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Abstract

In this paper, we study some properties of(
√
SH ), i.e., square roots of semihyponormal operato

In particular we show that an operatorT ∈ (
√
SH ) has a scalar extension, i.e., is similar to

restriction to an invariant subspace of a (generalized) scalar operator (in the sense of Colă–
Foiaş). As a corollary, we obtain that an operatorT ∈ (

√
SH ) has a nontrivial invariant subspace

its spectrum has interior in the plane.
 2003 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

Let H andK be separable, complex Hilbert spaces andL(H,K) denote the space o
all bounded linear operators fromH to K. If H =K, we writeL(H) in place ofL(H,K).
If T ∈ L(H), we writeσ(T ), σap(T ), andσe(T ) for the spectrum, the approximate po
spectrum, and the essential spectrum ofT , respectively.

An operatorT is calledp-hyponormal, 0<p � 1, if (T ∗T )p � (T T ∗)p whereT ∗ is the
adjoint ofT . If p = 1, T is called hyponormal and ifp = 1

2, T is called semihyponorma
Semihyponormal operators were introduced by Xia (see [14]). There is a vast lite
concerning semihyponormal operators. Let(SH) denote the class of semihyponorm
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operators. We say that an operatorT ∈ L(H) is a square root of a semihyponorm
operatorif T 2 is semihyponormal. We denote this class by(

√
SH ). It is known that ifT

is hyponormal, thenT 2 is semihyponormal (see [1]). Hence every hyponormal oper
is contained in(

√
SH ). In Example 3.1, we give an example of a square root o

semihyponormal operator which is not semihyponormal. Therefore, this class gives
reasons for the future study.

In this paper, we study some properties of(
√
SH ). In particular we show that a

operatorT ∈ (
√
SH ) has a scalar extension, i.e., is similar to the restriction to

invariant subspace of a (generalized) scalar operator (in the sense of Colojoară–Foiaş).
As a corollary, we obtain that an operatorT ∈ (

√
SH ) has a nontrivial invariant subspa

if its spectrum has interior in the plane.

2. Preliminaries

An operatorT ∈ L(H) is said to satisfy the single valued extension property if for
open setU in C, the function

z − T :O(U,H) →O(U,H)

defined by the obvious pointwise multiplication is one-to-one whereO(U,H) denote the
Fréchet space ofH-valued analytic functions onU with respect to uniform topology. IfT
has the single valued extension property, then for anyx ∈ H there exists a unique maxim
open setρT (x)(⊃ ρ(T ), the resolvent set) and a uniqueH-valued analytic functionf
defined inρT (x) such that

(z − T )f (z) = x, z ∈ ρT (x).

Moreover, ifF ⊂ C is a closed set andσT (x) = C\ρT (x), thenHT (F) = {x ∈H: σT (x) ⊂
F } is a linear subspace (not necessarily closed) ofH and obviouslyHT (F) = HT (F ∩
σ(T )). An operatorT ∈ L(H) is said to satisfy the property(β) if for every open subsetG
of C and every sequencefn :G →H onH-valued analytic function such that(z−T )fn(z)

converges uniformly to 0 in norm on compact subsets ofG, fn(z) converges uniformly to 0
in norm on compact subsets ofG.

A bounded linear operatorS onH is called scalar of orderm if it possesses a spectr
distribution of orderm, i.e., if there is a continuous unital morphism,

Φ :Cm
0 (C) → L(H)

such thatΦ(z) = S, wherez stands for the identity function onC andCm
0 (C) for the

space of compactly supported functions onC, continuously differentiable of orderm,
0 � m � ∞. An operator is called subscalar if it is similar to the restriction of a sc
operator to an invariant subspace.

Let z be the coordinate inC and let dµ(z) denote the planar Lebesgue measure. F
separable, complex Hilbert spaceH and a bounded (connected) open subsetU of C. We
shall denote byL2(U,H) the Hilbert space of measurable functionsf :U →H, such that

‖f ‖2,U =
{∫ ∥∥f (z)

∥∥2
dµ(z)

}1/2

< ∞.
U
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The space of functionsf ∈ L2(U,H) which are analytic functions inU (i.e., ∂̄f = 0)
is denoted by

A2(U,H) = L2(U,H) ∩O(U,H).

A2(U,H) is called the Bergman space forU .
We will use the following version of Green’s formula for the plane, also known as

Cauchy–Pompeiu formula. DefineCp(�U,H) in the exactly the same way asCp(�U) except
that the functions in the space are nowH-valued.

Cauchy–Pompeiu formula 2.1. Let D be an open disc in the plane, letz ∈ D and
f ∈ C2(�D,H). Then

f (z) = 1

2πi

∫
∂D

f (ζ )

ζ − z
dζ + ∂̄f ∗

(
− 1

πz

)
where∗ denotes the convolution product.

Remark 2.2. The function

g(z) =
∫
∂D

f (ζ )

ζ − z
dζ

appearing in Cauchy–Pompeiu formula is analytic inD and extends continuously to�D as
can be seen by examining the

∫
D term. So,g ∈ A2(D,H) for f ∈ C2(�D,H).

Let us define now a special Sobolev type space. LetU again a bounded open subs
of C andm be a fixed non-negative integer. The vector valued Sobolev spaceWm(U,H)

with respect to∂̄ and orderm will be the space of those functionsf ∈ L2(U,H) whose
derivatives∂̄f, . . . , ∂̄mf in the sense of distributions still belong toL2(U,H). Endowed
with the norm

‖f ‖2
Wm =

m∑
i=0

∥∥∂̄mf
∥∥2

2,U

Wm(U,H) become a Hilbert space contained continuously inL2(U,H).
We next discuss the fact concerning the multiplication operator byz onWm(U,H). The

linear operatorM of multiplication byz onWm(U,H) is continuous and it has a spect
distribution of orderm, defined by the relation

ΦM :Cm
0 (C) →L

(
Wm(U,H)

)
, ΦM(f ) = Mf .

Therefore,M is a scalar operator of orderm.
Let V :Wm(U,H) → ⊕m

0 L2(U,H) be the operator defined by

V (f ) = (
f, ∂̄f, . . . , ∂̄mf

)
.

Since

‖Vf ‖2 = ‖f ‖2
Wm =

m∑∥∥∂̄mf
∥∥2

2,U ,
i=0
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an operatorV is an isometry such thatVM = (
⊕m

0 Nz)V , whereNz is the multiplication
operator onL2(U,H). Since

⊕m
0 Nz is normal,M is a subnormal operator.

3. Subscalarity

In this section we show that every square root of a semihyponormal operator has a
extension. For this we start with an example of a square root of a semihyponormal op
which is not semihyponormal.

Example 3.1. If T is any semihyponormal operator inL(H), consider the following
operator matrix

A =
(

0 T

0 0

)
.

ThenA ∈ (
√
SH ), but it is easy to show thatA is not semihyponormal.

The following lemma is elementary.

Lemma 3.2 [9, Lemma 4.3].LetT be in(
√
SH ). If {fn} is a sequence inL2(D,H) such

that limn→∞ ‖(z2 − T 2)fn‖2,D = 0 for all z ∈ D, thenlimn→∞ ‖(z2 − T 2)∗fn‖2,D = 0.

The following proposition is an essential step to prove our main theorem.

Proposition 3.3. For every bounded diskD in C there is a constantCD , such that for an
arbitrary operatorT ∈L(H) andf ∈ W4(D,H) we have

∥∥(I − P)f
∥∥

2,D � CD

4∑
i=2

∥∥(
z2 − T 2)∗

∂̄ if
∥∥

2,D,

where P denotes the orthogonal projection ofL2(D,H) onto the Bergman spac
A2(D,H).

Proof. Let s1 and s2 be in C∞(�D,H) such thatsi ≡ 1 on D − D for i = 1,2. Let
fn ∈ C∞(�D,H) be a sequence which approximatesf in the normW4. Then for a fixedn
we have

∂̄2
[
fn − 1

2

(
z2 − T 2)∗∂̄2fn

]
= ∂̄2fn − 1

2

2∑
k=0

(
2
k

)
∂̄k

(
z2 − T 2)∗∂̄4−kfn

= −1

2

1∑
k=0

(
2
k

)
∂̄k

(
z2 − T 2)∗

∂̄4−kfn. (1)



E. Ko / Bull. Sci. math. 127 (2003) 557–567 561
By Cauchy–Pompeiu formula and Eq. (1), we get

∂̄

[
fn − 1

2

(
z2 − T 2)∗∂̄2fn

]
= 1

2πi

∫
∂D

∂̄[fn(ζ )− 1
2(ζ

2 − T 2)∗∂̄2fn(ζ )]
ζ − z

dζ

+
[
−1

2

1∑
k=0

(
2
k

)
∂̄k

(
z2 − T 2)∗∂̄4−kfn

]
∗

(
− s1

πz

)
. (2)

Set

g1,n(z) = 1

2πi

∫
∂D

∂̄[fn(ζ )− 1
2(ζ

2 − T 2)∗∂̄2fn(ζ )]
ζ − z

dζ.

Theng1,n ∈ A2(D,H) by Remark 2.2. Thus

∂̄

[
fn − 1

2

(
z2 − T 2)∗∂̄2fn

]

= g1,n −
[
−1

2

1∑
k=0

(
2
k

)
∂̄k

(
z2 − T 2)∗

∂̄4−kfn

]
∗

(
− s1

πz

)
. (3)

Again we apply the Cauchy–Pompeiu formula. Then from Eq. (3), we obtain

fn − 1

2

(
z2 − T 2)∗∂̄2fn = 1

2πi

∫
∂D

fn(ζ ) − 1
2(ζ

2 − T 2)∗∂̄2fn(ζ )

ζ − z
dζ

+ ∂̄

[
fn − 1

2

(
z2 − T 2)∗∂̄2fn

]
∗

(
− s2

πz

)
. (4)

Set

g2,n(z) = 1

2πi

∫
∂D

fn(ζ ) − 1
2(ζ

2 − T 2)∗∂̄2fn(ζ )

ζ − z
dζ.

Again,g2,n ∈ A2(D,H) by Remark 2.2. Thus from Eq. (4) we get

fn − 1

2

(
z2 − T 2)∗∂̄2fn = g2,n + ∂̄

[
fn − 1

2

(
z2 − T 2)∗

∂̄2fn

]
∗

(
− s2

πz

)
(5)

Hence from Eqs. (3) and (5) we obtain

fn − 1

2

(
z2 − T 2)∗∂̄2fn

= g2,n +
[
g1,n +

{
−1

2

1∑(
2
k

)
∂̄k

(
z2 − T 2)∗∂̄4−kfn

}
∗

(
− s1

πz

)]
∗

(
− s2

πz

)

k=0
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= g2,n + g1,n ∗
(

− s2

πz

)
−

[
1

2

1∑
k=0

(
2
k

)
∂̄k

(
z2 − T 2)∗∂̄4−kfn

]

∗
(

− s1

πz

)
∗

(
− s2

πz

)
. (6)

Since

∂̄k
(
z2 − T 2)∗

∂̄4−kfn ∗
(

− s1

πz

)
= ∂̄k−1(z2 − T 2)∗∂̄4−kfn − ∂̄k−1(z2 − T 2)∗∂̄4−k+1fn ∗

(
− s1

πz

)
,

from Eq. (6) we have

fn − 1

2

(
z2 − T 2)∗∂̄2fn

= g2,n + g1,n ∗
(

− s2

πz

)
+ 1

2

(
z2 − T 2)∗∂̄4fn ∗

(
− s1

πz

)
∗

(
− s2

πz

)
− (

z2 − T 2)∗∂̄3fn ∗
(

− s2

πz

)
.

Setgn = g2,n +g1,n ∗ (−s2/πz). Sinceg1,n ∗ (−s2/πz) is analytic,gn ∈ A2(D,H). Hence

fn − gn = 1

2

(
z2 − T 2)∗∂̄2fn − (

z2 − T 2)∗
∂̄3fn ∗

(
− s2

πz

)
+ 1

2

(
z2 − T 2)∗

∂̄4fn ∗
(

− s1

πz

)
∗

(
− s2

πz

)
.

Taking the norm, we get

‖fn − gn‖2,D � 1

2

∥∥(
z2 − T 2)∗

∂̄2fn

∥∥
2,D + ∥∥(

z2 − T 2)∗∂̄3fn

∥∥
2,D

∥∥∥∥− s2

πz

∥∥∥∥
2,D

+ 1

2

∥∥(
z2 − T 2)∗

∂̄4fn

∥∥
2,D

∥∥∥∥(
− s1

πz

)
∗

(
− s2

πz

)∥∥∥∥
2,D

.

SetCD = max{1/2, ‖−s2/πz‖2,D, 1/2‖(−s1/πz) ∗ (−s2/πz)‖2,D}. Then

‖f − g‖2,D � ‖f − fn‖2,D + ‖fn − gn‖2,D

� ‖f − fn‖2,D + CD

4∑
i=2

∥∥(
z2 − T 2)∗∂̄ if

∥∥
2,D.

By passing to the limit we conclude

‖f − Pf ‖2,D � CD

4∑
i=2

∥∥(
z2 − T 2)∗∂̄ if

∥∥
2,D.

So we complete our proof.✷
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Lemma 3.4. Let T be in (
√
SH ). Then for a bounded diskD which containsσ(T ), the

operatorV :H → H(D) defined by

V h = 1̃⊗ h
(= 1⊗ h+ (z − T )W4(D,H)

)
is one-to-one and has closed range, whereH(D) = W4(D,H)/(z − T )W4(D,H) and
1⊗ h denotes the constant function sending anyz ∈ D to h.

Proof. Let hi ∈H andfi ∈ W4(D,H) be sequences such that

lim
i→∞

∥∥(z − T )fi + 1⊗ hi

∥∥
W4 = 0. (7)

Then by the definition of the norm of Sobolev space, Eq. (7) implies

lim
i→∞

∥∥(z − T )∂̄j fi

∥∥
2,D = 0 (8)

for j = 1,2,3,4. From Eq. (8), we get

lim
i→∞

∥∥(
z2 − T 2)∂̄ j fi

∥∥
2,D = 0

for j = 1,2,3,4. SinceT 2 is semihyponormal, by Lemma 3.2

lim
i→∞

∥∥(
z2 − T 2)∗∂̄ j fi

∥∥
2,D = 0 (9)

for j = 1,2,3,4. Then by Proposition 3.3, we have

lim
i→∞

∥∥(I − P)fi

∥∥
2,D = 0 (10)

whereP denotes the orthogonal projection ofL2(D,H) ontoA2(D,H). By (7) and (10),
we have

lim
i→∞

∥∥(z − T )Pfi + 1⊗ hi

∥∥
2,D = 0.

Let Γ be a curve inD surroundingσ(T ). Then forz ∈ Γ

lim
i→∞

∥∥Pfi(z) + (z − T )−1(1⊗ hi)
∥∥ = 0

uniformly. Hence, by Riesz–Dunford functional calculus,

lim
i→∞

∥∥∥∥ 1

2πi

∫
Γ

Pfi (z)dz + hi

∥∥∥∥ = 0.

But since
∫
Γ Pfi (z)dz = 0 by Cauchy’s theorem, limi→∞ hi = 0. ✷

Now we are ready to prove our main theorem.

Theorem 3.5. An operatorT ∈ (
√
SH ) is subscalar of order4.

Proof. Consider an arbitrary bounded open diskD in C which containsσ(T ) and the
quotient space

H(D) = W4(D,H)/(z − T )W4(D,H)
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endowed with the Hilbert space norm. The class of a vectorf or an operatorA onH(D)

will be denoted byf̃ , respectivelyÃ. LetM(= Mz) be the multiplication operator byz on
W4(D,H). ThenM is a scalar operator of order 4 and its spectral distribution is

Φ :C4
0(C) →L

(
W4(D,H)

)
, Φ(f ) = Mf ,

whereMf is the multiplication operator withf . SinceM commutes withz − T , M̃ on
H(D) is still a scalar operator of order 4, with̃Φ as a spectral distribution.

Let V be the operator

V h = 1̃⊗ h
(= 1⊗ h+ (z − T )W4(D,H)

)
,

fromH into H(D), denoting by 1⊗ h the constant functionh. ThenV T = M̃V . SinceV
is one-to-one and has closed range by Lemma 3.4,T is subscalar of order 4.✷

Recall that ifU is a non-empty open set inC and ifΩ ⊂ U has the property that

sup
λ∈Ω

∣∣f (λ)
∣∣ = sup

β∈U

∣∣f (β)
∣∣

for every functionf in H∞(U) (i.e. for all f bounded and analytic onU ), thenΩ is said
to be dominating forU .

Corollary 3.6. Let T be in (
√
SH ). If σ(T ) has the property that there exists some n

empty open setU such thatσ(T )∩U is dominating forU , thenT has a nontrivial invariant
subspace.

Proof. This follows from Theorem 3.5 and [5].✷
The following corollary shows that, exactly as for subnormal operators, the spe

σ(T ) is obtained fromσ(M̃) by filling some bounded connected components ofC\σ(M̃).

Corollary 3.7. LetT be in(
√
SH ). With the same notation of the proof of Theorem3.5,

∂σ(T ) ⊂ σ(M̃) ⊂ σ(T ).

Proof. Since

σ(M̃) ⊂ σ(M|W4(D,H)) ⊂ �D,

we concludeσ(M̃) ⊂ σ(T ). Since∂σ(T ) ⊂ σap(T ) andσap(T ) ⊂ σap(M̃), we complete
the proof. ✷
Corollary 3.8. Let T be in (

√
SH ) and letf be a function analytic in a neighborhoo

of σ(T ). Thenf (T ) is subscalar.

Proof. With the same notation of the proof of Theorem 3.5,Vf (T ) = f (M̃)V , where
f → f (T ) is the functional calculus morphism. The result follows from the fact thatf (M̃)

is scalar. ✷
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Recall that anX ∈ L(H,K) is called a quasiaffinity if it has trivial kernel and den
range. An operatorA ∈L(H) is said to be a quasiaffine transform of an operatorT ∈L(K)

there exists a quasiaffinityX ∈ L(H,K) such thatXA = TX. Furthermore, operatorsA
andT are said to be quasisimilar if there are quasiaffinitiesX andY such thatXA = TX

andAY = YT .

Lemma 3.9. If T ∈ (
√
SH ) is quasinilpotent, then it is nilpotent.

Proof. Sinceσ(T ) = {0}, from Corollary 3.7M̃ is quasinilpotent. Then by [3],̃M is
nilpotent. SinceV is one-to-one andV T = M̃V , T is nilpotent. ✷
Theorem 3.10. Let T be in(

√
SH ). If A is a quasiaffine transform ofT andσ(A) = {0},

thenA is subscalar.

Proof. Assume there exists a one-to-oneX with dense range such thatXA = TX. Then
sinceT is subscalar by Theorem 3.5 it follows from [8] thatσ(T ) ⊂ σ(A). HenceT is
quasinilpotent. By Lemma 3.9,T is nilpotent, sayT n = 0. ThenXAn = 0. SinceX is one-
to-one,A is a nilpotent operator of ordern. Therefore,A is a subscalar operator by [7].✷

Recall that an operatorT ∈ L(H) is said to bepower regularif lim n→∞ ‖T nx‖1/n

exists for everyx ∈H (see [2]).

Theorem 3.11. If T is in (
√
SH ), it is power regular.

Proof. It is known from Theorem 3.5 that every square root of a semihyponormal ope
is the restriction of a scalar operator to one of its invariant subspace. Since a scalar o
is power regular and the restriction of power regular operators to their invariant subs
clearly remains power regular, every square root of a semihyponormal operator is
regular. ✷
Theorem 3.12. If T is in (

√
SH ), it satisfies the property(β). Hence it satisfies the sing

valued extension property.

Proof. Since every scalar operator satisfies the property(β) and the property(β) is
transmitted from an operator to its restriction to closed invariant subspaces, it follows
Theorem 3.5 that every square root of a semihyponormal operator satisfies the prope(β).
Hence it satisfies the single valued extension property.✷
Corollary 3.13. Let A andT be in (

√
SH ). If they are quasisimilar, thenσ(A) = σ(T )

andσe(A) = σe(T ).

Proof. Since A and T satisfy the property by Theorem 3.12, the proof follo
from [12]. ✷
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Corollary 3.14. If T be in (
√
SH ), thenHT (F) = {x ∈ H: σT (x) ⊂ F } is a closed

subspace for every closed setF in C and

σ(T |HT (F )) ⊂ σ(T ) ∩ F.

Proof. The first statement follows from Theorem 3.12 and [11, Lemma 5.2]. The se
statement follows from Theorem 3.12 and [3, Proposition 3.8].✷
Corollary 3.15. If T1 andT2 are in (

√
SH ) andA ∈ L(H,K) satisfiesAT1 = T2A, then

AHT1(F ) ⊂ HT2(F ) for every closed setF ⊂ C.

Proof. It is known thatT1 and T2 satisfy the single valued extension property fro
Theorem 3.12. Ifx ∈ HT1(F ), thenσT1(x) ⊂ F . ThusFc ⊂ ρT1(x). Hence there exist
an analyticH-valued functionf defined onFc such that

(z − T1)f (z) ≡ x, z ∈ Fc.

Therefore,

(z − T2)Af (z) = A(z − T1)f (z) ≡ Ax, z ∈ Fc.

SinceAf :Fc →K is analytic,Fc ⊂ ρT2(Ax). ThusAx ∈ HT2(F ). ✷
Recall that an operatorT ∈ L(H) is calledquasitriangular if T can be written as a

sumT = T0 + K whereT0 is a triangular operator andK is a compact operator inL(H).
Moreover,T is calledbiquasitriangularif both T andT ∗ are quasitriangular.

Corollary 3.16. Let T be in(
√
SH ). If T has no nontrivial invariant subspace, thenT is

biquasitriangular.

Proof. If T has no nontrivial invariant subspace, thenσp(T
∗) = φ. HenceT ∗ satisfies the

single valued extension property. SinceT also satisfies the single valued extension prop
by Theorem 3.12,T is biquasitriangular from [10, Theorem 2.3.21].✷
Theorem 3.17. Let T ∈ (

√
SH ). Then there exists a positive integerI such that for all

positive integersi � I , T 2i has a nontrivial invariant subspace.

Proof. SinceT 2 is semihyponormal, the result follows from [6].✷
The following theorem explains the structure of some square roots of semihypon

operators.

Theorem 3.18. LetT be in(
√
SH ). If T is compact orm(σ(T )) = 0 wherem is the planar

Lebesgue measure, then

T = A ⊕
(
B C

0 −B

)
,

whereA andB are normal andC is a positive one-to-one operator commuting withB.



E. Ko / Bull. Sci. math. 127 (2003) 557–567 567

003.
tment

8.
95)

(2000)

1.

Amer.

user

5

rlag,
Proof. If T is compact, thenT 2 is compact and semihyponormal. By [4],T 2 is normal.
If m(σ(T )) = 0 wherem is the planar Lebesgue measure, thenT 2 is normal by [4]. Since
T 2 is normal in any cases, by [13, Theorem 1]

T = A ⊕
(
B C

0 −B

)
,

whereA andB are normal andC is a positive one-to-one operator commuting withB. ✷
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