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SUMMARY

Subtype-specific neurons obtained from adult hu-
mans will be critical to modeling neurodegenerative
diseases, such as amyotrophic lateral sclerosis
(ALS). Here, we show that adult human skin fibro-
blasts can be directly and efficiently converted into
highly pure motor neurons without passing through
an induced pluripotent stem cell stage. These adult
human induced motor neurons (hiMNs) exhibit the
cytological and electrophysiological features of spi-
nal motor neurons and form functional neuromus-
cular junctions (NMJs) with skeletal muscles. Impor-
tantly, hiMNs converted from ALS patient fibroblasts
show disease-specific degeneration manifested
through poor survival, soma shrinkage, hypoactivity,
and an inability to form NMJs. A chemical screen
revealed that the degenerative features of ALS hiMNs
can be remarkably rescued by the small molecule
kenpaullone. Taken together, our results define a
direct and efficient strategy to obtain disease-rele-
vant neuronal subtypes from adult human patients
and reveal their promising value in disease modeling
and drug identification.

INTRODUCTION

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s

disease, is a devastating adult-onset neurological disorder prev-

alent worldwide with no effective cure (Arbab et al., 2014; Glad-

man et al., 2012). ALS is characterized by progressive motor

neuron (MN) dysfunction and death; however, the mechanisms

leading to selective MN loss around the age of onset remain

poorly understood (Arbab et al., 2014; Robberecht and Philips,

2013). This is largely due to the lack of available patient-specific

MNs during disease progression (Arbab et al., 2014). Studies of

post-mortem tissues, as well as transgenic cellular and animal

models, have provided valuable insights into pathogenic ALS

phenotypes (Bruijn et al., 1998; Gurney et al., 1994; Hadzipasic

et al., 2014; Haidet-Phillips et al., 2011; Kiernan and Hudson,
C

1991; Qiu et al., 2014; Re et al., 2014; Spalloni et al., 2011;

Wada et al., 2012). Nonetheless, major discrepancies and con-

troversies exist in these models owing to genetic, anatomical,

and experimental variations (Bories et al., 2007; Delestrée

et al., 2014; Haidet-Phillips et al., 2011; Kuo et al., 2004; Leroy

et al., 2014; Re et al., 2014; Saxena et al., 2013). Unsurprisingly,

no therapeutic has succeeded in translation to the clinic (Glad-

man et al., 2012; Musarò, 2013).

Induced pluripotent stem cells (iPSCs) derived from human

skin fibroblasts and differentiated into spinal MNs are emerging

as a cellular model for investigating ALS (Chen et al., 2014;

Dimos et al., 2008; Kiskinis et al., 2014). This model utilizes

genetic mutation(s) naturally occurring in human patients and

thus avoids potential pitfalls associated with ectopic overex-

pression of mutant genes. New insights into the pathology of

ALS have been gained with this model (Chen et al., 2014;

Kiskinis et al., 2014); however, the generation of iPSCs and

their stepwise differentiation into MNs are lengthy and complex

processes accompanied by technical limitations due to iPSC

line variation and the heterogeneity of differentiated neurons

(Arbab et al., 2014). Furthermore, because iPSCs are reset to

an embryonic stage during reprogramming (Lapasset et al.,

2011; Miller et al., 2013; Rando and Chang, 2012), a major

difficulty with modeling ALS is the induction of an adult-

onset pathology using iPSC-derived fetal stage neurons (Arbab

et al., 2014).

Direct lineage reprogramming bypasses pluripotency and

converts fully differentiated somatic cells into functional neurons

(Pang et al., 2011; Vierbuchen et al., 2010; Yoo et al., 2011). This

technology is also capable of creating subtype-specific neurons,

such as dopaminergic neurons (Caiazzo et al., 2011), striatal me-

dium spiny neurons (Victor et al., 2014), nociceptive neurons

(Wainger et al., 2015), and cholinergic neurons (Liu et al., 2013;

Son et al., 2011). Despite limitations with reprogramming effi-

ciency and neuronal purity, directly converted subtype-specific

neurons are potentially more valuable to disease modeling and

drug identification for late-onset human neurological disorders

(Arbab et al., 2014). As a proof-of-concept study, we provide a

protocol for direct and highly efficient conversion of adult human

fibroblasts to functionally mature MNs with high purity. We

further reveal pathology of MNs derived from ALS patient fibro-

blasts with FUS mutations. Most importantly, a pilot drug screen
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identified a small molecule capable of rescuing key deficits in

these diseased MNs.

RESULTS

Rapid and Efficient Conversion of Adult Human
Fibroblasts to MNs
We previously demonstrated that postnatal and adult human

fibroblasts can be rapidly and efficiently converted to (human

induced) cholinergic neurons (hiCNs) through the synergistic

actions of extrinsic and intrinsic cues (Liu et al., 2013). Howev-

er, these hiCNs lack the expression of ISL1 and LHX3, two fac-

tors essential to the development of MNs (Thaler et al., 2002).

We then examined whether hiCNs can be further specified to a

bona fide MN fate. cDNAs encoding ISL1 and LHX3 were

subcloned into a polycistronic lentiviral vector for expression

at a 1:1 ratio, as this is essential for MN specification (Lee

et al., 2012). Primary fibroblasts (Table S1) from three normal

(NL) healthy adult humans (AG05811, 71 years, designated

NL1; AG07473, 50 years, designated NL2; and AG09969, 53

years, designated NL3) were co-transduced with lentiviruses

expressing NEUROG2-IRES-GFP-T2A-SOX11 and ISL1-T2A-

LHX3 (hereafter referred to as NSIL). Then, 2 days post-viral

infection (dpi), these cells were switched to neuron-induction

media containing our previously identified extrinsic factors,

forskolin (FSK) and dorsomorphin (DM), and basic fibroblast

growth factor (FGF2) (Liu et al., 2013). Neuronal conversion

was monitored daily by live-cell fluorescence microscopy

and analyzed by immunocytochemistry at the indicated time

points.

Remarkably, 86%–96% of NSIL virus-transduced adult fibro-

blasts (indicated by GFP co-expression) were converted to

TUBB3+ neuron-like cells by 14 dpi (Figures 1A and 1B). During

this conversion process, cells rapidly changed their initially flat,

spread-out morphology to one with bipolar and multipolar pro-

cesses. They progressively became more elaborate with round

or pyramidal somas, condensed nuclei, long axons, andmultiple

neurites, as indicated by specific staining with the pan-neuronal

markers MAP2 and NF200 at 21 dpi (Figures 1C and 1D). The

converted cells also expressed the presynaptic marker synapto-

tagmin 1 (SYT1) in a discrete punctate pattern, suggesting the

establishment of synaptic terminals by 21 dpi in culture (Fig-

ure 1E). The inclusion of FSK, DM, and FGF2 in the culture media

is essential for efficient neuronal reprogramming, as omission of

any small molecule or FGF2 greatly reduced the population of

TUBB3+ cells (Figures S1A and S1B).

Immunocytochemistry showed that the reprogrammed

neurons exclusively expressedmarkers for spinalMNs, including

HB9, CHAT, and VACHT (Figures 1A and 1F–1I). Over 84% and

95% of TUBB3+ cells co-stained with HB9 and CHAT, respec-

tively. In sharp contrast, none expressed markers for dopami-

nergic (TH) or GABAergic (GAD67) neurons. These data indicate

that adult human fibroblasts are reprogrammed into spinal (hu-

man induced) MNs (hiMNs). Our qRT-PCR analysis of HOX

gene expression showed that hiMNs are a mixture of cervical

and/or thoracic spinal MNs (Figure S1C).

When co-cultured with mouse astrocytes, hiMNs survived

over 49 dpi, outgrewmultiple long processes, and formed dense
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neuronal networks throughout the whole culture (Figure 1J).

Compared to cells at earlier stages (Figures 1A and 1H), the

expression of HB9 was much reduced or diminished by 49 dpi

(Figure 1K), resembling its endogenous expression pattern in

moremature spinal MNs (Detmer et al., 2008). In contrast, hiMNs

maintained strong CHAT expression, indicative of cholinergic

neurotransmitter synthesis (Figure 1K).

Direct Fate Switch without a Progenitor Stage
A time course analysis showed that around 46% and 90% of the

virus-transduced cells expressed the mature neuronal marker

MAP2 at 7 and 10 dpi, respectively (Figure S1D). During this pro-

cess, proliferative neural progenitors were not involved in the

NSIL-mediated conversion of adult human fibroblasts. Cell pro-

liferation was examined by 2-hr pulse labeling with 5-bromo-

deoxyuridine (BrdU) before immunocytochemical analyses at

0, 1, 3, 7, and 10 dpi, respectively (Figures S1D and S1E). The

non-transduced control cells were efficiently BrdU labeled under

this condition. However, none of the converted MAP2+ cells

incorporated BrdU when pulsed at 7 or 10 dpi (Figures S1D

and S1E). BrdU incorporation appeared to be nontoxic to con-

verted neurons, as a majority could be labeled by BrdU if the

proliferating fibroblasts were initially treated with BrdU 2 hr

before lentiviral infection (Figures S1D and S1E). The neural pro-

genitor markers SOX2 and OLIG2 were never detected during

the early reprogramming process (Figure S1F). As controls,

SOX2 and OLIG2 also failed to induce any neuronal conversion

of human fibroblasts. Together, these data indicate that adult hu-

man fibroblasts are directly and efficiently reprogrammed to

highly pure hiMNs under a defined culture condition.

Functional Maturation of hiMNs
The electrophysiological properties of hiMNs were determined

by whole-cell patch-clamp recordings. All the recorded hiMNs

reprogrammed from normal adult human fibroblasts fired repet-

itive action potentials (APs) upon current injection when exam-

ined at 49 dpi or beyond (Figure 2A). In voltage-clamp mode,

hiMNs showed tetrodotoxin (TTX)-sensitive inward currents,

indicating sodium current influx through voltage-gated sodium

channels (Figures 2B and 2C). These channels have stereotypi-

cal fast activation and slow inactivation characteristics (Figures

2C and 2D). The hiMNs converted from all healthy human patient

fibroblasts exhibited similar excitability, including AP firing

threshold, frequency, half-width, amplitude, and the delay of

the first spike (Figures 2E–2I). There were also no major differ-

ences in channel properties among these hiMNs, as measured

approximately by sodium and potassium current amplitudes

(Figures 2J–2L and S2). GABA, glycine, and glutamate receptors

on hiMNs could be activated by puffs of their respective ago-

nists. This illustrates the presence of both functional inhibitory

and excitatory postsynaptic receptors on reprogrammed hiMNs

(Figure 2M). Robust spontaneous postsynaptic currents (sPSCs)

could be detected when hiMNs were co-cultured with mouse

cortical neurons, indicating functional synapse formation be-

tween these neuron populations (Figure 2N; n = 23; 0.266 ±

0.104 Hz and 13.034 ± 3.522 pA for average frequency and

amplitude, respectively). Together, these data demonstrate

that hiMNs become electrophysiologically mature.



Figure 1. Rapid and Efficient Conversion of

Adult Human Fibroblasts to hiMNs

(A) Neuronal marker expression in adult human

fibroblast (NL1)-derived hiMNs at 14 days post-

infection (dpi). The virus-transduced cells are

indicated by GFP fluorescence. Scale bar, 50 mm.

(B) Reprogramming efficiency determined by

TUBB3 expression at 14 dpi is shown (mean ±

SEM, n = 3 independent samples, 20 randomly

selected 203 fields per sample were examined).

(C–E) Immunofluorescent visualization of the indi-

cated markers in hiMNs at 21 dpi. The punctate-

staining pattern of SYT1 in neuronal processes is

indicated by the arrowheads, while the arrow in-

dicates a non-converted cell within the same

image field. Scale bars, 50 mm.

(F and G) Neuronal purity was determined by the

expression of MNmarkers at 21 dpi (mean ± SEM,

n = 3 independent samples with R600 cells in

each group).

(H and I) Immunofluorescent visualization of

marker expression for hiMNs at 21 dpi. The

punctate-staining pattern of CHAT in neuronal

processes is indicated by the arrowheads, while

the arrow indicates a non-converted cell within the

same image field. Scale bars, 50 mm.

(J and K) hiMN morphology and marker expres-

sion at 49 dpi. HB9 expression is significantly

reduced in more mature hiMNs while robust

CHAT expression persists. A marker-negative cell

is indicated by an arrow. Scale bars, 50 mm.

See also Figure S1 and Table S1.
A key feature of spinal MNs is their ability to form functional

neuromuscular junctions (NMJs). This was determined through

co-culture of hiMNs and primary mouse skeletal myotubes.

Extensive growth and branching of hiMN axons were observed

3–7 days after co-culture (Figures 3A and 3B). Many axons pro-

jected along multinucleated myotubes, which stained positive

for the mature muscle marker myosin heavy chain (MHC). At

sites of contact with myotubes, the enlarged presynaptic SYN+

axonal terminals of hiMNs frequently aligned with the clustered

postsynaptic acetylcholine receptors, which were specifically
Cell Reports 14, 115–12
detected by rhodamine-labeled a-bun-

garotoxin (a-BTX) on the muscle surface

(Figure 3B). As controls, acetylcholine

receptor clustering was not observed on

myotubes when cultured alone or with

primary mouse cortical neurons (Figures

3C and 3D). These data suggest that

mature hiMNs uniquely induce the forma-

tion of NMJs with cultured muscles.

Whole-cell patch-clamp recordings

were then performed on co-cultured my-

otubes to determine whether these newly

formed NMJs were functional (Figure 3E).

Robust spontaneous end plate currents

(sEPCs) were detected from myotubes

co-cultured with hiMNs, but not from

those cultured alone or with cortical neu-
rons (Figures 3F, S3A, and S3B). These currents could be specif-

ically blocked by wash-in of the acetylcholine receptor antago-

nist (+)-tubocurarine during recordings (Figures 3G, S3C, and

S3D). This confirmed that the observed sEPCs were mediated

by established NMJs. Larger sEPCs also could be eliminated

by blocking neuron-specific voltage-gated sodium channels

with TTX (Figures 3H, S3C, and S3D). Interestingly, smaller

sEPCs could still be observed under this condition, reflecting

TTX-insensitive quantum release of synaptic vesicles from

hiMNs to the co-cultured muscles. In contrast, sEPCs were not
8, January 5, 2016 ª2016 The Authors 117



Figure 2. Electrophysiological Properties of hiMNs

(A) Repetitive AP waveforms recorded under current-clamp mode. The precondition sweep and sweeps immediately above threshold and at the highest

frequency are shown in the lower panel.

(B) Representative potassium and TTX-sensitive sodium currents are shown.

(C) A zoomed-in view of TTX-sensitive sodium currents presented in (B) is shown.

(D) A plot of the sodium current (I)-voltage (V) curve is shown.

(E–L) Control hiMNs exhibit comparable electrophysiological properties (mean ± SEM; NL1, n = 21; NL2, n = 7; NL3, n = 6).

(M) Representative electrophysiological responses of hiMNs to puffs of receptor agonists are shown (n = 3 for GABA, n = 2 for glycine, and n = 4 for kainate).

(N) Representative traces of spontaneous postsynaptic currents (sPSCs) recorded from hiMNs are shown.

See also Figure S2 and Table S2.
significantly alteredwhenmuscle-specific voltage-gated sodium

channels were inhibited by the antagonist m-connotoxin (Figures

3I, S3C, and S3D). Together, these data reveal that hiMNs func-

tionally innervate co-cultured skeletal muscles and control their

activities through the NMJ formations.

Efficient Conversion of ALSPatient Fibroblasts to hiMNs
We applied the same reprogramming process to skin fibroblasts

derived from three ALS patients aged between 37 and 50 years

(Table S1). These patients were identified to harbor genetic
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mutations in the FUS gene, including a synonymous mutation

(c.1566G>A) that does not change the FUSamino acid sequence

(ND29563, 37 years,mutationR522R, designatedALS1) (Lai et al.,

2011); a mutation that alters protein sequence but has no clear

effect on protein subcellular localization (ND39027, 50 years,

mutation H517Q, designated ALS2) (Kwiatkowski et al., 2009);

and a mutation that alters amino acid sequence, resulting in

FUS cytoplasmic translocation (ND40077, 47 years, mutation

R521G, designated ALS3) (Kwiatkowski et al., 2009). ALS pa-

tient-derived fibroblasts could be efficiently reprogrammed into



Figure 3. hiMNs Induce Functional NMJs

(A and B) Immunofluorescent visualization of

typical neuromuscular junctions (NMJs, indicated

by arrows) that formed between hiMNs and pri-

mary mouse myotubes in co-culture are shown.

Scale bars, 50 (A) and 10 mm (B).

(C and D) NMJs were not detectable when my-

otubes were cultured alone (C) or with cortical

neurons (D). Scale bars, 10 mm.

(E) A typical image shows a glass pipette-patched

myotube in culture.

(F) Spontaneous end plate currents (sEPCs) were

detected in myotubes when co-cultured with

hiMNs (n = 36), but not when cultured alone (n = 9)

or with cortical neurons (n = 13).

(G) sEPCs are sensitive to the acetylcholine re-

ceptor antagonist (+)-tubocurarine (n = 4).

(H) sEPCs are sensitive to treatment with tetro-

dotoxin (TTX), a specific inhibitor of voltage-gated

sodium channels in neurons (n = 6). Miniature TTX-

insensitive currents were still detectable.

(I) sEPCs are insensitive to treatment with m-con-

notoxin, a specific inhibitor of voltage-dependent

sodium channels in muscles (n = 3).

See also Figure S3.
neurons with 80%–93% of surviving NSIL-transduced cells

expressing TUBB3 by 14 dpi (Figures 4A and 4B). The converted

cells also expressed the pan-neuronal markers MAP2 and

NF200, as well as the presynaptic marker SYT1, by 21 dpi (Fig-
Cell Reports 14, 115–12
ures 4C–4E). These cells displayed

typical MN morphology with multiple

dendrites and prominent axon. Immuno-

cytochemistry further revealed that 84%–

87% and 95%–97% of TUBB3+ cells

co-stained for HB9 and CHAT, respec-

tively (Figures 4F–4I). Together, these

data demonstrate that fibroblasts derived

from adult ALS patients can be efficiently

converted to highly pure hiMNs, hereby

referred to as ALS hiMNs. These data

also indicate that FUS mutations do not

impede neuronal reprogramming of adult

patient fibroblasts, which is consistent

with the fact that neuronal development

is not obviously altered in these patients.

Mislocalization of FUS inALShiMNs
Cytoplasmic retention of the mutated

FUS protein is a major pathological

feature identified in spinal MNs of ALS

patients (Kwiatkowski et al., 2009; Vance

et al., 2009). As such, we examined the

expression and subcellular localization

of FUS protein in fibroblasts and hiMNs.

Western blot analysis did not reveal

any significant difference on the level of

endogenous FUS in fibroblasts obtained

from both ALS patients and healthy con-
trols (Figure 5A). Immunocytochemistry showed a predominant

nuclear distribution of endogenous FUS but failed to detect a

major difference between these fibroblast lines (Figure 5B). In

sharp contrast, the subcellular distribution of FUS protein was
8, January 5, 2016 ª2016 The Authors 119



Figure 4. hiMNs Converted from Fibro-

blasts of Adult Human ALS Patients

(A) Neuronal conversion of fibroblasts from human

ALS patients. Virus-transduced cells are indicated

by GFP fluorescence. Scale bar, 50 mm.

(B) Conversion efficiency as determined by TUBB3

expression at 14 dpi is shown (mean ± SEM, n = 3

independent samples, 20 randomly selected 203

fields per sample were examined).

(C–E) Immunofluorescent visualization of neuronal

marker expression in converted cells from ALS

patients. Arrows show marker-negative cells.

Scale bars, 50 mm.

(F and G) Reprogrammed neurons from ALS pa-

tients express markers for spinal MNs. Arrows

show marker-negative cells. Scale bars, 50 mm.

(H and I) Neuronal purity was determined by

expression of MNmarkers at 21 dpi (mean ± SEM,

n = 3 independent samples with R600 cells

counted for each group).

See also Table S1.
significantly different when these fibroblasts were converted to

hiMNs. Compared to normal controls, a larger fraction of endog-

enous FUS was mislocated into the cytoplasm of ALS hiMNs

(Figures 5C and 5D), consistent with post-mortem analysis of

spinal MNs from ALS patients with mutant FUS (Kwiatkowski

et al., 2009; Vance et al., 2009).

Given that amino acid sequence is not altered in the synony-

mous c.1566G > A FUSmutant (ALS1 patient), its mislocalization

was somewhat unexpected; however, itmaynot be totally surpris-

ing. A synonymousmutation in the multidrug resistance 1 (MDR1)

gene was shown to affect the timing of co-translational folding

and, therefore, toalter the structureof substrateand inhibitor inter-

action sites (Kimchi-Sarfaty et al., 2007). Recent studies also

confirmed that synonymous codons have a huge influence on

the rate of translation elongation and subsequent protein folding,

structure, and function (Yu et al., 2015; Zhou et al., 2013, 2015).

Althoughsystematicstudiesare required todeterminehowsynon-

ymous c.1566G > A mutation leads to the mislocalization of FUS

protein, it is highlypossible that thismutation results in alteredpro-
120 Cell Reports 14, 115–128, January 5, 2016 ª2016 The Authors
tein folding and structure. Of note, the

c.1566G>Avariant frequentlywasassoci-

ated with ALS patients (Lai et al., 2011),

although it also was detected in certain

control samples (Corrado et al., 2010). It

would be interesting to determine whether

the control samples with this synonymous

mutation eventually develop ALS at a later

stage. Notwithstanding, other genetic and

non-genetic causes are not excluded for

ALS patientswith synonymous FUSmuta-

tions. TheALS1patientmaywell represent

a sporadic case.

Morphological and Survival Deficits
of ALS hiMNs
A hallmark of ALS is the progressive

degeneration and loss of MNs (Cleveland
and Rothstein, 2001; Pasinelli and Brown, 2006). We examined

cell morphology and survival of hiMNs co-cultured with wild-

type mouse astrocytes. ALS hiMNs exhibited shrunken somas

with sizes ranging from 198 to 247 mm2 at 49 dpi. This is signifi-

cantly smaller than hiMNs derived from age-matched healthy

controls, which had soma sizes ranging from 292 to 330 mm2

(Figures 6A–6C). Shrinkage of spinal MN somas has been

observed in post-mortem human ALS patients and is believed

to precede neuronal death (Kiernan and Hudson, 1991).

In contrast to the similar survival rates among all normal

hiMNs, ALS hiMNs were more susceptible to death with survival

rates of 45%–65%, 9%–48%, and 8%–37% relative to normal

hiMNs when examined at 21, 35, and 49 dpi, respectively (Fig-

ure 6D). To ascertain whether these survival deficits can be

caused by mutations in FUS, we transduced normal healthy fi-

broblasts (NL1) with virus expressing ALS patient-specific FUS

mutants. These ectopic mutant proteins either have a predomi-

nant nuclear localization similar to wild-type FUS (H517Q) or

are diffusedly localized in the cell (R514G, R521C, and R522G;



Figure 5. Mislocalization of FUS in ALS

hiMNs

(A) Western blot analysis of FUS expression in

fibroblasts is shown.

(B) Confocal images show subcellular distribution

of FUS in fibroblasts. Scale bars, 50 mm.

(C) Expression and distribution of FUS in hiMNs.

The nucleus and soma are outlined with white and

green lines, respectively. The arrow indicates

complete nuclear exclusion of FUS in some dying

ALS1 hiMNs. Scale bars, 10 mm.

(D) Quantification of subcellular FUS distribution in

hiMNs (mean ± SEM, n = 50 cells from three in-

dependent samples for each group, **p = 0.005).
Figure S4A). Western blot analysis showed a comparable

expression of ectopic and endogenous FUS (Figures S4B and

S4C). Compared to normal healthy cells transduced with either

an empty or wild-type FUS virus, hiMNs converted from FUS

mutant virus-transduced normal fibroblasts showed a significant

reduction in survival when examined at 21 dpi (Figure 6E), reca-

pitulating the deficits observed in ALS hiMNs. Together, the

morphological and survival deficits of ALS hiMNs match those

pathological phenotypes detected in post-mortem tissues

(Kiernan and Hudson, 1991), animal ALS models (Hadzipasic

et al., 2014; Qiu et al., 2014), and iPSC-derived MN models (Kis-

kinis et al., 2014).

Electrophysiological Deficits of ALS hiMNs
The electrophysiological properties of ALS hiMNs derived from

ALS1 and ALS2 patients were examined in detail at 49 dpi and

beyond. ALS1 and ALS2 hiMNs were representative of the

survival extremes among reprogrammed ALS hiMNs (Figure 6D).

Whole-cell patch-clamp recordings showed that ALS hiMNs,

similar to normal controls, exhibited typical inward sodium

currents and outward potassium currents (Figures S5A–S5C),

suggesting that they acquired basic neuronal properties. The

amplitudes of sodium and potassium currents were compara-

ble, although the normalized values by membrane capacitance

were much reduced for ALS hiMNs (Figures S5D and S5E).

Most interestingly, ALS hiMNs showed dramatic deficits in AP

firing (Figure 6F). Unlike control hiMNs that could fire repetitive

APs at later culture time points, the ALS hiMNs fired very infre-

quently at all the time points examined (Figure S5F). Statistical

analyses showed that the threshold, frequency, amplitude,

and half-width of APs, as well as delay of the first spike, were

significantly different between normal and ALS hiMNs (Figures

6G–6K).
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Furthermore, synaptic connectivity was

investigated in co-culture. When acting

as the postsynaptic neuron in co-culture

with mouse cortical neurons, normal and

ALS hiMNs showed comparable sPSC

frequency and amplitude, suggesting

that ALS hiMNs formed normal synapses

with presynaptic neurons and received in-

puts from these cells (Figures 6L–6N). The

presynaptic functionality of ALS hiMNs
and NMJ formation were examined in co-culture with primary

mouse skeletal muscles. Compared to normal hiMNs, ALS

hiMNs rarely induced NMJ formation (Figures 6O and 6P).

Consistent with this morphological deficit, whole-cell patch-

clamp recordings performed on muscles showed that sEPCs

were not or rarely detected when co-cultured with ALS hiMNs,

revealing profound dysfunction in the ability of these diseased

MNs to control muscle contraction (Figures 6Q–6S).

A Screen of Small Molecules Aiming to Promote ALS
hiMN Survival
We observed that hiMNs are sensitive to systemic stress

induced by a replating procedure during culture. Over 80% of

ALS1 hiMNs died 3 days post-replating on matrigel/laminin-

coated culture vessels at 14 dpi (Figure S6A). Co-culture with pri-

mary mouse astrocytes also led to over 60% death of these cells

7 days after replating. Using this stress-accelerated cell death

model, we performed a pilot screen of small molecules that pro-

mote the survival of ALS hiMNs. These candidates included

valproic acid (VPA) (Leng et al., 2008; Niu et al., 2013), isoxazole

(ISX) (Ryan et al., 2013), lithium chloride (LiCl) (Leng et al., 2008),

kenpaullone (Ken) (Yang et al., 2013), and an aminopropyl carba-

zole derivative (P7C3) (Pieper et al., 2010), which are known to

promote neuronal survival. Consistently, the survival of ALS1

hiMNs on matrigel/laminin-coated plates was enhanced by

each of these candidate molecules at an appropriate concen-

tration, though the effect of Ken was modestly superior (Fig-

ure S6B). We then reexamined these molecules on ALS1 hiMNs

that were replated on astrocyte-coated plates. Interestingly, Ken

was the most effective at promoting the survival of these cells,

while the remaining chemicals were not as effective under this

culture condition (Figure S6C). A binary combination of these

chemicals did not outperform Ken alone. A dosage analysis
8, January 5, 2016 ª2016 The Authors 121
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showed that the optimal concentration for Ken was 1 mM, while

concentrations higher than 5 mM can result in chemical precipi-

tation and loss of the protective effect (Figures S6D and S6E).

Functional Rescue of ALS hiMNs by Ken
The effect of Ken was further evaluated on ALS hiMNs derived

from all three FUS patients and co-cultured with astrocytes.

Compared to vehicle controls, Ken greatly enhanced the

outgrowth and branching of neuronal processes at all the time

points examined (Figures 7A and 7B). Ken-treated ALS hiMNs

formed a super-dense neuronal network more evident at 35

dpi and thereafter (Figure 7A). These cells also had larger somas,

which were quantified by measuring randomly chosen cells from

triplicate experiments (Figure 7C). There was an average 1.43- to

1.94-fold increase of soma size for Ken-treated ALS hiMNs

when compared to their respective vehicle-treated controls at

49 dpi. A time course analysis revealed a remarkable long-term

effect of Ken on cell survival, with 2.4–4.7 times more Ken-

treated cells surviving relative to vehicle controls when examined

at 49 dpi (Figure 7D). Ken treatment also enabled hiMNs to sur-

vive for months on matrigel/laminin-coated dishes. These cells

formedmassive SYN1+/TUBB3+ neuronal networks (Figure S6F).

Together, these data clearly indicate that the morphological and

survival deficits of ALS hiMNs are greatly improved by the small

molecule Ken.

We then determined whether Ken treatment also ameliorated

the profound electrophysiological defects shown by ALS hiMNs

(Figures 6F–6S). Normal and ALS hiMNs were treated with Ken

starting at 14 dpi and examined by whole-cell patch-clamp re-

cordings at 49 dpi or later. Compared to vehicle-treated ALS

hiMNs, which were hypoactive and rarely exhibited multiple

APs (Figure 6F), Ken-treated ALS hiMNs fired repetitively in a

manner similar to control hiMNs, suggesting the restoration of

normal excitability (Figure 7E). Statistical quantification revealed

a remarkable rescue of ALS hiMNs by Ken in all aspects of elec-

trophysiological properties, including AP threshold, frequency,

amplitude, and half-width, as well as the delay of the first spike

(Figures 7F–7J and S7).

Postsynaptic activities were examined by co-culturing hiMNs

with primary mouse cortical neurons. Robust sPSCs were de-
Figure 6. Pathophysiology of ALS hiMNs

(A and B) Representative morphology of hiMNs derived from both normal and

magnification views of hiMNs. Scale bars, 50 mm.

(C) Soma size was measured at 49 dpi (mean ± SEM, n = 3 independent sample

(D) Poor survival of ALS hiMNs at the indicated time points is shown (mean ± SE

(E) Reduced survival of hiMNs converted from normal fibroblasts (NL1) with ect

(mean ± SEM, n = 3 independent samples for each group, ****p < 0.0001).

(F) Representative AP waveforms for the indicated samples. Red and black tra

frequency, respectively.

(G–K) Electrophysiological deficits of ALS hiMNs are shown (mean ± SEM; NL1,

(L) Representative traces of sPSCs recorded from hiMNs co-cultured with cortic

(M and N) Quantification of sPSC frequency and amplitude. No significant differe

ALS1, n = 16; and ALS2, n = 5; n.s., not significant).

(O) Quantification of NMJ frequency is shown (mean ± SEM, n = 3 independent s

****p < 0.0001).

(P) Immunostaining of NMJs is shown (indicated by an arrow). Scale bar, 10 mm.

(Q) sEPCs were recorded from muscles co-cultured with the indicated hiMNs.

(R and S) Quantification of sEPC properties is shown (mean ± SEM; NL, n = 36;

See also Figures S4 and S5 and Table S2.
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tected in all Ken-treated hiMNs and no significant difference

was observed in either frequency or amplitude (Figures 7K–

7M). Interestingly, sPSCs often occurred in bursts, suggesting

activation of hiMNs by a more active neuronal network and

strong synaptic connectivity between hiMNs and the co-cultured

cortical neurons. Presynaptic function of hiMNs was examined

through co-culture with primary mouse skeletal muscles. In

sharp contrast to the dysfunction of vehicle-treated ALS hiMNs

to innervate muscles (Figures 6O and 6P), Ken treatment

enabled these hiMNs to induce NMJs with a comparable fre-

quency to that of normal hiMNs (Figures 7N and 7O). Patch-

clamp recordings on myotubes co-cultured with ALS hiMNs

showed similar sEPCs as those co-cultured with the normal

healthy hiMNs (Figures 7P–7R). Taken together, these data

demonstrate that Ken treatment is able to robustly rescue ALS

hiMN dysfunction.

DISCUSSION

Analysis of human post-mortem tissues reveals that the degen-

eration and death of MNs are the pathological basis for human

ALS (Kwiatkowski et al., 2009; Vance et al., 2009). However,

one paramount challenge studying this neurodegenerative dis-

ease is the lack of a model system for human patient-specific

MNs. As such, transgenic cellular and animal models tradition-

ally have been employed (Bruijn et al., 1998; Gurney et al.,

1994; Howland et al., 2002; Qiu et al., 2014; Rosen, 1993; Sreed-

haran et al., 2008;Wada et al., 2012). Although important insights

into the pathogenesis of ALS were garnered, the genetic and

anatomical differences between these models and human pa-

tient MNs inevitably raised critical concerns as to artifacts intrin-

sically associated with these non-natural transgenic models

(Bergemalm et al., 2006; Julien and Kriz, 2006; Kiskinis et al.,

2014). A recent cellular model with iPSC-derived MNs overcame

many of these concerns, as these cells inherited all the natural

genetic variations linked to ALS pathology (Arbab et al., 2014;

Chen et al., 2014; Dimos et al., 2008; Kiskinis et al., 2014). Never-

theless, iPSC-differentiated neurons remain at an embryonic

stage (Lapasset et al., 2011; Miller et al., 2013; Rando and

Chang, 2012), and it is uncertain whether the defects identified
FUS patients at the indicated time points in culture. Images in (B) are higher

s with R150 neurons analyzed for each group, ***p < 0.001).

M, n = 3 independent samples for each group, ****p < 0.0001).

opic expression of the indicated FUS mutants. Cells were counted at 21 dpi

ces represent the AP immediately above threshold and firing at the highest

n = 21; ALS1, n = 28; ALS2, n = 8; **p < 0.01, ***p < 0.001, and ****p < 0.0001).

al neurons are shown.

nces were found between the indicated samples (mean ± SEM; NL1, n = 17;

amples with 300 hiMN network-associated myotubes counted for each group,

ALS1, n = 12; ALS2, n = 6; ****p < 0.0001).

ell Reports 14, 115–128, January 5, 2016 ª2016 The Authors 123



(legend on next page)

124 Cell Reports 14, 115–128, January 5, 2016 ª2016 The Authors



in these young neurons resemble those of disease-stage degen-

eration in adult human patients (Arbab et al., 2014). Our hiMN-

based cellular model is complementary to the above ALS

models. Parallel to iPSC-derived MNs, hiMNs harbor all the

ALS-causing genetic abnormalities in human patients; yet, these

cells bypass an immature embryonic stage through direct line-

age reprogramming that is absent of pluripotency and stem

cell proliferation (Caiazzo et al., 2011; Pang et al., 2011; Vierbu-

chen et al., 2010; Yoo et al., 2011). Accordingly, hiMNs may

maintain age-dependent features of their parental adult cell

sources, which will be critical to understanding adult-onset neu-

rodegeneration. Thorough investigations in the future will pro-

vide more insights into the effect of direct lineage reprogram-

ming on cell aging and neurodegeneration.

ALS hiMNs exhibit hallmarks of disease-stage degenerative

MNs, including poor survival, soma shrinkage, hypoactivity,

and the lack of muscle control. These deficits have been

observed previously in human patient samples (Kiernan and

Hudson, 1991), transgenic cellular and animal models (Bruijn

et al., 1998; Gurney et al., 1994; Hadzipasic et al., 2014; Hai-

det-Phillips et al., 2011; Qiu et al., 2014; Re et al., 2014; Wada

et al., 2012), and iPSC-derived MNs (Chen et al., 2014; Devlin

et al., 2015; Kiskinis et al., 2014). Further, these hallmarks vali-

date our hiMN-based cellular model for neurodegeneration.

Nonetheless, the hypoexcitability shown by ALS hiMNs is incon-

sistent with the predominant excitotoxicity theory for ALS.

According to this theory, the degeneration and death of patient

MNs are primarily caused by their intrinsic hyperexcitability

(Cleveland and Rothstein, 2001; Kuo et al., 2004; Pasinelli and

Brown, 2006; Wainger et al., 2014). However, this theory is not

without contradictory evidence. It was shown recently that

MNs in amutant superoxide dismutase 1 (mSOD1) mousemodel

of ALS are on average not hyperexcitable prior to disease onset

(Delestrée et al., 2014). Leroy et al. (2014) also demonstrated

that ALS-resistant, but not the ALS-vulnerable, MNs are hyper-

excitable in mSOD1mice, suggesting that early hyperexcitability

is not an indicator of MN degeneration. Consistent with the

pathology shown by our ALS hiMNs, some of the degenerating

MNs in the mSOD1 mouse model are rather hypoexcitable

(Bories et al., 2007; Delestrée et al., 2014). Most interestingly,

increasing neuronal excitability is neuroprotective and amelio-

rates MN pathology in mSOD1mice (Saxena et al., 2013). There-

fore, hypoexcitability of affected MNs in ALS may represent a

broad disease-stage endophenotype that could be targeted

for therapy.
Figure 7. Kenpaullone Rescues Pathophysiology of ALS hiMNs

(A and B) Kenpaullone (Ken) partially restored morphological deficits of ALS hiMN

50 mm.

(C and D) Ken promoted soma size and survival of ALS hiMNs (mean ± SEM, n =

0.0001).

(E) Representative AP waveforms of the indicated hiMNs treated with Ken are sh

(F–J) Ken treatment normalized electrophysiological properties of ALS hiMNs (m

(K–M) Ken enhanced sPSCs recorded from hiMNs (mean ± SEM; NL1, n = 11; A

(N and O) Ken fully rescued the ability of ALS hiMNs to form NMJs (indicated by ar

300 hiMN network-associated myotubes counted for each group; n.s., not signifi

(P–R) Ken enhanced sEPCs recorded from myotubes co-cultured with the indic

significant; **p < 0.01 when compared ALS1 and ALS2).

See also Figures S6 and S7 and Table S2.

C

Our proof-of-concept study suggests that adult patient-spe-

cific hiMNs can be employed for drug identification and valida-

tion. ALS hiMNs are especially sensitive to systemic stresses

induced by a replating procedure during culture. Significant

death of hiMNs is robustly detectable within a few days under

these culture conditions with or without supporting astrocytes,

although co-culture with astrocytes may represent a better sys-

tem that emulates an endogenous survival-promoting microen-

vironment for hiMNs. A pilot screen of candidate small chemical

compounds identified that Ken can significantly promote ALS

hiMN survival, in agreement with its previously reported neuro-

protective role (Yang et al., 2013). Our further analysis also

showed that Ken treatment significantly enhances dendritic

outgrowth and rescues soma size of ALS hiMNs. Most impor-

tantly, our whole-cell patch-clamp recordings reveal that Ken

can completely normalize ALS hiMN excitability and restore

the ability to form NMJs and control muscle activity. Notwith-

standing, one unsettling caveat of using Ken as a potential

therapeutic drug is that hiMNs seem to be addicted to Ken treat-

ment, such that these cells wither quickly upon drug withdrawal.

Future research will be required to understand Ken-induced

signaling pathways that may be specifically targeted for therapy.

In conclusion, the results of this study demonstrate that adult

human skin fibroblasts can be directly and efficiently converted

into highly pure and functional hiMNs through a synergistic inter-

action between small molecules and transcription factors. Most

intriguingly, hiMNs converted from adult fibroblasts of ALS pa-

tients with FUS mutations exhibit disease-stage degenerative

features that can be greatly ameliorated by the small molecule

Ken. These findings reveal a unique model system that can be

further exploited for understanding the molecular mechanism

and the identification of therapeutics for human ALS.
EXPERIMENTAL PROCEDURES

Animals

Wild-type C57BL/6J mice were purchased from the Jackson Laboratory. All

mice were housed under a 12 hr light/dark cycle and had ad libitum access

to food and water in a controlled animal facility. Experimental protocols were

approved by the Institutional Animal Care and Use Committee at University

of Texas Southwestern.

Plasmid Construction and Virus Production

A third-generation lentiviral vector (pCSC-SP-PW-IRES-GFP) was used to ex-

press NEUROG2-IRES-GFP-T2A-SOX11, NEUROG2-IRES-SOX11, and ISL1-

T2A-LHX3. YFP fusion of wild-type FUS or FUS mutants (R514G, H517Q,
s. Representative images were taken at the indicated time points. Scale bars,

3 independent samples with R150 neurons analyzed for each group, ****p <

own.

ean ± SEM; NL1, n = 8; ALS1, n = 19; ALS2, n = 8; n.s., not significant).

LS1, n = 17; ALS2, n = 7; n.s., not significant).

rows) on co-cultured myotubes (mean ± SEM; n = 3 independent samples with

cant). Scale bar, 10 mm.

ated hiMNs (mean ± SEM; NL1, n = 8; ALS1, n = 21; ALS2, n = 10; n.s., not
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R521C, or R522G) were gifts from Aaron Gitler (Addgene plasmid) (Sun et al.,

2011) and individually sub-cloned into the pCSC-SP-PW-IRES-GFP vector by

replacing the IRES-GFP cDNA fragment. Replication-incompetent lentivi-

ruses were produced in HEK293 cells (ATCC) and stored at 4�C prior to cell

transduction.

Human Fibroblast Culture

All human patient fibroblasts were obtained from the Coriell Institute for

Medical Research (Table S1). They were maintained in fibroblast medium

(DMEM supplemented with 15% fetal bovine serum and penicillin/strepto-

mycin) at 37�C and 5% CO2.

Neuron Induction and Culture

Direct lineage reprogrammingwas conducted according to aprevious protocol

with somemodifications (Liu et al., 2013). In brief, fibroblastswere seeded onto

Matrigel-coated culture vessels (4.8 3 105 per 24- or 48-well plate or 3 3 105

per 6-cm dish) with or without glass coverslips. Cells were transduced the

next day with lentiviral supernatants in the presence of 6 mg/ml polybrene.

Fibroblast culture medium was refreshed after overnight incubation. Then,

1 day later, these cells were switched to C2 medium supplemented with

10 mMFSK (Sigma-Aldrich), 1 mMDM (EMDMillipore), and 10 ng/ml FGF2 (Pe-

proTech). The C2 medium was composed of DMEM:F12:neurobasal (2:2:1),

0.8% N2 (Invitrogen), 0.8% B27 (Invitrogen), and penicillin/streptomycin. The

supplementedC2mediumwashalf changed every other day until 14 dpi. These

cells were either directly used for analysis or further cultured after a replating

procedure (Liu et al., 2013). In brief, cells were dissociated with 0.025% trypsin

for 7 min at 37�C and resuspended in FBS-containing fibroblast medium to

quench trypsin activity. This cell suspension was then plated onto a gelatin-

coated culture dish to which fibroblasts tightly attached. About 30 min later,

floating cells, which mainly consisted of induced neurons, were replated onto

anewcoateddish to remove residual fibroblasts, or theyweredirectly collected

by centrifugation at 5003 g for 2min. Cells were resuspended into C2medium

and centrifuged again to remove cell debris. Finally, hiMNs were plated onto

coated culture vessels in C2 medium supplemented with 5 mM FSK and

10 ng/ml each of BDNF, GDNF, and NT3 (PeproTech). Unless indicated other-

wise, C2 media with neurotrophic factors were half changed twice a week.

Immunofluorescence, BrdU Labeling, and Cell Counting

Cell cultures at the indicated time points were fixedwith 4%paraformaldehyde

(PFA) in PBS for 15 min at room temperature, and they were permeabilized/

blocked for 1 hr in blocking solution (13 PBS containing 0.2% Triton X-100

and 3% BSA). Cells were then processed for immunocytochemistry as previ-

ously described (Liu et al., 2013). For subcellular distribution of FUS, confocal

images were obtained with a NIKON A1R Confocal Microscope. The total fluo-

rescence intensity of FUS staining in the nucleus or somawas quantified sepa-

rately using ImageJ with a plugin of ND to Image6D. The cytosolic FUS staining

was calculated by subtracting nuclear fluorescence intensity from that of

the soma. The relative subcellular distribution of FUS was expressed as the

ratio of nuclear/cytoplasmic fluorescence intensity. For experimental details,

please see the Supplemental Experimental Procedures.

Western Blot Analysis

Whole-cell lysates were obtained through direct lysis of cells in 50mMTris-HCl

buffer (pH 8.0) containing 150 mM NaCl, 1% NP40, 1% Triton X-100, 0.1%

SDS, 0.5% sodium deoxycholate, and protease inhibitor cocktail (Roche).

Equal amounts of these lysates (20 mg per lane) were used for SDS-PAGE

and western blot analysis as previously described (Kwiatkowski et al., 2009).

The blots were probed with either a goat anti-FUS (Bethyl Laboratories,

1:5,000) or a mouse anti-actin (Jackson Laboratory, 1:10,000) antibody, fol-

lowed by their corresponding HRP-conjugated secondary antibodies. After

visualizationwith the ECL substrate, densitometric analysis was performed us-

ing the ImageJ software. The relative expression of ectopic and endogenous

FUS proteins was obtained after normalizing to the loading control actin.

Survival and Morphometric Analysis

The hiMNs co-cultured with primary mouse astrocytes were used for these an-

alyses. Cortical astrocytes were prepared from post-natal day (P)1–P3 mouse
126 Cell Reports 14, 115–128, January 5, 2016 ª2016 The Authors
pups as previously described (Vierbuchen et al., 2010). Endogenous mouse

neurons were removed by vigorous shaking and a few cycles of passaging,

freezing, thawing, and plating. The hiMNs at 14 dpi were replated on astro-

cyte-coated 96-well plates (for survival analysis) or coverslip-containing

24-well plates (for soma size analysis). Co-cultures were fed twice a week

with C2 medium containing 5 mM FSK and 10 ng/ml each of BDNF, GDNF,

and NT3. Cells were fixed and immunostained for TUBB3 and GFP at the indi-

cated time points. Under an AMG EVOS digital inverted fluorescence micro-

scope, TUBB3+GFP+ cells within the entire well of a 96-well plate in triplicate

were manually quantified by a researcher blinded to experimental groups.

Cell counts were normalized to the starting number of cells plated into each

well. To determine the survival rate, a similar number of starting cells were

plated and counted at 14, 21, 35, and 49 dpi. Survival rate at 14 dpi for each

line was set as 100%, to which the subsequent survived cells at each time

point were normalized. To facilitate comparison between different lines, a

relative survival rate was calculated by further normalization to NL1 at each

time point.

The hiMNs on glass coverslips were used for measuring soma size.

TUBB3+GFP+ cells from triplicate samples were randomly selected and

imaged with an Olympus BX51 Microscope equipped with StereoInvestigator

software. Soma area was outlined and measured with the vendor-provided

software. For experiments with ectopic FUS expression, a plasmid without

the GFP tag NEUROG2-IRES-SOX1 was used for reprogramming. As such,

only YFP (empty vector) or YFP-tagged wild-type or mutant FUS was

measured. A similar number of YFP-expressing cells were plated and counted

at 14 and 21 dpi. A survival rate was obtained by normalizing the cell number at

21 dpi to that at 14 dpi. This was further normalized to the empty vector control

group (Vector) to facilitate comparisons between groups.

Neuron and Muscle Co-cultures

Primary skeletal myoblasts from P0–P1 mouse pups were isolated and differ-

entiated into myotubes as previously described with modifications (Nelson

et al., 2013). Briefly, neonatal limb muscles were collected into ice-cold

HBSS under a dissecting microscope and digested with 0.2% collagenase II

and 1,000 U/ml DNase I for 45 min at 37�C. Dissociated myoblasts were

expanded in 1% gelatin-coated dishes for 2–4 days in culture medium

(DMEM containing 10% horse serum, 5% newborn calf serum, and 1% chick

embryo extracts), and then they were induced to form multinucleated myo-

tubes by switching to differentiation medium (DMEM containing 2% horse

serum). Then, 24 hr later, 10 mM cytosine arabinoside (AraC) was added

to the culture medium to stop proliferation of undifferentiated cells. After

another day, the cells were dissociated with 0.05% trypsin for 5 min at

37�C. Trypsin was inhibited by adding culture medium and removed by centri-

fugation at 5003 g for 2 min. The myotubes were resuspended in C2 medium

containing 10 ng/ml each of BDNF, GDNF, and NT3, and then they were plated

onto coverslips covered with astrocytes and hiMNs at 46 to 49 dpi. A majority

ofmyotubes started rhythmic contractions 2–3 days in co-cultureswith hiMNs.

These cells at 4–7 days in co-culture were used for examination of NMJs and

electrophysiology. NMJs were visualized by confocal laser-scanning micro-

scopy after labeling with rhodamine-conjugated a-BTX (Invitrogen, 1:500)

and immunostaining of TUBB3 (Covance, 1:5,000), synapsin1 (Cell Signaling

Technology, 1:500), and MHC (Sigma, 1:1,000). NMJ formation frequency

was determined by the number of NMJs on >300 myotubes associated with

hiMN networks.

Electrophysiology

Whole-cell patch-clamp recordings were performed under visual guidance us-

ing infra-red differential interference contrast (IR-DIC) and GFP fluorescence,

as previously described (Liu et al., 2013). For experimental details, please

see the Supplemental Experimental Procedures.

Statistical Analysis

All experiments were performed at least twice in triplicate unless otherwise

indicated. Data are presented as mean ± SEM. Statistical analysis was done

in GraphPad Prism. The D’Agostino & Pearson omnibus normality test was first

done on the data to determine whether it was normal distribution. If data

passed the normality test, then one-way or two-way ANOVA was used to



determine significance. If data did not pass the normality test, then the Kru-

shal-Wallis test was used to determine significance. A two-sample two-sided

Kolmogorov-Smirnov test in R (R Project, Bell Laboratories) was used for cu-

mulative probability analysis. Significant differences are indicated by *p < 0.05,

**p < 0.01, ***p < 0.001, and ****p < 0.0001.
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Musarò, A. (2013). Understanding ALS: new therapeutic approaches. FEBS J.

280, 4315–4322.

Nelson, B.R., Wu, F., Liu, Y., Anderson, D.M., McAnally, J., Lin, W., Cannon,

S.C., Bassel-Duby, R., and Olson, E.N. (2013). Skeletal muscle-specific T-tu-

bule protein STAC3 mediates voltage-induced Ca2+ release and contractility.

Proc. Natl. Acad. Sci. USA 110, 11881–11886.

Niu, W., Zang, T., Zou, Y., Fang, S., Smith, D.K., Bachoo, R., and Zhang, C.L.

(2013). In vivo reprogramming of astrocytes to neuroblasts in the adult brain.

Nat. Cell Biol. 15, 1164–1175.

Pang, Z.P., Yang, N., Vierbuchen, T., Ostermeier, A., Fuentes, D.R., Yang,

T.Q., Citri, A., Sebastiano, V., Marro, S., S€udhof, T.C., and Wernig, M.

(2011). Induction of human neuronal cells by defined transcription factors.

Nature 476, 220–223.

Pasinelli, P., and Brown, R.H. (2006). Molecular biology of amyotrophic lateral

sclerosis: insights from genetics. Nat. Rev. Neurosci. 7, 710–723.

Pieper, A.A., Xie, S., Capota, E., Estill, S.J., Zhong, J., Long, J.M., Becker, G.L.,

Huntington, P., Goldman, S.E., Shen, C.H., et al. (2010). Discovery of a pro-

neurogenic, neuroprotective chemical. Cell 142, 39–51.

Qiu, H., Lee, S., Shang, Y., Wang, W.Y., Au, K.F., Kamiya, S., Barmada, S.J.,

Finkbeiner, S., Lui, H., Carlton, C.E., et al. (2014). ALS-associated mutation

FUS-R521C causes DNA damage and RNA splicing defects. J. Clin. Invest.

124, 981–999.

Rando, T.A., and Chang, H.Y. (2012). Aging, rejuvenation, and epigenetic re-

programming: resetting the aging clock. Cell 148, 46–57.

Re, D.B., Le Verche, V., Yu, C., Amoroso, M.W., Politi, K.A., Phani, S., Ikiz, B.,

Hoffmann, L., Koolen, M., Nagata, T., et al. (2014). Necroptosis drives motor

neuron death in models of both sporadic and familial ALS. Neuron 81, 1001–

1008.

Robberecht, W., and Philips, T. (2013). The changing scene of amyotrophic

lateral sclerosis. Nat. Rev. Neurosci. 14, 248–264.

Rosen, D.R. (1993). Mutations in Cu/Zn superoxide dismutase gene are asso-

ciated with familial amyotrophic lateral sclerosis. Nature 364, 362.

Ryan, S.D., Dolatabadi, N., Chan, S.F., Zhang, X., Akhtar, M.W., Parker, J.,

Soldner, F., Sunico, C.R., Nagar, S., Talantova, M., et al. (2013). Isogenic

human iPSC Parkinson’s model shows nitrosative stress-induced dysfunction

in MEF2-PGC1a transcription. Cell 155, 1351–1364.

Saxena, S., Roselli, F., Singh, K., Leptien, K., Julien, J.P., Gros-Louis, F., and

Caroni, P. (2013). Neuroprotection through excitability and mTOR required in

ALS motoneurons to delay disease and extend survival. Neuron 80, 80–96.

Son, E.Y., Ichida, J.K., Wainger, B.J., Toma, J.S., Rafuse, V.F., Woolf, C.J.,

and Eggan, K. (2011). Conversion of mouse and human fibroblasts into func-

tional spinal motor neurons. Cell Stem Cell 9, 205–218.
128 Cell Reports 14, 115–128, January 5, 2016 ª2016 The Authors
Spalloni, A., Origlia, N., Sgobio, C., Trabalza, A., Nutini, M., Berretta, N.,

Bernardi, G., Domenici, L., Ammassari-Teule, M., and Longone, P. (2011).

Postsynaptic alteration of NR2A subunit and defective autophosphorylation

of alphaCaMKII at threonine-286 contribute to abnormal plasticity and

morphology of upper motor neurons in presymptomatic SOD1G93A mice, a

murine model for amyotrophic lateral sclerosis. Cereb. Cortex 21, 796–805.

Sreedharan, J., Blair, I.P., Tripathi, V.B., Hu, X., Vance, C., Rogelj, B., Ackerley,

S., Durnall, J.C., Williams, K.L., Buratti, E., et al. (2008). TDP-43 mutations in

familial and sporadic amyotrophic lateral sclerosis. Science 319, 1668–1672.

Sun, Z., Diaz, Z., Fang, X., Hart, M.P., Chesi, A., Shorter, J., and Gitler, A.D.

(2011). Molecular determinants and genetic modifiers of aggregation and

toxicity for the ALS disease protein FUS/TLS. PLoS Biol. 9, e1000614.

Thaler, J.P., Lee, S.K., Jurata, L.W., Gill, G.N., and Pfaff, S.L. (2002). LIM factor

Lhx3 contributes to the specification of motor neuron and interneuron identity

through cell-type-specific protein-protein interactions. Cell 110, 237–249.
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