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Introduction 
In this paper countable base axioms for open sets containing closed 

sets are introduced as follows. 

Definition 1. A topological space (X,$") satisfies D1 if every closed 
set has a countable base for the open sets containing it. A set M has a countable 
base for the open sets containing it, if there exists a family of open sets 
{Gn}, M C Gn for each n such that if V is an open set, M C V, then there 
exists n such that Gn C V. 

Definition 2. A topological space (X,$") satisfies D2 if it has a 
countable base { U n} such that each closed set has a countable base for the 
open sets containing it which is a subfamily of {U n}· 

It will be proved that regular D1 spaces are perfectly normal and 
collectionwise normal, perfectly normal countably compact spaces satisfy 
D1; Ta, D1 spaces with a finite number of isolated points are countably 
compact and Ta, D1 spaces are metrizable iff the topology has a ploint 
countable base. Metrizable spaces that are the union of a compact set 
and isolated points are characterized by the D1 property, and a Ta space 
is compact and metrizable iff it satisfies D2. Unless otherwise noted, 
the definitions of KELLEY [9] will be used. When "a" is used as a subscript, 
it is understood that "a" is a member of an index set A. M* will mean 
the complement of M. M* means the complement of M closure whereas 
M* means the closure of the complement of M. 

Clearly-D1 and D2 are closely related to the first and second countability 
axioms, 01 and 02, respectively; the D1 axiom is obtained by replacing 
points by closed sets in the statement of 01. The relations are expressed 
in the following theorem. 

Theorem 1. Every D1, T1, space satisfies 0 1. Every D2 space satisfies 
02 and D1. 

Relation to perfectly normal spaces 

By a sequence of theorems, we will show that regular D1 spaces are 
perfectly normal and countably compact perfectly normal spaces 
satisfy D1. 

1) Part of research done at Kent Sta_j;e University. 
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Theorem 2. In a D1, T1, space, every closed set is a G6 • In a regular 
D1 space, every closed set is the intersection of a countable number of closed 
neighborhoods. 

Proof: Since in a T1 space, every set is the intersection of open sets, 
the first statement is immediate. Let {Gn} be the countable base for the 
open sets containing a closed set F in a regular space. For each x ¢=. F, 
there is an open set G(x) such that x ¢=. G(x) and F C G(x). F = n G(x) = nGn. 

IsHIKAWA [8] has proved that a topological space is countably para­
compact (countably metacompact) iff for every decreasing sequence {F n} 
of closed sets with vacuous intersection, there exists a decreasing sequence 
of open sets {Gn}, Fn C Gn such that nGn=cf>(n Gn=cf>). For alternative 
proofs see HAYASHI, [6] and [7]. As a consequence of these results and 
Theorem 2, we have, 

Theorem 3. Every regular space such that the closed sets are the 
intersection of a countable number of closed neighborhoods is countably 
paracompact. Every D1 regular (T1) space is countably paracornpact (coun­
tably metacompact). 

Proof: Let {Fn} be a family of closed sets such that n Fn=c/> and 
n " 

let (X, !T) be D1 and T1. Let {Gmn} be a G6 for Fn. Set Gn= n n Gmk· 
m~l k~l 

Fn n Gn and n Gn=cp; so (X, !T) is countably metacompact. A similar 
proof shows that a regular D1 space is countably paracompact. 

Theorem 4. Every regular D 1 space is normal. Every regular space 
such that the closed sets are the intersection of a countable number of closed 
neighborhoods is normal. 

Proof: Let F and B be disjoint closed sets of (X,!T). Let {On} be a 
countable family of closed neighborhoods such that F = nOn. {On*} 
covers B. { 0 n *} and B* cover X and have an open locally finite refinement 
by Theorem 3. Let {Va} be the subfamily ofthis refinement intersecting B. 
Since each Va is contained in some On*, Va n F = cp for each a. The 
disjoint open sets containing F and Bare (U Va)*=(UVa)* and UVa 
respectively. The second statement is proved and the first statement 
follows from Theorem 2. 

Corollary 4. Topological spaces satisfying either of the conditions of 
Theorem 4 are perfectly normal. · 

It might be noted that a perfectly normal space may be characterized as 
a regular space such that closed sets are the intersection of a countable 
number of closed neighborhoods. All perfectly normal spaces, however are 
not D1 . For instance the real line with the usual topology is not Dt, since 
the set of integers do not have a countable base for the open sets containing 
them. Here it is proved that a perfectly normal countably compact space 
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is D1. This is analogous to a theorem of ALEXANDROFF [l] that a regular 
countably compact space such that every closed set is a G11 satisfies 0 1 • 

Theorem 5. Every perfectly normal, countably compact space is D1. 

Proof: From the original G11 , {U n}, containing a closed set F construct 
a G11 , {Vn} such that Vn C Un. Then construct a nested G11 , {Wn} such 

" that Wn= n Vk. It can be shown that {Wn} is the desired base for the 
k~l 

open sets containing F. Let T be an open set containing F. { W n *} is an 
open cover ofT* and may be replaced by a finite subcover. Let k be the 
largest subscript of this subcover. Then T* C Wk* so that Wk CT. Later 
we will prove a partial converse to this theorem. 

Oollectionwise normality of D1 spaces 

Collection wise normality was introduced by BING [ 4 ]. 

Definition 3. A topological space is collectionwise normal if for every 
locally-discrete famil'!/ of sets {Na}, there is a family of pairwise disjoint 
open sets {Va} such that MaC Va. 

We will need two preliminary theorems, before we show the collection­
wise normality of D1 spaces. 

Theorem 6. Let {Mn} be a countable locally-discrete family of sets 
in a normal space. Then, there is a family of pairwise disjoint open sets 
{Wn} such that Mn C Wn. 1) 

Proof: Let Pn=U {Mk: k =1= n}. There exists Un and Vn such that 
- ._. fl-1 

M n C U n and P n C V n· Let W 1 = U1; otherwise let W n = U n n n V k· { W n} 
k~l 

is the desired family of pairwise disjoint open sets. 

Theorem 7. Let {Fa} be a closed locally discrete family of sets in a 
regular D1 space, (X,Y). Then all but a finite number of {Fa} are open. 

Proof: Assume there is a denumerably infinite family {F n} of closed 
locally discrete sets in X such that no F n is open. By the normality of X 
there is a denumerable family of pairwise open sets {Gn} such that F n C Gn. 
Let F = U F n· F is closed and we will show that the assumption that 
there is a countable base for the open sets containing F leads to a con­
tradiction. There is no restriction in assuming that the base is nested. 
Let {Uk} be a countable nested base for the open sets containing F. 
Set Vnk=Gn n Uk. Let {Wnk} consist of the distinct Vnk for each n. 
{W nk}isinfinite since Fn is not open. Set Wk= u W nk· If{Uk} is a countable 
base for the open sets containing F, then {Wk} is also countable base. 

00 

The set T= U Wu does not contain any Wk. Hence all but a finite 
i~l 

number of F n are open and the theorem is proved. 

1) A slight modification of a Theorem of K. !SEKI. 
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Theorem 8. Every regular D1 space is collectionwise normal. 

Proof: Theorems 6 and 7. 
ARHANGELSKII [2) has shown that every, perfectly normal Tt, collection-

wise normal space with a a-point finite base is metrizable. 

Corollary 8. A D1, T3 space with a a-point finite base is metrizable. 

Proof: Theorems 4 and 8. 
Later we will show that the last condition may be replaced by a point­

countable base. 
From theorems 5 and 8 it follows that every countably compact perfectly 

normal space is collectionwise normal. However one may obtain a better 
result from the following characterization. 

Theorem 9. A T 4 space is countably compact iff it has no infinite 
locally discrete families. 

Corollary 9. Every T 4 countably compact space is collectionwise norrnal. 

Relation of Dt to countably compactness 

We now consider a partial converse to Theorem 5. The author is indebted 
to P. Doyle and D. Fisk for the theorem that a Dt connected metric 
space is compact. Theorem 7 and the next theorem depend heavily on 
their methods. 

Theorem 10. A T3 , D1 topological space with at most a finite number 
of isolated points is countably compact. Every T3, Dt space is. the union of a 
countably compact set and isolated points. 

Proof: In a T1 space that is not countably compact, there is a de­
numerably infinite locally discrete set of points. Theorem 7 shows that 
this space has an infinite number of isolated points. 

Corollary 10. A perfectly normal Tt space with a finite number of 
isolated points· is countably compact iff it is Dt. 

Spaces with a point-countable base 

Recently there has been a renewed interest in topological spaces with a 
point-countable base. MrscENKO [10] showed that a T2 compact space 
with a point-countable base is metrizable, the point-countable base being 
countable. CoRSON and MICHAEL [5) showed that the compact condition 
may be replaced ,by countably compact. 

Definition 4. A topological space has a point-countable base if there 
is a base for the topology such that every point is in a countable number of 
members of the base. 

Before proving a metrization theorem for D1 spaces, we will prove a 
theorem about compact sets of a space with a point-countable base. 
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Theorem 11. In a Tz space (X, ff) with a point-countable base each 
compact set has a countable base for the open sets containing it. 

Proof: Let M be a compact set; M is also closed. The subspace M 
will also have a point-countable base and hence will have a countable base. 
In the topology for X, the members of the point countable base containing 
points of M will also be countable. By the compactness of M, any open set 
containing M will contain finite unions of members of the base which will 
in turn contain M. These finite unions form a countable base for the open 
sets containing M. 

Theorem 12. Let a point-countable T 3 space (X,Y) be the union of a 
compact set and isolated points. Then (X, Y) satisfies D1 and is metrizable. 

Proof: Let M be the compact set, and F a closed set. Set 

F=(F n M) u (F n M*). 

F n M has a countable base {U n} by Theorem 11, for the open set con­
taining F n M. {(F n M*) u Un} is then a countable base for the open 
sets containing F. Since F is an arbitrary closed set (x,Y) is D 1. A base 
for the topology for X consists of the members of the point-countable 
base intersecting M and the isolated points. The base for the topology 
consists of a countable family and of isolated points. Clearly this 1s a 
a-point finite family and is hence metrizable, by Corollary 8. 

Corollary 12. A D1, T3 space is metrizable iff it has a point-countable 
base. Furthermore the D1 property characterizes the metrizable spaces that 
are the union of a compact set and isolated points. 

Metrizable spaces that are D1 may not even be locally compact. Example. 
Let X be the real line. Let all points except "0" be isolated. Let a base for 
the topology consist of the isolated points and open intervals with rational 
end points containing "0". 

This space is the union of a compact set, [0], and isolated points, but 
no neighborhood of [0] is compact. 

As there are compact perfectly normal T1 spaces that are not metrizable, 
not every T 3, D 1 space is metrizable. 

D 2 spaces 
Unlike D1 spaces, it will be shown that every D 2, T 3 space is not only 

metrizable, but also compact. 

Theorem 13. A Ta topological space (X, Y) is metrizable and compact 
iff it satisfies Dz. 

Proof: Let {U n} be a countable base for (X, Y). Construct a new 
countable base {Vk} consisting of all finite unions of members of {Un}· 
Let F be a closed set and let G be an open set containing F. For each 
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x E F, there exists U n such that x E U n C G. Since F is compact a finite 
number of these Un cover F and hence {V.k} will form a base for 
the open sets containing F. Thus a metrizable compact space satisfies D2. 

A D2, T3 space is clearly metrizable by Theorem 1. Since it is also D~, 
it is the union of a compact set and isolated points. Let M be the compact 
set. If there is an infinite closed set consisting of the union of isolated 
points not contained in M, a non-denumerable family of open sets will be 
needed to insure that every closed set has a countable base for the open 
sets containing it. Thus there is no infinite closed set consisting of the 
union of isolated points not contained in M. Then any cover of M covers 
all but a finite number of points of X and hence X is compact. 
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