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ABSTRACT Room temperature, light induced (P7001-P700) Fourier transform infrared (FTIR) difference spectra have been
obtained using photosystem I (PS I) particles from Synechocystis sp. PCC 6803 that are unlabeled, uniformly 2H labeled, and
uniformly 15N labeled. Spectra were also obtained for PS I particles that had been extensively washed and incubated in D2O.
Previously, we have found that extensive washing and incubation of PS I samples in D2O does not alter the (P7001-P700) FTIR
difference spectrum, even with ;50% proton exchange. This indicates that the P700 binding site is inaccessible to solvent
water. Upon uniform 2H labeling of PS I, however, the (P7001-P700) FTIR difference spectra are considerably altered. From
spectra obtained using PS I particles grown in D2O and H2O, a (1H-2H) isotope edited double difference spectrum was
constructed, and it is shown that all difference bands associated with ester/keto carbonyl modes of the chlorophylls of P700 and
P7001 downshift 4–5/1–3 cm�1 upon 2H labeling, respectively. It is also shown that the ester and keto carbonyl modes of the
chlorophylls of P700 need not be heterogeneously distributed in frequency. Finally, we find no evidence for the presence of
a cysteine mode in our difference spectra. The spectrum obtained using 2H labeled PS I particles indicates that a negative
difference band at 1698 cm�1 is associated with at least two species. The observed 15N and 2H induced band shifts strongly
support the idea that the two species are the 131 keto carbonyl modes of both chlorophylls of P700. We also show that a negative
difference band at ;1639 cm�1 is somewhat modified in intensity, but unaltered in frequency, upon 2H labeling. This indicates
that this band is not associated with a strongly hydrogen bonded keto carbonyl mode of one of the chlorophylls of P700.

INTRODUCTION

Photosystem I (PS I) catalyzes the light induced transfer of

electrons across the thylakoid membrane from plastocyanin

to ferredoxin (Golbeck and Bryant, 1991). After light

excitation of P700 (the primary electron donor in PS I), an

electron is transferred across the membrane via a series of

acceptors called A0, A1, FX, FA, and FB (Brettel, 1997;

Golbeck and Bryant, 1991). In PS I two symmetrical sets of

electron transfer (ET) acceptors are bound to the 83 kDa,

membrane-spanning subunits, PsaA and PsaB (Brettel,

1997; Golbeck and Bryant, 1991). It is unclear if ET occurs

down one or both branches (Guergova-Kuras et al., 2001;

Joliot and Joliot, 1999). It is likely that the directionality of

ET in PS I is related to the electronic and structural

organization of P700. Light induced Fourier transform

infrared (FTIR) difference spectroscopy (DS) is well suited

for the direct study of the molecular details of P700 (Breton,

2001; Breton et al., 1999, 2002; Hastings et al., 2001; Kim

and Barry, 2000; Kim et al., 2001; Sivakumar et al., 2003),

and here we have used FTIR DS in combination with isotope

labeling to gain a more detailed understanding of P700.

From the recent crystal structure of PS I at 2.5-Å resolu-

tion, P700 is clearly resolved and consists of a chlorophyll-a

(Chl-a) molecule bound to PsaB, and a Chl-a9 molecule

bound toPsaA (Fromme et al., 2001; Jordan et al., 2001). The

structure and numbering scheme for Chl-a is outlined in Fig.
1. Chl-a9 is a 132 isomer of Chl-a. Throughout this article, the
two Chls of P700 are termed PB and PA. From the 2.5-Å PS I

crystal structure it is found that PA and PB are asymmetrically

bound, with PA being involved in a hydrogen (H) bond

network with several surrounding amino acid residues and

a water molecule (Fig. 2; Fromme et al., 2001; Jordan et al.,

2001). PB is not involved in H-bonding.

Fig. 2 shows a view of ring V of PA taken from the 2.5-Å

PS I crystal structure (Fromme et al., 2001; Jordan et al.,

2001). Also shown are the nearby amino acid Thr-A743

(Thr-A739 in Chlamydomonas reinhardtii) and Tyr-A603.

The hydroxyl oxygen of Thr-A743 is 2.98 Å from the 131

keto carbonyl (C¼O) oxygen of PA. In addition, the Thr-

A743 hydroxyl oxygen is 2.7 Å from the oxygen atom of

a water molecule. The angle of 135.88 (u5 1 u6) between the

vectors joining the oxygens (Fig. 2) suggests sp2 hybridiza-

tion of the hydroxyl oxygen of Thr-A743. Thus the

molecular geometry and the interatomic distances appear to

be well suited for the Thr-A743 to form an H-bond to the 131

keto C¼O oxygen. However, it is unclear how strong this H-

bond will be. The strength of the H-bond will depend on the

orientation of the water molecule at position 19. In addition,

the hydroxyl side chain of Thr-A743 is suitably oriented for

the formation of an H-bond to the 133 ester oxygen. Given

the complexity of the H-bond network shown in Fig. 2, it is

possible that the H-bonding of Thr-A743 could be different

in the ground and cation states of P700 (see below).
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Recently, different groups have obtained (P7001-P700)

FTIR DS using PS I particles from Synechocystis (S.) sp.
6803 (Breton, 2001; Breton et al., 1999, 2002; Hastings et al.,
2001; Kim and Barry, 2000; Kim et al., 2001) and C.
reinhardtii (Breton, 2001; Hastings et al., 2001; Redding

et al., 1998; Wang et al., 2003; Witt et al., 2002). From these

studies different interpretations of the FTIR DS were

proposed: 1), On the basis of the observation of multiple

band shifts upon specific 134 methyl deuteration of;68% of

the Chls in PS I, it was suggested that the 133 ester (Kim and

Barry, 2000) and 131 keto (Kim et al., 2001) carbonyl (C¼O)

modes of the Chls of P700 are heterogeneously distributed in

frequency (the mode frequency is different in different PS I

subpopulations). 2), At 90 K, in PS I from S. 6803, Breton
et al. (1999) suggested band assignments for the 131 keto

C¼Omodes of both Chls of P700, that did not involve mode

frequency heterogeneity. 3), Recently, we suggested a differ-

ent set of band assignments for the 131 keto C¼O modes of

the Chls of P700 (Hastings et al., 2001), again without the

need to invoke mode frequency heterogeneity. To address

these issues we have obtained (P7001-P700) FTIR DS in the

1770–1600 cm�1 region using unlabeled (1H), 15N, and 2H

isotopically labeled PS I particles from S. 6803.
Several studies have recently been undertaken to try to

establish which difference bands in (P7001-P700) FTIR DS

are associated with the 131 keto C¼O modes of the two Chls

of P700. It is important to assign these difference bands

unambiguously because they provide a means to estimate the

degree of charge delocalization over the chlorophylls of

P700.

In (3P700-P700) FTIR DS, obtained using urea treated PS

I particles depleted of FA and FB at 90 K, Breton et al. (1999)

observed a negative difference band at 1637 cm�1. In

(P7001-P700) FTIR DS, obtained using intact PS I particles

at 90 K, a negative difference band at 1637 cm�1 was also

observed. These observations led to the conclusion that the

1637 cm�1 difference band is due to a 131 keto C¼O mode

of either PA or PB. It should be noted that a (3P700-P700)

FTIR DS has never been obtained using intact PS I particles,

FIGURE 1 Molecular structure and International Union of Pure and

Applied Chemistry numbering scheme for chlorophyll-a.

FIGURE 2 View of ring V of PA showing possible

interactions of the 131 keto C¼O with Thr-A743 (Thr-

A739 in C. reinhardtii) and water. The H2O-19 oxygen

(circle) and Tyr-A603 are also shown. Figure was

generated using Swiss PDBViewer and the crystallo-

graphic coordinates of PS I at 2.5-Å resolution (PDB file

accession number IJB0).
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and it was never shown that the triplet state actually studied

was associated with one of the Chls of P700.

Given such a low frequency (1637 cm�1) for a 131 keto

C¼O mode, it was proposed that this mode is strongly

hydrogen bonded. From the recent PS I crystal structure at

2.5-Å resolution, it has been suggested that the 131 C¼O

mode of PA could be H-bonded to Thr-A743 (Fig. 2)

(Fromme et al., 2001; Jordan et al., 2001). However, it is

unclear if the 131 C¼O mode of PA is very strongly H-

bonded. It is therefore unclear if this interpretation of

(P7001-P700) FTIR DS is in agreement with the 2.5-Å PS

I crystal structure. Notice also that the above interpretation

implies that the triplet state of P700 resides on PA. This

conclusion is inconsistent with recent results on a variety of

site directed mutants that clearly indicate that the triplet state

of P700 is localized on PB (Krabben et al., 2000; Webber and

Lubitz, 2001).

Given the above interpretation, that the 1637 cm�1 band is

due to a strongly H-bonded 131 keto C¼O mode PA, the

charge delocalization over the chlorophylls of P700 was

estimated to be ;1.5–2:1 (Breton et al., 1999), which is in

stark contrast to the almost completely localized charge

distribution that was calculated from ENDOR spectroscopic

studies of P700 (Kass et al., 2001, 1998; Webber and Lubitz,

2001).

Within the context of the above interpretation, that the

1637 cm�1 band is due to a strongly H-bonded 131 keto

C¼O mode PA, it is further concluded that a difference band

at 1698(�)/1718(1) cm�1 is due solely to the free 131 keto

C¼Omode PB. However, we have found that the 1698 cm
�1

band splits when the PA axial histidine ligand (His-A676 in

C. reinhardtii) is mutated to serine (Hastings et al., 2001).

That is, a band that is proposed to be due to 131 keto C¼O

mode PB is greatly altered when a mutation is performed near

PA. To explain the splitting of the 1698 cm
�1 band observed

upon mutation of the PA axial histidine ligand, we suggested

that both 131 keto C¼Omodes of the Chls of P700 contribute

to the negative difference band near 1698 cm�1, and shift in

different directions upon cation formation (Hastings et al.,

2001). The oppositely directed shifts possibly being related

to changes in H-bond strength of the 131 keto C¼O group of

PA upon cation formation. With this later interpretation it was

also possible to explain the presence of a positive difference

band near 1686 cm�1 that had hitherto been ignored.

Importantly, if the 1637 cm�1 difference band is due to

a strongly H-bonded 131 keto C¼O mode of PA then this

difference band should downshift in spectra obtained using

uniformly 2H labeled PS I particles. Below we will show that

this is not observed.

Recently, Witt et al. (2002) have suggested that a differ-

ence band at;1634(�) cm�1 upshifted to;1672 cm�1 upon

mutation of Thr-A739 (Thr-A743 in S. 6803) to valine,

tyrosine, or histidine in PS I particles from C. reinhardtii
(strain CC2696). This observation was interpreted to indicate

that the H-bond to the 131 keto C¼O mode of PA is removed

in all the different Thr-A739 mutants. Several further

observations complicate this interpretation, however. First,

a frequency of;1672 cm�1 is very low for a presumably free

keto C¼O mode. Second, no evidence was provided to rule

out the possibility that the observed mutation induced

changes in the FTIR DS were not a result of reorientation

of the peptide backbone. Given the bonding geometry of Thr-

A739, removal of this amino acid could impart significant

steric freedom to PA, as well as the immediate protein en-

vironment (see Fig. 2). Very recently, we have provided

further evidence that suggests that the interpretation proposed

by Witt et al. cannot be correct (Wang et al., 2003).

Given the current ambiguities in the precise nature of

(P7001-P700) FTIR DS, and in particular, concerning both

the frequency and multiplicity of the ester and keto C¼O

modes of P700, we are embarking on a strategy that involves

obtaining FTIR DS using isotopically labeled PS I particles

and site directed mutants. As a first step in this approach,

here we describe (P7001-P700) FTIR DS obtained using PS

I particles from S. 6803 were obtained from cells grown in

D2O or uniformly 15N labeled media. We also present

spectra for PS I particles that have been extensively washed

and incubated in D2O.

MATERIALS AND METHODS

Detergent-isolated PS I particles from S. 6803 were prepared as described

previously (Hastings et al., 1995a, 2001, 1995b). For all FTIR experiments,

PS I particles were pelleted and placed between a pair of CaF2 windows. No

mediators were added to the pellet. All experiments described here were

performed at room temperature (RT). FTIR spectra were recorded using

a Bruker IFS/66 FTIR spectrometer. Sixty-four spectra were collected before

and during light excitation from a helium-neon laser. Several spectra were

also collected after illumination. The spectra collected before illumination

were ratioed directly against the spectra collected during or after

illumination. Thus, the absorption spectra collected represent true difference

spectra. The dark-light-dark cycle was repeated 200–400 times and all

spectra were averaged.

For D2O exchange experiments, PS I samples in H2O buffer were pelleted

and resuspended in otherwise identical D2O buffer. These samples were then

pelleted using ultracentrifugation and resuspended again in ;10 vol D2O

buffer. The mixture was then refrigerated at 48C for between 1 h and up to 30

days in the dark. The extent of 2H exchange was monitored via the intensity

of the amide II absorption band (see below). The amide II absorption band

was virtually unchanged after the first day of incubation, and the PS I

particles were still fully active after 30 days of incubation (as judged by the

intensity of the bands in the FTIR DS). Finally, the mixture incubated in D2O

was pelleted and used immediately.

Cells from S. 6803 that could grow in 87% D2O were prepared as

described previously (Zybailov et al., 2000). PS I particles from the cells

grown in D2O were prepared using normal H2O based buffers, as described

(Zybailov et al., 2000). We show below that the use of H2O buffers for

sample preparation is unlikely to lead to any proton exchange. The extent of
2H incorporation into PS I was assessed by comparing the intensity of the

amide II absorbance band for 1H and 2H labeled PS I samples (see below). In

the following we will refer to the PS I samples obtained from cells grown

in H2O/D2O as 1H/2H labeled PS I samples. We will also refer to the

corresponding spectra as 1H/2H FTIR DS.

Curve fitting was performed using the software package OPUS, supplied

by Bruker Instruments (Billerica, MA), as described (Yang et al., 2002). The
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FTIR DS were resolved into sums of combined Lorentzian and Gaussian

component bands (plus a baseline) by means of a curve fitting algorithm that

utilizes a Levenberg-Marquardt iteration procedure. The goodness of fit is

quantified by an root mean-square (RMS) noise parameter. The smaller the

RMS noise parameter the better the fit, or more accurately, the closer the

fitted curve matches the data. This is important since it is not possible to

visually inspect and judge how well the fitted curves match the data. For the
1H/2H data, the RMS error is 3.384 3 10�4/3.44 3 10�4.

Simulations and figures for presentation from the PS I crystal structure

(PDB file accession number IJB0) were performed using Swiss PdbViewer,

v3.7b2 (http://www.expasy.ch/spdbv; Geux and Peitsch, 1997).

RESULTS

Fig. 3 shows typical IR absorption spectra obtained using PS

I particles from S. 6803, under various sets of conditions. In

Fig. 3 A the spectrum for 1H labeled PS I samples is shown. It

is also shown dotted in B–D. The band at 1654 cm�1 is due to

amide I and water absorption. The shape of the 1654 cm�1

band therefore varies slightly with the water content of the

sample. Fig. 3 B shows IR absorption spectra for PS I samples

that have been incubated in H2O and D2O. These spectra

have been considered in detail previously (Sivakumar et al.,

2003), as have the corresponding light induced (P7001-

P700) FTIR DS. The inset in Fig. 3 shows the two spectra in

B on an extended frequency scale, between 4000 and 1400

cm�1. The bands in this region allow an estimation of the

hydration state of the samples studied because the bands at

;2500/3300 cm�1 are due to D2O/H2O (amide A also

contributes to the ;3300 cm�1 band). In measurements in

our lab, we rarely use dehydrated samples. Thus we avoid

any complications from spurious absorptions that could

occur upon protein dehydration. In all measurements

reported here, the absorption bands associated with D2O/

H2O (;2500/3300 cm�1) are well beyond 2.0 in absorbance

units. The band near 3300 cm�1 in the inset is actually

saturated, as it increases in intensity as the sample is

dehydrated (data not shown). The actual absorbance of the

3300 cm�1 band shown in the inset is above 3.0 in

absorbance units. In comparison to the hydrated sample

conditions used here, the PS I samples used in the work

reported by Kim et al. (2001) were almost completely

dehydrated, as evidenced by the fact that the amide I

absorption band in these samples was considerably more

intense than either the D2O or H2O absorption bands at

;2500 or ;3300 cm�1. The use of dehydrated samples

could possibly explain why the (P7001-P700) FTIR DS

reported by Kim et al. do not closely resemble previously

published (P7001-P700) FTIR DS (Breton, 2001; Breton

et al., 1999, 2002; Hastings et al., 2001).

Fig. 3 D shows IR absorption spectra obtained using PS I

particles that were obtained from cells grown in unlabeled

media (14N), and in media containing 15N labeled nitrate.

Upon 15N labeling of the PS I particles the whole of the amide

II absorption band downshifts from 1547 to 1532 cm�1.

Since the whole of the amide II absorption band shifts we

conclude that 15N has been incorporated into PS I at near

the 100% level. The light induced (P7001-P700) FTIRDS, in

the 1770–1600 cm�1 spectral region, corresponding to the

spectra in Fig. 3 D, are shown in Fig. 4. Direct subtraction

of the 14N FTIR DS from the 15N FTIR DS results in the

(14N-15N), isotope edited, FTIR double difference spectrum

(DDS), which is also shown in Fig. 4. Clearly, uniform 15N

labeling of PS I does not greatly modify the (P7001-P700)

FTIR DS.

Fig. 3 C shows IR absorption spectra obtained using PS I

particles that were obtained from cells grown in H2O, and

87% D2O. The corresponding light induced (P7001-P700)

FTIR DS, in the 1770–1600 cm�1 spectral region, are shown

in Fig. 5. Direct subtraction of the 2H spectrum from the 1H

spectrum results in the (1H-2H) isotope edited FTIR DDS,

FIGURE 3 Infrared absorption spectra for the different PS I samples from

S. 6803. (A) PS I samples incubated in H2O buffer. This spectrum is also

shown (dotted) in B–D. (B) PS I samples that have been extensively washed

and incubated in D2O buffer. (C) PS I samples, prepared in H2O buffers but

obtained from cells grown in D2O. (D) PS I samples obtained from cells

grown in 15N labeled media. (Inset) Infrared absorption spectra in the 4000–

1350 cm�1 region, for 1H (dotted) and 2H incubated (solid) PS I samples.

These spectra are the same as the ones shown in B.
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which is also shown in Fig. 5. In Fig. 3 C, the amide II

absorption band for 2H labeled PS I samples is greatly

diminished, compared to the spectrum for 1H labeled

samples. From a comparison of the area under the amide II

absorption bands in Fig. 3 C we conclude that growth of S.
6803 in 87%D2O results in;87% 2H incorporation into PS I.

FTIR DS in the 1720–1670 cm�1 region are complex. To

better resolve the component bands underlying the difference

bands we have applied curve fitting procedures to the 1H and

2H labeled FTIR DS in Fig. 5. The component bands derived

from curve fitting, as well as the resultant fit to the spectra are

shown in Fig. 6. The resulting curve fit parameters are

summarized in Table 2.

Recently it has been suggested that SH modes associated

with a cysteine residue contribute to (P7001-P700) FTIR DS

near 2560 cm�1 (Kim et al., 2001). To verify this result we

collected (P7001-P700) FTIR DS, using 1H labeled PS I

samples, in the 7000–1000 cm�1 spectral region. This FTIR

DS is shown in Fig. 7. In addition to the broad absorption

band centered near 3100 cm�1 we also observe a second

broad band at ;5200 cm�1. The origin of these broad

difference bands is under investigation, and will not be

discussed here. The inset in Fig. 7 shows an expanded view

of the spectra in the 2580–2530 cm�1 spectral region. The

noise level in the experiment is also shown in the inset.

Clearly, we do not observe a difference band in this region

that is significantly greater than the noise level. The length of

FIGURE 4 Light induced (P7001-P700) FTIR DS in the 1770–1600

cm�1 spectral region, obtained using PS I particles that have been grown in
14N (solid) and 15N (dotted) labeled media. The (14N-15N) FTIR DDS is also

shown.

FIGURE 5 Light induced (P7001-P700) FTIR DS in the 1770–1600

cm�1 spectral region, obtained using PS I particles that have been grown in

H2O (solid) and D2O (dotted). The difference between the two spectra is also

shown ((1H-2H) double difference spectrum).

FIGURE 6 Results obtained from curve fitting the 2H (top) and 1H

(middle) FTIR DS in the 1728–1674 cm�1 region. In the top and middle, the

resultant fit is the thick line, and overlaps the experimental data. The four

component bands of interest are shown as dotted lines in each spectrum.

Other component bands on the periphery are shown as thin solid lines. The

frequency and bandwidth of the four component bands discussed here are

presented in bold text in Table 2. The experimental (1H-2H) FTIR DDS

shown (dotted) is taken from Fig. 4. The (1H-2H) FTIR DDS derived from

subtracting the sum of the four component difference bands for the 2H

labeled PS I spectrum from the sum of the four difference bands of the 1H

labeled PS I spectrum is shown also (solid).
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the solid double arrow in the inset in Fig. 7 represents the

amplitude of the difference band observed near 2560 cm�1

by Kim et al. (2001). Between ;3100 and 3600 cm�1 the

sample absorbance is considerably greater than 1.5 absor-

bance units (Fig. 3, inset). This explains the increased noise

in the experimental data in this spectral region.

DISCUSSION

In all FTIR DS discussed in this article, no mediators were

added to accept electrons from the iron sulfur clusters.

Identical DS were observed when ferricyanide/ferrocyanide

was used to accept electrons from the iron sulfur clusters

(data not shown). This indicates that the FTIR DS shown

here do not contain contributions from reduced iron sulfur

clusters, and that all the bands are due to perturbations

resulting because of P7001 formation.

For the cells from S. 6803 grown in 87% D2O, PS I

particles were prepared using H2O buffers. It could therefore

be possible that some 2H to 1H exchange has occurred for the

samples that we call 2H labeled. Two pieces of evidence

argue against this, however. First, we have found that ex-

changeable protons do not modify the (P7001-P700) FTIR

DS (Sivakumar et al., 2003). Second, the amide II absorption

bands in Fig. 3 C indicate close to 87% 2H incorporation into

PS I. From this observation we conclude that the use of 1H2O

based buffers do not lead to decreased levels of 2H incorp-

orated into PS I.

The PS I particles from S. 6803 used by Kim et al. (Kim

and Barry, 2000; Kim et al., 2001) appear to be quite different

from those studied by us, and others. First, the intense dif-

ference band at 1639(�)/1655 cm�1 in Fig. 5 (1H spectrum)

is diminished considerably in the spectra reported in Kim

et al. (2001). The ratio of the peak/peak intensity of the

1698(�)/1718(1) and 1639(�)/1654 cm�1 difference bands

in Fig. 5 is ;1.8. In contrast, Kim et al. (2001) observe an

intensity ratio of ;3.8. Second, at room temperature, the

shape and intensity of the broad positive band observed in the

5000–2000 cm�1 region (Fig. 7) is very different from that

observed in Kim et al. (2001). At 80 K, the shape and

intensity of the broad band observed by Kim et al. is also

considerably different from that reported previously at 90 K

(Breton et al., 1999). Third, Kim et al. observe a difference

band at 2560(�)/2551(1) cm�1, which they associate with

an SH vibrational mode of a cysteine residue. This difference

band is observed to increase in intensity as the temperature is

lowered, and is affected by 1H to 2H exchange (Kim et al.,

2001). We do not observe such a difference band at room

temperature (Fig. 7, inset) or 77 K (G. Hastings, unpub-

lished), and no such band was observed in spectra collected

at 90 K (Breton et al., 1999). The origin of the above discre-

pancies are unresolved but it appears likely that the PS I parti-

cles from S. 6803 used by us, and others (Breton, 2001; Breton
et al., 1999, 2002), are different from those used by Kim et al.

(2001), at least in terms of the (P7001-P700) FTIR DS.

The 1770–1725 and 1725–1670 cm�1 spectral regions are

referred to as the ester and keto C¼O regions, respectively.

Here we will consider both regions separately.

The ester C5O region

For isolated Chl-a in THF, the 133 and 173 ester C¼Os

absorb between 1735 and 1745 cm�1 (Katz et al., 1966,

1978; Nabedryk et al., 1990). From (Chl-a1-Chl-a) electro-
chemically induced FTIR DS (Chl-a dissolved in THF), the

133 ester C¼O was observed to absorb near 1742 cm�1 and

upshift 12 cm�1 upon cation formation (Nabedryk et al.,

1990). Although of very low intensity, a difference band at

1749(1)/1737(�) cm�1 was associated with the 173 ester

C¼O in these (Chl-a1-Chl-a) FTIR DS (Nabedryk et al.,

1990). Based on these studies it was suggested that the

1754(1)/1748(�) and 1742(1)/1735(�) cm�1 difference

bands (Fig. 5) are due to a 6–7 cm�1 cation induced upshift of

the 133 ester C¼Os of PB and PA, respectively. Since the

difference band assigned to the 133 ester C¼O of PA absorbs

at lower frequency, it was suggested that it could be hydrogen

bonded. The 2.5-Å crystal structure (Fromme et al., 2001;

Jordan et al., 2001) indicates that it is the oxygen adjacent to

the 133 ester C¼O that could be H-bonded (Fig. 2). The fact

that 133 ester C¼O modes of both Chls of P700 are

observable in the FTIR DS could indicate significant charge

over both PA and PB in the P7001 state. Although unlikely,

we cannot entirely rule out the possibility that it is the charge

on PB that perturbs the 133 ester C¼O of PA. In addition, we

cannot rule out the possibility that the 133 ester C¼O of PA
becomes observable in the FTIR DS due to a cation induced

FIGURE 7 Light induced (P7001-P700) FTIR DS in the 7000–1000

cm�1 spectral region, obtained using PS I particles that have been incubated

in H2O. (Inset) Expansion of the 2580–2530 cm�1 spectral region. The thin

solid line is a dark-dark difference spectrum that gives a measure of the noise

level in the experiment. The arrowed line in the inset gives an estimate of the

peak/peak intensity of the difference band observed at 2560(�)/2551(1)

cm�1 by Kim et al. (2001).
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conformational change in the vicinity of the 133 ester C¼O of

PA. For example, the ester oxygen could be H-bonded to

the side chain of Thr-A743 in the ground state (Fig. 2). This

H-bond is broken or otherwise modulated upon cation

formation, perhaps because the hydroxyl group of Thr-A743

flips to form an H-bond with the 131 keto C¼O of PA (see

below). Notice that this later mechanism does not depend on

charge delocalization over PA and PB. For this later

mechanism the charge could be predominantly localized on

PB. This mechanism therefore could agree with the results

from ENDOR studies of PS I, which indicate that the

majority of the charge ([85%) is located on PB in the P7001

state (Kass et al., 2001; Webber and Lubitz, 2001). This

mechanism could also be in good agreement with the

crystallographic data (Fig. 2; Fromme et al., 2001; Jordan

et al., 2001).

The 133 ester C¼O modes of P700 and P7001 are

unaltered upon incubation of PS I particles in D2O

(Sivakumar et al., 2003), indicating that H2O-19 (Fig. 2) is

not exchangeable. The 133 ester C¼O modes of P700 and

P7001 are also little affected by uniform 15N labeling of PS I

(Fig. 4), indicating that the 133 ester C¼O modes are

uncoupled from the pyrrole nitrogens of PA and PB. The 13
3

ester C¼O modes are significantly perturbed upon uniform
2H labeling of PS I, however. The 1754(1)/1748(�) cm�1

difference band downshifts ;2.8(1)/3.5(�) cm�1 upon 2H

labeling, whereas the 1742(1)/1735(�) cm�1 difference

band downshifts ;4.1(1)/4.3(�) cm�1 upon 2H labeling.

The weak difference band at 1730(1)/1726(�) cm�1 appears

to downshift ;3.6(1)/4.0(�) cm�1 upon 2H labeling (see

Table 1). These band shifts are best discussed within the

context of the (1H-2H) FTIR DDS in Fig. 5. When a complete

difference band is shifted upon labeling, and the magnitude

of the shift is less than the width of the difference band, then

a second derivative type feature is expected in the isotope

edited FTIR DDS. If the shift is greater than the width of the

difference band then four features are expected in the FTIR

DDS. The nature of the positive and negative features in the

FTIR DDS depends on the direction of the difference band

shifts. Thus the 2H induced downshift of the 1754(1)/

1748(�) cm�1 difference band (\4 cm�1) gives rise to the

1755(1)/1749(�)/1743(1) cm�1 second derivative feature

in the (1H-2H) FTIR DDS. Similarly, the 1742(1)/1735(�)

cm�1 difference band downshifts ([4 cm�1) upon uniform
2H labeling. This downshifting difference band gives rise to

the 1743(1)/1736(�)/1730(1) cm�1 second derivative

feature in the (1H-2H) FTIR DDS. The 1743(1) cm�1 band

in the (1H-2H) FTIR DDS is overlapped and due to features

associated with both 133 ester C¼Os of P700. This

assignment of the 1743(1) cm�1 band in the (1H-2H)

spectrum is appropriate since the 1743(1) cm�1 band is

broader and slightly more intense than the 1755(1) cm�1

band in the (1H-2H) FTIR DDS.

The 2H induced frequency shifts of the 133 ester C¼O

modes of PA and PB differ by 0.8–1.3 cm
�1, with the mode of

PB downshifting less than the corresponding mode of PA.

This difference is likely due to the fact that the oxygen

adjacent to the 133 ester C¼O of PA is involved in H-bond

network (Fig. 2), and that no corresponding H-bond pattern is

observed for PB.

Caution should be exercised when comparing (P7001-

P700) FTIR DS collected at RT and 90 K, since only ;40%

of PS I particles are involved in reversible ET at 90 K

(Schlodder et al., 1998). However, from (1H-2H) FTIR DDS

collected at 90 K, the clearest observation is that a band at

;1754(1)/1749(�) cm�1 (probably due to the 133 ester

C¼O of PB) downshifts ;5/7 cm�1 upon uniform 2H

labeling (Breton et al., 1999), which is significantly greater

than our observations at RT.

The mechanism underlying the 2H induced difference

band downshifts of the 133 ester C¼Omodes of PA and PB is

not entirely clear. One possibility is that the downshift is due

to 2H labeling of the 134 methyl hydrogens. However, in PS I

from S. 6803 at 264 K, the 1754(1)/1748(�) and 1742(1)/

1735(�) cm�1 difference have been reported to downshifted

by ;1/3 and ;2/2 cm�1 upon specific 134 methyl deu-

teration (Kim and Barry, 2000). Therefore, effects other than

134 methyl deuteration must also contribute to the downshift-

ing 133 ester C¼O modes of PA and PB.

In Fig. 5, a low intensity difference band at 1730(1)/

1726(�) cm�1 is also downshifted by ;5 cm�1 upon 2H

labeling. The 1726(�) cm�1 feature in the (1H-2H) spectrum

is likely associated with the 2H induced shift of this

difference band. The origin of the 1730(1)/1726(�) cm�1

difference band in the 1H FTIR DS is unclear. It could be

associated with another 133 ester C¼O mode, or it could be

associated with the 173 ester C¼Omode. One point of note is

that the 173 ester C¼O difference band in (Chl-a1-Chl-a)
FTIR DS is extremely weak (Nabedryk et al., 1990).

However, as discussed above, a cation induced conforma-

tional change in PA could alter the 173 ester C¼O, making it

observable in (P7001-P700) FTIR DS. Pertinent to this idea

is that the 173 ester C¼O is coupled to the H-bond network

involving H2O-19, via Ser-A607 and/or Tyr-A735 (Fromme

et al., 2001; Jordan et al., 2001). If the 1730(1)/1726(�)

cm�1 difference band is associated with the 173 ester C¼O of

TABLE 1 Peak positions and assignments of difference

bands associated with the 133 ester C5O modes in the
1H and 2H FTIR DS in Fig. 5

133 ester C¼O modes of P700/P7001

D2O H2O

2H induced

downshift Assignment

1751.1(1) 1753.9(1) 2.8 P1
B

1744.5(�) 1748.0(�) 3.5 PB
1737.4(1) 1741.5(1) 4.1 P1

A

1730.8(�) 1735.1(�) 4.3 PA
1729.8(1) ;1724.5(1) 5.3 P1

A

1726.2(�) ;1721.7(�) 4.5 PA
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PA then the conclusion is that the H-bond network (Fig. 2)

is modified upon cation formation. In addition, with the

above assignments, there is no need to invoke any kind of

ester C¼O mode frequency heterogeneity to explain the

difference and double difference spectra in Fig. 5. Previously,

it was suggested that there are at least four distinguishable

133 ester C¼O modes (Kim et al., 2001). However, our

uniform 2H labeling experiments provide no evidence to

support this, and we conclude that there is no heterogeneity

in the frequencies of the ester C¼O modes of P700. The

previous claim of four distinct 133 ester C¼Omodes from the

two Chls of P700 probably arose from the fact that each

derivative feature in the FTIR DDS was assigned to a distinct

ester C¼O mode. However, as we showed above, a shift of

a complete difference band results in at least a second

derivative feature (not a first derivative feature) in FTIR

DDS.

The 131 keto C5O region

For 1H labeled PS I particles from S. 6803, difference band
features are observed at 1718(1), 1698(�), 1686(1),

1655(1), and 1639(�) cm�1. A shoulder is also observed

at;1707 cm�1, and weak features at 1677(�), 1673(1), and

1667(�) cm�1. As outlined above, there are two opposing

interpretations of the observed bands in (P7001-P700) FTIR

DS. 1), The 1698(�)/1718 and 1639(�)/1655(1) cm�1

difference bands are due to 131 keto C¼O modes of PB and

PA, respectively (Breton et al., 1999). It was also previously

suggested that the whole of the 1698(�)/1718 cm�1

difference band is due to a pure C¼O mode (Nabedryk

et al., 1990; Tavitian et al., 1988). Within this interpretation

of (P7001-P700) FTIR DS, the 1686(1) cm�1 band was

unassigned (Breton et al., 1999). 2), The 131 keto C¼O

modes of both PB and PA contribute to the 1698(�) cm�1

band (Hastings et al., 2001), and these modes of PB/PA
upshift/downshift to 1718/1686 cm�1, respectively, upon

cation formation. The cation induced downshifting 131 keto

C¼O mode of PA was attributed to a strengthening of the H-

bond (decrease in H-bond length) from Thr-A743 (Fig. 2).

The flipping of the H-bonding hydroxyl side chain of Thr-

A743 between the ester oxygen and the 131 keto C¼O,

suggested above, is also consistent with a cation induced

downshifting 131 keto C¼O mode of PA. In any case, the

cation induced downshifting of 131 keto C¼O mode of PA is

consistent with the idea that the H-bond network is modified

upon cation formation. In addition to the above, we also

suggested that the 1639(�)/1655(1) cm�1 difference band

was assigned to modes associated with both of the histidines

that provide axial ligands to PA and PB (His-B660 and His-

A680). More specifically, the 1639(�)/1655(1) cm�1

difference band is due to (mixed) (Hasegawa et al., 2000)

C¼C modes of the imidazole side chain of the ligating

histidines (Hastings et al., 2001).

Comparison of ester and keto C5O mode
band shifts upon deuteration of PS I

Upon 2H labeling the 1718(1)/1698(�)/1686(1) cm�1 dif-

ference bands downshift 3.0/2.3/1.7 cm�1, respectively. The

shoulder at 1707 cm�1 also downshifts ;3 cm�1 upon

deuteration. On average, these shifts are less than the 2H

induced downshifts observed for the 133 ester C¼O modes

(Table 1). For deuterated Chl-a in THF, the 133 ester/131 keto
C¼O absorption bands were observed to downshift 5/3 cm�1

upon deuteration, respectively (Breton et al., 1999). That is,

the ester C¼Omode displays a greater 2H induced downshift

than the 131 keto C¼O mode. Based on this observation for

deuterated Chl-a, we assign the bands discussed in Table 2 to
131 keto C¼O modes of the Chls of P700. If some of these

features were associated with 133 ester C¼O modes, the 2H

induced downshifts would be[3 cm�1.

The smaller 2H induced shifts of the keto C¼O modes,

compared to the ester C¼O modes, also follows from the

DDS in Fig. 5. From the 1H FTIR DS, the 1718(1)/1698(�)

cm�1 difference band is about a factor of 5 more intense than

the 1754(1)/1748(�) cm�1 difference band. However, the

intensity of the features in the DDS between 1720 and 1670

cm�1 are less than a factor of two larger than the features

above 1720 cm�1. This observation indicates that the bands

in the 1720–1670 cm�1 region undergo reduced 2H induced

band shifts relative to the bands above 1720 cm�1.

The 131 keto C5O modes of both PA and PB

contribute to the 1698(2) cm21 difference band

In the 1720–1670 cm�1 region the pattern of bands in the

(1H-2H) FTIR DDS in Fig. 5 is somewhat similar to that

reported previously for PS I particles from S. 6803 at 90 K

(Breton et al., 1999), although the (1H-2H) FTIR DS at 90 K

were never interpreted. From (P7001-P700) FTIR DS from

S. 6803 at 90 K, it is suggested that the 1698(�) cm�1

TABLE 2 Curve fit parameters used to describe the 1H and
2H FTIR DS in Fig. 6

131 keto C¼O modes of P700/P7001 (from curve fitting)

D2O H2O 2H induced

downshiftPeak Width Peak Width

1672.0 8.8

1681.1 8.5 1679.4 7.3

1686.0(+) 9.2 1686.2(+) 8.2 0.2
1693.1(�) 9.2 1695.4(�) 8.4 2.3
1697.0(�) 7.0 1698.4(�) 8.9 1.4
1715.2(+) 9.9 1717.1(+) 9.1 1.9
1724.5 6.6 1728.5 6.6

The four bands shown dotted in Fig. 5 are the ones of interest. The

parameters for these four bands are shown in bold text in the table. Further

bands were included in the fit to simulate changes outside the region of

interest, but are of little significance in this level of analysis. Fitting

procedures used have been described (Yang et al., 2002).
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difference band is due to the 131 keto C¼Omode of PB, which

upshifts to 1716 cm�1 upon cation formation. However, since

several features associated with 131 keto C¼Omodes appear

between 1720 and 1670 cm�1 in the FTIR DDS in Fig. 5, this

interpretation is incomplete and, as we suggested previously

(Hastings et al., 2001), at least two species must contribute to

the 1698(�) cm�1 difference band.

To better resolve the underlying component bands in the
1H and 2H FTIR DS, we have fit the spectra to a sum of

component bands using a curve fitting procedure based on the

Marquardt algorithm (the curve fitting procedures employed

here have been described; Hastings et al., 2001; Yang et al.,

2002). Fig. 6 shows the results of curve fitting the 1H and 2H

FTIR DS in the 1728–1678 cm�1 region. In the curve fitting

analysis the;1698(�) cm�1 band consists of two underlying

components; one downshifts the other upshifts upon P7001

formation. We are primarily interested in these four com-

ponent bands. However, further components on the periph-

ery of the fitted frequency range have been included to

simulate changes occurring outside this region of interest.

The parameters derived from this curve fitting are outlined in

Table 2. From Table 2 it appears that all bands in the keto

C¼O region (except the 1686 cm�1 band) downshift 1.4–2.3

cm�1 upon deuteration. In Fig. 6, the (1H-2H) FTIR DDS

constructed using only the four component bands (two

difference bands) in each of the 1H and 2H FTIR DS is shown

(dotted, bottom). Notice that the 1711(�)/1706(1)/1700(�)

cm�1 feature is reproduced in our constructed (1H-2H) FTIR

DDS. Importantly, the 1711(�)/1706(1)/1700(�) cm�1

feature, along with the 1691(1)/1682(�) cm�1 feature, in

the experimental (1H-2H) FTIR DDS, cannot be reproduced

if the 1698 cm�1 difference band (1H FTIR DS) is due to

a single species. The model presented here is the simplest

possible that can provide an explanation for the (1H-2H)

FTIRDS in the 1730–1670 cm�1 region. So we conclude that

in PS I from S. 6803, the 1698(�) cm�1 difference band is

a composite of at least two underlying bands (at 1695 and

1698 cm�1 in the 1H FTIR DS; see Table 2) that shift in

opposite directions upon cation formation. Most likely the

1698 cm�1 component band upshifts to 1717 cm�1, whereas

the 1695 cm�1 component band downshifts to 1686 cm�1,

upon cation formation (Table 2).

In summary, a difference band near 1693(�) cm�1

downshifts 2.3 cm�1 upon deuteration (see Table 2). This

gives rise to the 1695(1) cm�1 feature in the (1H-2H) FTIR

DDS. This 2H induced downshift probably also contributes

partly to the 1701(�) cm�1 feature in the (1H-2H) FTIR

DDS. In addition, a band at 1686(1) cm�1 downshifts

slightly upon deuteration, giving rise to the 1682(�) cm�1

band in the FTIRDDS and partly contributing to the 1692(1)

cm�1 band in the FTIR DDS. Finally, a positive difference

band near 1717(1) cm�1 downshifts upon deuteration,

giving rise to the 1719(1) and 1711(�) cm�1 features in the

(1H-2H) FTIR DDS. The 1707(1)/1701(�) cm�1 feature in

the (1H-2H) FTIR DDS is due in part at least to the

differential shifting of the 1695(�) and 1698(�) cm�1 bands

(by 2.3 and 1.4 cm�1) upon deuteration. The magnitude of

the 2H induced frequency downshift of the two bands that

underlie the 1698 cm�1 band (2.3/1.4 cm�1; see Table 2) are

consistent with both bands being associated with 131 keto

C¼O modes. The fact that the 1698/1695 cm�1 bands (1H

FTIR DS) shift in opposite directions upon cation formation

could be related to the fact that the H-bond network is

modified upon cation formation, as discussed above. That is,

it is possible that the 131 keto C¼O of PA is not H-bonded in

the ground state, but it is upon cation formation.

The 2H induced downshift of the two bands that underlie

the 1698 cm�1 band could be consistent with the idea that one

of the component bands is associated with a protein mode.

For PS I, the amide I absorption band shifts ;2 cm�1 upon
2H incorporation (Rath et al., 1998). However, the changes in

amide I generally give rise to features well below 1698 cm�1.

In addition, protein modes generally give rise to features in

FTIR DS that are significantly less intense than bands

associated with C¼O modes of the Chls. Given the large

intensity of the component bands, underlying the 1698 cm�1

band, it is therefore unlikely that part of the 1698(�) cm�1

band is associated with a protein mode. In addition, if part of

the 1698 cm�1 band (1H spectrum) were due to a protein

mode, then larger changes would be expected in the

(14N-15N) DDS in Fig. 4, as amide I bands display a 15N

induced downshift of ;3 cm�1 (Breton et al., 1999), due to

coupling of the C¼O and CN modes (amide I absorption in

proteins consists of contributions from the peptide C¼O

(;80%) and C-N groups (;20%)). Given the intensity of the

bands in the (14N-15N) DDS, we have estimated that the

component bands, underlying the 1698 cm�1 band, must

shift less than 0.2 cm�1 upon 15N labeling.

It is also unlikely that one of the component bands

underlying the 1698 cm�1 band is due to an amino acid side-

chain mode. Protonated carboxylic acid C¼O modes usually

absorb well above 1700 cm�1. Even if a protonated

carboxylic acid C¼O mode did absorb near 1700 cm�1,

there are no such amino acids near P700 (Fromme et al.,

2001; Jordan et al., 2001). In addition, 2H labeling results in

a 10–15 cm�1 downshift of carboxylic acid C¼O modes

(Siebert et al., 1982). Side-chain C¼O modes of glutamine

and asparagine could occur near 1700 cm�1 (Barth, 2000);

however, again there is no evidence from the crystal structure

to support this. Therefore, the weight of experimental

evidence strongly supports the idea that the two component

bands underlying the 1698 cm�1 band in (P7001-P700)

FTIR DS are due to 131 keto C¼Os of both PA and PB.

Can the 131 keto C5O mode of PA contribute
to the 1639(2)/1655(1) difference band?

Given the above assignment, the question as to the origin of

the 1639(�)/1655(1) cm�1 difference band arises. If the

1639(�)/1655(1) cm�1 difference band is due to the 131
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keto C¼O of PA that it is strongly H-bonded (Breton et al.,

1999), then this band is expected to downshift upon 2H

labeling. The precise downshift will depend on the strength

of the H-bond and the extent of coupling between the OH and

C¼O modes. OH and C¼O modes have very different

frequencies, so the coupling is expected to be small. Upon

deuteration the OH mode is considerably lowered in fre-

quency, so significant changes in (the admittedly small) cou-

pling are expected upon deuteration. From 1-D normal mode

calculations (considering only force constants and masses;

see Fig. 8 B) and density functional calculations of simple

model molecules, we have found that a 2–3 cm�1 shift of the

131 keto C¼O mode upon deuteration of the Thr-A743

hydroxyl group appears reasonable, especially given the fact

that the H-bond must be very strong (G. Hastings, un-

published data). The situation encountered here (how C¼O

mode frequencies shift upon deuteration of coupled hydroxyl

groups) (Fig. 8 B) is somewhat similar to how deuteration

effects manifest themselves in carboxylic acids (Fig. 8 A). In
protonated carboxylic acids it is well known that the C¼O

mode downshifts 10–15 cm�1 upon deuteration of the

hydroxyl proton (Fig. 8 A) (Maeda et al., 1992; Nabedryk

et al., 1995; Rothschild, 1992). Finally, it could also be

possible that several of the O–O bond distances in Fig. 2

could change by 1–2% upon deuteration (Jeffrey, 1997). It is

not at all clear if this could impact the 131 keto C¼O mode,

leading to resolvable frequency up- or downshifts. In the

following we will make the (usual) assumption that

deuterium induced changes in bond lengths are negligible.

An ;2–3 cm�1 downshift of the complete 1639(�)/

1655(1) cm�1 difference band would result in a clear second

derivative feature in the (1H-2H) FTIR DDS. Upon 2H

labeling the 1639(�)/1655(1) cm�1 difference band in the
1H FTIR DS is modified, but a single intense difference band

is still observed at 1636(�)/1655(1) cm�1 in the 2H

spectrum (Fig. 5). These changes give rise to a single

derivative feature at 1650(1)/1642(�) cm�1 in the (1H-2H)

FTIR DDS. The lack of any clear second derivative features

in the (1H-2H) DDS indicates that the species responsible

for the 1639(�)/1655(1) cm�1 difference band in the 1H

spectrum does not downshift;2–3 cm�1 upon 2H labeling of

PS I. These observations therefore indicate that the 1639(�)/

1655(1) cm�1 difference band is likely not due to a strongly

H-bonded 131 keto C¼O mode of PA. The single derivative

feature at 1650(1)/1642(�) cm�1 in the (1H-2H) DDS

suggests the gain or loss of a single difference band upon 2H

labeling. It could also be due to 2H induced intensity change

of a whole difference band. The shape of the bands in the 1H

and 2H FTIR DS and the (1H-2H) DDS suggest the former

rather than the latter. The gain or loss of a difference band

upon labeling (rather than a difference band shift) suggests

that the 1650(1)/1642(�) cm�1 feature in the (1H-2H) DDS

is due to one or more protein modes. The frequency of the

feature is exactly in the region where one expects to observe

difference bands associated with amide I modes.

Do histidine modes contribute to the
1639(2)/1655(1) difference band?

If the 1650(1)/1642(�) cm�1 derivative feature in the

(1H-2H) DDS is due to protein modes then the origin of the

1636(�)/1655(1) cm�1 difference band in the 2H FTIR DS

still needs to be addressed. Previously, we suggested that the

1639(�)/1655(1) cm�1 difference band (in C. reinhardtii)
could be due to the C4¼C5 stretching modes of the imidazole

side chain of both of the histidine ligands (see Fig. 9 for

imidazole numbering) (Hastings et al., 2001). This sugges-

tion was partly based on the results from FTIR experiments

and density functional calculations on various protonated

forms of 4-methyl imidazoles, where it was shown that

doubly protonated imidazole (imidazolium) displays a very

intense absorption band at 1633 cm�1 (Hasegawa et al.,

2000). Clearly the imidazole ring of the P700 ligating

histidines is not doubly protonated (Fig. 9). However, the

suggestion was that imidazolium could be electronically

similar to imidazole that is ligated at N1 and protonated at N3

(Fig. 9). Support for this idea has come from quantum

chemical calculations of zinc-bound 4-methyl imidazoles,

where it has been shown that the C4¼C5 mode increases

considerably in frequency upon metal binding (Hasegawa

et al., 2002).

In the quantum chemical calculations of 4-methyl

imidazoles, it is found that the C4¼C5 mode is mixed with

NH modes of the imidazole side chain (Hasegawa et al.,

2000, 2002). Since there is a coupling of imidazole C¼C and

NH modes, one might expect small changes in the 1639(�)/

1655(1) cm�1 difference band upon 15N labeling. The

magnitude of the features in the (14N-15N) DDS in Fig. 4 do

indicate small 15N induced alterations in the 1639(�)/

1655(1) cm�1 difference band. These changes may be

consistent with the 1639(�)/1655(1) cm�1 difference band

being due to coupled C4¼C5/NH stretching modes of the

imidazole side chain of both of the histidine ligands.

However, it is not clear how to assign the bands in the

(14N-15N) FTIR DDS.

FIGURE 8 Comparison of deuteration effects expected on C¼Omodes of

(A) a carboxylic acid and (B) a C¼O mode H-bonded to a hydroxyl group.

k1. . .n represent the force constants between the various atoms.
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For coupled C4¼C5/NH imidazole modes one could also

expect considerable 2H induced band shifts: from quantum

chemical calculations of zinc-bound 4-methyl imidazole

protonated at N3, it has been shown that deuteration of the N3

proton leads to a considerable downshift in frequency (17

cm�1) of the C4¼C5 mode (Hasegawa et al., 2002). Fig. 9

shows that the N3 proton of the side-chain imidazoles of both

ligating histidines could be involved in H-bonding. So the

situation is slightly different from the molecular system

studied by (Hasegawa et al., 2002). Nevertheless, a downshift

in frequency of the C4¼C5 modes would still be expected

upon deuteration. On the basis of the 2H labeling experiments

(Fig. 5), and consideration of calculations performed using

zinc-bound methyl imidazoles as a test system (Hasegawa

et al., 2002), it would appear that the 1639(�)/1655(1) cm�1

difference band cannot be due to imidazole modes of the

histidine ligands. Thus, neither hypothesis as to the origin of

the 1639(�)/1655(1) cm�1 difference band can be easily

interpreted on the basis of the results presented here. One of

the problems may be that multiple protein modes contribute

to the spectra in the 1670–1630 cm�1 region. In the model

presented above we suggest significant alteration in the

H-bond network, which could result in multiple conforma-

tional changes of the protein backbone upon cation formation.

The H-bond network involves multiple hydrogen atoms, all

of which can be deuterated. This could lead to many changes

in the spectra upon 2H labeling, making interpretation very

difficult. However, as discussed above, it is unlikely that the

1639(�)/1655(1) cm�1 difference band is associated with

a strongly H-bonded C¼O mode of PA, since this mode can

be readily accommodated and interpreted as being associated

with part of the 1698 cm�1 difference band.

Very recently, Breton et al. (2002) have studied a series of

site directed mutants from S. 6803 in which the axial histidine
to PB has been changed to cysteine, glutamine, or leucine. In

these mutants the 1639(�)/1655(1) cm�1 band of wild-type

(WT) appears to be considerably modified. For the least

disruptive glutamine mutation the 1639(�)/1655(1) cm�1

band of WT is decreased in intensity by ;10%, and

considerably altered in shape. For the leucine mutant the

1639(�)/1655(1) cm�1 band of WT appears to increase

considerably in intensity (by ;20%). These observations

suggest significant modification of the protein backbone

upon mutation of the B-side axial histidine. Without (WT-

mutant) FTIR DDS it is impossible to unambiguously

distinguish between changes in the spectra that result from

the loss of histidine modes in the mutant, or from

modification of the protein environment due to the mutation.

Breton et al. (2002) also studied PS I particles from S. 6803 in
which only the histidines in the complex had been labeled

with 13C. However, no spectra in the 1660–1630 cm�1 region

were presented for these particles.

Further considerations concerning the origin
of the 1639(2)/1655(1) difference band?

If the 1639(�)/1655(1) cm�1 difference band of WT (in

S. 6803) is due to the 131 keto C¼O of PA that is strongly

H-bonded to Thr-A743, then removal of this H-bond should

cause a dramatic upshift of this difference band. We have

used FTIR DS to analyze a mutant from C. reinhardtii in
which Thr-A739 (Thr-A743 in S. elongatus) is changed to

alanine, and we find that the spectra cannot be consistently

interpreted if the 1639(�)/1655(1) cm�1 difference band of

WT is due to the 131 keto C¼O of PA (Wang et al., 2003). In

contrast, Witt et al. (2002) also produced FTIR DS for

mutants from C. reinhardtii in which Thr-A739 was mutated

to Y, H, or V. These authors, however, did come to the

conclusion that the 1639(�)/1655(1) cm�1 difference band

of WT is due to the 131 keto C¼O of PA. It is difficult to

analyze the origin of bands in the spectra of Witt et al.

because no (WT-mutant) FTIR DDS were considered. In

addition, as pointed out by Breton et al. (2002), these authors

did not consider how mutation induced changes in the pro-

tein would impact their FTIR DS, and therefore their conclu-

sion is premature. As mentioned above, we have analyzed

FIGURE 9 (Top/bottom) View of PA/PB showing the imidazole side

chains of His-A680/His-B660 and possible interactions of the imidazole

nitrogens. Figures were generated using Swiss PDBViewer and the

crystallographic coordinates of PS I at 2.5-Å resolution (PDB file accession

number IJB0).
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(P7001-P700) FTIR DS, obtained using a mutant from C.
reinhardtii in which Thr-A739 is changed to alanine, in great
detail, and we find that the spectra cannot be consistently

interpreted if the 1639(�)/1655(1) cm�1 difference band of

WT is due to the 131 keto C¼O of PA.

CONCLUSIONS

Several conclusions can be drawn from the data presented

here: 1), The 133 ester and 131 keto C¼O modes of PA and

PB are not heterogeneously distributed in frequency. 2),

Cysteine modes do not contribute to (P7001-P700) FTIRDS.

3), More than one species contributes to the;1698(�) cm�1

difference band in 1H FTIR DS for WT PS I. The most likely

conclusion is that it is the 131 keto C¼O modes of PA and PB
both contribute to the ;1698(�) cm�1 difference band. 4),

The 131 keto C¼O mode of PA does not contribute to the

1639(�) cm�1 difference band in WT 1H FTIR DS. 5), It is

not clear if histidine modes contribute to the 1639 cm�1

difference band in WT 1H FTIR DS.
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