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Abstract

We explicitly find the spectral decomposition, when it exists, of a Markov operator
P*: ¢ — ¢ using the asymptotic periodicity of the associated infinite Markov matrix.
We give a simple condition under which an infinite Markov matrix is asymptotically pe-
riodic. We also determine the set of P*-invariant distributions in ¢! and the set of P*-er-
godic distributions. © 1998 Elsevier Science Inc. All rights reserved.

1. Introduction

Lasota et al. [1] prove a spectral decomposition theorem for a class of Mar-
kov operators T, called strongly constrictive, acting on an arbitrary space
L'(X,Z,n) with a o-finite measure u. For these operators all the sequences
(T"f), with f € L', are asymptotically periodic. The result by Lasota et al.
was extended by Komornik [2] to the case of a weckly constrictive Markov op-
erator.

In this paper we give a method to explicitly find the spectral decomposition
of a Markov operator P*: ¢! — ¢'. The method is similar to the one given in [3]
for finite Markov matrices, which is based on results by Chi [4].

In Section 2 we state the basic definitions. In Section 3 we prove some re-
sults on idempotent infinite Markov matrices, which are needed to explicitly
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find the spectral decomposition given by the Spectral Decomposition Theorem
(SDT) of Section 4 for a Markov operator P*: ¢! — ¢'. We provide a condition
for P* to be constrictive and a method is given to determine the number of or-
thogonal vectors in the SDT. In Section 5 we characterize the P*-invariant dis-
tributions and the P*-ergodic distributions.

2. Preliminaries

Definition 1. An infinite Markov (or stochastic) matrix is an infinite matrix
P= (p,-j)z.:, with nonnegative components p;; such that the sum of the entries
of each row is 1, that is, Z}i,p,-j =1foralli=1,2,...

Let ¢' be the Banach space of sequences u = (x;,x,...) in R, seen as row
vectors, such that |u|l, ;=37 |x%| <oc. The convex set D:=
{ne ' ||ull, =1. and u > 0} is referred to as the set of distributions in ¢'.

Defirition 2. A positive linear operator P*: f' — ¢! is called a Markov operator
on ¢! if it maps D into itself, that is,
P (D) c D.

In particular, an infinite Markov matrix P defines a Markov operator P* on
(" as

P*(u) := pP, (1)

s0 that the jth component of P*(u) is (uP), = 3" | xupy;.
Also note that P* is a contraction map, that is,

1P ()lly < llully Y€ €' (2)
and, moreover, P* preserves the norm of u € ¢' if u is nonnegative, i.e.,
1P (lly = llelly, Ve, (3)

Throughout the following, P = (p,); | denotes a given (infinite) Markov
matrix, and P* stands for the corresponding Markov operator defined by
Eq. (1). Further, N denotes the set of positive integers, and if B is a subset

of N, we define

P(i.B):=)Y p, forieN.

je8

As in Markov chains theory we interpret P(i, B) as the “probability” of going
from i to the set B in one time unit.

We will identify a sequence p = (x;),>, € ¢' with the finite signed measure
(also denoted by u) on the measurable space (N,2V) such that
w(B) =3, px for BCN.



C.E. Villarreal | Linear Algebra and its Applications 283 (1998) 61-73 63

Let us recall some definitions (see, for instance, [5]).

Definition 3. (a) A set B C N is called P-invariant if P(i,B) = 1 for all i € B.
(b) A distribution u € D is called P*-invariant if P*(u) = u

(c) A distribution g € D is said to be P*-ergodic if it is P*-invariant and
#(B) =0 or 1 for any P-invariant set B.

In Section 5 we give conditions to identify the set D/_of P*-invariant distri-
butions and the subset DX, C D' of P*-ergodic distributions.

Definition 4. Two sequences u = (x;)<, and v = (y;)<, in ¢' are said to be
orthogonal if p-v:= 3", x;y; = 0. In this case, we write pt L v.

3. Idempotent infinite Markov matrices

The main result in this section is Theorem 10, which requires some proper-
ties of idempotent infinite Markov matrices. These properties, stated in the fol-
lowing lemmas, are also used in the next section. (Racall that a matrix A4 is said
to be idempotent if 4> = A.)

Lemma 5. Let A = (a,i,'),._"j.:, be an idempotent infinite Markov matrix.
(a) If ay. =0 for some k € N, then a; = 0 for all i € N.
(b) For all k,i € N, we have ay < ay.

Proof. (a) Arguing by contradiction, suppose that a;; = 0 and a;; > 0 for some
i€ N. Let a= sup{ay:i€ N}. For each ¢ >0 we take i, € N such that
G —a;; < ¢and a;; > 0. Then by the idempotency hypothesis,

(l,g = E al,[a/lq - E al,/a/l al,k +l E al,]

{irap >0} {j:ap >0}

&
S ik E a;+ P
{Jrap >0} ik

and, therefore,
Y oazl-—. (4)
a; i

Now, as ay = 0, we have that k& & {j: a; > 0}. On the other hand, a;; >0
yields

[Zaut D ay> Y @ (5)

{j:ay >0} {ra »0}
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Let us now consider a sequence (&,)°, of positive numbers such that
lim,.»& =0 and, furthermore, the limit lim, . > ;. .0 %, = @ exists.
Then, from Egs. (4) and (5),

&
1 2a+ Z ai,j > Z a ;=1- o (6)

{j:a;>0} {/:au >0} i,k

Hence, since @ — ¢, < a;,_x <4, letting n — 00 in Eq. (6) we obtain
12a+02021,

which is impossible because @ > 0. This contradiction yields that we must have
a; =0 for all i.

(b) If ai = 0, then a; < au. Now, if aj is positive, then, by (a), so is ai. Leta
be as in the previous proof, that is, @ := sup {au: i € N}, and for 0 < z<a let
i. € N be such that @ — a;; < &. As A is idempotent, we have

x x
—

aix = E a0 < } a; j(aix +¢€) = aix + & (7)
j:r;l j::l

Now, in Eq. (7), the jth term of the first sum is less than or equal to the jth term
of the second and, further, the difference between these terms is at most £. Thus
if aj > 0, then a; + &> a; ;4. SO that ajk -+ 8/0“‘ > a. In particular,

&
Qi +— > ajx > a-—¢. (8)
a k
Finally, in Eq. (8) we take the limit as ¢ — 0 and we get gy = a, so that, by def-
inition of @, we have ay <aw forallk,ie N. O

Lemma 6. Let A = (a,‘,-)‘i’:.,;l be an idempotent infinite Markov matrix. If ay > 0
Jorall k € N and Y., aw < oo, then:

(a) a; > 0 => a;; > 0 (or, equivalently, a; =0 = a; = 0).

(b) ax > 0 = ay = au.

Proof. (2) By Lemma 5(b),
Zl:an‘ = ZZ(IU(I/;‘ < ZZa,,a‘,, = Zaﬁ

=1 i=1 j=1 j=1 ]

X . X

Qi = p 4= Z“n-
=1 i1 i
Thus, as Y%, a, < oc, we obtain a,a, = a,a;. Therefore, a; >0 implies
a, = a,;. Hence, as a,, > 0 (by hypothesis), we conclude that a;, > 0 implies
aj > 0.

(b) By Lemma 5(b),

x S
A = E anay < E Ak = Qg
i1 i1
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Therefore, a;; > 0 implies a; = ay, so that, by (a), a; > 0 implies ay = ay. O

Remark 7. If 4 = (a;;);., is an idempotent infinite Markov matrix such that all
the entries of the columns k),k;,... are zero, then the matrix obtained by
cancelling all the rows &, ks, . .. and all the columns &y, k3, . .. is also an (infinite
or possibly finite) idempotent Markov matrix.

Remark 8. Two sequences i = (x;);2, and v = ()<, in D are orthogonal if and
only if their supports are disjoint, that is, x; > 0 implies y; =0, and y; >0
implies x; = 0.

We will denote by a;. the ith row of 4, that is, a;. = (a;) ;.
Lemma 9. Let A = (a;);)j.., be an idempotent infinite Markov matrix with a,; > 0
for all i € N and Y <, a;; < co. Then any two rows of A are either equal or
orthogonal, that is, for all i,k € N we have a;. = a;. or a;. L ay.

Proof. Suppose that the rows a;. and a;. of 4 are neither equal nor orthogonal.
Let: B = {j1.j2,...} be the set of all indices such that a;;, = a;;, > 0 for all
Jjp € B; B* = {j},j5,. ..} be the set of all indices such that a;;; > 0 = ay;, for all
Jy € B*; B = {ji*,j3, ...} be the set of all indices such that a;;- = 0 < ay;- for
all j,' €B™; and B= {j1.j2...} be the set of all indices such that
a;;, = ax;, = 0 for all j, € B.

As A is a Markov matrix and the vectors a,. and a;. are neither equal nor
orthogonal, from Lemma 6(b) and Remark 8 we have B# 0, B* # () and

B** # (). By definition,

a0
0=ay. = § :a,-,,a,,j‘;‘ = § 3,
p=1

Thus I8
a,;;» =0 forall j, € Band forall i € B”. 9)

Now, if a,, > 0, by Lemma 6(b) we have

X
a,, = -_>-_ QpQpy = Ay E Arp-
p=1

{papn#0}
Therefore, 3, 0@, = | and. as 4 is a Markov matrix,
(@5 >0anda, =0) = a,=0. (10)

By Eq. (IQ), and because ajp > 0= Ay, We have a; = 0; that is, k is in the un-
ion B** U B. We will next show that this leads to a contradiction. Indeed, sup-
pose that k € B. In this case, ay =0, which contradicts our hypothesis;
therefore, k € B**. But, from Eq. (9), a;x = 0; thus, by Lemma 6(a), a;;, =0,
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which contradicts that j, € B. Therefore, the rows a;. and ;. are either equal or
orthogonal. [

Theorem 10. Let A = (a,-j),?f,-:, be an idempotent infinite Markov matrix such that
Yt ak < oo. Then:
(a) Any two rows with positive diagonal entries are either equal or orthogonal;
that is, for all i,k € N such that a; >0 and ay >0 we have a;. = a;. or
a;. 1 ag..
(b) Each row of A is a convex combination of the rows which have a positive
diagonal entry.

Proof. (a) This part follows from Lemma 9 and Remark 7. (b) Let a;. be the kth
row of A4 for a fixed positive integer k. To prove (b) we wish to write ;. as a
convex combination

ai. = a(my,k)am,. + 2(ma. k)am,. + -+,

where am,.,dm,.,... are rows with positive diagonal entry. We will first show
that if a,,. is a row such that a,;,a,; and a,, are all positive; then:
(i) The rows a;.,q;. and a,,. are equal.
(ii) If a;; = a;; for some i, then a; > 0; and similarly, if a;, = a;, for some i,
then a;;, > 0.
(iii)
ay = Z ay, =:a(m, k).

{ira,~a,} {i:a=an}

(iv)

ay; = a(m,k)a,;, and a; = a{m k)a,,.

Proof of (i). By Lemma $ and part (a), the rows a;.,q,. and a,,. are equal.

Proof of (ii). It is impossible to have a;; = a;; and a;; = 0 because this would
imply, by idempotency, that a;a; =0 with a;; > 0. Therefore a; =0.
However, by Theorem 5(b), a;;,a;; > 0, so, by (a), the rows a,. and a;. would
be orthogonal, which contradicts that they are equal. Hence a;; = a;; for some i
implies a;; > 0. Similarly, a;; = a;; for some i implies a;; > 0.

Proof of (iii). By (a) and Lemma 5(a), (0 <aj <ay or 0 < ajj < ajj) =
ajj = 0 = ay, = 0. From this fact and (ii) we have that if a;; = a;; and a;; < ay),
or a; <aj and a; =ay; then ay =0. Hence {i:a; =a;;, and a; >0} =
{i: @y = a and ay; > 0}, and, therefore,

E Ay = E iy

{iray=ay,} {szay=ay}

which proves (iii).
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Proof of (iv). In the proof of (iii) we have that 0 < a;; < a;; = a; = 0. Thus, by
(i),

x
Ayj = E Anidij = E a,Q;j = aj; E ki
i=1 {i:aij=a,;} {i:aij=a;}
= Qpj E i = a(m's k)amjs

{i:ay=a,;}
and similarly

ax = om, k)amh

which proves (iv).

Note that if two rows a,., and a,. with positive diagonal entry are equal,
then the coefficients a(m, k) and a(n, k) are equal.

Now, having (i) to (iv), we can easily complete the proof of part (b). Let us
define m,,ms, ... € N recursively as follows: the integer m, is such that ay,.is
the first row of 4 with positive diagonal entry. Next, m; is the smallest integer
greater than m, such that the row a,,. has a positive diagonal entry and
@p,. # Gm,.. Continuing this process we obtain a (possibly finite) sequence
(my, my,...) in which, given m,_,, we choos: m, as the smallest integer greater
than m,_, such that the row a,, . has positive diagonal entry and a,,,. # am,- for
alli=1,2,...,q— 1. Let r = #{m,,m, ...} be the number of elements in the
set {m;,my,...}, so that r € N U {0o}. (In Theorem 19, we give an explicit val-
ue for r.) By construction, for each row a;. such that a; > 0 there exists a un-
ique m, € {m,my,...} such that a;. = a,,.. If a; =0, then from (iv), the
definition of m;,m, ..., part (a) and Remark 8, we conclude that

,
a. = > _a(my,k)an,..
g=1

Thus, as A4 is a Markov matrix, we have Y, _, a(m,,k) = | with a(m,.k) >0
and the proof of the theorem is complete. [

4. The spectral decomposition theorem

In this section we first state without proof a particular case of the SDT given
in [2.6,7,1,8], and then we describe a procedure to determine the different com-
ponents that appear in the spectral decomposition of a Markov operator.

The main assumption in the SDT is the constrictivity of the Markov oper-
ator P*: ¢' — ¢!, which is defined as follows.
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Definition 11. We say that P*: ¢! — ¢! is constrictive if there exists a compact
set F C ¢' such that

limsupd(P*"(n),F) =0 forall u€ D,
where d(v,F) := mf{||v —plli:peF}

In Theorem 17 we give a simple condition under which a Markov operator is
constrictive. Moreover, Theorem 18 characterizes the set Fy = {vi,.... v} giv-
en in the SD'1 and, finally, Theorem 19 gives a formula to find the number of
elements in F.

Definition 12. We say that u € D is P*-periodic if there is a positive integer n
such that »*"(u) = .

Theorem 13 (SDT). Let P* be a constrictive Markov operator on ¢'. Then:
(a) There exists
e d finite set Fy = {v\.....v,} of pairwise orthogonal P*-periodic elements of D,
e a set of continuous linear functionals 4y, ..., /. ont', and
e a permutation ¢ of the integers 1, ... .r such that

) hm P (u) = 304 Ap) \,,n(,,|[, = 0 for each p € ¢'.

(ll) P‘(v) =vep fori=1.....r

(b) The functionals i; are positive, that is, ;(u) = 0 if p = 9. Moreever,

5_7/.,(\') =1 forveD,
(I |4 ()] < Il for pe t'.
(¢) The sets {v,...,v,} and {4y, ... .4} satisfying (1) and (11) are unique.

Remark 14. If P=(p,)%_, is an infinitt Markov matrix, we dehne
p; = sup{p;;: i € N} and p = (p,) . Further, recall that P*: ¢' — ¢! stands
for the Markov operator defined by P i.e., P*(u) = pbP.

In the remainder of this section we suppose the following:
Assumption 15. P is such that ||p]|, < .

Remark 16. If p and the rows of P are seen as o-finite measures on the
measurable space (N.2"), then Assumption 15 gives that p is tight (cf. [2]).
Moreover. from Theorem 3.2 in [9] it follows that the family of rows of P is
also tight.

Theorem 17. Suppose that Assumption 15 is satisfied. Then the matrix P defines a
constrictive Markov operator P* on ¢'.
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Proof. By hypothesis, p is in ¢'. If g = (x;,xa,...) is in D, then P*(u) < p and,
therefore,

{P*(u): p€e D} C K :={ve D:v<p}.

Note that P*"(y) is in K for all n € N. We will next prove that K is compact. In
fact, since ¢! is a metric space, it suffices to show that K is sequentially compact
[10], Theorem 7.4. To prove this, let (v,),~, be a sequence in K, and write
Vo = (Vut>Yu2,--.). By definition of K, we have 0<y,; <p; for all n. Let us
now recursively define the increasing sequences of positive integers (n;),",,
(n2)y% ., - . . as follows: the increasing sequence (n}),", is such that (1), con-
verges to a nonnegative number y; for j > I, (M), is a subsekquence of
("Z")Zi; such that ()’,,;j)i, converges to a nonnegative number y;. Let
v = (v,)n,...), and observe that v € K and (v;,:_,)i, converges to y; for each
j- Given £ > 0, let N € N be such that 3~ %, | 2p; < & Now

x
R
1)

N x
= fim (D lvg, = wl+ D b —
4

N+

N
< lim E v, = vl +e) =e
k- 1 A ’

As & > 0 was arbitrary, we have lim; . ||v,s — v||, = 0; in other words, the
sequence (v,),-, has a subsequence (v,,: )iy cbnvergem in ¢! to some v € K.
Therefore, K is sequentially compact, which proves that K is compact in 0.
Hence P* is a constrictive operator on ¢'. O

Theorem 18. Suppose that Assumption 15 holds, and let r be the positive integer
given in the SDT. Then there exists an infinite idempotent Markov matrix A such
that (P*"' (1)), converges to A*(p) in €' for all p € €'. Moreover, the elements
Vis....v, given in the SDT are the rows of A which have a positive diagonal entry.

Proof. By Theorem 17, there exists a finite set Fy = {vi,...,v} of pairwise
orthogonal periodic elements of D and a set of continuous linear functionals
{A1,...,4:} on ¢ that satisfy the condition of the SDT; in particular,

lim [P (1) = > _i()varwll, =0 foreach p e ',

n—x I(; |

In addition, since ¢’*"(k) = k, we have
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'!Lnlup.(rm((;i_) - Z/’.k(ﬁ.'-)"k“n =0,
: k=1

where
1 ifi=,
0;j = l ' j
0 ifi#j.
Let y,; be the ith entry of v; and let 4 = (a;;); =1 be the infinite matrix with
rows

- = lim §.P" = lim P""(3,) = Z;k Wiy (11)
n-—-2> =1
where, by the SDT, }_;_,4:(d:;.) = 1 and 0< 4(d;.) < 1. Moreover, note that
¢ =P () = Zv;\, lim P (8 ka,a, : (12)

Observe that A4 is idempotent and Markov, and 3,7, au < Y 2, o < 00.
Therefore, by Theorem 10(b) and (12), the elements v,,..., v, are convex com-
binations of the rows of 4 which have a positive diagonal entry. Hence, by
Eq. (11) and part (c) of the SDT, v,,...,v, are the rows of 4 with positive di-
agonal entry. [

An argument given in Ref. [7], p. 753, Eq. (1.5) shows that
0 <r< |l

which gives an estimate of the number r of distributions vy,...,v, in the SDT.
This is important because, even if we do not know r, it allows us to calculate
A’ () as the liinit

Jiﬁnﬁ:"P“"’"’(u) ~ A’ ()|, =0 for any integer s > r,
in particular for s > ||p||,. The following theorem gives the precise value of r.

Theorem 19. Suppose that Assumption 15 holds and let the positive integer r and
A= (a,-},-),.’.‘j .y be as in Theorem 18. Then r is given by

x
r = E ag.
k=

Proof. By Theorem 18, vi,..., v, are the rows of A that have a positive diagonal
entry, and these vectors are pairwise orthogonal, by Theorem 10(a). Let
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T,:={ieN:a.=v,} forlg<ngr

Then, from Theorem 10 and Lemma 5,

f:akk =i2akk=z’:||vnn, =il =r. O
k-1 } =1 k=1

n=1{keT,

5. P*-invariant distributions

Let P:¢' —¢ be a constrictive Markov operator, and let
D, =), P""(D) be the set of all the limit points of the sequences
(P*"()),-., with u € D. By the SDT, vis in D, if and only if it is a convex com-
bination of the distributions v,,...,v,. That is, D, is the convex hull of
{v1,...,v.}. We will now identify the set D’ < D, of P*-invariant distributions
and the set D% that consists of all the P*-ergodic distributions (see Definiton 3).

Two integers i and jin {1,...,r} are said to be equivalent (denoted by i «— j)
if P*(v;) = v; for some positive integer k. Observe that < is an equivalence re-
lation, and denote by 0,,0,,...,0, the different equivalence classes of
{1,...,r}. Let O;:={v: i€ O;}. For j=1,...,d, let

! > v (13)

#Of i€0,

T =

be the “average™ of the element: in O;. Observe that P*: O, — O; is bijective
and that P*(v,) € O, <= v; € O,. Therefore,

== T = Yro =7 ($).

€0, veQ, ve O, i€0, €0,

which gives that t; is a P*-invariant distiibution. Note that 1,..., 7, are mutu-
ally orthogonal. The proof of the following theorem is similar to the proof in
Ref. [3], Theorem 10.

Theorem 20 (Ergodic Decomposition Theorem). Let P*: €' — ¢! be a constric-
tive Markov operator defined by an infinite Markov matrix P and let D', C D

be the set of all the P*-invariant distributions. Then D._is a convex set and, in
fact, it is the convex hull of {ty,....14} with t; as in Eq. {13), that is,

d d
D ={uet:pu= Z“ﬂj with o; = 0 and Za,' =1} (14)
j=1 j=1

Hence, the collection of all the P*-ergodic distributions is D%, = {t|,... .}
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Proof. Let C be the convex hull of {t},...,74}. Since 7; is a P*-invariant
distribution for j = 1,2,...,d, any convex combination

d
n= z :“jfi
j=1

is also a P*-invariant distribution. Hence C C DY_. To prove that D/ _C C, first
note that D/, C D, so that if p € D is a P*-invariant distribution, then, by the
SDT, p is a convex combination of v,,...,v,, that is,

’l = Zl‘mvm‘ (15)

m=1

Also note that Eq. (15) is the unique representation of u as a linear combina-
tion of v;, v5,...,v,, because these distributions are mutually orthogonal. Now,
if i.k are both in Oy, then the coefficients f8; and f, are equal. Indeed, if
i,k € O, then there is a nonnegative integer ¢, such that v, = P*(v;), and so

= P"(n) Z/ P (vm) = Z/f P (v) + Bvi + Zif,,.P"(vm)

m=i+ ]

Hence, as the representation in Eq. (15) is unique, we most have 5, = f,.
Now, for j =1,2,....d, let s; be an integer in O;. Then

= iﬂm"'" = ZI;"! Vi -+ Zli"-‘ Vet Zli“"'i

m- | 1€Q) iy 100y
= fi, (#0111 + B, (#02)12 + - -+ + B, (#04)14.
Finally, if for j = 1.2,..., d we take z; = f, (#0,). then we get

d
71

and, moreover %, 20 and Z" %= Z (#0O;) = Z Lo B =
Ym 1 B = 1. Therefore, D' C C, which compleles the proof of Eq (l4)ITh|s
in turn yields the last statement in the theorem, DX = {r,,....1,}: see for in-
stance, Kifer [5], Theorem 1.1 in Appendix A.1. O
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