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Abstract

New Leray—Schauder type results are pnéseé for inward type mappings defined on @&&hét spacd. The proofs rely on
Leray—Schauder results in Banach spaces and vieiag the projective limit of a sequence of Banach spaces.
(© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

This work presents a continuation theorem for inward type mappings defined betveatetspaces. The theory
is based on the notion of an essential map and on viewingeehEt space as a projective limit of a sequence of
Banach spacegEninen (hereN = {1, 2,...}). The usual continuation theory in the non-normable situation is rarely
of interest from an application viewpoint (this point seems to be overlooked by many authors) since the set constructe
is usually open and bounded and so has empty interior. Wemressults for inward acyclic and inward approximable
maps. Also we present results for inward Kakutané+dh type maps.

For the remaider of this section we present some definitions and some known factX. &etlY be subsets of
Hausdorff topological vector spacEs andE; respectively. We will look at maps : X — K(Y); hereK (Y) denotes
the family of nonempty compact subsets\ofWe sayF : X — K(Y) is Kakuaniif F is upper semicontinuous with
convex values. A honempty topological space is said to be acyclic if all its redCeeidhomology groups over the
rationals are trivial. NowF : X — K(Y) isacyclicif F is upper semicontinuous with acyclic values.

Given two open neighborhoods andV of the origins inE; andE; respectively, &U, V)-approximate continuous
selection ] of F : X — K(Y) is a continuous functiors : X — Y satisfying

s(x) e (FIx+U)NX]+V)NY foreveryx € X.

We sayF : X — K(Y) is approximabléf it is a closed map and if its restrictiof|k to any compact subsét of X
admits a(U, V)-approximate continuous selection for every open neighborbloaddV of the origins inE; andEp
respectively.
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Let Q be a subset of a Hausdorff topological spxcandx € X. Theinward set b(x) is defired by
loX) ={X+r(y—x):ye Q,r >0}

If Qisconvexand € Q then

loX)=X+{r(y—x):ye Q,r > 1}

Let (X, d) be a metric space andy the bounded subsets &f. The Kuratowski measure of noncompactness is the
mapo : 2x — [0, oo] defined by (heré € 2x)

a(A) =inf{r > 0: AC U A anddiam(A) <r}.

Let Sbe a nonempty subset & For eachx e X, defined(x, S) = infycsd(X, y). We say a set is countably bounded
if it is countable and bounded. Now supp@e S — 2X; here X denotes the family of nonempty subsetsXof
ThenG: S— 2Xis

(i) countablyk-set contractive (here > 0) if G(S) is bounded and(G(W)) < ka (W) for all countably bounded
setsW of S,
(ii) countably condensing if5(S) is bounded,G is countably 1-set contractive and G(W)) < «(W) for all
countably bounded seW of Swith «(W) # 0,
(i) hemicompact if each sequen¢®n}nen in S has a convergent subsequence whendyes, G(xn)) — 0 as
n— oo.

We now recall a result from the literature]
Theorem 1.1. Let (Y, d) be a metric space, D a nonempty, complete subset of Y, and>G— 2Y a countably
condensing map. Then G is hemicompact.

Now let| be a directed set with orderand let{ E, },<| be a family of locally convex spaces. Foreach I, 8 € |
for whicha < g letm, g : Eg — E, be a continuous map. Then the set

{x:(xa)e]_[Ea:xazna,ﬂ(xﬁ)\m,ﬂe l,a <B

ael

is a close subset of[[,., E. and is called the projective limit ofE,}«ci and is denoted by lim E, (or
lim —{Eq, 74 g} Or the generatied intersectiond, p. 439]Nyel Eq).

Existence inrSection 2is based onhte following continuation theory foAc Apmaps. A maps said to beAc A pif
it is either acyclic or apprornable. In our next definitionk is a Banach spac€; a closed cowvex subset ofE and
Up abounded open subset Bf We will let U = Ug N C and Oe U. In our definitionsJ andaU denote the closure
and the boundary df in C respectively.

Definition 1.1. We sayF € AU,E)if F : U — K(E) is a closedAcAp countably condensing map with
F(X) C lc(x) forx e U.

Definition 1.2. AmapF € Ayuy (U, E)if F € A(U, E) with x ¢ Fx for x € 9U.

Definition 1.3. AmapF € Ayu (U, E) is essential inAyy (U, E) if for every G € Ayu (U, E) with G|su = Flsu
there existx € U with x € Gx.

The following result was established i) [
Theorem 1.2. Let E, C, Up, U be asabove0 € U and F e AU, E) with

x g AFx forxedU and A€ (0, 1] (1.1)
Then F is essential in & (U, E).

Remark 1.1. The proof ofTheorem 1.2s based on the fact that the zero map is essentiahinU, E) andF = 0
in Ayu (U, E).
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Remark 1.2. If the mapF in Theorem 1.2vas K&utani then in fact (x) < Ic(x) for x € U could be replaced by
F(x) N lc(x) # @ for x € U; see p] for detals.

We will also consider maps which are more general thamntably condensing maps, i.e. we will discuss
Kakutani-Mdnch maps. LeE, C, Ug andU be as inDefinition 1.1and let O U.

Definition 1.4. We sayF € K(U, E) if F : U — CK(E) is upper semicontinuou$;,(U) is boundedF (x) < lc(x)
forx e U,and ifD € E with D € co({0} U F(D NU)) andD = B with B € D countable thed N U is compact;
hereC K (E) denotes the family of nonempty convex compact subseks of

Definition 1.5. AmapF € Kyy (U, E) if F € K(U, E) with x ¢ Fx for x € aU.

Definition 1.6. AmapF e K,y (U, E) is essential irkyy (U, E) if for every G € K,y (U, E) with Glay = Flsu
there existx € U with x € Gx.

The following result was established ][

Theorem 1.3. Let E, C, Uo, U be as bedre in Definition1.1, 0 € U and F € K (U, E) with (1.1) holding. Then F
is essential in Ky (U, E). In fact there exists a compact s&tof U and a xe Y with x € Fx.

Remark 1.3. In [5] we showedhere eistsx € U with x € Fx. Of course
xeX={yeU:yeFy}.

We now $ow that X is compact. First notic&l’ is closed since- is upper semicontinuous. Now I¢y,}7° be a
sequence in¥, and letC = {yn}7°. Notice C is countable an€ < co({0} U F(CNU)) sincey, € Fy, € F(CNU);
notey, € U from (1.1). Now sinceF € K (U, E) we have (takeD = C) thatC N'U is compact (so sequentially
compact). Thus there exists a subsequedcef N and ay € C NU with y, — y asn — oo in Ni. This together
with yn € Fy, and the upper semicontinuity ¢&f guarantees that € Fy, soy € ¥ = X. Consequentlyy is
sequentially comact, so compact.

2. Fixed point theory in Fréchet spaces

Let E = (E, {| - In}nen) be a FEchet space with the topology generated by a family of semingrms: n € N}.
We assume that the family of seminorms satisfies

IX|]1 < IX]2 < [X|z<--- foreveryx € E. (2.1)

A subsetX of E is bounded if for everyn € N there exists, > 0 such thatx|, < rp forall x € X. With E we

associate a sequence of Banach sp&éss |- |n)} described as follows. For evenye N we consider th equivalence
relaion ~, defined by

X~pny iff |x—y|n=0. (2.2)

We denote byE" = (E/ ~n, | - [n) the quotient space, and b, | - |n) the completion o£" with respecttq - |, (the
norm onE" induced by - |, and its extension t&, are still denoted by- |»). This construction defines a continuous
mapun : E — Ep. Now since(2.1) is satisfied, the seminorin |, induces a seinorm onE, for everym > n
(again this seminorm is denoted by|,). Also (2.2) defines an equivalence relation Bp, from which we obtain a
continuous mapinm : Em — Ejn sinceEn/ ~n can be regarded as a subseEgf We now &sume the following
condition holds:

{ for eachn € N, there exists a Banach spac&p, | - |n) 2.3)

and an isomorphism (between normed spacgs)En — En.

Remark 2.1. (i) For convenience the norm d#, is denoted by - |.
(i) Usually in applications€E, = E" for eachn € N.
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(iii) Note if x € E, (or E™) thenx € E. However ifx € Ej, thenx is not necessarily it and in factE, is easier to
use in applications (even thoudh, is isomophic toEy). For exanpleif E = C[0, co), thenE" consists of the
class of functions irE which coincide on the intervgD, n] andE, = C[0, n].

Finally we assume

E1 D Ex;D>--- andforeachn € N, [X|n < [X|n+1 VX € Enya. (2.4)

Let lim En (or N{® En whereng® is the generalized intersectio8]] denote the projective limit of En}nen (Note
Tn,m = jn,un,mjn;l : Em — En form > n) andnote lim_ E,, = E, so for caweniene we wite E = lim _ Ep.

For eachX C E and eacm e N we setXp = jnun(X), and we letX,, andd X, denote respectively the closure
and the boundary oXy with respect tg - |, in E,. Also the pseudo-interior oK is defired by [6]

pseudaint(X) = {Xx € X : jnun(X) € Xn \ 8X,, forevery n € N}.

The setX is pseudo-open iK = pseudeint(X).
We bagin with a result for Volterra type operators.

Theorem 2.1. Let Eand E, be as described above, C a closed convex subset of E and V a bounded pseudo-open
subset of E. LetU=V NC with0 € U, and F: U — 2E (here2F denotes the family of nonempty subsets of E).
Suppose the following conditions are satisfied:

foreachne N, F : U, — K(E,) isa
closed AcAp countably condensing mégere

Un = V,, N C,, andU, denotes the (2:5)
closure of U, in C,
foreachne N, F(x) € 15, (X) for each xe Up, (2.6)

foreach ne N,y ¢ AFy in E, for all
A € (0,1) and ye dUy; heredUy (2.7)
denotes the boundary of,Un C,

and

{ foreach ne {2,3,...} if y € U, solves ye Fy in Ep,

then ye Ucfork e {1,...,n—1}. (2.8)

Then Fhas a fixed pointin E.
Remark 2.2. If the mapF in (2.5)was Kakutani for eaclm € N, then for eactn € N, F(x) < I (x) for x € Un
can be replaced by (x) N Ie-(x) # ¢ for x € Uy (seeRemark 1.2
Proof. Fix n € N. We would like to applyTheorem 1.2To do so we need to show

Cn is convex (2.9)
and

Vn isabounded open subset &, and O Up. (2.10)

First we check2.9). To see tis letX, ¥ € un(C) andi € [0, 1]. Then Pr everyx € ;Ln—l(f() andy e ,ugl(y) we
haveirx + (1 — A)y € C sinceC is convex and saX + (1 — A)¥ = Aun(X) + (1 — X)) un(y). It is easy to check that
An(X) + (L — VD un(y) = un(AX + (1 — A)y) so as aesult

AR+ A —=NY = pun(AX+ (L —21)Yy) € un(C),

and soun (C) is convex. Now sincgy, is linear we have€, = jn(un(C)) is convex and as a resud}, is convex. Thus
(2.9)holds.
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Now sinceV is pseudo-open and @ V then 0e pseudeintV so 0= jhun(0) € Vh \ aVy (hereV, andaVy
denote the closure and boundaryfin Ep, respectively). Of course

Vi \ 8Vh = (Van U 3Vn) \ 9V = Vn \ 3V,

s0 0e Vp\dVy, and inparticular Oe V. Thus Oe VaNC,, = Up. Nextnatice V,, is bounded sinc® is bounded (note
if y € V, then there exists € V with y = jnun(X)). It remains to show/, is open. First notic&,, < V,\ 8V, since if
y € V, then there exists € V with y = jnun(X) and this together with' = pseudeint V yields jnin(X) € Va\dVn,
i.e.y € Vp \ 8Vy. In addition notice

sinceintVy N aVy = . Consequently
Vn g V_n \ aVn = intVn, SOVn = intVn.

As aresultv, is open inE,. Thus(2.10)holds.

Theorem 1.yuarantees that there exists € U, with y, € Fyy. Let uslook at{yn}nen. Notice y; € U; and
yk € Up fork € N\ {1} from (2.8). As aresulty, € U; forn € N, yn € Fy, in E, together with(2.5)implies there
is a sibsequencdly of N and az; € Uy with yp — z;in E; asn — oo in Ni. Let Ny = N\ {1}. Nowy, € U, for
n € N together with(2.5) guarantees that there exists a subsequéljogf N; and az; € Uz with yp — z2in E; as
n — oo in N3. Notefrom (2.4)thatz; = z; in Ez sinceN; € Ni. Let N2 = N3 \ {2}. Proceed inductively to obtain
subsequences of integers

NJDN3D.... NfCikk+1,.. ]

andz € Uk with y, — 2« in Ex ash — oo in Ng. Notezy 1 = zc in Ex fork € {1,2,...}. Also let Nx = Ng \ {k}.
Fix k € N. Lety = z in Ek. Notice y is well defined and/ € lim_ E;, = E. Now y, € Fyn in E, forn € N

andy, — yin Ex asn — oo in N (sincey = z in Ex) together vith the fact thatF : Uy — K (Ey) is closed(note

yn € Uk for n € Ni) impliesy € Fy in Ex. We can do this for eack € N so as aesultwe havey € Fyin E. [

Our next result was motivated by Uglsn type operators. In this case the nfgpwill be related toF by the
closure property2.16)

Theorem 2.2. Let Eand E, be as described in the beginning &¢ion 2, C a closed convesubset of E and V a
bounded pseudo-open subset of E. LetlY N C with 0 € U, and F: U — 2F. Suppose the following conditions
are satisfied:

Ui2Uz2--- (2.11)

foreachne N, F, : U, > K(Ep) isa 2.12)
closed AcAp countably condensing map '

for each ne N, F,(x) C le,(X) for each xe U, (2.13)
for each ne N,y ¢ ARy in E, for all (2.14)
A€ (0,1) and ye U, '

for each ne N, the mapk,, : U, — 25, given by
g (y) = Upr_, Fm(y) (seeRemark 2.3, is (2.15)
countablycondensing

and

if there exists av € E and a sequencgy/n}nen

with yn € Up and y, € Fnyy in E, suchthat

for every ke N there ejsts a subsquence (2.16)
Sc{k+1,k+2,....} of Nwith y; > win Eg

asn— oo in S, thenw € Fw in E.

Then Fhas a fixed pointin E.
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Remark 2.3. The definition ofiC, is as follows. Ify € U, andy ¢ Un,1 thenCh(y) = Fn(y), wheeas ify € Up 1
andy & Un,2 thenKn(y) = Fn(y) U Frta(y), andsoon.

Proof. Fix n e N. Theorem 1.3juarantees that there exists € U, with yn € Fnyn in Ep. Let uslook at{yn}nen-
Now Theorem 1.{with Y = E;, G = K1, D = U; and noteds(yn, K1(yn)) = O for eachn € N since|x|1 < [X|n

for all x € En andyn € Fpyn in En; heredy(x, Z) = infyez X — y|1 for Z € Y) guarantees that there exists a
subsequencél; of N and az; € Ej with y, — z3in E; asn — oo in Nj. Let Np = Ny \ {1}. Look at{yn}nen;
Now Theorem 1.4with Y = E;, G = K andD = U,) guarantees that there exists a subsequéloef N1 and a

z; € Ep with yn — z2in Ez asn — oo in N;. Notez, = z; in E; sinceN; € Nj. Let N = N3\ {2}. Proceed
inductively to obtain subsequences of integers

NJDNZD.... NiCikk+1..)

andz € Ex with yn — zcin Ex asn — oo in N¢. Notezx,1 = z in Ex fork € N. Also let Nk = N; \ {k}.
Fix k € N. Lety = z in Ex. Natice y is well defined ang/ € lim — E, = E. Now y, € Fyyn in E, for n € Ng
andy, — yin Ex asn — oo in Nk (sincey = z in Ex) togethemwith (2.16)impliesy € Fyin E. O

Now we mnsider Minch maps.
Theorem 2.3. Let E and E, be as described in the beginning 8&tion 2, C a closed convesubset of E and V a

bounded pseudo-open subset of E. Letl N C with 0 € U, and F: U — 2E. Suppose the following conditions
are satisfied:

for eachne N, F : Uy — CK(Ep) is

upper semicontinuous and(Bp) is bounded (2.17)
foreachne N, D € E, with D C co({0} U F(D N'Uy))

and D = B with B € D countable implies (2.18)
D N Uy is conpact

foreachne N, F(x) C IC—n(x) for each xe U, (2.19)
foreachne N,y ¢ AFy in E, for all (2.20)
A€ (0,11 and ye 0U, ’
and

foreach ne {2,3,...} if y € U, soles ye Fy in Ep, 2.21)
then ye U fork e {1,...,n —1}. '

Then Fhas a fixed pointin E.

Proof. Fixn € N. Let ¥, = {x € U, : x € Fxin Ep}. Now Theorem 1.3seeRemark 1.3 guarantees there exists
Yn € Xn with yn € Fyn. Let uslook at{ynlnen. Nowy; € 21. Also yx € 2y fork € N\ {1} sinceyx € U
from (2.21)(see alsq2.4)). As a resulty, € X1 for n € N and sinceX; is compact (se®emark 1.3there eists a
subsequencély of N and az; € X3 with yn — z1in E; asn — oo in Nj. Let Ny = Ni \ {1}. Now y, € X for

n € N; so there exists subsequencel; of Ny and az; € X with yn — 2z in Ez asn — oo in N3. Notefrom (2.4)
thatzo = z; in E; sinceN; € N;. Let N2 = N3 \ {2}. Proceed inductively to obtain subsequences of integers

NIDN;D..., Nc{kk+1,..}
andzg € Y with yn — zcin Ex asn — oo in N}. Notezx, 1 =z« in Ex fork e {1,2,...}. Also letNx = N} \ {k}.
Fix k € N. Lety = z in Ex. Essentially the same reasoning a§meorem 2. guaranteesthate Fyin E. O

Theorem 2.4. Let E and E, be as described in the beginning §&¢ion 2, C a closed conwesubset of E and V a
bounded pseudo-open subset of E. Letl} N C with 0 € U, and F: U — 2E. Suppose the following conditions
are satisfied:

Up2Uz2 - (2.22)
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for each ne N, F, : U, — CK(Ep) is (2.23)
upper semicontinuous anch®Jp) is bounded '
for each ne N, D C Ep with D C co({0} U Fn(D N'Up))
and D = B with B € D countable implies (2.24)
D N U, is conpact

for each ne N, F,(x) C le,(X) for each xe U, (2.25)
foreach ne N,y ¢ AFyy in E, for all (2.26)
A€ (0,1]and ye aUp '

for each ne N, the mapk, : U, — 25, given by
Kn(y) = USS_, Fm(y) satisfies if CC Uy, is (2.27)
countable with C< Kn(C) thenC is conpact

and

if there exists av € E and a sequencg/n}nen

with y, € Up and y, € Fpyy in Ep suchthat

for every ke N there ejsts a subsquence (2.28)
Sc{k+1,k+2,...}0of Nwithy, —> win Ex

asn— oo in S, thenw € Fw in E.

Then Fhas a fixed pointin X.

Proof. Fixn € N. Let X, = {x € Uy : X € Fpx in En}. Now Theorem 1.3juarantees that there existse %, with
Yn € Fnyn in En. Let uslook at{yn}nen. Notey, € Ug for n € N from (2.22) Now with C = {yn}{° we have from
assumption(2.27)thatC(C Ej) is compact; note, € K1(yn) in E; for eachn e N. Thus there exists a subsequence
N; of N and az; € U; with yy — z1 in E; asn — oo in N;. Let Np = Ny \ {1}. Proceed inductively to obtain
subsequences of integelg” © N3 2 ..., Ny € {k,k+1,...} andz € Uk with yn, — z¢ in Ex asn — oo in Ny
Notezk,1 = z in Ex fork € N. Also let Nk = N¢ \ {k}.

Fixk € N. Lety = z in Ek. Essentially the same reasoning a§eorem 2.3uaranteesthate Fyin E. O
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