CLOSED SET COUNTABILITY AXIOMS¹)

BY

C. E. AULL

Virginia Polytechnic Institute

(Communicated by Prof. H. FREUDENTHAL at the meeting of December 18, 1965)

Introduction

In this paper countable base axioms for open sets containing closed sets are introduced as follows.

Definition 1. A topological space (X, \mathcal{F}) satisfies D_1 if every closed set has a countable base for the open sets containing it. A set M has a countable base for the open sets containing it, if there exists a family of open sets $\{G_n\}, M \subset G_n$ for each n such that if V is an open set, $M \subset V$, then there exists n such that $G_n \subset V$.

Definition 2. A topological space (X, \mathcal{T}) satisfies D_2 if it has a countable base $\{U_n\}$ such that each closed set has a countable base for the open sets containing it which is a subfamily of $\{U_n\}$.

It will be proved that regular D_1 spaces are perfectly normal and collectionwise normal, perfectly normal countably compact spaces satisfy D_1 ; T_3 , D_1 spaces with a finite number of isolated points are countably compact and T_3 , D_1 spaces are metrizable iff the topology has a ploint countable base. Metrizable spaces that are the union of a compact set and isolated points are characterized by the D_1 property, and a T_3 space is compact and metrizable iff it satisfies D_2 . Unless otherwise noted, the definitions of KELLEY [9] will be used. When "a" is used as a subscript, it is understood that "a" is a member of an index set A. M^* will mean the complement of M. \overline{M}^* means the complement of M closure whereas \overline{M}^* means the closure of the complement of M.

Clearly D_1 and D_2 are closely related to the first and second countability axioms, C_1 and C_2 , respectively; the D_1 axiom is obtained by replacing points by closed sets in the statement of C_1 . The relations are expressed in the following theorem.

Theorem 1. Every D_1 , T_1 , space satisfies C_1 . Every D_2 space satisfies C_2 and D_1 .

Relation to perfectly normal spaces

By a sequence of theorems, we will show that regular D_1 spaces are perfectly normal and countably compact perfectly normal spaces satisfy D_1 .

¹⁾ Part of research done at Kent State University.

Theorem 2. In a D_1 , T_1 , space, every closed set is a G_{δ} . In a regular D_1 space, every closed set is the intersection of a countable number of closed neighborhoods.

Proof: Since in a T_1 space, every set is the intersection of open sets, the first statement is immediate. Let $\{G_n\}$ be the countable base for the open sets containing a closed set F in a regular space. For each $x \notin F$, there is an open set G(x) such that $x \notin \overline{G(x)}$ and $F \subset G(x)$. $F = \cap \overline{G(x)} = \cap \overline{G_n}$.

ISHIKAWA [8] has proved that a topological space is countably paracompact (countably metacompact) iff for every decreasing sequence $\{F_n\}$ of closed sets with vacuous intersection, there exists a decreasing sequence of open sets $\{G_n\}$, $F_n \subset G_n$ such that $\cap \overline{G}_n = \phi(\cap G_n = \phi)$. For alternative proofs see HAYASHI, [6] and [7]. As a consequence of these results and Theorem 2, we have,

Theorem 3. Every regular space such that the closed sets are the intersection of a countable number of closed neighborhoods is countably paracompact. Every D_1 regular (T_1) space is countably paracompact (countably metacompact).

Proof: Let $\{F_n\}$ be a family of closed sets such that $\cap F_n = \phi$ and let (X, \mathscr{T}) be D_1 and T_1 . Let $\{G_{mn}\}$ be a G_δ for F_n . Set $G_n = \bigcap_{m=1}^n \bigcap_{k=1}^n G_{mk}$. $F_n \cap G_n$ and $\cap G_n = \phi$; so (X, \mathscr{T}) is countably metacompact. A similar proof shows that a regular D_1 space is countably paracompact.

Theorem 4. Every regular D_1 space is normal. Every regular space such that the closed sets are the intersection of a countable number of closed neighborhoods is normal.

Proof: Let F and B be disjoint closed sets of (X, \mathscr{T}) . Let $\{C_n\}$ be a countable family of closed neighborhoods such that $F = \bigcap C_n$. $\{C_n^*\}$ covers B. $\{C_n^*\}$ and B^* cover X and have an open locally finite refinement by Theorem 3. Let $\{V_a\}$ be the subfamily of this refinement intersecting B. Since each V_a is contained in some C_n^* , $\overline{V}_a \cap F = \phi$ for each a. The disjoint open sets containing F and B are $(\bigcup \overline{V}_a)^* = (\overline{\bigcup V_a})^*$ and $\bigcup V_a$ respectively. The second statement is proved and the first statement follows from Theorem 2.

Corollary 4. Topological spaces satisfying either of the conditions of Theorem 4 are perfectly normal.

It might be noted that a perfectly normal space may be characterized as a regular space such that closed sets are the intersection of a countable number of closed neighborhoods. All perfectly normal spaces, however are not D_1 . For instance the real line with the usual topology is not D_1 , since the set of integers do not have a countable base for the open sets containing them. Here it is proved that a perfectly normal countably compact space is D_1 . This is analogous to a theorem of ALEXANDROFF [1] that a regular countably compact space such that every closed set is a G_{δ} satisfies C_1 .

Theorem 5. Every perfectly normal, countably compact space is D_1 .

Proof: From the original G_{δ} , $\{U_n\}$, containing a closed set F construct a G_{δ} , $\{V_n\}$ such that $\overline{V}_n \subset U_n$. Then construct a nested G_{δ} , $\{W_n\}$ such that $W_n = \bigcap_{k=1}^n V_k$. It can be shown that $\{W_n\}$ is the desired base for the open sets containing F. Let T be an open set containing F. $\{\overline{W}_n^*\}$ is an open cover of T^* and may be replaced by a finite subcover. Let k be the largest subscript of this subcover. Then $T^* \subset \overline{W}_k^*$ so that $W_k \subset T$. Later we will prove a partial converse to this theorem.

Collectionwise normality of D_1 spaces

Collectionwise normality was introduced by BING [4].

Definition 3. A topological space is collectionwise normal if for every locally-discrete family of sets $\{N_a\}$, there is a family of pairwise disjoint open sets $\{V_a\}$ such that $M_a \subset V_a$.

We will need two preliminary theorems, before we show the collectionwise normality of D_1 spaces.

Theorem 6. Let $\{M_n\}$ be a countable locally-discrete family of sets in a normal space. Then, there is a family of pairwise disjoint open sets $\{W_n\}$ such that $M_n \subset W_n$.¹)

Proof: Let $P_n = \bigcup \{M_k : k \neq n\}$. There exists U_n and V_n such that $\overline{M_n} \subset U_n$ and $\overline{P_n} \subset V_n$. Let $W_1 = U_1$; otherwise let $W_n = U_n \cap \bigcap_{k=1}^{n-1} V_k$. $\{W_n\}$ is the desired family of pairwise disjoint open sets.

Theorem 7. Let $\{F_a\}$ be a closed locally discrete family of sets in a regular D_1 space, (X, \mathcal{T}) . Then all but a finite number of $\{F_a\}$ are open.

Proof: Assume there is a denumerably infinite family $\{F_n\}$ of closed locally discrete sets in X such that no F_n is open. By the normality of X there is a denumerable family of pairwise open sets $\{G_n\}$ such that $F_n \subset G_n$. Let $F = \bigcup F_n$. F is closed and we will show that the assumption that there is a countable base for the open sets containing F leads to a contradiction. There is no restriction in assuming that the base is nested. Let $\{U_k\}$ be a countable nested base for the open sets containing F. Set $V_{nk} = G_n \cap U_k$. Let $\{W_{nk}\}$ consist of the distinct V_{nk} for each n. $\{W_{nk}\}$ is infinite since F_n is not open. Set $W_k = \bigcup W_{nk}$. If $\{U_k\}$ is a countable base for the open sets containing F, then $\{W_k\}$ is also countable base. The set $T = \bigcup_{i=1}^{\infty} W_{ii}$ does not contain any W_k . Hence all but a finite number of F_n are open and the theorem is proved.

¹⁾ A slight modification of a Theorem of K. ISEKI.

Theorem 8. Every regular D_1 space is collectionwise normal.

Proof: Theorems 6 and 7.

ARHANGELSKII [2] has shown that every, perfectly normal T_1 , collectionwise normal space with a σ -point finite base is metrizable.

Corollary 8. A D_1 , T_3 space with a σ -point finite base is metrizable.

Proof: Theorems 4 and 8.

Later we will show that the last condition may be replaced by a pointcountable base.

From theorems 5 and 8 it follows that every countably compact perfectly normal space is collectionwise normal. However one may obtain a better result from the following characterization.

Theorem 9. A T_4 space is countably compact iff it has no infinite locally discrete families.

Corollary 9. Every T_4 countably compact space is collectionwise normal.

Relation of D_1 to countably compactness

We now consider a partial converse to Theorem 5. The author is indebted to P. Doyle and D. Fisk for the theorem that a D_1 connected metric space is compact. Theorem 7 and the next theorem depend heavily on their methods.

Theorem 10. A T_3 , D_1 topological space with at most a finite number of isolated points is countably compact. Every T_3 , D_1 space is the union of a countably compact set and isolated points.

Proof: In a T_1 space that is not countably compact, there is a denumerably infinite locally discrete set of points. Theorem 7 shows that this space has an infinite number of isolated points.

Corollary 10. A perfectly normal T_1 space with a finite number of isolated points is countably compact iff it is D_1 .

Spaces with a point-countable base

Recently there has been a renewed interest in topological spaces with a point-countable base. MISCENKO [10] showed that a T_2 compact space with a point-countable base is metrizable, the point-countable base being countable. CORSON and MICHAEL [5] showed that the compact condition may be replaced by countably compact.

Definition 4. A topological space has a point-countable base if there is a base for the topology such that every point is in a countable number of members of the base.

Before proving a metrization theorem for D_1 spaces, we will prove a theorem about compact sets of a space with a point-countable base.

Theorem 11. In a T_2 space (X, \mathcal{T}) with a point-countable base each compact set has a countable base for the open sets containing it.

Proof: Let M be a compact set; M is also closed. The subspace M will also have a point-countable base and hence will have a countable base. In the topology for X, the members of the point countable base containing points of M will also be countable. By the compactness of M, any open set containing M will contain finite unions of members of the base which will in turn contain M. These finite unions form a countable base for the open sets containing M.

Theorem 12. Let a point-countable T_3 space (X, \mathcal{T}) be the union of a compact set and isolated points. Then (X, \mathcal{T}) satisfies D_1 and is metrizable.

Proof: Let M be the compact set, and F a closed set. Set

$$F = (F \cap M) \cup (F \cap M^*).$$

 $F \cap M$ has a countable base $\{U_n\}$ by Theorem 11, for the open set containing $F \cap M$. $\{(F \cap M^*) \cup U_n\}$ is then a countable base for the open sets containing F. Since F is an arbitrary closed set (x, \mathcal{F}) is D_1 . A base for the topology for X consists of the members of the point-countable base intersecting M and the isolated points. The base for the topology consists of a countable family and of isolated points. Clearly this is a σ -point finite family and is hence metrizable, by Corollary 8.

Corollary 12. A D_1 , T_3 space is metrizable iff it has a point-countable base. Furthermore the D_1 property characterizes the metrizable spaces that are the union of a compact set and isolated points.

Metrizable spaces that are D_1 may not even be locally compact. Example. Let X be the real line. Let all points except "0" be isolated. Let a base for the topology consist of the isolated points and open intervals with rational end points containing "0".

This space is the union of a compact set, [0], and isolated points, but no neighborhood of [0] is compact.

As there are compact perfectly normal T_1 spaces that are not metrizable, not every T_3 , D_1 space is metrizable.

D_2 spaces

Unlike D_1 spaces, it will be shown that every D_2 , T_3 space is not only metrizable, but also compact.

Theorem 13. A T_3 topological space (X, \mathcal{T}) is metrizable and compact iff it satisfies D_2 .

Proof: Let $\{U_n\}$ be a countable base for (X, \mathcal{T}) . Construct a new countable base $\{V_k\}$ consisting of all finite unions of members of $\{U_n\}$. Let F be a closed set and let G be an open set containing F. For each $x \in F$, there exists U_n such that $x \in U_n \subset G$. Since F is compact a finite number of these U_n cover F and hence $\{V_k\}$ will form a base for the open sets containing F. Thus a metrizable compact space satisfies D_2 .

A D_2 , T_3 space is clearly metrizable by Theorem 1. Since it is also D_1 , it is the union of a compact set and isolated points. Let M be the compact set. If there is an infinite closed set consisting of the union of isolated points not contained in M, a non-denumerable family of open sets will be needed to insure that every closed set has a countable base for the open sets containing it. Thus there is no infinite closed set consisting of the union of isolated points not contained in M. Then any cover of M covers all but a finite number of points of X and hence X is compact.

REFERENCES

- 1. ALEXANDROFF, P. S., Bikompakte topologische raume, Math. Ann. 92, 267–274 (1924).
- ARHANGELISKII, A., Some metrization theorems, Uspehi, Math. Nauk. 18, no. 5 (113) 139-143 (1963).
- 3. AULL, C. E., A note on countably paracompact spaces metrization, Proc. Amer. Math. Soc. (to appear).
- 4. BING, R. H., Metrization of topological spaces, Can. Math. J. 3, 175-186 (1951).
- 5. CORSON, H. and E. MICHAEL, Metrizability of certain countable unions, Illinois Mathematics 8, 351-360 (1964).
- HAYASHI, Y., On countably paracompact spaces, Bull. Univ. Osaka Pref. Ser. A, 7, 181–183 (1959).
- On countably metacompact spaces, Bull. Univ. Osaka Pref. Ser. A, 8, 159-161 (1960).
- 8. ISHIKAWA, F., On countably paracompact spaces, Proc. Japan Acad. 31 686-687 (1955).
- 9. KELLEY, J. L., General topology, New York, 1955.
- 10. MISCENKO, A., Spaces with point-countable base, Soviet Mathematics, 3, 855-858 (1962).