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Abstract 

We explicitly find the spectral decomposition, when it exists, of a Markov operator 
p. : f l  ~ El using the asymptotic periodicity of the associated infinite Markov matrix. 
We give a simple condition under which an infinite Markov matrix is asymptotically pe- 
riodic. We also determine the set of  P'- invariant distributions in t? i and the set of P'-er-  
godic distributions. © 1998 Elsevier Science inc. All rights reserved. 

I. Introduction 

Lasota et al. [I] prove a spectral decomposition theorem for a class of Mar- 
kov operators T, called strongly constrictive, acting on an arbitrary space 
L I (X, ~', It) with a a-finite measure/~. For these operators all the sequences 
(T"f), with f E L I, are asymptotically periodic. The result by Lasota et al. 
was extended b) ~ Komornik [2] to the case of a weakly constrictive Markov op- 
erator. 

In this paper we give a method to explicitly find the spectral decomposition 
of a Markov operator P* : f~ ~/?~. The method is similar to the one given in [3] 
for finite Markov matrices, which is based on results by Chi [4]. 

In Section 2 we state the basic definitions. In Section 3 we prove some re- 
sults on idempotent infinite Markov matrices, which are needed to explicitly 
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find the spectral decomposition given by the Spectral Decomposition Theorem 
(SDT) of  Section 4 for a Markov operator P* : t? t --+ P.  We provide a condition 
for P" to be constrictive and a method is given to determine the number of or- 
thogonal vectors in the SDT. In Section 5 we characterize the P*-invariant dis- 
tributions and the P*-ergodic distributions. 

2. Preliminaries 

Definition 1. An infinite Markov  (or stochastic) matrix is an infinite matrix 
3 ~  

P = (P~J)~j=I with nonnegative components P0 such that the sum of the entries 
of each row is 1, that is, ~"~y~=l pij = 1 for all i = I, 2 , . . .  

Let/?l be the Banach space of  sequences II = (xi,x=,.. .) in I~, seen as row 
vectors, such that Ill, ll, " -  ~ L ,  Ix, I < ~ .  The convex set D := 
{t~ e e': I1~11, = 1. and ;t 1> 0} is referred to as the set of distributions in e ~. 

Definition 2. A positive linear operator P* : ,fi _.., ~,l is called a Markov operator 
on ~l if it maps  D into itself, that is, 

p ' ( o )  c o. 

In particular, an infinite Markov matrix P defines a Markov operator P* on 
fl as 

P'(~)  := i~P, ( I )  

so that the j th  component of  P'(/~) is (/tP)i = ~_,k ~ i x~pk,. 
Also note that P" is a contraction map, that is, 

llP'(i~)ll, <~ lll~ll, v~ e t '  (2)  

and, moreover, P" preserves the norm of 1~ E t '~ if l~ is nonnegative, i.e., 

l lP'( i ,) l l ,  = llt~ll, vl~ e .e '~. (3) 

Throughout  the following, P = (P,),,il denotes a given (infinite) Markov 
matrix, and P '  stands for the corresponding Markov operator defined by 
Eq. (I). Further, I~1 denotes the set of positive integers, and if B is a subset 
of I~, we define 

P(i,B) "= ~ ,  for i E I%1. 

As in Markov chains theory we interpret P(i ,B) as the "probabil i ty" of going 
from i to the set B in one time unit. 

"x. 

We will identify a sequence l~ = (x;)i:~ ! E e ~ with the finite signed measure 
(also denoted by l~) on the measurable space (1~,2 ~) such that 
It(B) := ~,~a.~:, for B C ~.  
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Let us recall some definitions (see, for instance, [5]). 

Definition 3. (a) A set B C I~ is called P-hlvariant if P(i,B) = I for all i E B. 
(b) A distribution It E D is called P*-invariant if P* (1~) = l~- 
(c) A distribution It E D is said to be P*-ergodic if it is P*-invariant and 
ll(B) = 0 or 1 for any P-invariant set B. 

In Section 5 we give conditions to identify the set ff~ of  P*-invariant distri- 
butions and the subset De~: c Dt~ of P*-ergodic distributions. 

X ' ~  - - . .  . 'X. Definition 4. Two sequences p = ( i)i=l and v (Y,)~:l in ~! a r e  said to be 
orthogonal  if 1~" v := ~'~i~i xiyi = O. in this case, we write II _1_ v. 

3. Idempotent infinite Markov matrices 

The main result in this section is Theorem 10, which requires some proper- 
ties of idempotent infinite Markov matrices. These properties, stated in the fol- 
lowing iemmas, are also used in the next section. (Recall that a matrix A is said 
to be idempotent  if A-' = A.) 

Lemma 5. Let  A = (a,:i)cj= ! bc an idempotem it~'nite M a r k o v  matr ix .  
( a ) / f  akk = 0 fi~r some k E [~, then aik = O.[or all i E ~ .  
(b) For all k, i E [~, we have ai~ <~ akk. 

Proof. (a) Arguing by contradiction, suppose that akk = 0 and a,k > 0 for some 
i E N .  Let i t =  s u p { a i k : i E N } .  For each ~ : > 0  we take i , : E N  such that 
/ i -  ai, k < ~: and a,',k > 0. Then by the idempotency hypothesis, 

j::: I 1i: a/~ >0} 

':I {j: ,ajk >0} ai, k 

and, therefore, 

{j: a/A ::>0} 

a,0j t> ! - - - .  (4) 
{j: a,~ >0} ai,~. 

Now, as ark = 0, we have that k ¢~ {j: ai~ > 0}. On the other hand, a;,k > 0 
yields 

!j: a,~ >0} {.i: a,k .:,0} 
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Let us now consider a sequence ( e , ) ~  of  positive numbers such that 
lim~_.,~e., = 0 and, furthermore, the limit lim~_~ ~0:a,~>0} a~.j = ' Q  exists. 
Then, from Eqs. (4) and (5), 

l>~ai~. ,+ ~ ,  a,~,j> ~ a,.:.j>~ 1 -  e_..y_~. (6) 
{j: ail >0} U: aik >0} ai,.,,k 

Hence, since a -  ~ < a~.k ~< ~, letting n ~ oc in Eq. (6) we obtain 

which is impossible because ~ > 0. This contradiction yields that we must have 
a~ = 0 for all i. 

(b) If a~k = 0, then a,k <~ au.  Now, if a,k is positive, then, by (a), so is au.  Let 
be as in the previous proof, that is, a := sup {a~k: i E ~ 1, and for 0 < r. ~< ~ let 
i,: ~ r~ be such that ~ -  a;,t < ~. As A is idempotent,  we have 

j=l  j : l  

Now, in Eq. (7), thej th  term of  the first sum is less than or equal to thej th  term 
of the second and, further, the difference between these terms is at most ~. Thus 
if a,,j > 0, then a,,:ja/t + ~: > a,,ja,.t, so that aj~ + ~:/a,,:j > a,,~. In particular, 

(8) a ~ + ~ > a ~ , ,  > ~ - ~ : .  
ai, k 

Finally, in Eq. (8) we take the limit as ~: --. 0 and we get at, I> a, so that, by def- 
inition of  a, we have a,~ <~ a~t for all k, i ~ l~l. l-I 

Lemma 6. Let A = (au)~4:= t be an idempotent it#'nite Markov  matrix, l./'a,k > 0 
./'or all k E ~ and ~"~2~:! akk < oc. then: 

(a) aj, > 0 =~ a 0 > 0 (or, equivak, ntly, a u = 0 ~ ay~ = 0). 
(b) a~k > 0 =~ a,k = akl. 

Proof. (a) By Lemma 5(b), 

Sa"- ESo,,,,, Sa,,Eo,,- Sa,,- Ea,. 
i I t : : l  /=1 i=1 i : :1 i : : l  t : l  1:::1 i::1 

Thus. as a,, < ~ .  we obtain a ,a ,  = aria . .  Therefore, ai, > 0 implies 
a , =  a,.  Hence. as a ,  > 0 (by hypothesis), we conclude that ai, > 0 implies 
a o > O. 

(b) By Lemma 5(b), 

i=1 i=1 
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Therefore. ak~ > 0 implies a~ = aa,  so that, by (a), a;k > 0 implies a,k = akk. iq 

Remark 7. If  A = (a~j)~=~ is an idempotent infinite Markov matrix such that all 
the entries of  the columns k , , k 2 , . . ,  are zero, then the matrix obtained by 
cancelling all the rows k , , k 2 , . . ,  and all the columns k~,k2 , . . ,  is also an (infinite 
or possibly finite) idempotent Markov matrix. 

Remark 8. T w o  sequences II = (xi)i~! and v = (v~)i~=l in D are orthogonal  if and 
only if their supports are disjoint, that is, x~ > 0 implies yi = O, and yi > 0 
implies x~ = O. 

We will denote by a,. the ith row of A, that is, a;.-= (au)j: i . 

Lemma 9. Let A = (au)c~: ! be an Mempotent infinite Markov matr ix  with a,i > 0 
for  all i E ~l and ~']i~l aii < o¢. Then any two rows o f  A are either equal or 
orthogonal; that is, Jbr all i, k E ~ we have ai. = ak. or  ai. .L ak. 

Proof. Suppose that the rows ai. and ak. of  A are neither equal nor orthogonal.  
Let: B = { j~ , j 2 , . . . }  be the set of  all indices such that au,, = akj~ > 0 for all 
jp ~ B; B* = {j~,j.~,...} be the set of  all indices such that au; > 0 = akj;, for all 
Jp E B*~, B** = {JI ,J2 ~ , ' "}  be the set of  all indices such that a~j;,. = 0 < aki;,, for 
all j~,*E B**; and B =  {~l, j . , , . . .}  be the set of  all indices such that 

a0,, = ak),, = 0 for all Jr E B. 
As A is a Markov matrix and the vectors a,. and ak. are neither equal nor 

orthogonal,  from Lemma 6(b) and Remark 8 we have B :~ 0, B * #  0 and 
B'" ~ 0. By definition, 

Thus 

0 = au:,.= E a i t ,  avj7 = Eau,,a,,,,:,.. 
p= ! it,CB 

aj,,j:. = 0 for all j ,  ~ B and for all jq" ~ B*'. 

Now, if a,, > 0, by Lemma 6(b) we have 

(9) 

arA, ~-~ Eat .paf~ -- at:~. E arpo 
p=- i {p:,~, #o} 

Therefore, )-~.{s,:,,,,,~01a,v = I and, as A is a Markov matrix, 

(a,., > 0 and a~ = 0) =~ a, v = 0. (10) 

By Eq. (10), and because au; > 0 = a~j i, we have a~k = 0; that is, k is in the un- 
ion B*" U/}. We will next show that tins leads to a contradiction. Indeed, sup- 
pose that k ~/}. In this case, akk = 0, which contradicts our hypothesis; 
therefore, k e B*'. But, from Eq. (9), aj, k = 0; thus, by Lemma 6(a), akj, = 0, 
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which contradicts that j~ E B. Therefore, the rows a~. and ak. are either equal or 
orthogonal.  I-1 

Theorem 10. Let A = (aij)ij=t be an idempotent infinite Markov matrix such that 
E~=i a~ < ¢x~. Then: 

(a) Any two rows with positive diagonal entries are either equal or orthogonal; 
that is, JOT all i, k E [~ such that a~ > 0 and akk > 0 we have a~. = a,. or 
a~. 3. ak.. 
(b) Each row o f  A is a convex combination o f  the rows which have a positive 
diagonal entry. 

Proof. (a) This part follows from Lemma 9 and Remark  7. (b) Let ak. be the kth 
row of  A for a fixed positive integer k. To prove (b) we wish to write ak. as a 
convex combination 

a~. = ~t(ml,k)am.. + ~(m2,k)am,.. + . . - ,  

where an,..,an,:.,. . ,  are rows with positive diagonal entry. We will first show 
that if am. is a row such that amy, a,.t and atom are all positive; then: 

(i) The rows aj., ai. and a,.. are equal. 
(ii) If a,j = ajj for some i, then a,! > 0; and similarly, if a,t = all  for some i, 
then a~/> 0. 
(iii) 

(i: a,, ::a,I {i: a,t : : , , )  

(iv) 

a~ = ~(m, k)a,,i and akl = =(m, k)a,,i. 

Proof of (i). By Lemma 5 and part (a), the rows aJ., at. and am. are equal. 

Proof of (|i). It is impossible to have a~ = ajj and aa = 0 because this would 
imply, by idempotency, that aoajt = 0  with a~j > 0. Therefore art =0 .  
However, by Theorem 5(b), an,ajj > 0, so, by (a), the rows al. and a t. would 
be orthogonal,  which contradicts that they are equal. Hence a;j = aJJ for some i 
implies a~t > 0. Similarly, a~l = an for some i implies a~j > 0. 

Proof of (iii). By (a) and Lemma 5(a), (0 < a ,  < all or 0 < a~j < aJJ) ~ 
a ,  = 0 =~ ak, = 0. From this fact and (ii) we have that if a,~ = ajj and aa < all, 
or a~ j<a j j  and a , l = a l l :  then ak~=0.  Hence { i : a , j = a i i  and a k , > 0 } =  
{i: ail= alt and a~ > 0}, and, therefore, 

a/. = ~ aki, 

which proves (iii). 
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Proof of (iv). In the proof of (iii) we have that 0 < aij < ajj ~ aki = O. Thus, by 
(i), 

a k j = Z a k i a q =  Z akiaij=ayj Z aki 
i= i {i:aq=a H } {i:aq =aj; } 

--- a,,,j Z ak' = cx(m'kla'J '  
{ i:aq =at i } 

and similarly 

akt = ot(m,k)aml, 

which proves (iv). 
Note that if two rows am., and a,,. with positive diagonal entry are equal, 

then the coefficients a(m,k) and ~(n,k) are equal. 
Now, having (i) to (iv), we can easily coml~!ete the proof of part (b). Let us 

define m l , m 2 , . . .  E • recursively as follows: the integer ml is such that am~.is 
the first row of A with positive diagonal entry. Next, m2 is the smallest integer 
greater than ml such that the row a,,:. has a positive diagonal entry and 
am2. # a,,,.. Continuing this process we obtain a (possibly finite) sequence 
(ml,m2,...) in which, given mq-i, we choos,: mq as the smallest integer greater 
than mq_l such that the row am~. has positive diagonal entry and a,,~. # am,. for 
all i 1 "~ 1 Let r #{mj,m2, } be the number ofelements in the = , . , . o . , q -  . = . . .  

set {rot, m2,...}, so that r E t~ U {oo}. (In Theorem 19, we give an explicit val- 
ue for r.) By construction, for each row a~. such that a,i > 0 there exists a un- 
ique m, ! E {mr,m2,...} such that a,. =a,,,,.. If a,,~ = 0 ,  then from (iv), the 
definition of mi,m2,. . . ,  part (a) and Remark 8, we conclude that 

a k . 

r 

y ]  mq, k )a,, . . 
q=-I 

r Thus, as A is a Markov matrix, we have ~q-=l ot(mq, k) = I with cX(mq, k) >t 0 
and the proof of the theorem is complete. I-1 

4. The spectral decomposition theorem 

In this section we first state without proof a particular case of the SDT given 
in [2,6,7,1,8], and then we describe a procedure to determine the different com- 
ponents that appear in the spectral decomposition of a Markov operator. 

The main assumption in the SDT is the constrictivity of the Markov oper- 
ator P ' :  e i --, ~t, which is defined as follows. 
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Definition 11. We say that P*' f~ 
set F C ~ such thai 

~ is constrictive if there exists a compact 

l imsupd(P*"(lO,F) = 0 ['or all/a E D, 
/'1"-* ~ 

where d ( v , F ) : =  i n f{ l l v -  Pil,: p ~ F}. 
In Theorem 17 we give a simple condition under which a Markov operator  is 

constrictive. Moreover,  Theorem 18 characterizes the set F0 = { v~, . . . .  v,. } giv- 
en in the SDT and, finally, Theorem 19 gives a formula to find the number of 

elements in F0. 

Definition 12. We say that l' E D is P'-periodic if there is a positive integer n 

such that P*"(/t) = II. 

Theorem 13 (SDT). Let P* be a constrictive Markov operator on fl .  Then: 

(a) There exists 
• a finite set Fo = { v l , . . . ,  Vr } ofpairwise orthogonal P*-periodic elements q f  D, 
® a set o f  continuous linear fimctionals 21, . . . ,  2r on ~l, and 
® a permutation a o f  the integers 1 . . . . .  r such that 

( I)  l im l l e ' " ( lO  - ~7=,  = o.Io,, each It 6_ g l  
ti ~-t 7X, 

(11) P'(vi) = v.!,l j o t  i = I . . . . .  r. 
(b) The Jimc~kmals )., are positive, that is. ,;.,(1~) >f 0 / f l~  i> 9. Moreover. 

r 

L z , ( v ) =  ! . t o r r i D ,  
t I 

(111) I),,(l,)l ~ Ill, ll, .for 1' ~ t;'. 
(c) The sets {v l , . . . ,  Vr} and {,;.I, . . . .  ,;.,.} sati.sfl,#lg (I) and (!I) are unique. 

x~ is an infinite Markov matrix. Remark 14. If P=(Pu .~ . i : l  
7X. 

/6j ::- sup {Pij" i E I%1} and b := ~/) j=l .  Further, recall that P*" fl 
for the Markov operator defined by P, i.e., P*(I') = ltP. 

In the remainder of this section we suppose the following: 

we dehne 
t ~ stands 

Assumption 15. P is such that Ilpll  < ~ .  

Remark 16. If Ab and the rows of P are seen as a-finite measures on the 
measurable space (1~.2;"~), then Assumption 15 gives that/5 is tight (cf. [2]). 
Moreover, from Theorem 3.2 in [9] it follows that the family of  rows of P is 
also tight. 

Theorem 17. Suppose that Assumption 15 is sati.~[ied. Then the matrix P &,fines a 
constrictive Markov operator P* on (,I. 
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Proof. By hypothesis , /~ is in Ct. If  It = (x~,x2, . . . )  is in D, then P*(/,) ~</~ and, 
therefore, 

{t,'(~,). t, ~ 19} c ~ := {,, ~/9:  ,.~<p}. 

Note  that  P*"(#) is in K for all n E N. We will next prove that K is compact .  In 
fact, since g~ is a metric space, it suffices to show that K is sequentially compact 

! 7"K,: 

[10], Theo rem 7.4. To prove this, let (h,),,=l be a sequence in K, and write 
v,, = (y,l,y,, , . , . . .).  By definition of  K, we have 0<~y,:j ~</~j for all n. Let us 
now recursively define the increasing sequences of  positive integers (n~)~: i, 
(n~.)L, , . . .  as follows: the increasing sequence (n~)k~, is such that  (y,,,~)~L~ con- 

. (~)~. t is a subsequence of  verges to a nonnegative number  v~; for j > I, " ~ " k 
t n J - ~ ~  Jk= such that 0,,lj)~_-~ converges to a nonnegative number  yj. Let 

7X.; 

v = (v~,y_,,...), and observe that v E K and 0 , , ] i ) ~  converges to yi for each 

j .  Given r. > 0, let N E r~ be such that ~ ~ ~j~:x~ ~2/~ < e. Now 

lim II v,,~ - vii, = l i m X - ' l v , , -  vii 
k .... x L , , , , ~ . - ~ t  - . ,  

i ! 

( = lim ),,)/ 
- ) 

- v; + Z b,,:j - y,I 
i N + i 

.-= ~'. 

As ~: > 0 was arbitrary,  we have lim~ .... , Iv,,, - vj~ - 0; in other  words, the 
sequence (v,,),," I has a subsequence (v,,,)~l convergent in el to some v 6 K. 

/~ . 

Therefore,  K is sequentially compact ,  whtch proves that K is compact  in g~. 
Hence P* is a constrictive opera tor  on g~. !--1 

Theorem 18. Suppose that Assumpt.km 15 hoMs, and let r be the positive #tteger 
given m the SDT. Then there exists an #![inite idempotent Markov matrix A such 
that (P*("!")(#)),~l converges to A*(#) 01 gl ./or all # E[I .  Moreover, the e&ments 
vl , . . . , v,. given Or the SD T are the rows o f  A which have a positive diagonal ento,. 

Proof.  By Theorem 17, there exists a finite set F0 = { v l , . . . ,  v,.} of  pairwise 
or thogonal  periodic elements of  D and a set of  cont inuous linear functionals 
{ 2 t , . . . ,  2,.} on ~,l that satisfy the condition of  the SDT; in particular,  

r 

lira I P*"(#) - ~--~,~(~,)*'~,,¢~,llj -- 0 for each il ~ [i. 
I I  - "  

k : l  

In addit ion,  since o"~"(k) = k, we have 
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/ ,  

k=l 

where 

1 i f / = j ,  
/i,j:= 0 if i ¢ j. 

Let yk, be the ith entry of v~ and let A = (ao)~j= ~ be the infinite matrix with 
rows 

r 

a,. = lira 6~.P"!" = lim P""!"/(6~.)= ~21,(6,.)vk, 
t l ~  7K. /I ' - -* "N. 

k=i 

( l l )  

where, by the SDT, ~=l).k(6,.) = I and 0 ~ 2k(6~.) <~ i. Moreover, note that 

,'k = P'{~'"'(,'k)= ~_rvk, l im P"~"'(6,.) = ~_rvk, a,. • (12) 
i=l i=i 

Observe that A is idempotent and Markov, and ~-~_l akk <~ )-'~--i/~ < o~. 
Therefore, by Theorem 10(b)and (12), the elements v l , . . . ,  Vr are convex com- 
binations of the rows of A which have a positive diagonal entry. Hence, by 
Eq. (11) and part (c) of the SDT, v l , . . . ,  v~ are the rows of A with positive di- 
agonal entry. L--i 

An argument given in Ref. [7], p. 753, Eq. (I.5) shows that 

0 < r IlPll,, 

which gives an estimate of the number r of distributions v l , . . . ,  v,. in the SDT. 
This is important 0ecause, even if we do not know r, it allows us to calculate 
A'(#) as the limit 

iimlIP't~!"l(/,)- A'( 011, = 0 for any integer s >>, r, 
n - - ,  ~ ,  

in particular for s >1 IIpll,, The following theorem gives the precise value of r. 

Theorem 19. Suppose that Assumption 15 holds and let the positive integer r and 
,4 - ( 0)cj:t be as in Theorem 18. Then r is given br 

at 

r ~ ~ a l t k .  
k=:l 

Proof. By Theorem 18, v i , . . . ,  vr are the rows of A that have a positive diagonal 
entry, and these vectors are pairwise orthogonal, by Theorem 10(a). Let 
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T , : = { i E ~ ' a i . = v , }  for l<~n<~r. 

Then, from Theorem 10 and Lemma 5, 

r r r 

k-:l n = l  {kETn} n=i  k=!  

71 

5. P*-invariant distributions 

Let P*:e  ~ ~ ~ be a constrictive Markov operator, and let 
D~, := I"I,,~_tP'"(D) be the set of all the limit points of the sequences 
(P*~(/z)),~ with It E D. By the SDT, v is in D:~ ifand only ifit is a convex com- 
bination of the distributions v~,...,v~. That is, D~ is the convex hull of 
{vl , . . . ,  Vr }. We will now identify the set D t c- D~ of P*-invariant distributions ~ . 

and the set DE.~ that consists of all the P*-ergodic distributions (see Definiton 3). 
Two integers i and j in { I , . . . ,  r} are said to be equivalent (denoted by i ~ j) 

if P'k(v,) = v i for some positive integer k. Observe that ~ is an equivalence re- 
lation, and denote by O~,O?.,...,Od the different equivalence classes of 
{ l , . . . , r } .  Let Oi := {v~:i E Or}. F o r j  = I , . . . , d ,  let 

1 
r~ "= #Oj  Evi__ (13) 

• ic=O I 

be the "average" of the element:~ in Oj. Observe that P " O j  ~ O; is bijectivc 
and that P'(v,) E O i ~ v, E 0 i. Therefore, 

zv : Cz,) 
JEOi ~'EO/ I ' ( O  t I ( :OI  ~ k i E O ;  

which gives that zj is a P*-invariant distribution. Note that r~ , . . . ,  z,~ are mutu- 
ally orthogonal. The proof of the following theorem is similar to the proof in 
Ref. [3], Theorem 10. 

Theorem 20 (Ergodic Decomposition Theorem). Let P*: E ! --, ~1 be a constric- 
tive Markov operator de[ined b;, an infinite Markov matrix P and let D" x C D~ 
be the set o f  all the P*-invariant distributions. Then Dt.,c is a convex se,r anti, in 
fact. it is the convex hull t f  { r I , . . . ,  *,t} with r i as in Eq. (i 3), that is, 

d d 

D~ = {1, E E I" t' = E ~ ,  z, with ~j >i 0 and E e i =  1}. (14) 
j:=! j = l  

Hence, the colk'ction o f  all the P'-ergodic distributions is DE~ = { r l , . . . ,  Zd}. 
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Proof. Let C be the convex hull of  { r i , . . . , r d} .  Since ry is a P*-invariant 
distribution for j = 1 ,2 , . . .  ,d, any convex combination 

d 

I t - -  ~ O t j Z j  
j = l  

is also a P*-invariant distribution. Hence C c /Y~ .  To prove that/Y~ c C, first 
note that D{~ c D,~ so that if p <5 D is a P*-invariant distribution, then, by the 
SDT, l~ is a convex combination of  vz, . . . ,  v ,  that is, 

r 

1' = ~-'~Jl,,,v,,,. (15) 
m =  | 

Also note that Eq. (15) is the unique representation of  p as a linear combina- 
tion of v~, v., . . . .  , v,, because these distributions are mutually orthogonal.  Now, 
if i,k are bo~h in Oj, then the coefficients //, and fl, are equal. Indeed, if 
i, k E Oj, then there is a nonnegative integer t, such that v, = p,t(v~), and so 

r i - I  r 

l ,  : P " ( I , )  = ~"~fl,,P"(v,,) = ZflmP"(V,,,  ) + fl, Vk + Z/I,, ,P*'(Vm). 
m.: l  m I m:::: i+l  

Hence, as the representation in Eq. (I 5) is unique, we most have fli = fl~. 
Now, for j = !, 2 . . . .  , d, let si be an integer in Oj. Then 

i o 

m I i ( ( )  I t~:() 2 o: (),t 

= I!,, ( # 0 .  )*. +/k,(#O2),., + . . .  + f l . , , , ( # O , ~ ) , , ~ .  

Finally, if for j = !, 2, . . . .  d we take ~, = II,, (#Oi) ,  then we get 

d 

. !  i 

and, moreover, ~t i >f 0 and ~, = E ~ ,  fl.,,(#O,) = E']:~, E,~o, l I, = 
~ , !  fl,,, = I. Therefore, D I C C, which completes the proof of Eq. (14). This "x.  

in turn yields the last statement in the theorem, /yr~ = { r l , . . . ,  Zd}; see for in- 
stance, Kifer [5], Theorem i.I in Appendix A.I.  [2] 
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