppose X is noetherian. For Y ⊆ X closed and U = X − Y we
have

suphtX ≤ suphtY + suphtU�

(4) If X = U ∪ V with U
V open, we have suphtX ≤ suphtV +
suphtU .

(5) suphtX ≤ dimX + 1.
(6) For a noetherian separated scheme X we have suphtX ≤ cd X + 1

(cd denotes the cohomological dimension of X in the sense of R. Hartshorne,
meaning the maximal number n ∈ N such that there is a quasicoherent sheaf
� on X with Hn�X
� � �= 0).

Proof. Part (1) is clear. For (2), let f � T − �P� −→ X be affine with T
irreducible. The image of T lies in a component Xi of X and this compo-
nent must have the superheight of X.

(3) Let f � T ⊇ T − �P� −→ X be an affine morphism with T =
SpecR
R being a noetherian local complete domain, and with dimT =
suphtX. Set f−1�Y � = V �a� − �P� with an ideal a ⊆ R. On one hand,
we have dim V �a� ≤ suphtY as is shown by the restriction V �a� − �P� =
f−1�Y � −→ Y . On the other hand, the restriction D�a� = f−1�U� −→ U
is also affine and so bight a ≤ suphtD�a� ≤ suphtU . Since R is complete,
R is catenary (see [7, Corollary, 18.10]) and so for a minimal prime p of a
we have the inequalities

suphtX = dimR = dimR/p+ ht p

≤ dimR/a+ bight a

≤ suphtY + supht�X − Y ��
(4) Let X = U ∪ V . Then Y = X −U is a closed subset of V leading

to suphtY ≤ suphtV and the statement follows from (3).
(5) We do induction on the dimension; the beginning is clear.

Because of (2) we may assume that X is irreducible of dimension d.
For a non-empty open affine subset U , (3) yields suphtX ≤ suphtU+
supht�X −U� ≤ 1+ d.

(6) suphtX = 0 if and only if X = �. In this case cdX = −1. So
suppose suphtX ≥ 1. If T is a local noetherian affine scheme of dimension
d ≥ 1 a theorem of Grothendieck says that Hd

m�T
�� �= 0. The natural map
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of local cohomology Hi−1�T − �P�
�� −→ Hi
m�T
�� is bijective for i ≥ 2

and surjective for i = 1. Thus Hd−1�T − �P�
�� �= 0. If f � T − �P� −→ X
is affine and d = suphtX it follows that Hd−1�X
 f∗�� �= 0 and cd X ≥
d − 1 = suphtX − 1. This gives also another proof of (5) and of 2.4.

Example 2.1. Let Y be a projective variety of dimension d. The
mapping of a punctured affine cone X − �P� −→ Y is affine, hence the
superheight of Y is ≥ d + 1 and equality must hold because of (5). It is
reasonable to ask whether maximal possible superheight—the existence of
such an affine cone—ensures for a normal separated variety projectivity.
A result of Kleiman states that a normal separated variety is proper if and
only if the cohomological dimension is maximal [22].

Corollary 2.8. Let X be a scheme with suphtX ≤ d. Then the comple-
ment of X in any open embedding X ⊆ X ′ with X ′ noetherian and separated
has codimension ≤ d.

Proof. For an affine subset U of X ′ the morphism U ∩X ↪→ X is affine,
so U ∩X fulfills the assumption as well. Since the conclusion is local, we
may assume X ′ to be affine. Thus the statement follows from 2.6.

3. AFFINENESS AND SUPERHEIGHT ONE

Let a = �f1
 � � � 
 fn� ⊆ A be an ideal in a commutative ring, U = D�a� ⊆
specA = X, and B = ��U
�X� the ring of global sections on U . In this sit-
uation we have an open embedding U = D�aB� ↪→ SpecB, and U is affine
if and only if aB is the unit ideal. In this case we have 1 = q1f1 + · · ·+
qnfn with qi ∈ ��U
�X�, and the functions yield a closed embedding
�q1
 � � � 
 qn� � U ↪→ SpecA
T1
 � � � 
 Tn�, showing by the way that in the
affine case B is an A-algebra of finite type. If this is not the case, the height
of this extended ideal is larger than one.

Theorem 3.1. Let A be a noetherian ring and a an ideal, U = D�a�.
Then U is affine if and only if suphtkrull a ≤ 1.

Proof. If U is affine and A −→ A′ is a ring homomorphism, where A′

is a Krull domain, then the preimage U ′ = D�aA′� is affine and V �aA′�
has codimension ≤ 1; see 2.4.

So suppose U is not affine. Since a noetherian scheme is affine if and
only if all its (reduced) components are affine (see [17, II.1.4]) we find
A −→ A′, where A′ is a noetherian domain and where D�aA′� is not
affine. So we may assume that A is a domain. Consider the normalization
ϕ � SpecAnor −→ SpecA. If a = �f1
 � � � 
 fn� and ϕ−1�U� were affine, there
would exist qi ∈ ��ϕ−1�U�
Anor� with q1f1 + · · · + qnfn = 1. But these
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functions are already defined on the corresponding open set in a finite
extension A ⊂ B ⊂ Anor, and the theorem of Chevalley [15, 17, II.1.5]
shows that U itself would be affine.

So we may assume that A is a Krull domain. For an open subset W
in SpecA of a Krull domain the ring of global sections is given by the
intersection of discrete valuation domains,

��W
�X� =
⋂

ht�p�=1
 p∈W
Ap�

From this we see that the ring of global sections B = ��U
�X� is again a
Krull domain. We have U = D�a� ∼= D�aB� ⊆ SpecB, and aB is not the
unit ideal. On the other hand, we have B = ��U
��, and this can only hold
if U contains all prime ideals of height one of the Krull domain B. For if
p of height one is not in U , let p be a generator of the maximal ideal in
the discrete valuation ring Bp and let q = 1/p. Let q1
 � � � 
 qm be the other
poles of q. We find f ∈ B with f /∈ p
 f ∈ qi for i = 1
 � � � 
m. Then for
all n big enough the function f nq has its only pole in p and is defined on
∪ ⊆ D�p�. So we conclude that aB has height ≥ 2.

Under additional conditions on the ring of global sections the superheight
condition for smaller classes of rings guarantees affineness. The following
result can also be found in [27] in the case that A is normal and of finite
type over a field.

Theorem 3.2. Let A be a noetherian domain and a an ideal, U = D�a�.
Then U is affine if and only if the ring of global sections ��U
�X� is of finite
type over A and suphtfin a ≤ 1.

Proof. If U is affine, it is known that B = ��U
�X� is finitely generated
over A, so suppose U is not affine with a finitely generated ring B of global
sections. B is a noetherian domain and the extended ideal is not the unit
ideal, but U ∼= D�aB� contains all prime ideals of height one of B. For if
p = �f1
 � � � 
 fm� is a prime ideal in B of height one there is a function
f ∈ p with Rad�f � = pBp. This yields equations f ni = �ai/ri�f with ri /∈ p.
With r = r1 · · · · · rm we may write f ni = �bi/r�f or r/f = bi/f

n
i , showing

that this is a function defined on D�p� not belonging to B, since otherwise
f �r/f � = r ∈ p. So we have height aB ≥ 2 and suphtfin a ≥ 2.

In deciding whether an open subset of an affine scheme is again affine,
one may look at the ring of global sections and the height of the extended
ideal in it. If this ideal is the unit ideal, U is affine and the superheight is
one. If this is not the case, the ring of global sections is just one candidate
among others to show that the superheight is ≥ 2.
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Example 3.1. Let K be a domain and consider in the domain

A = K
X1
X2
 Y1
 Y2�
�Xk

1X
k
2 + Y1X

k+1
1 + Y2X

k+1
2 �

the ideal a = �X1
X2�
U = D�a�. The functions

Z = −Y2

Xk
1

= �Xk
2 + Y1X1�
Xk+1

2

and W = −Y1

Xk
2

= �Xk
1 + Y2X2�
Xk+1

1

are defined on U and one has X2Z +X1W = 1, hence U is affine.

This example is for K = Z the two-dimensional case of the superheight
version of the monomial conjecture, and the easiest way to settle this
instance is by showing the affineness. For another proof see [21].

Example 3.2. Now we look at the prime ideal a = �X1
X2� in the
domain

A = K
X1
X2
 Y1
 Y2�
�Xk

1X
k
2 + Y1X

k
1 + Y2X

k+1
2 ��

Consider the morphism A −→ A′ = K
X1
X2� given by the substitution
Y1 �−→ −Xk

2 
 Y2 �−→ 0. Then aA′ = �X1
X2� has height two, and D�a� is
not affine.

Two-Dimensional Rings

A theorem of Nagata states that on a normal affine surface the com-
plement of any (pure one-dimensional) curve is affine; see [26]. From the
proof of this theorem one can get the following theorem.

Theorem 3.3. Let A be a two-dimensional noetherian ring, a ⊆ A. Then
D�a� is affine if and only if the noetherian superheight of a is ≤ 1.

Proof. Suppose U = D�a� is not affine. We may assume that A is a two-
dimensional noetherian normal and local domain, since the normalization
of a noetherian two-dimensional domain is again noetherian. B = ��U
�X�
is a Krull domain, and, since U is not affine, the height of the extended
ideal b = aB is at least two. By a faithfully flat extension as in [26] one
may assume that there exist infinitely many prime elements in A. Then
one can show for a minimal prime m′ of b that R = Bm′ is the desired
two-dimensional and noetherian ring.

Theorem 3.4. Let A be an excellent two-dimensional domain. The com-
plement of a curve Y ⊆ X = SpecA is affine if and only if every component
of the preimage of Y in the normalization X̃ has codimension one. This means
that the preimage does not have isolated points.
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Proof. If the preimage Ỹ has pure codimension one, the theorem of
Nagata (which is valid for affine excellent surfaces) says that Ỹ has an
affine complement, and the theorem of Chevalley says that this holds for
Y itself.

Remark. Of course, if the normalization is a bijection any complement
of a curve is affine. If this is not the case it is quite easy to find curves
with nonaffine complement. If Q
R ∈ X̃ are different points mapping to
P ∈ X, look for curves Y ′ on X̃ lying generically inside the open set where
the normalization is an open embedding (say X excellent) and with Q ∈
Y ′
 R /∈ Y ′. Then the image Y of Y ′ cannot have an affine complement,
because the preimage Ỹ = Y ′ ∪ �R� and R is an isolated point in it. On X
itself we have to look for regular (or at least cuspidal) curves C through P
not totally lying on SingX.

Monoid Rings

Let M be a normal torsion-free finitely generated monoid with quotient
lattice � = ZM ∼= Zd. Let M be positive, meaning that 0 is the only unit of
M . Then there exists an embedding with the intersection property, namely
M ↪→ Zk with M = � ∩Nk, see [4, exc. 6.1.10], or take the natural embed-
ding given by the divisor class representation. Such an embedding yields an
inclusion of rings

K
M� ↪→ K
Nk� = K
T1
 � � � 
 Tk�

and K
M� is the ring of degree zero under the D-graduation of the poly-
nomial ring given by Zk −→ Zk/� =� D. In particular K
M� is a direct
summand of K
T1
 � � � 
 Tk�.
Theorem 3.5. Let M be a finitely generated torsion free monoid and K

a noetherian factorial domain. Then there exists a ring extension of finite type
K
M� ↪→ B such that an open subset U = D�a� ⊆ SpecK
M� is affine if
and only if bight aB ≤ 1. In particular U is affine if and only if suphtfin a ≤ 1�

Proof. Let M̃ be the normalization of M and M̃ = Zs ×M ′ with M ′

positive; see [4, Theorem 6.1.4 and Proposition 6.1.3]. Let M ′ ↪→ Nk be a
representation with the intersection property. Then the mapping

K
M�−→K
M̃�∼=K
Zs�
M ′�−→K
V1
���
Vs
V
−1

1 
���
V −1
s �
T1
���
Tk�=B

is of finite type. Let aK
M� be an ideal with bight aB ≤ 1. Since B is fac-
torial, we know that D�aB� is affine and we have to show that this prop-
erty holds already for D�a�. For a finite extension this is the theorem of
Chevalley, and for a direct summand A ⊆ B = A ⊕ V this is true, since
��D�aB�
�B� = ��D�a�
�A� ⊕ ��D�a�
 V �, and, if a generates the unit
ideal in ��D�aB�
�B�, this is also true in the first component.
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4. AFFINENESS, THE STEIN PROPERTY,
AND SUPERHEIGHT ONE

In the case K = C, we can associate to an algebraic variety X the corre-
sponding complex space Xan. If X is an affine variety, then Xan is a Stein
space; see [13, V, Sect. 1 Satz 1]. We will show that the analytic property of
being Stein is strong enough to guarantee that the noetherian superheight is
one. Thus the existence of Stein but non-affine quasi-affine schemes yields
directly to non-affine quasi-affine varieties with superheight one. We con-
sider only separated varieties and complex Hausdorff spaces. Some results
and ideas of this section can also be found in Neeman [27] and in Bingener
and Storch [3].

Definition. Let X be a complex space and Y ⊆ X a closed analytic
subset. We define the analytic superheight of Y by

suphtan�Y
X� = sup�codimx′ �f−1�Y �
X ′� � x′ ∈ X ′
 f � X ′ −→ X��
Here we put codimx�Y
X� = dimx X − dimx Y with dimx X = dim �x =
dim �̂x; see [12, Kap. II, Sect. 4ff]. If the analytic set Yx is described at
the point x ∈ X by the ideal a, we have codimx�Y
X� = dim��X
x� −
dim��X
x/a�. If X is irreducible this equals the height of the ideal, since
the analytic rings are catenary.

Lemma 4.1. Let Y ⊆ X be a closed analytic subset in a complex space
with U = X − Y Stein. Then suphtan�Y
X� ≤ 1.

Proof. Let f � X ′ −→ X be a morphism of complex spaces and x′ a
point of X ′. Since the codimension is local, we can assume that X ′ is Stein.

f factors through the closed graph X ′ �f
↪→ X ′ × X

p2−→ X and therefore
f−1�X − Y � is isomorphic to a closed subset of X ′ × �X − Y �. Since X ′

and X − Y are Stein, the product X ′ × �X − Y � is also Stein and so is
X ′ − f−1�Y � ⊆ X; see [13, V, Sect. 1, Satz 1]. But the complement of an
open Stein subset in a Stein space has codimension ≤ 1; see [13, V, Sect. 3,
Satz 4].

Theorem 4.2. Let X = SpecA be an affine algebraic C-variety and
V �a� = Y ⊆ X. Then the algebraic and the analytic superheight coincide.

supht a = suphtfin a = suphtan�Y an
Xan��
Proof. The first equality follows from the theorem of Koh (Theorem 2.3).

Of course, the analytic superheight is not lower than the finite algebraic
superheight, since we can interpret every algebraic test variety as an analytic
variety, and the algebraic and analytic dimension coincide.

For the converse, let f � X ′ −→ Xan be a morphism of complex spaces,
x′ ∈ X ′
 f �x′� = x. We may suppose that X ′ is irreducible. The extended
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ideal a�Xan
 x under A −→ �Xan
 x describes the zero set Y an in x, and the
preimage Y ′ in x′ is described by a�X ′
 x′ . Since the local rings in a complex
space are noetherian, see [12, Kap. I, 35.2, Satz 3, and Kap. II, 30; Satz 1],
we have codimx′ �Y ′
X ′� = ht�a�X ′
 x′ � ≤ supht a.

Corollary 4.3. Let A be a C-algebra of finite type and U = D�a� ⊆ X
an open subset with Uan Stein. Then supht a ≤ 1.

Proof. This follows from the theorem and the lemma.

Corollary 4.4. Let A be a domain of finite type over C and U ⊆ SpecA
an open subset with ��U
�X� finitely generated. Then U is affine if and only
if U is Stein.

Proof. The previous corollary shows that the finite superheight is one.
This together with the finiteness of the global ring shows that U is affine.
(For another proof see [3, 5.1].)

5. SUPERHEIGHT ONE AND AFFINENESS OF
TWO-DIMENSIONAL SUBSCHEMES

Let U be a separated scheme of finite type over a field K. In this section
we study the property that every closed surface in U is affine.

Theorem 5.1. Let A be a domain of finite type over a field K
D�a� =
U ⊆ X = SpecA an open subset. Then the following are equivalent.

(1) supht a ≤ 1.
(2) Every closed subvariety of dimension ≤ 2 of U is affine.

If K = C, this is also equivalent to the following.
(3) For every closed analytic surface S ⊆ Xan the intersection S ∩ Uan

is Stein.

Proof. Suppose (1) holds. For points and curves the statement (2) is
always true, so let S ↪→ U be a closed reduced irreducible surface in U , and
let S′ be the closure of S in X. Then S′ ↪→ X is again a surface, because
the dimension of an irreducible variety does not change in passing to a
non-empty open subset. Let  S −→ S′ be the normalization. The preimage
of Y = V �a� under  S −→ X is due to the superheight property of pure
codimension one and hence due to the theorem of Nagata it has an affine
complement. The theorem of Chevalley shows that the complement of S′ ∩
Y is again affine, so S = S′ ∩U = S′ − S′ ∩ Y is affine.

For the converse let suphtfin a = supht a ≥ 2. Then there exists
(Theorem 2.2) an irreducible surface SpecR = S ⊆ X with normal-
ization S′ = SpecRnor such that aRnor has big height 2. Thus D�aRnor� and
D�aR� cannot be affine, and D�aR� = U ∩ S.
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Now let K = C and suppose (1) holds. Let S ⊆ Xan be a closed analytic
surface with normalization f �  S −→ S ↪→ Xan. Then the codimension of
f−1�Y � on the normal surface  S is ≤ 1, because the algebraic superheight
equals the analytic superheight. The theorem of Simha (this is the analytic
analogue to the theorem of Nagata, see [29]) says that  S− f−1�Y � is a Stein
space. This means that the normalization of U ∩ S is Stein, and so due to
the analytic version of the theorem of Chevalley U ∩ S itself is Stein.

Now suppose (3) holds and let an algebraic surface S′ ⊆ U be given. We
can write S′ = S ∩ U with a closed algebraic surface S in X. By (3) we
know that S′ = S ∩U is Stein, so by 4.3 and 3.3 it is affine.

Corollary 5.2. Let U be a quasi-affine variety over K such that the ring
of global sections is finitely generated. If all irreducible closed surfaces of U
are affine, U itself is affine.

Proof. This follows directly from the theorem and Theorem 3.2.

Remark. In case K = C, the last statement of the theorem is fulfilled
if U itself is Stein. The hypersection (or hypersurface) problem in complex
analysis asks the following: Given a Stein space X of dimension ≥ 3 and
an open subset U ⊆ X with the property that for any analytic hypersurface
S ⊆ X the intersection S ∩ U is Stein, is then U itself Stein? If U ⊆ X is
algebraic and dimX = 3, statement (3) of the above theorem is exactly the
condition of the hypersurface problem.

However, the hypersurface problem is now known not to be true in gen-
eral, as first shown by an example of Coltoiu and Diederich; see [5, 6]. In
Section 6 we will give a class of examples of non-Stein open subsets with
superheight one, and 5.1 shows that the assumptions of the hypersection
problem are fulfilled.

Example 5.1. The affineness of an open subset cannot be tested (even if
the ring of global sections is finitely generated) with more restrictive classes
of surfaces. The following example shows that homogeneous surfaces do not
suffice.

Let S be the projective plane, blown up in one point P . Let E be the
exceptional divisor and C a projective line not passing through the point.
W = S − �E ∪C� is then a punctured affine plane, so W is quasi-affine and
contains no projective lines. Let A be a homogeneous coordinate ring for
S
W = D+�a�
U = D�a� ⊆ X = SpecA. For an irreducible homogeneous
surface V �p� in the affine cone X the corresponding projective curve V+�p�
intersects V+�a�, and therefore V+�p� ∩W is affine, hence also the preimage
V �p� ∩ U . This means that all homogeneous surfaces inside U are affine.
But not all surfaces in U are affine. U is the cone over a punctured affine
plane and thus isomorphic to A× × �A2 − �P��. As a subset of A× × A2 it
has height two, and this gives a lot of non-affine surfaces.
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6. NON-AFFINE SUBSETS WITH SUPERHEIGHT ONE

A theorem of Goodman states that on a smooth projective surface S an
open subset U = S−Y is affine if and only if there exists an ample effective
divisor H with suppH = Y [9; 17, II.4.2]. A weaker condition on Y and H
still implies that U has superheight one.

Theorem 6.1. Let S be a smooth projective surface over an algebraically
closed field K
Y ⊂ S a curve, and U = S − Y . Suppose there exists an effec-
tive divisor H with suppH = Y and with H�Yi ≥ 0 for all irreducible compo-
nents Yi of Y and with H�C > 0 for all curves C�Y . Then every morphism
T ⊇ T − �P� −→ U , where T is a two-dimensional normal irreducible affine
variety, is extendible to T .
If S = ProjA with a finitely generated graded K-AlgebraA and U = D+�a�,

then supht a = 1.

Proof. We have already seen in 2.5 that suphtfin�U� = 1 follows from
the described extendibility property. Since the cone mapping is affine, it
follows that suphtfin a = 1 and, due to the theorem of Koh, supht a = 1.

So let f � T −�P� −→ U be a morphism of a reduced irreducible normal
affine surface T . We may assume that T −�P� is regular. If f �T −�P�� is a
point, f is of course extendible. If f �T −�P�� ⊆ U lies inside an irreducible
curve C ⊆ U , this curve C is due to the assumption not projective, hence
affine. Then f corresponds to a ring-homomorphism and is thus extendible
to C ⊆ U as in the proof of Theorem 2.6. So suppose that the image of f
is two-dimensional and f dominates U .

Let T ↪→ T ′ be an open embedding in a projective surface with com-
plement D′. Let p �  T −→ T ′ be a resolution of singularities of T ′ and
a resolution of the undefined points of f � T ′ ⊇ T − �P� −→ S; see [18,
V.3.8.1 and Theorem V.5.5]. So we have an extension f̄ �  T −→ S of f on
T − �P� ∼=  T − p−1�P� − p−1�D′�. Let C1
 � � � 
 Cn be the irreducible one-
dimensional components of p−1�P� and let D1
 � � � 
Dm be the components
of p−1�D′�.

Since f̄ is surjective, it induces a mapping f̄ ∗ of the divisors (= Cartier-
divisors). Let f̄ ∗�H� = C +D with C = k1C1 + · · · + knCn and D = l1D1 +
· · · + lmDm be the pull-back of the divisor H; there cannot be other com-
ponents. f̄∗�C� is a non-negative combination of the Yj , so the assumptions
concerning the intersections of H with its components yield

0 ≤ f̄∗�C��H = C�f̄ ∗�H� = C�C + C�D = C�C�

But due to [1, theorem 2.3], the self intersection number of an effective
divisor �= 0 is negative, if all its components are (possibly singular) con-
tractible. Since the components of C are contracted by p to P , we must
have C = 0. So for all components Ci we have f̄ �Ci��Y .
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So the preimage of Y under f̄ contains only some points on the Ci. If
Q ∈ Ci with f̄ �Q� = R ∈ Y , we find—since S is regular and hence locally
factorial—an affine neighbourhood W of R where Y is described by one
function, so the preimage of Y must be a curve, which is already excluded.

So we conclude that f̄ �Ci� ⊆ U = S − Y for all curves Ci. Since on U
there exist no projective curves, all these curves are contracted by f̄ to a
point of U , and to exactly one point, because the Ci are connected. So f
itself is extendible in P as a function to U .

Remark. We cannot weaken the assumptions in this theorem. If Y is
irreducible with Y 2 = 0 and the complement contains no projective curves,
this has no consequence on the superheight as shown by the example at the
end of Section 5. If Y ∩ C = � for some curve C, then C is a projective
curve lying inside U , and the cone mapping of this curve is not extendible
to the vertex of the cone.

If Y is irreducible, the condition of the theorem says Y 2 ≥ 0 and S − Y
contains no projective curve. In this case we cannot avoid the assumption
Y 2 ≥ 0. If K = C and Y 2 < 0, one can contract Y onto a (possibly non-
algebraic) complex space; see [11]. This contraction yields a mapping back
on this complex space defined outside the contraction point, and this map-
ping is not extendible.

Corollary 6.2. Suppose the situation of the theorem holds, but there
exists no ample effective divisor H with support Y . Then U = D+�a� and
the preimage D�a� in the affine cone are not affine, yet their superheight is
one. This is in particular the case if Y is irreducible with Y 2 = 0 or if Y is
not connected.

Proof. If U is affine then there exists an ample divisor H with support
Y ; see [9, 17]. If U is not affine then also the preimage in an affine cone
cannot be affine. This can be seen for example by considering the cohomol-
ogy of quasi-coherent sheaves coming from graded modules. An effective
ample divisor has a positive self intersection number and is connected; see
[18, II.6.2].

Remark. A problem of Hartshorne [18, VI. 3.4; 30; 31] asks the follow-
ing: Suppose we are given a smooth complete algebraic surface S over C
and an irreducible curve Y intersecting every other curve positively and
with self intersection zero. Is then S − Y Stein?

Our theorem states that in this situation S − Y fulfills all geometric
conditions which would follow from the Stein property, so at least it is
not possible to refute this conjecture by geometrical means. Furthermore,
our theorem relates this problem to the hypersurface problem: from the
assumptions on Y ⊂ S in the problem of Hartshorne it follows via 6.1 and
5.1 that the corresponding open subset in an affine cone over S fulfills the
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assumptions of the hypersurface problem (the conclusion of both problems
being the same). The original problem of Hartshorne is still open; Vo Van
proves it in [31] in the case where S is a ruled surface.

We will give some examples of curves on smooth surfaces where the
situation of the corollary (and of the theorem) occurs.

Example 6.1 (see [10, 6.10, 18, V. 5.7.3]). Let K be an algebraically
closed field, Y0 ⊆ P2

K be a smooth curve of degree three, hence an ellip-
tic curve, and let P1
 � � � 
 P9 be nine points on Y0. Let S be the blown-up
surface of these 9 points and let Y be the proper transform of Y0. The
self-intersection is 0. Y intersects all exceptional divisors and the inter-
section with the other curves is also positive if the points are chosen in
such a way that there does not exist a relation between them in the group
structure on Y0.

Example 6.2 (see [2, 17, 30] with the corrections due to [27]). This is
the classical example of a non-affine but Stein surface. Let

0 −→ �C −→ � −→ �C −→ 0

be a non-split exact sequence of sheaves on an elliptic curve C over C,
where � is locally free of rank two. Let s � C −→ S be the section in S =
P��� corresponding to the epimorphism and put Y = s�C� and U = S−Y .
Then Y fulfills the conditions in 6.2, and it is also Stein, the same being
true in the affine cone.

We construct a second class of non-affine, quasiaffine schemes with
superheight one. For this, let R be a noetherian normal domain and let
M be a reflexive (finitely generated) R-module of rank one, correspond-
ing to a Weil divisor. Let S�M� be the symmetric algebra of M and put
X = Spec S�M� with restriction map p � X −→ SpecR = Y .

Let V ⊆ Y be an open subset containing the points of codimension one
such that M defines an invertible sheaf � on V . Then X!V = p−1�V � −→ V
is a line bundle. Its ring of global sections is given by

��p−1�V �
�X� = ⊕k≥0��V
�k� = ⊕k≥0�M⊗k�∗∗�
If M = p is a prime ideal of height one, this ring equals also A + p+
p�2� + � � � � The zero-section in X defines the closed subscheme Z =
V �S�M�+�. Above V the open subset U = p−1�V � ∩ �X −Z� is a Gm-fiber
bundle; its ring of global sections is given by

��U
�X� = ⊕k∈Z��V
�k��
A line bundle is trivial if and only if there exists a section without zero and
a Gm-fiber bundle is trivial if and only if it has a section.
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Theorem 6.3. Let R be a noetherian normal domain with a closed point
P ∈ SpecR = Y of height d ≥ 2 such that V = Y − �P� is locally factorial.
Let � ∈ Pic V ∼= ClR be an non-torsion element in ClRP . Let U be the
corresponding Gm-fiber bundle over V . Then the cohomological dimension of
U is d − 1 and its finite superheight is ≤ d − 1.
If P is a closed point on a normal affine surface, then U has finite super-

height one, but is not affine.

Proof. For a finitely generated positively graded algebra S over R and a
homogeneous ideal a the cohomological dimension of D�a� and D+�a� ⊆
Proj S is the same. This follows from the fact that any coherent sheaf on
D+�a� comes from a graded module. We may apply this to U −→ V and
therefore cdU =cdV = d − 1.

Let now R′ be a normal noetherian domain of dimension d and let f �
Y ′ = SpecR′ −→ X = Spec S be morphism of finite type. We have to
show that f−1�U� �= Y ′ − �P ′�, where P ′ is a closed point of height d.
First observe that p�f �P ′�� = P , for otherwise p�f �P ′�� ∈ W , where W is
an affine neighbourhood with X!W trivial, and f �P ′� ∈ Z ∩ p−1�W �; but
this is not possible since htP ′ ≥ 2. Therefore g = p ◦ f � Y ′ −→ Y is a
morphism of finite type with g−1�P� = �P ′�, and we have to exclude that
f � Y ′ − �P ′� −→ X!V does not meet Z at all. But such a mapping would
yield a zero-free section f ′ � Y ′ − �P ′� −→ g∗�X!V � on the pull back of
the line bundle X!V and this would be trivial, but this is not possible as the
following lemma shows.

Lemma 6.4. Let R and R′ be normal excellent domains with maximal
ideals m and m′ of same height d ≥ 2. Let R −→ R′ be a ring homomorphism
of finite type with V �mR′� = V �m′�. Then the kernel of ClRP −→ ClR′P ′
consists of torsion elements.

Proof. We may assume that R and R′ are local, and from V �mR′� =
V �m′� we see that also R̂ −→ R̂′ is of finite type. Since we assume excel-
lence, normality is preserved by completion, and ClR −→ClR̂ is injective;
see [8, Corollary 6.12]. Thus we may assume that both rings are complete.
Since R and R′ have the same dimension and the closed fiber is zero-
dimensional it follows that R −→ R′ is quasifinite. Due to [14, 6.2.6], it is
already finite and the result follows by taking the norm.

Example 6.3. To construct examples of the desired type we have to
look for affine normal surfaces Y = SpecR with prime ideals p of height
one which are not torsion at a point P ∈ Y . One can take for instance the
homogeneous coordinate ring of a smooth projective curve of genus ≥ 1. If
the curve is elliptic, such divisors are given by points which are not torsion
in the group structure. Another example is given in [2, 2.10, (3)].
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Examples of such prime ideals were first used by Rees to construct exam-
ples of non-finitely generated rings of global sections. From the properties
established in the theorem it follows by 3.2 that the global ring of U is not
finitely generated.

Remark. Take an example as above where R is a finitely generated nor-
mal C-Algebra of dimension two. Then Uan ⊆ Xan is an example of a
complement of a hypersurface in a Stein space, fulfilling the assumptions
in the hypersection problem but not the conclusion. For in that case it fol-
lows from superheight one via 5.1 that for every closed analytic surface
(=hypersurface) T ↪→ Xan the intersection T ∩ U is Stein. However, on a
complex manifold V the complement of the zero-section in a line bundle
L can only be Stein in case V itself is Stein; see [5, Lemma 3.21]. But here
V = Y − �P� is not Stein. The example of Coltiou and Diederich can be
interpreted in this context as in the context of 6.2 as well.

We will discuss a third class of non-affine schemes with superheight one
arising from tight closure in characteristic 0 and related to Example 6.2 in
another paper.
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