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Abstract

New Leray–Schauder type results are presented for inward type mappings defined on a Fr´echet spaceE. Theproofs rely on
Leray–Schauder results in Banach spaces and viewingE as the projective limit of a sequence of Banach spaces.
c© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

This work presents a continuation theorem for inward type mappings defined between Fr´echet spaces. The theory
is based on the notion of an essential map and on viewing a Fr´echet space as a projective limit of a sequence of
Banach spaces{En}n∈N (hereN = {1, 2, . . .}). The usual continuation theory in the non-normable situation is rarely
of interest from an application viewpoint (this point seems to be overlooked by many authors) since the set constructed
is usually open and bounded and so has empty interior. We present results for inward acyclic and inward approximable
maps. Also we present results for inward Kakutani–M¨onch type maps.

For the remainder of this section we present some definitions and some known facts. LetX andY be subsets of
Hausdorff topological vector spacesE1 andE2 respectively. We will look at mapsF : X → K (Y); hereK (Y) denotes
the family of nonempty compact subsets ofY. We sayF : X → K (Y) is Kakutani if F is upper semicontinuous with
convex values. A nonempty topological space is said to be acyclic if all its reducedC̆ech homology groups over the
rationals are trivial. NowF : X → K (Y) is acyclic if F is upper semicontinuous with acyclic values.

Given two open neighborhoodsU andV of the origins inE1 andE2 respectively, a(U, V)-approximate continuous
selection [1] of F : X → K (Y) is a continuous functions : X → Y satisfying

s(x) ∈ (F[(x + U) ∩ X] + V) ∩ Y for everyx ∈ X.

We sayF : X → K (Y) is approximableif it is a closed map and if its restrictionF |K to any compact subsetK of X
admits a(U, V)-approximate continuous selection for every open neighborhoodU andV of the origins inE1 andE2
respectively.

∗ Tel.: +353 91 524 411; fax: +353 91 525 700.
E-mail address:donal.oregan@nuigalway.ie.

0893-9659/$ - see front matterc© 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aml.2005.09.013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82697332?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/aml
mailto:donal.oregan@nuigalway.ie
http://dx.doi.org/10.1016/j.aml.2005.09.013


D. O’Regan / Applied Mathematics Letters 19 (2006) 976–982 977

Let Q be a subset of a Hausdorff topological spaceX andx ∈ X. Theinward set IQ(x) is defined by

IQ(x) = {x + r (y− x) : y ∈ Q, r ≥ 0}.
If Q is convex andx ∈ Q then

IQ(x) = x + {r (y− x) : y ∈ Q, r ≥ 1}.
Let (X, d) be a metric space andΩX thebounded subsets ofX. The Kuratowski measure of noncompactness is the

mapα : ΩX → [0,∞] defined by (hereA ∈ ΩX)

α(A) = inf{r > 0 : A ⊆ ∪n
i=1Ai anddiam(Ai ) ≤ r }.

Let Sbe a nonempty subset ofX. For eachx ∈ X, defined(x, S) = infy∈Sd(x, y). We say a set is countably bounded
if it is countable and bounded. Now supposeG : S→ 2X; here 2X denotes the family of nonempty subsets ofX.
ThenG : S→ 2X is

(i) countablyk-set contractive (herek ≥ 0) if G(S) is bounded andα(G(W)) ≤ kα(W) for all countably bounded
setsW of S,

(ii) countably condensing ifG(S) is bounded,G is countably 1-set contractive andα(G(W)) < α(W) for all
countably bounded setsW of Swith α(W) �= 0,

(iii) hemicompact if each sequence{xn}n∈N in S has a convergent subsequence wheneverd(xn, G(xn)) → 0 as
n→∞.

We now recall a result from the literature [2].

Theorem 1.1. Let (Y, d) be a metric space, D a nonempty, complete subset of Y , and G: D → 2Y a countably
condensing map. Then G is hemicompact.

Now let I be a directed set with order≤ and let{Eα}α∈I be a family of locally convex spaces. For eachα ∈ I , β ∈ I
for whichα ≤ β let πα,β : Eβ → Eα be a continuous map. Then the set{

x = (xα) ∈
∏
α∈I

Eα : xα = πα,β(xβ) ∀α, β ∈ I , α ≤ β

}

is a closed subset of
∏

α∈I Eα and is called the projective limit of{Eα}α∈I and is denoted by lim← Eα (or
lim←{Eα, πα,β} or the generalized intersection [3, p. 439]∩α∈I Eα).

Existence inSection 2is based on the following continuation theory forAcApmaps. A map is said to beAcApif
it is either acyclic or approximable. In our next definitionsE is a Banach space,C a closed convex subset ofE and
U0 a bounded open subset ofE. We will let U = U0 ∩ C and 0∈ U . In our definitionsU and∂U denote the closure
and the boundary ofU in C respectively.

Definition 1.1. We say F ∈ A(U , E) if F : U → K (E) is a closedAcAp countably condensing map with
F(x) ⊆ IC(x) for x ∈ U .

Definition 1.2. A map F ∈ A∂U (U , E)if F ∈ A(U , E) with x �∈ Fx for x ∈ ∂U .

Definition 1.3. A map F ∈ A∂U (U , E) is essential inA∂U (U , E) if for every G ∈ A∂U (U , E) with G|∂U = F |∂U

there existsx ∈ U with x ∈ Gx.

The following result was established in [4].

Theorem 1.2. Let E, C,U0,U be asabove,0 ∈ U and F ∈ A(U , E) with

x �∈ λFx for x ∈ ∂U and λ ∈ (0, 1]. (1.1)

Then F is essential in A∂U (U , E).

Remark 1.1. The proof ofTheorem 1.2is based on the fact that the zero map is essential inA∂U (U , E) andF ∼= 0
in A∂U (U , E).
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Remark 1.2. If the mapF in Theorem 1.2was Kakutani then in factF(x) ⊆ IC(x) for x ∈ U could be replaced by
F(x) ∩ IC(x) �= ∅ for x ∈ U ; see [6] for details.

We will also consider maps which are more general than countably condensing maps, i.e. we will discuss
Kakutani–Mönch maps. LetE, C,U0 andU be as inDefinition 1.1and let 0∈ U .

Definition 1.4. We sayF ∈ K (U , E) if F : U → C K(E) is upper semicontinuous,F(U) is bounded,F(x) ⊆ IC(x)

for x ∈ U , and if D ⊆ E with D ⊆ co({0} ∪ F(D ∩U)) andD = B with B ⊆ D countable thenD ∩U is compact;
hereC K(E) denotes the family of nonempty convex compact subsets ofE.

Definition 1.5. A map F ∈ K∂U (U , E) if F ∈ K (U , E) with x �∈ Fx for x ∈ ∂U .

Definition 1.6. A map F ∈ K∂U (U , E) is essential inK∂U (U , E) if for every G ∈ K∂U (U , E) with G|∂U = F |∂U

there existsx ∈ U with x ∈ Gx.

The following result was established in [5].

Theorem 1.3. Let E, C,U0,U be as before in Definition1.1, 0 ∈ U and F ∈ K (U , E) with (1.1)holding. Then F
is essential in K∂U (U , E). In fact there exists a compact setΣ of U and a x∈ Σ with x ∈ Fx.

Remark 1.3. In [5] we showed there existsx ∈ U with x ∈ Fx. Of course

x ∈ Σ = {y ∈ U : y ∈ Fy}.
We now show thatΣ is compact. First noticeΣ is closed sinceF is upper semicontinuous. Now let{yn}∞1 be a
sequence inΣ , and letC = {yn}∞1 . NoticeC is countable andC ⊆ co({0}∪ F(C∩U)) sinceyn ∈ Fyn ⊆ F(C∩U);
noteyn ∈ U from (1.1). Now sinceF ∈ K (U , E) we have (takeD = C) that C ∩U is compact (so sequentially
compact). Thus there exists a subsequenceN1 of N and ay ∈ C ∩U with yn → y asn→ ∞ in N1. This together
with yn ∈ Fyn and the upper semicontinuity ofF guarantees thaty ∈ Fy, so y ∈ Σ = Σ . ConsequentlyΣ is
sequentially compact, so compact.

2. Fixed point theory in Fréchet spaces

Let E = (E, {| · |n}n∈N) be a Fréchet space with the topology generated by a family of seminorms{| · |n : n ∈ N}.
We assume that the family of seminorms satisfies

|x|1 ≤ |x|2 ≤ |x|3 ≤ · · · for everyx ∈ E. (2.1)

A subsetX of E is bounded if for everyn ∈ N there existsrn > 0 such that|x|n ≤ rn for all x ∈ X. With E we
associate a sequence of Banach spaces{(En, | · |n)} described as follows. For everyn ∈ N we consider the equivalence
relation∼n defined by

x∼n y iff |x − y|n = 0. (2.2)

We denote byEn = (E/∼n, | · |n) the quotient space, and by(En, | · |n) the completion ofEn with respect to| · |n (the
norm onEn induced by| · |n and its extension toEn are still denoted by| · |n). This construction defines a continuous
mapµn : E → En. Now since(2.1) is satisfied, the seminorm| · |n induces a seminorm onEm for everym ≥ n
(again this seminorm is denoted by| · |n). Also (2.2)defines an equivalence relation onEm from which we obtain a
continuous mapµn,m : Em → En sinceEm/∼n can be regarded as a subset ofEn. We now assume the following
condition holds:{

for eachn ∈ N, there exists a Banach space(En, | · |n)
and an isomorphism (between normed spaces)jn : En→ En.

(2.3)

Remark 2.1. (i) For convenience the norm onEn is denoted by| · |n.
(ii) Usually in applicationsEn = En for eachn ∈ N.
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(iii) Note if x ∈ En (or En) thenx ∈ E. However ifx ∈ En thenx is not necessarily inE and in factEn is easier to
use in applications (even thoughEn is isomorphic toEn). For exampleif E = C[0,∞), thenEn consists of the
class of functions inE which coincide on the interval[0, n] andEn = C[0, n].

Finally we assume

E1 ⊇ E2 ⊇ · · · and for eachn ∈ N, |x|n ≤ |x|n+1 ∀x ∈ En+1. (2.4)

Let lim← En (or ∩∞1 En where∩∞1 is the generalized intersection [3]) denote the projective limit of{En}n∈N (note
πn,m = jnµn,m j−1

m : Em→ En for m ≥ n) andnote lim← En ∼= E, so for convenience we write E = lim← En.
For eachX ⊆ E and eachn ∈ N we setXn = jnµn(X), and we letXn and∂ Xn denote respectively the closure

and the boundary ofXn with respect to| · |n in En. Also the pseudo-interior ofX is defined by [6]

pseudo-int(X) = {x ∈ X : jnµn(x) ∈ Xn \ ∂ Xn for every n ∈ N}.
The setX is pseudo-open ifX = pseudo-int(X).

We begin with a result for Volterra type operators.

Theorem 2.1. Let E and En be as described above, C a closed convex subset of E and V a bounded pseudo-open
subset of E. Let U= V ∩ C with 0 ∈ U, and F : U → 2E (here2E denotes the family of nonempty subsets of E).
Suppose the following conditions are satisfied:


for each n∈ N, F : Un→ K (En) is a
closed AcAp countably condensing map; here
Un = Vn ∩ Cn andUn denotes the
closure of Un in Cn

(2.5)

for each n∈ N, F(x) ⊆ ICn
(x) for each x∈ Un (2.6)


for each n∈ N, y �∈ λFy in En for all
λ ∈ (0, 1) and y∈ ∂Un; here∂Un

denotes the boundary of Un in Cn

(2.7)

and {
for each n∈ {2, 3, . . .} if y ∈ Un solves y∈ Fy in En

then y∈ Uk for k ∈ {1, . . . , n− 1}. (2.8)

Then Fhas a fixed point in E.

Remark 2.2. If the mapF in (2.5)was Kakutani for eachn ∈ N, then for eachn ∈ N, F(x) ⊆ ICn
(x) for x ∈ Un

can be replaced byF(x) ∩ ICn
(x) �= ∅ for x ∈ Un (seeRemark 1.2).

Proof. Fix n ∈ N. We would like to applyTheorem 1.2. To do so we need to show

Cn is convex (2.9)

and

Vn is a bounded open subset ofEn and 0∈ Un. (2.10)

First we check(2.9). To see this let x̂, ŷ ∈ µn(C) andλ ∈ [0, 1]. Then for everyx ∈ µ−1
n (x̂) andy ∈ µ−1

n (ŷ) we
haveλx + (1− λ)y ∈ C sinceC is convex and soλx̂ + (1− λ)ŷ = λµn(x)+ (1− λ)µn(y). It is easy to check that
λµn(x)+ (1− λ)µn(y) = µn(λx + (1− λ)y) so as a result

λx̂ + (1− λ)ŷ = µn(λx + (1− λ)y) ∈ µn(C),

and soµn(C) is convex. Now sincejn is linear we haveCn = jn(µn(C)) is convex and as a resultCn is convex. Thus
(2.9)holds.
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Now sinceV is pseudo-open and 0∈ V then 0∈ pseudo-int V so 0= jnµn(0) ∈ Vn \ ∂Vn (hereVn and∂Vn

denote the closure and boundary ofVn in En respectively). Of course

Vn \ ∂Vn = (Vn ∪ ∂Vn) \ ∂Vn = Vn \ ∂Vn

so 0∈ Vn\∂Vn, and inparticular 0∈ Vn. Thus 0∈ Vn∩Cn = Un. NextnoticeVn is bounded sinceV is bounded (note
if y ∈ Vn then there existsx ∈ V with y = jnµn(x)). It remains to showVn is open. First noticeVn ⊆ Vn\∂Vn since if
y ∈ Vn then there existsx ∈ V with y = jnµn(x) and this together withV = pseudo-int V yields jnµn(x) ∈ Vn\∂Vn,
i.e. y ∈ Vn \ ∂Vn. In addition notice

Vn \ ∂Vn = (int Vn ∪ ∂Vn) \ ∂Vn = int Vn \ ∂Vn = int Vn

sinceintVn ∩ ∂Vn = ∅. Consequently

Vn ⊆ Vn \ ∂Vn = intVn, soVn = intVn.

As a resultVn is open inEn. Thus(2.10)holds.
Theorem 1.2guarantees that there existsyn ∈ Un with yn ∈ Fyn. Let uslook at{yn}n∈N . Notice y1 ∈ U1 and

yk ∈ U1 for k ∈ N \ {1} from (2.8). As a resultyn ∈ U1 for n ∈ N, yn ∈ Fyn in En together with(2.5)implies there
is a subsequenceN�

1 of N and az1 ∈ U1 with yn→ z1 in E1 asn→∞ in N�
1 . Let N1 = N�

1 \ {1}. Now yn ∈ U2 for
n ∈ N1 together with(2.5)guarantees that there exists a subsequenceN�

2 of N1 and az2 ∈ U2 with yn→ z2 in E2 as
n→∞ in N�

2 . Notefrom (2.4)thatz2 = z1 in E1 sinceN�
2 ⊆ N1. Let N2 = N�

2 \ {2}. Proceed inductively to obtain
subsequences of integers

N�
1 ⊇ N�

2 ⊇ . . . , N�
k ⊆ {k, k+ 1, . . .}

andzk ∈ Uk with yn→ zk in Ek asn→∞ in N�
k . Notezk+1 = zk in Ek for k ∈ {1, 2, . . .}. Also let Nk = N�

k \ {k}.
Fix k ∈ N. Let y = zk in Ek. Notice y is well defined andy ∈ lim← En = E. Now yn ∈ Fyn in En for n ∈ Nk

andyn→ y in Ek asn→∞ in Nk (sincey = zk in Ek) together with the fact thatF : Uk → K (Ek) is closed(note
yn ∈ Uk for n ∈ Nk) implies y ∈ Fy in Ek. We can do this for eachk ∈ N so as a result we havey ∈ Fy in E. �

Our next result was motivated by Urysohn type operators. In this case the mapFn will be related toF by the
closure property(2.16).

Theorem 2.2. Let E and En be as described in the beginning ofSection 2, C a closed convex subset of E and V a
bounded pseudo-open subset of E. Let U= V ∩ C with 0 ∈ U, and F : U → 2E. Suppose the following conditions
are satisfied:

U1 ⊇ U2 ⊇ · · · (2.11){
for each n∈ N, Fn : Un→ K (En) is a
closed AcAp countably condensing map

(2.12)

for each n∈ N, Fn(x) ⊆ ICn
(x) for each x∈ Un (2.13){

for each n∈ N, y �∈ λFny in En for all
λ ∈ (0, 1) and y∈ ∂Un

(2.14)


for each n∈ N, the mapKn : Un→ 2En , given by
qKn(y) = ∪∞m=n Fm(y) (seeRemark 2.3), is
countablycondensing

(2.15)

and 


if there exists aw ∈ E and a sequence{yn}n∈N

with yn ∈ Un and yn ∈ Fnyn in En suchthat
for every k∈ N there exists a subsequence
S⊆ {k+ 1, k+ 2, . . . .} of N with yn→ w in Ek

as n→∞ in S, thenw ∈ Fw in E.

(2.16)

Then Fhas a fixed point in E.
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Remark 2.3. The definition ofKn is as follows. Ify ∈ Un andy �∈ Un+1 thenKn(y) = Fn(y), whereas ify ∈ Un+1
andy �∈ Un+2 thenKn(y) = Fn(y) ∪ Fn+1(y), andsoon.

Proof. Fix n ∈ N. Theorem 1.2guarantees that there existsyn ∈ Un with yn ∈ Fnyn in En. Let uslook at{yn}n∈N .
Now Theorem 1.1(with Y = E1, G = K1, D = U1 and noted1(yn,K1(yn)) = 0 for eachn ∈ N since|x|1 ≤ |x|n
for all x ∈ En and yn ∈ Fnyn in En; hered1(x, Z) = infy∈Z |x − y|1 for Z ⊆ Y) guarantees that there exists a
subsequenceN�

1 of N and az1 ∈ E1 with yn → z1 in E1 asn → ∞ in N�
1 . Let N1 = N�

1 \ {1}. Look at{yn}n∈N1.
Now Theorem 1.1(with Y = E2, G = K2 andD = U2) guarantees that there exists a subsequenceN�

2 of N1 and a
z2 ∈ E2 with yn → z2 in E2 asn → ∞ in N�

2 . Notez2 = z1 in E1 sinceN�
2 ⊆ N�

1. Let N2 = N�
2 \ {2}. Proceed

inductively to obtain subsequences of integers

N�
1 ⊇ N�

2 ⊇ . . . , N�
k ⊆ {k, k + 1, . . .}

andzk ∈ Ek with yn→ zk in Ek asn→∞ in N�
k . Notezk+1 = zk in Ek for k ∈ N. Also let Nk = N�

k \ {k}.
Fix k ∈ N. Let y = zk in Ek. Notice y is well defined andy ∈ lim← En = E. Now yn ∈ Fnyn in En for n ∈ Nk

andyn→ y in Ek asn→∞ in Nk (sincey = zk in Ek) togetherwith (2.16)impliesy ∈ Fy in E. �

Now we consider Mönch maps.

Theorem 2.3. Let E and En be as described in the beginning ofSection 2, C a closed convex subset of E and V a
bounded pseudo-open subset of E. Let U= V ∩ C with 0 ∈ U, and F : U → 2E. Suppose the following conditions
are satisfied:{

for each n∈ N, F : Un→ C K(En) is
upper semicontinuous and F(Un) is bounded

(2.17)


for each n∈ N, D ⊆ En with D ⊆ co({0} ∪ F(D ∩Un))

and D = B with B ⊆ D countable implies
D ∩Un is compact

(2.18)

for each n∈ N, F(x) ⊆ ICn
(x) for each x∈ Un (2.19){

for each n∈ N, y �∈ λFy in En for all
λ ∈ (0, 1] and y∈ ∂Un

(2.20)

and {
for each n∈ {2, 3, . . .} if y ∈ Un solves y∈ Fy in En

then y∈ Uk for k ∈ {1, . . . , n− 1}. (2.21)

Then Fhas a fixed point in E.

Proof. Fix n ∈ N. Let Σn = {x ∈ Un : x ∈ Fx in En}. Now Theorem 1.3(seeRemark 1.3) guarantees there exists
yn ∈ Σn with yn ∈ Fyn. Let uslook at {yn}n∈N . Now y1 ∈ Σ1. Also yk ∈ Σ1 for k ∈ N \ {1} sinceyk ∈ U1
from (2.21)(see also(2.4)). As a resultyn ∈ Σ1 for n ∈ N and sinceΣ1 is compact (seeRemark 1.3) there exists a
subsequenceN�

1 of N and az1 ∈ Σ1 with yn → z1 in E1 asn → ∞ in N�
1. Let N1 = N�

1 \ {1}. Now yn ∈ Σ2 for
n ∈ N1 so there exists asubsequenceN�

2 of N1 and az2 ∈ Σ2 with yn→ z2 in E2 asn→∞ in N�
2 . Notefrom (2.4)

thatz2 = z1 in E1 sinceN�
2 ⊆ N1. Let N2 = N�

2 \ {2}. Proceed inductively to obtain subsequences of integers

N�
1 ⊇ N�

2 ⊇ . . . , N�
k ⊆ {k, k + 1, . . .}

andzk ∈ Σk with yn→ zk in Ek asn→∞ in N�
k . Notezk+1 = zk in Ek for k ∈ {1, 2, . . .}. Also let Nk = N�

k \ {k}.
Fix k ∈ N. Let y = zk in Ek. Essentially the same reasoning as inTheorem 2.1guarantees thaty ∈ Fy in E. �

Theorem 2.4. Let E and En be as described in the beginning ofSection 2, C a closed convex subset of E and V a
bounded pseudo-open subset of E. Let U= V ∩ C with 0 ∈ U, and F : U → 2E. Suppose the following conditions
are satisfied:

U1 ⊇ U2 ⊇ · · · (2.22)
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for each n∈ N, Fn : Un→ C K(En) is
upper semicontinuous and Fn(Un) is bounded

(2.23)


for each n∈ N, D ⊆ En with D ⊆ co({0} ∪ Fn(D ∩Un))

and D = B with B ⊆ D countable implies
D ∩Un is compact

(2.24)

for each n∈ N, Fn(x) ⊆ ICn
(x) for each x∈ Un (2.25){

for each n∈ N, y �∈ λFny in En for all
λ ∈ (0, 1] and y∈ ∂Un

(2.26)


for each n∈ N, the mapKn : Un→ 2En , given by
Kn(y) = ∪∞m=n Fm(y) satisfies if C⊆ Un is
countable with C⊆ Kn(C) thenC is compact

(2.27)

and 


if there exists aw ∈ E and a sequence{yn}n∈N

with yn ∈ Un and yn ∈ Fnyn in En suchthat
for every k∈ N there exists a subsequence
S⊆ {k+ 1, k+ 2, . . .} of N with yn→ w in Ek

as n→∞ in S, thenw ∈ Fw in E.

(2.28)

Then Fhas a fixed point in X.

Proof. Fix n ∈ N. Let Σn = {x ∈ Un : x ∈ Fnx in En}. Now Theorem 1.3guarantees that there existsyn ∈ Σn with
yn ∈ Fnyn in En. Let uslook at{yn}n∈N . Noteyn ∈ U1 for n ∈ N from (2.22). Now with C = {yn}∞1 we have from
assumption(2.27)thatC(⊆ E1) is compact; noteyn ∈ K1(yn) in E1 for eachn ∈ N. Thus there exists a subsequence
N�

1 of N and az1 ∈ U1 with yn → z1 in E1 asn → ∞ in N�
1 . Let N1 = N�

1 \ {1}. Proceed inductively to obtain
subsequences of integersN�

1 ⊇ N�
2 ⊇ . . ., N�

k ⊆ {k, k + 1, . . .} andzk ∈ Uk with yn → zk in Ek asn→ ∞ in N�
k .

Notezk+1 = zk in Ek for k ∈ N. Also let Nk = N�
k \ {k}.

Fix k ∈ N. Let y = zk in Ek. Essentially the same reasoning as inTheorem 2.2guarantees thaty ∈ Fy in E. �
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