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Abstract

We compute the analytic torsion of a cone over a sphere of dimensions 1, 2, and 3, and we conjecture a general formula for the
cone over an odd dimensional sphere.
© 2009 Elsevier Masson SAS. All rights reserved.

Résumé

On calcule la torsion analytique d’un cône sur une sphère de dimensions 1, 2, et 3, et on conjecture une formule générale pour
le cône sur une sphère de dimension impaire.
© 2009 Elsevier Masson SAS. All rights reserved.
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1. Introduction

An important open problem in geometric and global analysis is to extend the Cheeger Müller theorem [4,11] to
spaces with singularities of conical type. The aim of this work is to give some contribution to the quantitative aspect
of the problem. We give explicit formulas for the analytic torsion of the class of low dimensional spaces consisting
of cones over spheres. The results cover also the smooth case of the discs, and therefore provide also a contribution
to the discussion on the extension of the Cheeger Müller theorem to smooth manifolds with boundary, namely to the
problem of establishing the correct boundary term.

Let (W,g) be a closed connected Riemannian manifold of dimension n with metric g. Let CW denote the
completed finite metric cone over W , namely the space [0, l] × W , with the metric dr ⊗ dr + r2g, on (0, l] × W , as
defined in [5, (2.1)]. An interesting open problem concerning the metric cone is to compute its analytic torsion. The
analytic torsion of a smooth connected Riemannian manifold (M,g) of dimension m is defined by [13, Section 6],

logT (M) = 1

2

m∑
q=1

(−1)qqζ ′(0,�(q)
)
, (1)
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where �(q) is the Laplace operator on q-forms on M , and the zeta function is defined by [13, (1.5)]:

ζ
(
s,�(q)

) =
∑

λ∈Sp+ �(q)

λ−s ,

for Re(s) > m
2 , and by analytic continuation elsewhere. This definition extends to the case of a cone CW using

the Hodge theory and the functional calculus for the Laplace operator on forms developed in [5]. More precisely,
one seeks for formulas for T (CW) as a function of some geometric invariant of W . Starting from the result of
Cheeger [5,6], and applying absolute or relative boundary conditions [13, Section 3], one obtains the eigenvalues
of the Laplacian on forms, necessary to compute the torsion. These eigenvalues turn out to be sequences of real
numbers Sp+ �(q) = {λ(q)

μ,k} that correspond to the zeros of some linear combinations of Bessel functions of the first
kind and their derivatives. The index k enumerates the zero, and the index μ is given by some explicit function of the
eigenvalues of the Laplacian on forms on the section of the cone, namely on W . The zeta function of this type of double
sequences can be tackled using some recent results of Spreafico [17,19–21]. The general strategy is to prove that the
sequence Sp+ �(q) is spectrally decomposable over some sequence Sp+ �

(p)
W of eigenvalues of the Laplacian on forms

on the section. Then, one can apply the result of Spreafico to obtain the value ζ ′(0,�(q)). The final formula can be very
complicate in general, and not particularly illuminating. The possibility of simplifying this formula is based on two
facts: first, the explicit form of the coefficients of the uniform asymptotic expansion of the Bessel function Iν(νz) (and
of its derivative) with respect to the order ν, and second, the explicit knowledge of the eigenvalues of the Laplacian on
forms on the section. While the first fact is true in general, the second one is not clear. For this reason it is interesting
to study particular cases where the second fact is also true (however, see [22] for formulas in the general case).

In this note, we study the analytic torsion of the cone over an n-dimensional sphere. More precisely, we prove in
Section 5 the following theorem, and we state a conjecture for the general case at the end of Section 6.

Theorem 1. The analytic torsion of the cone CαSn
l sinα of angle α, and length l > 0, over the sphere Sn, with the

standard metric induced by the immersion in R
n+2, and absolute boundary conditions is, for n = 1,2, and 3:

logT
(
CαS1

l sinα

) = 1

2
log Vol

(
CαS1

l sinα

) + 1

2
sinα = 1

2
logπl2 sinα + 1

2
sinα,

logT
(
CαS2

l sinα

) = 1

2
log Vol

(
CαS2

l sinα

) − 1

2
f (cscα) + 1

4
sin2 α

= 1

2
log

4πl3 sin2 α

3
− 1

2
f (cscα) + 1

4
sin2 α,

logT
(
CαS3

l sinα

) = 1

2
log Vol

(
CαS3

l sinα

) + 3

4
sinα − 1

12
sin3 α

= 1

2
log

π2l4 sin3 α

2
+ 3

4
sinα − 1

12
sin3 α,

where the function f (ν) is given at the end of Section 5.

2. Geometric setup

We describe in this section the geometric setup in details. Let Sn
b be the standard sphere of radius b > 0 in

Rn+1, Sn
b = {x ∈ Rn+1 | |x| = b} (we simply write Sn for Sn

1 ). Imbed Sn
l sinα in Rn+2, with center in the point

{0, . . . ,0, l sinα}, with l > 0. Let CαSn
l sinα be the cone of angle α over Sn

l sinα in R
n+2. Note that the disc corresponds

to Dn+1
l = Cπ

2
Sn

l . We parameterize CαSn
l sinα by:

CαSn
l sinα =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1 = r sinα sin θn sin θn−1 · · · sin θ3 sin θ2 cos θ1,

x2 = r sinα sin θn sin θn−1 · · · sin θ3 sin θ2 sin θ1,

x3 = r sinα sin θn sin θn−1 · · · sin θ3 cos θ2,
...

xn+1 = r sinα cos θn,
xn+2 = r cosα,
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with r ∈ [0, l], θ1 ∈ [0,2π], θ2, . . . , θn ∈ [0,π], α is a fixed positive real number, and 0 < a = 1
ν

= sinα � 1. This is
a compact connected space. The metric induced by the immersion in R

n+2 is,

g = dr ⊗ dr + r2a2gSn
1
,

and is smooth for r > 0. Comparing with [5, Section 1], we see that the space CαSn
l sinα is a completed metric cone,

and Xα = CαSn
l sinα − {0}, is a metric cone over Sn

l sinα . Note that the space CαSn
l sinα is simply connected (in fact it

has the homotopy type of a point).
In order to define the opportune self adjoint extension of the Laplace operator on forms, we split the space of forms

near the boundary as direct sum ΛCαSn
l sinα = ΛSn

l sinα ⊕ N∗CαSn
l sinα , where N∗ is the dual to the normal bundle to

the boundary. Locally, this reads as follows. Let ∂r denote the outward pointing unit normal vector to the boundary,
and dr the corresponding one form. Near the boundary we have the collar decomposition CαSn

l sinα = [0,−ε)×Sn
l sinα ,

and if y is a system of local coordinates on the boundary, then x = (r, y) is a local system of coordinates in CαSn
l sinα .

The smooth forms on CαSn
l sinα near the boundary decompose as

ω = ωtan + ωnorm,

where ωnorm is the orthogonal projection on the subspace generated by dr , and ωtan is in ΛSn
l sinα . We write,

ω = ω1 + dr ∧ ω2,

where ωj ∈ C∞(CαSn
l sinα) ⊗ ΛSn

l sinα , and

∗ω2 = ∗ω ∧ dr.

Define absolute boundary conditions by,

Babs(ω) = ωnorm|Sn
l sinα

= ω2|Sn
l sinα

= 0,

and relative boundary conditions by,

Brel(ω) = ωtan|Sn
l sinα

= ω1|Sn
l sinα

= 0.

Let B(ω) = B(ω) ⊕ B((d + d†)(ω)). Then the operator � = (d + d†)2 with boundary conditions B(ω) = 0 is self
adjoint. Note that B corresponds to,

Babs(ω) = 0 if and only if

{
ωnorm|Sn

l sinα
= 0,

(dω)norm|Sn
l sinα

= 0,
(2)

Brel(ω) = 0 if and only if

{
ωtan|Sn

l sinα
= 0,

(d†ω)tan|Sn
l sinα

= 0.
(3)

3. The spectrum of the Laplacian on forms

In this section we give the spectrum of the Laplacian on forms. The result for n = 1, and n = 2 is in [8],
Lemmas 3, and 4. Thus we just need to study the case of n = 3. Decomposing with respect to the projections on
the eigenspaces of the restriction of the Laplacian on the section of the cone (i.e with respect to the angular momenta),
the definition of an appropriate self adjoint extension of the Laplace operator (on functions) on a cone reduces to the
analysis of the boundary values of a singular Sturm Liouville ordinary second order differential equation on the line
segment (0, l]. The problem was addressed already by Rellich in [14], who parameterized the self adjoint extensions.
In particular, it turns out that there are not boundary values (at zero) for the non-zero mode of the angular momen-
tum, while a boundary condition is necessary for the zero modes, and the unique self adjoint extension defined by
this boundary condition is the maximal extension, corresponding to the Friedrich’s extension (see [3] or [6] for the
boundary condition). The same argument works for the Laplacian on forms. However, in the present situation we do
not actually need boundary conditions (at zero) for forms of positive degree, since the middle homology of the section
of the cone is trivial (compare with [5]). Since the eigenvalues for relative boundary conditions follow by Hodge
duality, we just give the eigenvalues for absolute boundary conditions. In the following, we denote by {k: λ} the set
of eigenvalues λ with multiplicity k.
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Lemma 1. The spectrum of the (Friedrich extension of the) Laplacian operator �
(q)

CαS1
l sinα

on q-forms with absolute

boundary conditions is (where ν = cscα):

Sp�
(0)

CαS1
l sinα

= {
j2

1,k/ l2}∞
k=1 ∪ {

2:
(
j ′
νn,k

)2
/l2}∞

n,k=1,

Sp�
(1)

CαS1
l sinα

= {
j2

0,k/ l2}∞
k=1 ∪ {

j2
1,k/ l2}∞

k=1 ∪ {
2: j2

νn,k/ l2}∞
n,k=1 ∪ {

2:
(
j ′
νn,k

)2
/l2}∞

n,k=1,

Sp�
(2)

CαS1
l sinα

= {
j2

0,k/ l2}∞
k=1 ∪ {

2: j2
νn,k/ l2}∞

n,k=1.

Lemma 2. The spectrum of the (Friedrich extension of the) Laplacian operator �
(q)

CαS2
l sinα

on q-forms with absolute

boundary conditions is:

Sp�
(0)

CαS2
l sinα

= {
(2n + 1): ĵ2

μn,k,−/l2}∞
n,k=1 ∪ {

j2
3
2 ,k

/ l2}∞
k=1,

Sp�
(1)

CαS2
l sinα

= {
j2

3
2 ,k

/ l2}∞
k=1 ∪ {

(2n + 1): j2
μn,k/ l2}∞

n,k=1

∪ {
(2n + 1): ĵ2

μn,k,+/l2}∞
n,k=1 ∪ {

(2n + 1): ĵ2
μn,k,−/l2}∞

n,k=1,

Sp�
(2)

CαS2
l sinα

= {
j2

1
2 ,k

/ l2}∞
k=1 ∪ {

(2n + 1): j2
μn,k/ l2}∞

n,k=1

∪ {
(2n + 1): ĵ2

μn,k,+/l2}∞
n,k=1 ∪ {

(2n + 1): j2
μn,k/ l2}∞

n,k=1,

Sp�
(3)

CαS2
l sinα

= {
(2n + 1): j2

μn,k/ l2}∞
n,k=1 ∪ {

j2
1
2 ,k

/ l2}∞
k=1,

where μn =
√

ν2n(n + 1) + 1
4 , and where the ĵν,k,± are the zeros of the function G±

ν (z) = ± 1
2Jν(z) + zJ ′

ν(z).

Lemma 3. The spectrum of the (Friedrich extension of the) Laplacian operator �
(q)

CαS3
l sinα

on q-forms with absolute

boundary conditions is:

Sp�
(0)

CαS3
l sinα

= {
j2

2,k/ l2}∞
k=1 ∪ {

(n + 1)2: j̃2
μ0,n,k,−/l2}∞

n,k=1,

Sp�
(1)

CαS3
l sinα

= {
j2

2 /l2}∞
k=1 ∪ {

2n(n + 2):
(
j ′
μ1,n,k

)2
/l2}∞

n,k=1

∪ {
(n + 1)2: j̃2

μ0,n,k,−/l2}∞
n,k=1 ∪ {

(n + 1)2: j2
μ0,n,k/ l2}∞

n,k=1,

Sp�
(2)

CαS3
l sinα

= {
(n + 1)2: j̃2

μ0,n,k,+/l2}∞
n,k=1 ∪ {

2n(n + 2):
(
j ′
μ1,n,k

)2
/l2}∞

n,k=1

∪ {
2n(n + 2): j2

μ1,n,k/ l2}∞
n,k=1 ∪ {

(n + 1)2: j2
μ0,n,k/ l2}∞

n,k=1,

Sp�
(3)

CαS3
l sinα

= {
j2

1 /l2}∞
k=1 ∪ {

(n + 1)2: j̃2
μ0,n,k,+/l2}∞

n,k=1

∪ {
(n + 1)2: j2

μ0,n,k/ l2}∞
n,k=1 ∪ {

2n(n + 2): j2
μ1,n,k/ l2}∞

n,k=1,

Sp�
(4)

CαS3
l sinα

= {
j2

1,k/ l2}∞
k=1 ∪ {

(n + 1)2: j̃2
μ0,n,k/ l2}∞

n,k=1,

where

μ0,n =
√

ν2n(n + 2) + 1, μ1,n = ν(n + 1),

and where the j̃ν,k,± are the zeros of the function T ±
ν (z) = ±Jν(z) + zJ ′

ν(z).

Proof. Recall we parameterize CαS3 by:
l sinα
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CαS3
l sinα =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1 = x sinα sin θ3 sin θ2 cos θ1,

x2 = x sinα sin θ3 sin θ2 sin θ1,

x3 = x sinα sin θ3 cos θ2,

x4 = x sinα cos θ3,

x5 = x cosα,

where (x, θ1, θ2, θ3) ∈ [0, l] × [0,2π] × [0,π] × [0,π], 0 < α � π/2 is a fixed real number and 0 < a = sinα � 1.
The induced metric is (for x > 0),

g = dx ⊗ dx + (
a2x2 sin2 θ2 sin2 θ3

)
dθ1 ⊗ dθ1 + (

a2x2 sin2 θ3
)
dθ2 ⊗ dθ2 + (

a2x2)dθ3 ⊗ dθ3.

Using the absolute boundary conditions on forms described in Eq. (2) of the previous section, we obtain the
following equations. For the 0-forms:

abs.: ∂xω(l, θ1, θ2, θ3) = 0. (4)

For the 1-forms:

abs.:

⎧⎪⎨
⎪⎩

ωx(l, θ1, θ2, θ3) = 0,

∂xωθ1(l, θ1, θ2, θ3) = 0,

∂xωθ2(l, θ1, θ2, θ3) = 0,

∂xωθ3(l, θ1, θ2, θ3) = 0.

(5)

For the 2-forms, with i = 1,2,3:

abs.:

⎧⎪⎨
⎪⎩

ωxθi
(l, θ1, θ2, θ3) = 0,

∂xωθ1θ2(l, θ1, θ2, θ3) = 0,

∂xωθ1θ3(l, θ1, θ2, θ3) = 0,

∂xωθ2θ3(l, θ1, θ2, θ3) = 0.

(6)

For the 3-forms:

abs.:

⎧⎪⎨
⎪⎩

ωxθ1θ2(l, θ1, θ2, θ3) = 0,

ωxθ1θ3(l, θ1, θ2, θ3) = 0,

ωxθ2θ3(l, θ1, θ2, θ3) = 0,

∂xωθ1θ2θ3(l, θ1, θ2, θ3) = 0.

(7)

For the 4-forms:

abs.: ωxθ1θ2θ3(l, θ1, θ2, θ3) = 0. (8)

Next we use the description of the eigenfunctions given in Section 3 of [6] to determine the eigenvalues. By [9] the
eigenvalues of the coexact forms of the Laplacian over S3 are, with n � 1:

Dimension Eigenvalue Multiplicity

0 n(n + 2) (n + 1)2

1 (n + 1)2 2n(n + 2)

2 n(n + 2) (n + 1)2

And by [6] we have μ0,n = μ2,n = √
ν2n(n + 2) + 1 and μ1,n = ν(n + 1), and the eigenforms of the Laplacian of

CαS3
la are as follows. For the 0-forms:

α(0)
n = x−1Jμ0,n

(λx)φ(0)
n (θ1, θ2, θ3), E(0) = x−1J1(λx)h0(θ1, θ2, θ3).

For the 1-forms:

α(1)
n = x−1Jμ1,n

(λx)φ(1)
n (θ1, θ2, θ3),

β(1)
n = x−1Jμ0,n

(λx) dφ(0)
n (θ1, θ2, θ3) + ∂x

(
x−1Jμ0,n

(λx)
)
dx ∧ φ(0)

n (θ1, θ2, θ3),

γ (1)
n = x−1∂x

(
xJμ0,n

(λx)
)
dφ(0)

n (θ1, θ2, θ3) + x−2Jμ0,n
(λx) dx ∧ δ̃ d̃φ(0)

n (θ1, θ2, θ3),

D(1) = ∂x

(
x−1J1(λx)

)
dx ∧ h(0)(θ1, θ2, θ3).
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For the 2-forms:

α(2)
n = xJμ0,n

(λx)φ(2)
n (θ1, θ2, θ3),

β(2)
n = Jμ1,n

(λx) dφ(1)
n (θ1, θ2, θ3) + ∂x

(
Jμ1,n

(λx)
)
dx ∧ φ(2)

n (θ1, θ2, θ3),

γ (2)
n = x∂x

(
Jμ1,n

(λx)
)
dφ(1)

n (θ1, θ2, θ3) + x−1Jμ1,n
(λx) dx ∧ δ̃ d̃φ(1)

n (θ1, θ2, θ3),

δ(2)
n = Jμ0,n

(λx) dx ∧ dφ(0)
n (θ1, θ2, θ3).

For the 3-forms:

β(3)
n = xJμ0,n

(λx) dφ(2)
n (θ1, θ2, θ3) + ∂x

(
xJμ0,n

(λx)
)
dx ∧ φ(2)

n (θ1, θ2, θ3),

γ (3)
n = x3∂x

(
x−1Jμ0,n

(λx)
)
dφ(2)

n (θ1, θ2, θ3) + Jμ0,n
(λx) dx ∧ δ̃ d̃φ(2)

n (θ1, θ2, θ3),

δ(3)
n = xJμ1,n

(λx) dx ∧ dφ(1)
n (θ1, θ2, θ3),

E(3) = x2J2(λx)h3(θ1, θ2, θ3).

For the 4-forms:

δ(4)
n = x2Jμ0,n

(λx) dx ∧ dφ(2)
n (θ1, θ2, θ3), D(4) = ∂x

(
x2J2(λx)

)
dx ∧ h3(θ1, θ2, θ3).

Where the φ
(i)
n (θ1, θ2, θ3), for i = 0,1,2, are coexact eigenforms of the Laplacian on S3, and h(0)(θ1, θ2, θ3), and

h(3)(θ1, θ2, θ3) are harmonic forms of the Laplacian on S3. Using these functions in the boundary conditions given in
Eq. (2), we obtain the result. �
4. Zeta determinants for some class of double sequences

We give in this section all the tools necessary in order to evaluate the zeta determinants appearing in the calculation
of the analytic torsion. This is based on [17–19,21]. We present here a simplified version of the main result of those
works (see in particular the general formulation in Theorem 3.9 of [21] or the Spectral Decomposition Lemma of [19]),
that is sufficient for our purpose here.

Let S = {an}∞n=1 be a sequence of non-vanishing complex numbers, ordered by increasing modules, with the unique
point of accumulation at infinity. The positive real number (possibly infinite),

s0 = lim sup
n→∞

logn

log |an| ,

is called the exponent of convergence of S, and denoted by e(S). We are only interested in sequences with e(S) =
s0 < ∞. If this is the case, then there exists a least integer p such that the series

∑∞
n=1 a

−p−1
n converges absolutely.

We assume s0 − 1 < p � s0, we call the integer p the genus of the sequence S, and we write p = g(S). We define the
zeta function associated to S by the uniformly convergent series,

ζ(s, S) =
∞∑

n=1

a−s
n ,

when Re(s) > e(S), and by analytic continuation otherwise. We call the open subset ρ(S) = C − S of the complex
plane the resolvent set of S. For all λ ∈ ρ(S), we define the Gamma function associated to S by the canonical product:

1

Γ (−λ,S)
=

∞∏
n=1

(
1 + −λ

an

)
e

∑g(S)
j=1

(−1)j

j
(−λ)j

a
j
n . (9)

When necessary in order to define the meromorphic branch of an analytic function, the domain for λ will
be the open subset C − [0,∞) of the complex plane. We use the notation Σθ,c = {z ∈ C | | arg(z − c)| � θ

2 },
with c � δ > 0, 0 < θ < π . We use Dθ,c = C − Σθ,c, for the complementary (open) domain and
Λθ,c = ∂Σθ,c = {z ∈ C | | arg(z − c)| = θ

2 }, oriented counter clockwise, for the boundary. With this notation, we
define now a particular subclass of sequences. Let S be as above, and assume that e(S) < ∞, and that there exist
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c > 0 and 0 < θ < π , such that S is contained in the interior of the sector Σθ,c. Furthermore, assume that the loga-
rithm of the associated Gamma function has a uniform asymptotic expansion for large λ ∈ Dθ,c(S) = C − Σθ,c of the
following form:

logΓ (−λ,S) ∼
∞∑

j=0

aαj ,0(−λ)αj +
g(S)∑
k=0

ak,1(−λ)k log(−λ),

where {αj } is a decreasing sequence of real numbers. Then, we say that S is a totally regular sequence of spectral
type with infinite order. We call the open set Dθ,c(S) the asymptotic domain of S.

Next, let S = {λn,k}∞n,k=1 be a double sequence of non-vanishing complex numbers with unique accumulation point
at the infinity, finite exponent s0 = e(S) and genus p = g(S). Assume if necessary that the elements of S are ordered as
0 < |λ1,1| � |λ1,2| � |λ2,1| � · · · . We use the notation Sn (Sk) to denote the simple sequence with fixed n (k). We call
the exponents of Sn and Sk the relative exponents of S, and we use the notation (s0 = e(S), s1 = e(Sk), s2 = e(Sn)).
We define relative genus accordingly.

Definition 1. Let S = {λn,k}∞n,k=1 be a double sequence with finite exponents (s0, s1, s2), genus (p0,p1,p2), and
positive spectral sector Σθ0,c0 . Let U = {un}∞n=1 be a totally regular sequence of spectral type of infinite order with
exponent r0, genus q , domain Dφ,d . We say that S is spectrally decomposable over U with power κ , length � and
asymptotic domain Dθ,c, with c = min(c0, d, c′), θ = max(θ0, φ, θ ′), if there exist positive real numbers κ , � (integer),
c′, and θ ′, with 0 < θ ′ < π , such that

(1) the sequence u−κ
n Sn = {λn,k

uκ
n

}∞k=1 has spectral sector Σθ ′,c′ , and is a totally regular sequence of spectral type of
infinite order for each n;

(2) the logarithmic Γ -function associated to Sn/u
κ
n has an asymptotic expansion for large n uniformly in λ for λ in

Dθ,c , of the following form:

logΓ
(−λ,u−κ

n Sn

) =
�∑

h=0

φσh
(λ)u−σh

n +
L∑

l=0

Pρl
(λ)u−ρl

n logun + o
(
u−r0

n

)
, (10)

where σh and ρl are real numbers with σ0 < · · · < σ�, ρ0 < · · · < ρL, the Pρl
(λ) are polynomials in λ satisfying

the condition Pρl
(0) = 0, � and L are the larger integers such that σ� � r0 and ρL � r0.

When a double sequence S is spectrally decomposable over a simple sequence U , Theorem 3.9 of [21] gives a formula
for the derivative of the associated zeta function at zero. In order to understand such a formula, we need to introduce
some other quantities. First, we define the functions:

Φσh
(s) =

∞∫
0

t s−1 1

2πi

∫
Λθ,c

e−λt

−λ
φσh

(λ) dλdt. (11)

Next, by Lemma 3.3 of [21], for all n, we have the expansions:

logΓ
(−λ,Sn/u

κ
n

) ∼
∞∑

j=0

aαj ,0,n(−λ)αj +
p2∑

k=0

ak,1,n(−λ)k log(−λ),

φσh
(λ) ∼

∞∑
j=0

bσh,αj ,0(−λ)αj +
p2∑

k=0

bσh,k,1(−λ)k log(−λ), (12)

for large λ in Dθ,c. We set (see Lemma 3.5 of [21]):

A0,0(s) =
∞∑

n=1

(
a0,0,n −

�∑
h=0

bσh,0,0u
−σh
n

)
u−κs

n ,

Aj,1(s) =
∞∑(

aj,1,n −
�∑

bσh,j,1u
−σh
n

)
u−κs

n , 0 � j � p2. (13)

n=1 h=0
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We can now state the formula for the derivative at zero of the double zeta function. We give here a modified version
of Theorem 3.9 of [21], more suitable for our purpose here. This is based on the following fact. The key point in the
proof of Theorem 3.9 of [21] is the decomposition given in Lemma 3.5 of that paper of the sum:

T (s, λ,S,U) =
∞∑

n=1

u−κs
n logΓ

(−λ,u−κ
n Sn

)
,

in two terms: the regular part P (s, λ,S,U) and the remaining singular part. The regular part is obtained subtracting
from T some terms constructed starting from the expansion of the logarithmic Gamma function given in Eq. (10),
namely

P (s, λ,S,u) = T (s, λ,S,U) −
�∑

h=0

φσh
(λ)u−σh

n −
L∑

l=0

Pρl
(λ)u−ρl

n logun.

Now, assume instead we subtract only the terms such that the zeta function ζ(s,U) has a pole at s = σh or at s = ρl .
Let P̂ (s, λ,S,U) be the resulting function. Then the same argument as the one used in Section 3 of [21] in order to
prove Theorem 3.9 applies, and we obtain similar formulas for the values of the residue, and of the finite part of the
zeta function ζ(s, S) and of its derivative at zero, with just two differences: first, in all the sums, all the terms with
index σh such that s = σh is not a pole of ζ(s,U) must be omitted; and second, we must substitute the terms A0,0(0)

and A′
0,1(0), with the finite parts of the analytic continuations of A0,0(s), and A′

0,1(s). The first modification is an

obvious consequence of the substitution of the function P by the function P̂ . The second modification follows by the
same reason noting that the functions Aαj ,k(s) defined in Lemma 3.5 of [21] are no longer regular at s = 0 themselves.
However, they admit both a meromorphic extension regular at s = 0, using the extension of the zeta function ζ(s,U),
and the expansion of the coefficients aαj ,k,n for large n. Thus we have the following result:

Theorem 2. The formulas of Theorem 3.9 of [21] hold if all the quantities with index σh such that the zeta function
ζ(s,U) has not a pole at s = σh are omitted. In such a case, the result must be read by means of the analytic extension
of the zeta function ζ(s,U).

Next, assuming some simplified pole structure for the zeta function ζ(s,U), sufficient for the present analysis, we
state the main result of this section.

Theorem 3. Let S be spectrally decomposable over U as in Definition 1. Assume that the functions Φσh
(s) have at

most simple poles for s = 0. Then, ζ(s, S) is regular at s = 0, and

ζ(0, S) = −A0,1(0) + 1

κ

�∑
h=0

Res1
s=0

Φσh
(s)Res1

s=σh

ζ(s,U),

ζ ′(0, S) = −A0,0(0) − A′
0,1(0) + γ

κ

�∑
h=0

Res1
s=0

Φσh
(s)Res1

s=σh

ζ(s,U)

+ 1

κ

�∑
h=0

Res0
s=0

Φσh
(s)Res1

s=σh

ζ(s,U) +
�∑

h=0

′
Res1
s=0

Φσh
(s)Res0

s=σh

ζ(s,U),

where the notation
∑′ means that only the terms such that ζ(s,U) has a pole at s = σh appear in the sum.

This result should be compared with the Spectral Decomposition Lemma of [19] and Proposition 1 of [20].

Corollary 1. Let S(j) = {λ(j),n,k}∞n,k=1, j = 1,2, be two double sequences that satisfy all the requirements of
Definition 1 of spectral decomposability over a common sequence U , with the same parameters κ , �, etc., except
that the polynomials P(j),ρ(λ) appearing in condition (2) do not vanish for λ = 0. Assume that the difference of
such polynomials does satisfy this condition, namely that P(1),ρ(0) − P(2),ρ(0) = 0. Then, the difference of the zeta
functions ζ(s, S(1)) − ζ(s, S(2)) is regular at s = 0 and satisfies the formulas given in Theorem 3.
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We conclude this section by recalling some results on zeta determinants of some simple sequences that will be
necessary in the following. These results can be found in different places, and are known to specialists. We will use
the formulation of [16]. For positive real numbers l and q , define the non-homogeneous quadratic Bessel zeta function
by:

z(s, ν, q, l) =
∞∑

k=1

(
j2
ν,k

l2
+ q2

)−s

,

for Re(s) > 1
2 . Then, z(s, ν, q, l) extends analytically to a meromorphic function in the complex plane with simple

poles at s = 1
2 ,− 1

2 ,− 3
2 , . . . . The point s = 0 is a regular point, and

z(0, ν, q, l) = −1

2

(
ν + 1

2

)
,

z′(0, ν, q, l) = − log
√

2πl
Iν(lq)

qν
. (14)

In particular, taking the limit for q → 0,

z′(0, ν,0, l) = − log

√
πlν+ 1

2

2ν− 1
2 Γ (ν + 1)

.

5. The analytic torsion

In this section we give the analytic torsions of CαSn
l sinα , for n = 1,2, and 3. Actually, the case n = 1 is essentially

contained in [20], and both the cases n = 1 and n = 2 are given in [8], Sections 5.4 and 5.5, so we will focus here on
the new case of CαS3

l sinα . By the analysis in Section 4, the relevant zeta functions are:

ζ
(
s,�(1)

) =
∞∑

k=1

j−2s
2,k

l−2s
+ 2

∞∑
n,k=1

n(n + 2)
(j ′

μ1,n,k)
−2s

l−2s
+

∞∑
n,k=1

(n + 1)2
j̃−2s
μ0,n,k,−
l−2s

+
∞∑

n,k=1

(n + 1)2
j−2s
μ0,n,k

l−2s
,

ζ
(
s,�(2)

) =
∞∑

n,k=1

(n + 1)2
j̃−2s
μ0,n,k,+
l−2s

+ 2
∞∑

n,k=1

n(n + 2)
(j ′

μ1,n,k)
−2s

l−2s

+ 2
∞∑

n,k=1

n(n + 2)
j−2s
μ1,n,k

l−2s
+

∞∑
n,k=1

(n + 1)2
j−2s
μ0,n,k

l−2s
,

ζ
(
s,�(3)

) =
∞∑

k=1

j−2s
1,k

l−2s
+ 2

∞∑
n,k=1

n(n + 2)
j−2s
μ1,n,k

l−2s
+

∞∑
n,k=1

(n + 1)2
j̃−2s
μ0,n,k,+
l−2s

+
∞∑

n,k=1

(n + 1)2
j−2s
μ0,n,k

l−2s
,

ζ
(
s,�(4)

) =
∞∑

k=1

j−2s
1,k

l−2s
+

∞∑
n,k=1

(n + 1)2
j−2s
μ0,n,k

l−2s
,

and by Eq. (1), the torsion is (a = sinα = 1
ν

),

logT
(
CαS3

la

) = −1
ζ ′(0,�(1)

) + ζ ′(0,�(2)
) − 3

ζ ′(0,�(3)
) + 2ζ ′(0,�(4)

)
.

2 2
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Define the function:

t (s) = −1

2
ζ
(
s,�(1)

) + ζ
(
s,�(2)

) − 3

2
ζ
(
s,�(3)

) + 2ζ
(
s,�(4)

)
= 1

2

∞∑
k=1

j−2s
1,k

l−2s
− 1

2

∞∑
k=1

j−2s
2,k

l−2s

+
∞∑

n,k=1

n(n + 2)
(j ′

μ1,n,k)
−2s

l−2s
−

∞∑
n,k=1

n(n + 2)
j−2s
μ1,n,k

l−2s

+
∞∑

n,k=1

(n + 1)2
j−2s
μ0,n,k

l−2s
− 1

2

∞∑
n,k=1

(n + 1)2
j̃−2s
μ0,n,k,−
l−2s

− 1

2

∞∑
n,k=1

(n + 1)2
j̃−2s
μ0,n,k,+
l−2s

= l2s

(
1

2
z1(s) − 1

2
z2(s) + Ẑ(s) − Z(s) + Z0(s) − 1

2
Z+(s) − 1

2
Z−(s)

)
,

then

logT
(
CαS3

la

) = t ′(0) = 1

2
z′

1(0) − 1

2
z′

2(0) + Ẑ′(0) − Z′(0) + Z′
0(0) − 1

2
Z′+(0) − 1

2
Z′−(0)

+ log l2
(

1

2
z1(0) − 1

2
z2(0) + Ẑ(0) − Z(0) + Z0(0) − 1

2
Z+(0) − 1

2
Z−(0)

)
.

Using Eqs. (14) of Section 4, we compute z1/2(0) e z′
1/2(0). We obtain:

logT
(
CαS3

la

) =
(

1

4
+ Ẑ(0) − Z(0) + Z0(0) − 1

2
Z+(0) − 1

2
Z−(0)

)
log l2

+
(

− log 2 + Ẑ′(0) − Z′(0) + Z′
0(0) − 1

2
Z′+(0) − 1

2
Z′−(0)

)
. (15)

In order to evaluate the remaining part, we use Corollary 1 of Theorem 3. We consider separately the two functions
Ẑ(s) − Z(s), and 2Z0(s) − Z+(s) − Z−(s). In the first case, the relevant sequences are the double sequences
S = {n(n + 2): j2

μ1,n,k} and Ŝ = {n(n + 2): (j ′
μ1,n,k)

2}, and the simple sequence U1 = {n(n + 2): μ1,n}∞n=1, and

Z(s) = ζ(s, S), Ẑ(s) = ζ(s, Ŝ). In the second case, the relevant sequences are the double sequences
S0 = {(n + 1)2: j2

μ0,n,k} and S± = {(n + 1)2: (j̃μ0,n,±,k)
2}, and the simple sequence U0 = {(n + 1)2: μ0,n}∞n=1,

and Z0(s) = ζ(s, S0), Z±(s) = ζ(s, S±).
We start by analysing the two simple sequences Uj , j = 0,1. Recall from Lemma 3, that

μ0,n =
√

ν2n(n + 2) + 1, μ1,n = ν(n + 1).

Consider first the sequence U1 = {n(n + 2): μ1,n}∞n=1. By definition of μ1,n, it is easy to see that

ζ(s,U1) = ν−s
(
ζR(s − 2) − ζR(s)

)
,

and therefore U1 is a totally regular sequence of spectral type with infinite order, e(U1) = g(U1) = 3, and ζ(s,U1)

has simple poles at s = 1 and s = 3 with residues:

Res0
s=1

ζ(s,U1) = 1

ν

(
logν − γ − 1

12

)
, Res1

s=1
ζ(s,U1) = −1

ν
,

Res0
s=3

ζ(s,U1) = 1

ν3

(
γ − logν − ζ(3)

)
, Res1

s=3
ζ(s,U1) = 1

ν3
. (16)

The analysis for the sequence U0 is a little bit longer. By definition U0 = {(n + 1)2: μ0,n}∞n=1, where

μ0,n =
√

ν2n(n + 2) + 1.

For a positive q , consider the sequence:
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Lq = {
(n + 1)2:

√
n(n + 2) + q

}∞
n=1.

Then, it is clear that

ζ(s,U0) = ν−sζ(s,L 1
ν2

).

The sequence L0 is the sequence of the square roots of the positive eigenvalues of the Laplace operator on the three
sphere S3 of radius 1 (see [15], and references therein). Thus,

ζ(2s,L0) = ζ(s,Sp+ �S3).

The zeta function ζ(s,Sp+ �S3) has been studied by various authors. We will refer to [15]. Using the results in [15],

it follows that e(Sp+ �
(0)

S3 ) = 3
2 , g(Sp+ �

(0)

S3 ) = 1, and that Sp+ �
(0)

S3 is a totally regular sequence of spectral type with
infinite order. Since shifting the sequence does not alter its character (see [18]), it follows that e(U0) = g(U0) = 3, and
that U0 is a totally regular sequence of spectral type with infinite order. In [15], it is also proved that ζ(s,Sp+ �S3)

has simple poles at s = 3
2 , 1

2 ,− j
2 , for all j > 0, and formulas for the residues are given. In particular:

Res1
s= 3

2

ζ
(
s,Sp+ �

(0)

S3

) = 1

2
, Res1

s= 1
2

ζ
(
s,Sp+ �

(0)

S3

) = 1

4
,

and hence, ζ(s,L0) has one simple pole at s = 1, and s = 3 with the residues:

Res1
s=3

ζ(s,L0) = 1, Res1
s=1

ζ(s,L0) = 1

2
.

Expanding the power of the binomial, we have that

ζ(s,Lq) = ζ(s,L0) − s

2
ζ(s + 2,L0)q +

∞∑
j=2

(− s
2

j

)
ζ(s + 2j,L0)q

j ,

and therefore,

Res1
s=1

ζ(s,Lq) = 1

2
(1 − q), Res1

s=3
ζ(s,Lq) = 1,

and we have the expansions:

ζ(s,U0) = ν−sζ(s,Lq) = 1

2ν

(
1 − 1

ν2

)
1

s − 1
+ K1(s), near s = 1,

ζ(s,U0) = ν−sζ(s,Lq) = 1

ν3

1

s − 3
+ K3(s), near s = 3, (17)

where the Kj(s) are some regular functions.
Next, we start the analysis of the double sequences. We split it into two parts.

5.1. Part I

In this first part we deal with Ẑ(s) − Z(s). Thus, we consider the sequences S and Ŝ. Using classical estimates for
the zeros of Bessel function [23], we find that e(S) = e(Ŝ) = 2, and the relative genus are (2,1,0) for both sequences.
The fact that Sn and Ŝn are totally regular sequences of spectral type with infinite order, will be a consequence of
the following analysis. Note that we have the product representations (the first is classical, see for example [23], the
second follows using the Hadamard factorization theorem):

Iν(z) = zν

2νΓ (ν + 1)

∞∏
k=1

(
1 + z2

j2
ν,k

)
,

I ′
ν(z) = zν−1

2νΓ (ν)

∞∏(
1 + z2

(j ′
ν,k)

2

)
.

k=1



L. Hartmann, M. Spreafico / J. Math. Pures Appl. 93 (2010) 408–435 419
Using these representations, we obtain the following representations for the Gamma functions associated to the
sequences Sn and Ŝn. For further use, we give instead the representations for the Gamma functions associated to the
sequences Sn/μ

2
1,n, and Ŝn/μ

2
1,n, that will do as well. By the definition in Eq. (9), with z = √−λ, we have:

logΓ
(−λ,Sn/(μ1,n)

2) = − log
∞∏

k=1

(
1 + (−λ)(μ1,n)

2

j2
μ1,n,k

)

= − log Iμ1,n
(μ1,n

√−λ) + (μ1,n) log
√−λ

+ μ1,n log(μ1,n) − μ1,n log 2 − logΓ (μ1,n + 1),

logΓ
(−λ, Ŝn/(μ1,n)

2) = − log
∞∏

k=1

(
1 + (−λ)(μ1,n)

2

(j ′
μ1,n,k)

2

)

= − log I ′
μ1,n

(μ1,n

√−λ) + (μ1,n − 1) log
√−λ

+ μ1,n log(μ1,n) − μ1,n log 2 − logΓ (μ1,n + 1).

A first consequence of these representations is that we have a complete asymptotic expansion of the Gamma
functions logΓ (−λ,Sn), and logΓ (−λ, Ŝn), and therefore Sn and Ŝn are sequences of spectral type. Considering the
expansions, it follows that they both are totally regular sequences of infinite order.

Next, we prove that S and Ŝ are spectrally decomposable over U1 with power κ = 2 and length � = 4, as in
Definition 1. We have to show that the functions logΓ (−λ,Sn/μ

2
1,n), and logΓ (−λ, Ŝn/μ

2
1,n) have the appropriate

uniform expansions for large n. This follows using the uniform expansions for the Bessel functions given for example
in [12] (7.18), and Example 7.2,

Iν(νz) = eν
√

1+z2
e
ν log z

1+
√

1+z2

√
2πν(1 + z2)

1
4

(
1 + U1(z)

1

ν
+ U2(z)

1

ν2
+ U3(z)

1

ν3
+ O

(
1

ν4

))
,

where

U1(z) = 1

8
√

1 + z2
− 5

24(1 + z2)
3
2

,

U2(z) = 9

128(1 + z2)
− 77

192(1 + z2)2
+ 385

1152(1 + z2)3
,

U3(z) = 75

1024(1 + z2)
3
2

− 4563

5120(1 + z2)
5
2

+ 17 017

9216(1 + z2)
7
2

− 85 085

82 944(1 + z2)
9
2

,

and

I ′
ν(νz) = (1 + z2)

1
4 eν

√
1+z2

e
ν log z

1+
√

1+z2

√
2πνz

(
1 + V1(z)

1

ν
+ V2(z)

1

ν2
+ V3(z)

1

ν3
+ O

(
1

ν4

))
,

V1(z) = − 3

8
√

1 + z2
+ 7

24(1 + z2)
3
2

,

V2(z) = − 15

128(1 + z2)
+ 33

64(1 + z2)2
− 455

1152(1 + z2)3
,

V3(z) = − 105

1024(1 + z2)
3
2

+ 5577

5120(1 + z2)
5
2

− 6545

3072(1 + z2)
7
2

+ 95 095

82 944(1 + z2)
9
2

.

Using the classical expansion for the logarithm of the Euler Gamma function [7, 8.344], we obtain, for large n,
uniformly in λ, the expansion of logΓ (−λ, Ŝn/μ

2 ) and of logΓ (−λ,Sn/μ
2 ), and consequently of the difference,
1,n 1,n
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logΓ
(−λ, Ŝn/μ

2
1,n

) − logΓ
(−λ,Sn/μ

2
1,n

) =
∞∑

h=0

(
φ̂h−1(λ) − φh−1(λ)

)
μ1−h

1,n

= −1

2
log(1 − λ) + (

φ̂1(λ) − φ1(λ)
) 1

μ1,n

+ (
φ̂2(λ) − φ2(λ)

) 1

μ2
1,n

+ (
φ̂3(λ) − φ3(λ)

) 1

μ3
1,n

+ O

(
1

μ4
1,n

)
,

with

φ̂1(λ) − φ1(λ) = 1

2

1

(1 − λ)
1
2

− 1

2

1

(1 − λ)
3
2

,

φ̂2(λ) − φ2(λ) = 1

4

1

(1 − λ)
− 1

(1 − λ)2
+ 3

4

1

(1 − λ)3
,

φ̂3(λ) − φ3(λ) = 11

48

1

(1 − λ)
3
2

− 35

16

1

(1 − λ)
5
2

+ 67

16

1

(1 − λ)
7
2

− 107

48

1

(1 − λ)
9
2

.

Note that the length � of the decomposition is precisely 4. For the e(U1) = 3, and therefore the larger integer such
that h − 1 = σh � 3 is 4. However, note that by Theorem 2, only the term with σh = 1, and σh = 3, namely h = 2,4,
appear in the formula of Theorem 3, since the unique poles of ζ(s,U1) are at s = 1 and s = 3. We now apply the
formulas of Theorem 3.

First, by the definition in Eq. (11),

Φ̂1(s) − Φ1(s) =
∞∫

0

t s−1 1

2πi

∫
Λθ,c

e−λt

−λ

(
1

2

1

(1 − λ)
1
2

− 1

2

1

(1 − λ)
3
2

)
dλdt,

Φ̂2(s) − Φ2(s) =
∞∫

0

t s−1 1

2πi

∫
Λθ,c

e−λt

−λ

(
1

4

1

(1 − λ)
− 1

(1 − λ)2
+ 3

4

1

(1 − λ)3

)
dλdt,

Φ̂3(s) − Φ3(s) =
∞∫

0

t s−1 1

2πi

∫
Λθ,c

e−λt

−λ

(
11

48

1

(1 − λ)
3
2

− 35

16

1

(1 − λ)
5
2

)
dλdt

+
∞∫

0

t s−1 1

2πi

∫
Λθ,c

e−λt

−λ

(
67

16

1

(1 − λ)
7
2

− 107

48

1

(1 − λ)
9
2

)
dλdt.

These integrals can be computed using the formula in Appendix A. We obtain:

Res0
s=0

(
Φ̂1(s) − Φ1(s)

) = −1, Res1
s=0

(
Φ̂1(s) − Φ1(s)

) = 0,

Res0
s=0

(
Φ̂2(s) − Φ2(s)

) = 1

8
, Res1

s=0

(
Φ̂2(s) − Φ2(s)

) = 0,

Res0
s=0

(
Φ̂3(s) − Φ3(s)

) = − 2

315
, Res1

s=0

(
Φ̂3(s) − Φ3(s)

) = 0.

Second, using this results and the residues of ζ(s,U1) given in Eq. (16) it follows that

Ẑ(0) − Z(0) = −Â0,1(0) + A0,1(0) + 1

2
Res1
s=1

ζ(s,U1)Res1
s=0

(
Φ̂1(s) − Φ1(s)

)
+ 1

2
Res1
s=3

ζ(s,U1)Res1
s=0

(
Φ̂3(s) − Φ3(s)

)
,

= −Â0,1(0) + A0,1(0), (18)
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and

Ẑ′(0) − Z′(0) = −Â0,0(0) − Â′
0,1(0) + A0,0(0) + A′

0,1(0)

+ 1

2
Res1
s=1

ζ(s,U1)Res0
s=0

(
Φ̂1(s) − Φ1(s)

)
+ 1

2
Res1
s=3

ζ(s,U1)Res0
s=0

(
Φ̂3(s) − Φ3(s)

)
,

= −Â0,0(0) + A0,0(0) − Â′
0,1(0) + A′

0,1(0) + 1

2ν
− 1

315ν3
. (19)

Third, by Eq. (13) and Theorem 2, the terms A0,0(0) and A′
0,1(0), are:

A0,0(s) =
∞∑

n=1

(
a0,0,n − b1,0,0u

−1
n − b3,0,0u

−3
n

)
u−2s

n ,

A0,1(s) =
∞∑

n=1

(
a0,1,n − b1,0,1u

−1
n − b3,0,1u

−3
n

)
u−2s

n .

Hence, we need the expansion for large λ of the functions logΓ (−λ, Ŝn/μ
2
1,n), φ̂1(λ), φ̂3(λ), logΓ (−λ,Sn/μ

2
1,n),

φ1(λ) and φ3(λ). Using classical expansions for the Bessel functions and their derivatives and the formulas in Eq. (12),
we obtain:

a0,0,n = 1

2
log 2π +

(
μ1,n + 1

2

)
logμ1,n − μ1,n log 2 − logΓ (μ1,n + 1),

a0,1,n = 1

2

(
μ1,n + 1

2

)
,

b1,0,0 = − 1

12
, b3,0,0 = 1

360
, b1,0,1 = b3,0,1 = 0,

and

â0,0,n = 1

2
log 2π +

(
μ1,n + 1

2

)
logμ1,n − μ1,n log 2 − logΓ (μ1,n + 1),

â0,1,n = 1

2

(
μ1,n − 1

2

)
,

b̂1,0,0 = − 1

12
, b̂3,0,0 = 1

360
, b̂1,0,1 = b̂3,0,1 = 0.

This shows that A0,0(0) = Â0,0(0), and that

Â0,1(s) − A0,1(s) = −1

2

∞∑
n=1

n(n + 2)μ−2s
1,n = −1

2
ζ(2s,U1).

Thus,

Â0,1(0) − A0,1(0) = −1

4
,

Â′
0,1(0) − A′

0,1(0) = 1

2
logν − ζ ′(−2) − 1

2
log 2π.

Substitution in Eqs. (18) and (19), gives:

Ẑ(0) − Z(0) = 1

4
,

Ẑ′(0) − Z′(0) = −1

2
logν + ζ ′(−2) + 1

2
log 2π + 1

2ν
− 1

315ν3
.
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5.2. Part II

In this second part we deal with 2Z0(s) − Z+(s) − Z−(s). Thus, we consider the sequences S0 and S±. The
sequence S0 is analogous to the sequence S analyzed in the previous part. We have that

logΓ
(−λ,S0,n/μ

2
0,n

) = − log Iμ0,n
(μ0,n

√−λ) + μ0,n log
√−λ + μ0,n logμ0,n

− μ0,n log 2 − logΓ (μ0,n) − logμ0,n.

Using the uniform expansion of log Iμ0,n
(μ0,n

√−λ), we obtain the uniform expansion for large n:

logΓ
(−λ,S0,n/μ

2
0,n

)
=

∞∑
h=0

φh−1,0(λ)μ1−h
0,n

= (−√
1 − λ + log(1 + √

1 − λ) − log 2 + 1 − log
√−λ

)
μ0,n

+ 1

4
log(1 − λ) +

(
−U1(

√−λ) − 1

12

)
1

μ0,n

+
(

−U2(
√−λ) + 1

2
U1(

√−λ)2
)

1

μ2
0,n

+
(

−U3(
√−λ) + U1(

√−λ)U2(
√−λ) − 1

3
U1(

√−λ)3 + 1

360

)
1

μ3
0,n

+ O

(
1

μ4
1,n

)
,

and hence

φ1,0(λ) = −1

8

1

(1 − λ)
1
2

+ 5

24

1

(1 − λ)
3
2

− 1

12
,

φ2,0(λ) = − 1

16

1

(1 − λ)
+ 3

8

1

(1 − λ)2
− 5

16

1

(1 − λ)3
,

φ3,0(λ) = − 25

384

1

(1 − λ)
3
2

+ 531

640

1

(1 − λ)
5
2

− 221

128

1

(1 − λ)
7
2

+ 1105

1152

1

(1 − λ)
9
2

+ 1

360
.

Using the expansion of log Iμ0,n
(μ0,n

√−λ), and that of the φj,0(λ) for large λ, and the definitions in Eqs. (12), we
compute:

a0,0,n,0 = 1

2
log 2π +

(
μ0,n + 1

2

)
logμ0,n − μ0,n log 2 − logΓ (μ0,n + 1),

a0,1,n,0 = 1

2

(
μ0,n + 1

2

)
,

b1,0,0,0 = − 1

12
, b3,0,0,0 = 1

360
, b1,0,1,0 = b3,0,1,0 = 0.

The analysis of the sequences S± needs more work. Let us define the functions:

T ±
ν (z) = ±Jν(z) + zJ ′

ν(z).

Recalling the series definition of the Bessel function:

Jν(z) = zν

2ν

∞∑
k=0

(−1)kz2k

22kk!Γ (ν + k + 1)
,

we obtain that near z = 0,

T ±
ν (z) =

(
1 ± 1

)
zν

ν
.

ν 2 Γ (ν)
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This means that the function T̂ ±
ν (z) = z−νT ±

ν (z) is an even function of z. Let zν,k,± be the positive zeros of T ±
ν (z)

arranged in increasing order. By the Hadamard factorization theorem, we have the product expansion:

T̂ ±
ν (z) = T̂ ±

ν (z)

+∞∏
k=−∞

(
1 − z

zν,k,±

)
,

and therefore

T ±
ν (z) =

(
1 ± 1

ν

)
zν

2νΓ (ν)

∞∏
k=1

(
1 − z2

z2
ν,k,±

)
.

Next, recalling that (when −π < arg(z) < π
2 ),

Jν(iz) = e
π
2 iνIν(z),

J ′
ν(iz) = e

π
2 iνe− π

2 iI ′
ν(z),

we obtain:

T ±
ν (iz) = e

π
2 iν

(±Iν(z) + zI ′
ν(z)

)
.

Thus, we define (for −π < arg(z) < π
2 ),

Q±
ν (z) = e− π

2 iνT ±
ν (iz), (20)

and hence

Q±
ν (z) = ±Iν(z) + zI ′

ν(z) =
(

1 ± 1

ν

)
zν

2νΓ (ν)

∞∏
k=1

(
1 + z2

z2
ν,k,±

)
.

Using these representations, we obtain the following representations for the Gamma functions associated to the
sequences S±,n. By the definition in Eq. (9), with z = √−λ, we have:

logΓ (−λ,S±,n) = − log
∞∏

k=1

(
1 + (−λ)

j̃2
μ0,n,k,±

)

= − logQ±
μ0,n

(
√−λ) + μ0,n log

√−λ

− μ0,n log 2 − logΓ (μ0,n) + log

(
1 ± 1

μ0,n

)
.

A first consequence of these representations is that we have a complete asymptotic expansion of the Gamma func-
tions logΓ (−λ,S±,n), and therefore both S+,n and S−,n are sequences of spectral type. Considering the expansions,
it follows that they are both totally regular sequences of infinite order.

Next, we prove that S± are spectrally decomposable over U with power κ = 2 and length � = 4, as in Definition 1.
We have to show that the functions logΓ (−λ,S±,n/μ

2
0,n), have the appropriate uniform expansions for large n. We

have:

logΓ
(−λ,S±,n/μ

2
0,n

) = − logQ±
μ0,n

(μ0,n

√−λ) + μ0,n log
√−λ + μ0,n logμ0,n

− μ0,n log 2 − logΓ (μ0,n) + log

(
1 ± 1

μ0,n

)
.

Recalling the expansions given in the previous part, we obtain:

Q±
ν (νz) = √

ν
(
1 + z2) 1

4
eν

√
1+z2

e
ν log z

1+
√

1+z2

√
2π

×
(

1 + W1,±(z)
1 + W2,±(z)

1
2

+ W3,±(z)
1
3

+ O
(
ν−4)),
ν ν ν
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where p = 1√
1+z2

, and

W1,±(p) = V1(p) ± p, W2,±(p) = V2(p) ± pU1(p), W3,±(p) = V3(p) ± pU2(p),

W1,+(p) = 5

8
p + 7

24
p3,

W2,+(p) = − 1

128
p2 + 59

192
p4 − 455

1152
p6,

W3,+(p) = − 33

1024
p3 + 10 571

15 360
p5 − 16 555

9216
p7 + 95 095

82 944
p9,

W1,−(p) = −11

8
p + 7

24
p3,

W2,−(p) = − 31

128
p2 + 139

192
p4 − 455

1152
p6,

W3,−(p) = − 177

1024
p3 + 22 891

15 360
p5 − 22 715

9216
p7 + 95 095

82 944
p9.

This gives,

logΓ
(−λ,Sn,±/μ2

0,n

)
=

∞∑
h=0

φh−1,±(λ)μ1−h
n

= (
1 − √

1 − λ + log(1 + √
1 − λ) − log 2

)
μ0,n

− 1

4
log(1 − λ) +

(
−W1,±(

√−λ) ± 1 − 1

12

)
1

μ0,n

+
(

−W2,±(
√−λ) + 1

2
W 2

1,±(
√−λ) − 1

2

)
1

μ2
0,n

+
(

W1,±(
√−λ)W2,±(

√−λ) − W3,±(
√−λ) − 1

3
W 3

1,±(
√−λ) ± 1

3
+ 1

360

)
1

μ3
0,n

+ O

(
1

μ4
0,n

)
,

and hence

φ1,+(λ) = −5

8

1

(1 − λ)
1
2

− 7

24

1

(1 − λ)
3
2

+ 11

12
,

φ1,−(λ) = 11

8

1

(1 − λ)
1
2

− 7

24

1

(1 − λ)
3
2

− 13

12
,

φ2,+(λ) = 3

16

1

1 − λ
− 1

8

1

(1 − λ)2
+ 7

16

1

(1 − λ)3
− 1

2
,

φ2,−(λ) = 19

16

1

1 − λ
− 9

8

1

(1 − λ)2
+ 7

16

1

(1 − λ)3
− 1

2
,

φ3,+(λ) = − 17

384

1

(1 − λ)
3
2

− 389

640

1

(1 − λ)
5
2

+ 203

128

1

(1 − λ)
7
2

− 1463

1152

1

(1 − λ)
9
2

+ 121

360
,

φ3,−(λ) = 527

384

1
3
2

− 1989

640

1
5
2

+ 427

128

1
7
2

− 1463

1152

1
9
2

− 119

360
.

(1 − λ) (1 − λ) (1 − λ) (1 − λ)
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By Eq. (13) and Theorem 2, the terms A0,0(s) and A0,1(s), are:

A0,0,±(s) =
∞∑

n=1

(
a0,0,n,± − b1,0,0,±u−1

n − b3,0,0,±u−3
n

)
u−2s

n ,

A0,1,±(s) =
∞∑

n=1

(
a0,1,n,± − b1,0,1,±u−1

n − b3,0,1,±u−3
n

)
u−2s

n .

Hence, we need the expansion for large λ of the functions logΓ (−λ,Sn,±/μ2
0,n), φ1,±(λ) and φ3,±(λ). Using

Eqs. (20) and the definition, we obtain:

Q±
ν (z) ∼

√
zez

√
2π

(
1 +

∞∑
k=1

bkz
−k

)
+ O

(
e−z

)
,

for large z. Therefore,

logΓ
(−λ,Sn,±/μ2

0,n

) = −μ0,n

√−λ + 1

2

(
μ0,n − 1

2

)
log(−λ) + 1

2
log 2π

+
(

μ0,n − 1

2

)
logμ0,n − log 2μ0,nΓ (μ0,n)

+ log

(
1 ± 1

μn

)
+ O

(
1√−λ

)
.

Thus,

a0,0,n,± = 1

2
log 2π +

(
μ0,n − 1

2

)
logμ0,n − log 2μ0,nΓ (μ0,n) + log

(
1 ± 1

μ0,n

)
,

a0,1,n,± = 1

2

(
μ0,n − 1

2

)
,

b1,0,0,+ = −11

12
, b3,0,0,+ = 121

360
, b1,0,1,± = b3,0,1,± = 0,

b1,0,0,− = −13

12
, b3,0,0,+ = 119

360
.

Using these coefficients and the ones obtained for the sequence S0, we conclude that

2A0,0,0(s) − A0,0,+(s) − A0,0,−(s) = −
∞∑

n=1

log

(
1 − 1

μ2
0,n

)
(n + 1)2

μ2s
0,n

,

and

2A0,1,0(s) − A0,1,+(s) − A0,1,−(s) =
∞∑

n=1

(n + 1)2

μ2s
0,n

.

Next, we collect the results obtained for giving the uniform expansion of the sum of the logarithmic Gamma
functions:

2 logΓ
(−λ,S0,n/μ

2
0,n

) − logΓ
(−λ,Sn,+/μ2

0,n

) − logΓ
(−λ,Sn,−/μ2

0,n

)
=

∞∑
h=1

φh−1(λ)μ1−h
0,n

= log(1 − λ) +
∞∑

h=2

φh−1(λ)μ1−h
0,n ,

where
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φh−1(λ) = 2φh−1,0(λ) − φh−1,+(λ) − φh−1,−(λ),

and

φ1(λ) = − 1

(1 − λ)
1
2

+ 1

(1 − λ)
3
2

,

φ2(λ) = −3

2

1

1 − λ
+ 2

1

(1 − λ)2
− 3

2

1

(1 − λ)3
+ 1,

φ3(λ) = −35

24

1

(1 − λ)
3
2

+ 43

8

1

(1 − λ)
5
2

− 67

8

1

(1 − λ)
7
2

+ 107

24

1

(1 − λ)
9
2

.

Let Φh−1(s) = 2Φh−1,0(s) − Φh−1,+(s) − Φh−1,−(s). Then, using the definition in Eq. (11), and the formula for
the integral in Appendix A, we have:

Φ1(s) = 2Γ (s + 1
2 )√

π
,

Φ2(s) = −Γ (s + 1)

2

(
5 + 5s + 3

2
s2

)
,

Φ3(s) = Γ (s + 3
2 )√

π

(
428

315
+ 22

35
s + 214

315
s2

)
,

and hence

Res0
s=0

Φ1(s) = 2, Res1
s=0

Φ1(s) = 0,

Res0
s=0

Φ2(s) = −5

2
, Res1

s=0
Φ2(s) = 0,

Res0
s=0

Φ3(s) = 214

315
, Res1

s=0
Φ3(s) = 0.

Using all these results and the residues of the function ζ(s,U0) in the formulas given in Theorem 3, we obtain:

2Z0(0) − Z+(0) − Z−(0) = −2A0,1,0(0) + A0,1,+(0) + A0,1,−(0),

2Z′
0(0) − Z′+(0) − Z′−(0) = −2A0,0,0(0) + A0,0,+(0) + A0,0,−(0) − 2A′

0,1,0(0)

+ A′
0,1,+(0) + A′

0,1,−(0) + 1

2ν

(
1 − 1

ν2

)
+ 107

315ν3
.

Recall that

2A0,1,0(s) − A0,1,+(s) − A0,1,−(s) =
∞∑

n=1

(n + 1)2

μ2s
0,n

= ν−2sζ(2s,U0) = ν−2sζ

(
s,Sp+ �S3 + 1

ν2

)
,

and this gives (see [15]):

2A0,1,0(0) − A0,1,+(0) − A0,1,−(0) = ζ

(
0,Sp+ �S3 + 1

ν2

)
= −1,

and hence

2Z0(0) − Z+(0) − Z−(0) = −2A0,1,0(0) + A0,1,+(0) + A0,1,−(0) = 1.

In order to deal with the other term, it is convenient to proceed as follows. Since,

2A0,0,0(s) − A0,0,+(s) − A0,0,−(s) = −
∞∑

(n + 1)2 log
μ2

0,n − 1

μ2
μ−2s

0,n ,
n=1 0,n
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we have that

A(s) = 2A0,0,0(s) − A0,0,+(s) − A0,0,−(s) + 2A′
0,1,0(s) − A′

0,1,+(s) − A′
0,1,−(s)

= −
∞∑

n=1

(n + 1)2 log
(
μ2

0,n − 1
)
μ−2s

0,n .

Recalling the definition of μ0,n,

A(s) = −
∞∑

n=1

(n + 1)2 log
(
ν2n(n + 2)

)
μ−2s

0,n

= −2 logν

∞∑
n=1

(n + 1)2μ−2s
0,n −

∞∑
n=1

(n + 1)2 log
(
n(n + 2)

)
μ−2s

0,n

= −2(logν)ν−2s

∞∑
j=0

(−s

j

)
ζ(s + j,Sp+ �S3)ν

−2j

+ ν−2s

∞∑
j=0

(−s

j

)
ζ ′(s + j,Sp+ �S3)ν

−2j ,

and therefore

A(0) = −2ζ(0,Sp+ �S3) logν + ζ ′(0,Sp+ �S3)

= 2 logν + 2ζ ′(−2) + 2ζ ′(0) + log 2.

This gives:

2Z′
0(0) − Z′+(0) − Z′−(0) = −A(0) + 1

2ν

(
1 − 1

ν2

)
+ 107

315ν3

= −2 logν − 2ζ ′(−2) + logπ + 1

2ν

(
1 − 1

ν2

)
+ 107

315ν3
.

We can now compute the torsion using Eq. (15)

logT
(
CαS3

la

) =
(

1

4
+ 1

4
+ 1

2

)
log l2

− log 2 − 1

2
logν + ζ ′(−2) + 1

2
log 2π + 1

2ν
− 1

315ν3

− logν − ζ ′(−2) + 1

2
logπ + 1

4ν

(
1 − 1

ν2

)
+ 107

630ν3

= 1

2
log

π2l4

2ν3
+ 3

4

1

ν
− 1

12ν3
.

We conclude this section reviewing briefly the analysis of the case n = 1, and n = 2. All details can be found in
[8]. In the case n = 1, the torsion is given by:

logT
(
CαS1

l sinα

) =
(

1

4
+ Z(0) − Ẑ(0)

)
log l2 + Z′(0) − Ẑ′(0) − 1

2
log 2,

where

Z(s) =
∞∑

j−2s
νn,k, Ẑ(s) =

∞∑ (
j ′
νn,k

)−2s
.

n,k=1 n,k=1
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Therefore, the analysis is very similar to the one performed in the previous part I, with the main difference that now
the zeta function ζ(s,U) is ν−sζ(s). Therefore, we just have a simple pole at s = 1, and we only need the expansion
of the logarithmic Gamma function up to order ν−1.

The case of the sphere is a bit more complicate. Now,

logT
(
CαS2

l sinα

) =
(

3

4
+ 1

2
X+(0) − 1

2
X−(0)

)
log l2 + 1

2
X′+(0) − 1

2
X′−(0) + 1

2
log

4

3
,

where

X+(s) =
∞∑

n,k=1

(2n + 1)ĵ−2s
μn,k, X−(s) =

∞∑
n,k=1

(2n + 1)ĵ−2s
μn,k,

μn =
√

ν2n(n + 1) + 1
4 , and the ĵν,k,± are the zeros of the function G±

ν (z) = ± 1
2Jν(z) + zJ ′

ν(z). The zeta function
ζ(s,U) is now related to the zeta function of the Laplace operator on the 2-sphere:

ζ(2s,U) = ν−2sζ

(
s,Sp+ �

(0)

S2 + 1

4ν2

)
.

It is known (see for example [18]), that ζ(s,Sp+ �
(0)

S2 ) has one simple pole at s = 1. This gives:

ζ(s,U) = 2

ν2

1

s − 2
+ f (s),

where f (s) is some regular function. Thus,

X+(0) − X−(0) = −A0,1,+(0) + A0,1,−(0) + 1

ν2
Res1
s=0

(
Φ2,+(s) − Φ2,−(s)

)
X′+(0) − X′−(0) = −(

A0,0,+(0) + A′
0,1,+(0) − A0,0,−(0) − A′

0,1,−(0)
)

+ 1

ν2
Res0
s=0

(
Φ2,+(s) − Φ2,−(s)

)
+

(
γ

ν2
+ K

)
Res1
s=0

(
Φ2,+(s) − Φ2,−(s)

)
.

Next, proceeding as in the part II above, and introducing the functions,

G±
ν (z) = ±1

2
Jν(z) + zJ ′

ν(z),

we obtain the product representation:

H±
ν (z) = ±1

2
Iν(z) + zI ′

ν(z) =
(

1 ± 1

2ν

)
zν

2νΓ (ν)

∞∏
k=1

(
1 + z2

z2
ν,k,±

)
,

where H±
ν (z) = e− π

2 iνG±
ν (iz). This allows to obtain the expansion:

logΓ
(−λ,Sn,±/μ2

n

) =
∞∑

h=0

φh−1,±(λ)μ1−h
n

= (
1 − √

1 − λ + log(1 + √
1 − λ) − log 2

)
μn

− 1

4
log(1 − λ) +

(
−W1,±(

√−λ) ± 1

2
− 1

12

)
1

μn

+
(

−W2,±(
√−λ) + 1

2
W 2

1,±(
√−λ) − 1

8

)
1

μ2
n

+ O

(
1

μ3
n

)
,

where p = 1
1 , and
(1−λ) 2
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W1,±(p) = V1(p) ± 1

2
p, W2,±(p) = V2(p) ± 1

2
pU1(p),

W1,+(p) = 1

8
p + 7

24
p3, W2,+(p) = − 7

128
p2 + 79

192
p4 − 455

1152
p6,

W1,−(p) = −7

8
p + 7

24
p3, W2,−(p) = − 28

128
p2 + 119

192
p4 − 455

1152
p6.

This gives,

φ2,+(λ) − φ2,−(λ) = −1

2

(
1

1 − λ
− 1

(1 − λ)2

)
,

and hence using the definition in Eq. (11),

Φ2,+(s) − Φ2,−(s) = −1

2

∞∫
0

t s−1 1

2πi

∫
Λθ,c

e−λt

−λ

(
1

1 − λ
− 1

(1 − λ)2

)
.

Using the formula in Appendix A, we obtain:

Φ2,+(s) − Φ2,−(s) = 1

2
Γ (s + 1),

and hence

Res0
s=0

(
Φ2,+(s) − Φ2,−(s)

) = 1

2
, Res1

s=0

(
Φ2,+(s) − Φ2,−(s)

) = 0.

This gives:

Z+(0) − Z−(0) = −A0,1,+(0) + A0,1,−(0)

Z′+(0) − Z′−(0) = −(
A0,0,+(0) + A′

0,1,+(0) − A0,0,−(0) − A′
0,1,−(0)

) + 1

2ν2
.

Eventually, using the expansion for large z of the functions H±
ν (z), we obtain:

logΓ
(−λ,Sn,±/μ2

n

) = −μn

√−λ + 1

2

(
μn − 1

2

)
log(−λ) + 1

2
log 2π

+
(

μn − 1

2

)
logμn − log 2μnΓ (μn)

+ log

(
1 ± 1

2μn

)
+ O

(
1√−λ

)
,

and hence

a0,0,n,± = 1

2
log 2π +

(
μn − 1

2

)
logμn − log 2μnΓ (μn) + log

(
1 ± 1

2μn

)
,

a0,1,n,± = 1

2

(
μn − 1

2

)
,

b2,0,0,± = −1

8
, b2,0,1,± = 0.

This immediately shows that A0,1,+(s) = A0,1,−(s), and therefore X+(0) − X−(0) = 0. Next,

A0,0,+(s) − A0,0,−(s) =
∞∑

n=1

(2n + 1)μ−2s
n

(
log

(
1 + 1

2μn

)
− log

(
1 − 1

2μn

))

= F(s, ν).
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Note that this series converges uniformly for Re(s) > 2, but using the analytic extension of the zeta function
ζ(s,U), has an analytic extension that is regular at s = 0. Therefore,

X′+(0) − X′−(0) = −Res0
s=0

F(s, ν) + 1

2ν2
= − log

ν2

π
− f (ν) + 1

2ν2
,

and this concludes the proof in this case. A power series representation for the function f (ν) is (see [8, Appendix B])

f (ν) = log
ν2

π
+ ζ

(
1

2
,Sp+ �

(0)

S2

)
1

ν

+
∞∑

j,k=0,
j+k =0

1

(2k + 1)22k

1

22j

(−k − 1
2

j

)
ζ(k + j + 1

2 ,Sp+ �
(0)

S2 )

ν2k+2j+1
.

6. The higher dimensional cases

In case of a smooth compacted connected Riemannian manifold (M,g) with boundary ∂M , the analytic torsion is
given by the Reidemeister torsion plus some further contributions. It was shown in [4], that this further contribution
only depends on the boundary, namely that

logT (M) = log τ(M) + c(∂M).

In the case of a product metric near the boundary, the following formula for this contribution was given by
Lück [10]:

logT (M) = log τ(M) + 1

4
χ(∂M) log 2.

In the general case a further contribution appears, that measures how the metric is far from a product metric:

logT (M) = log τ(M) + 1

4
χ(∂M) log 2 + A(∂M).

A formula for this new anomaly contribution has been recently given by Brüning and Ma [2]. More precisely, in [2,
Eq. (0.6)] is given a formula for the ratio of the analytic torsion of two metrics, g0 and g1,

log
T (M,g1)

T (M,g0)
= 1

2

∫
∂M

(
B

(∇T M
1

) − B
(∇T M

0

))
, (21)

where ∇T M
j is the connection form of the metric gj , and the forms B(∇T M

j ) are defined in Eq. (1.17) of [2]
(see Eq. (25) below, and observe that we take the opposite sign with respect to the definition in [2], since we are
considering left actions instead of right actions). Note that we use the formula of [2] in the particular case of a flat
trivial bundle F . Taking g1 = g, and g0 an opportune deformation of g, that is a product metric near the boundary,

A(∂M) = log
T (M,g1)

T (M,g0)
,

and therefore

logT (M) = log τ(M) + 1

4
χ(∂M) log 2 + 1

2

∫
∂M

(
B

(∇T M
1

) − B
(∇T M

0

))
. (22)

Since the whole boundary contribution is a local invariant of the boundary, it makes sense to compute the
contribution given by the formula in Eq. (21) with respect to the metric induced by the immersion and an opportune
product metric in the case of a cone M = CW . Our result is stated in the following lemma.
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Lemma 4. Consider the two metrics:

g1 = dr ⊗ dr + a2r2gSn,

g0 = dr ⊗ dr + a2l2gSn,

on CαSn
la , where a = sinα. Then, (p > 0)

log
T (CαS

2p
la , g1)

T (CαS
2p
la , g0)

= a2p

8

[p− 1
2 ]∑

j=0

1

j !(p − j)!
j∑

h=0

(
j

h

)
(−1)h

(p − j + h)a2(j−h)
χ

(
S

2p
la

)
,

log
T (CαS

2p−1
la , g1)

T (CαS
2p−1
la , g0)

=
p−1∑
j=0

2p−j

j !(2(p − j) − 1)!!
j∑

h=0

(
j

h

)
(−1)h

(2(p − j + h) − 1)a2(j−h)

a2p−1(2p − 1)!
4p(p − 1)! .

Proof. The proof is a generalization of the proofs of Lemmas 1 and 2 of [8]. We first recall some notation
from [1, Chapter III] and [2, Section 1.1]. For two Z/2-graded algebras A and B, let A ⊗̂ B = A ∧ B̂ denote the
Z/2-graded tensor product. For two real finite dimensional vector spaces V and E, of dimension m and n, with E

Euclidean and oriented, the Berezin integral is the linear map,

B∫
:ΛV ∗ ⊗̂ ΛE∗ → ΛV ∗,

B∫
:α ⊗̂ β �→ (−1)

n(n+1)
2

π
n
2

β(e1, . . . , en)α,

where {ej }nj=1 is an orthonormal base of E. Let A be an antisymmetric endomorphism of E. Consider the map:

ˆ:A �→ Â = 1

2

n∑
j,l=1

(ej ,Ael)ê
j ∧ êl .

Note that
B∫

e− Â
2 = Pf

(
A

2π

)
, (23)

and this vanishes if dimE = n is odd.
Let ωj be the connection one form over CαSm−1

l sinα associated to the metric gj , and Ωj the curvature two form.
Let Θ be the curvature two form of the boundary Sm−1

l sinα with standard Euclidean metric. Let (ωj )
a
b denote the entries

with line a and column b of the matrix of one forms ωj . Then, we introduce the following quantities, where i denotes
the inclusion of the boundary (see [2, Eqs. (1.8) and (1.15)]),

Sj = 1

2

m−1∑
k=1

(
i∗ωj − i∗ω0

)r
θk

êθk ,

Ω̂j = 1

2

m−1∑
k,l=1

(
i∗Ωj

)θk
θl
êθk ∧ êθl ,

R = Θ̂ = 1

2

m−1∑
k,l=1

Θθk
θl
êθk ∧ êθl . (24)

Direct calculations starting from the metrics gj allow to obtain explicit formulas for all these forms. The calcula-
tions in the present case are a slight generalization of the calculations presented in the proof of Lemma 2 of [8], and
we refer to that work for further details. We find that the non-zero entries of the matrices appearing in Eq. (24) are
(where {eθk } is the dual orthonormal base on the boundary),
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(
i∗ω1 − i∗ω0

)r
θi

= −a

m−1∏
j=i+1

sin θj dθi = −1

l
eθi ,

(
i∗Ω1

)θi
θk

= (
1 − a2) k∏

j=i+1

sin θj

m−1∏
s=k+1

sin2 θs dθi ∧ dθk

= 1

l2

(
1

a2
− 1

)
eθi ∧ eθk , i < k,

Θθi
θk

=
k∏

j=i+1

sin θj

m−1∏
s=k+1

sin2 θs dθi ∧ dθk = 1

l2a2
eθi ∧ eθk , i < k.

This gives:

S 2
1 = − 1

4l2

m−1∑
h,k=1

eθh ∧ eθk ∧ êθh ∧ êθk .

Then, recalling R = Ω̂1 − 2S 2
1 by Eq. (1.16) of [2], it is easy to see that

R = − 2

a2
S 2

1 .

Following [2, Eq. (1.17)], we define:

B
(∇T CαSm−1

l sinα

j

) = 1

2

1∫
0

B∫
e− 1

2 R−u2 S 2
j

∞∑
k=1

1

Γ (k
2 + 1)

uk−1 S k
j du. (25)

From this definition it follows that B(∇T CαSm−1
l sinα

0 ) vanishes identically, since S0 does. It remains to evaluate

B(∇T CαSm−1
l sinα

1 ). Eq. (25) gives:

B
(∇T CαSm−1

l sinα

1

) = 1

2

1∫
0

B∫
e
( 1

a2 −u2)S 2
1

∞∑
k=1

1

Γ (k
2 + 1)

uk−1 S k
1 du

= 1

2

B∫ ∞∑
j=0,k=1

1

j !Γ (k
2 + 1)

1∫
0

(
1

a2
− u2

)j

uk−1 duS k+2j

1

= 1

2

B∫ ∞∑
j=0,k=1

1

j !Γ (k
2 + 1)

j∑
h=0

(
j

h

)
(−1)h

(2h + k)a2(j−h)
S k+2j

1 .

Since the Berezin integral vanishes identically whenever k + 2j = m − 1, we obtain:

B
(∇T CαSm−1

l sinα

1

) = 1

2

[ m
2 −1]∑
j=0

1

j !Γ (
m−2j+1

2 )

j∑
h=0

(
j

h

)
(−1)h

(m − 2(j − h) − 1)a2(j−h)

B∫
S m−1

1 . (26)

Now consider the two cases of even and odd m independently. First, assume m = 2p + 1 (p � 0). Then, using
Eq. (23), Eq. (26) gives:
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B
(∇T CαS

2p
l sinα

1

) = 1

4

[p− 1
2 ]∑

j=0

1

j !(p − j)!
j∑

h=0

(
j

h

)
(−1)h

(p − j + h)a2(j−h)

B∫
S 2p

1

= 1

4

[p− 1
2 ]∑

j=0

1

j !(p − j)!
j∑

h=0

(
j

h

)
(−1)h

(p − j + s)a2(j−h)

B∫
(−a2)p

2p
Rp

= a2p

4

[p− 1
2 ]∑

j=0

1

j !(p − j)!
j∑

h=0

(
j

h

)
(−1)h

(p − j + h)a2(j−h)

B∫
e− R

2

= a2p

4

[p− 1
2 ]∑

j=0

1

j !(p − j)!
j∑

h=0

(
j

h

)
(−1)h

(p − j + h)a2(j−h)
Pf

(
Θ

2π

)

= a2p

4

[p− 1
2 ]∑

j=0

1

j !(p − j)!
j∑

h=0

(
j

h

)
(−1)h

(p − j + h)a2(j−h)
e
(
S2p, gE

)
,

where e(S2p, gE) is the Euler class of (S2p, gE), and we use the fact that

e
(
S

2p
l , gl

) = Pf

(
Θ

2π

)
=

B∫
exp

(
− Θ̂

2

)
.

Therefore,

1

2

∫
S

2p
l sinα

B
(∇T CαS

2p
l sinα

1

) = a2p

8

[p− 1
2 ]∑

j=0

1

j !(p − j)!
j∑

h=0

(
j

h

)
(−1)h

(p − j + h)a2(j−h)

∫
S

2p
la

e
(
S

2p
la , gE

)

= a2p

8

[p− 1
2 ]∑

j=0

1

j !(p − j)!
j∑

h=0

(
j

h

)
(−1)h

(p − j + h)a2(j−h)
χ

(
S

2p
la

)
.

Second, assume m = 2p (p � 1). Then, Eq. (26) gives:

B
(∇T CαS

2p−1
l sinα

1

) = 1

2

p−1∑
j=0

1

j !Γ (p − j + 1
2 )

j∑
h=0

(
j

h

)
(−1)h

(2(p − j + h) − 1)a2(j−h)

B∫
S 2p−1

1 .

Now we evaluate
∫ B S 2p−1

1 . Recalling that

R = − 2

a2
S 2

1 ,

we obtain that
B∫

S 2p−1
1 =

B∫
S1 S 2p−2

1 = (−1)p−1a2p−2

2p−1

B∫
S1 Rp−1,

and using the explicit definitions of these forms given in Eq. (24), we have:

B∫
S 2p−1

1 = (−1)p−1a2p−2

22p−1

B∫ ( 2p−1∑
k=1

(
i∗ω1 − i∗ω0

)r
θk

êθk

)( 2p−1∑
i,j=1

Θθi
θj

êθi ∧ êθj

)p−1

= (−1)pa2p−1

22p−1
cB ×

∑
σ∈S2p

sgn(σ )(ω1 − ω0)
1
σ(2)(Ω0)

σ(3)
σ (4) . . . (Ω0)

σ(2p−1)
σ (2p),
σ(1)=1
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where cB = (−1)p(2p−1)

π
2p−1

2
. Using the same argument used in the final part of the proof of Lemma 2 of [8], we show that

B∫
S 2p−1

1 = cB

(−1)pa2p−1(2p − 1)!
2p−12p

2p−1∏
j=2

(sin θj )
j−1dθ1 ∧ · · · ∧ dθ2p−1.

Then,

∫
S

2p−1
la

B∫
S 2p−1

1 = (−1)p(2p−1)

π
2p−1

2

(−1)pa2p−1(2p − 1)!
2p−12p(la)2p−1

Vol
(
S

2p−1
la

)

= (−1)p(2p−1)

π
2p−1

2

(−1)pa2p−1(2p − 1)!
2p−12p(la)2p−1

2πp(la)2p−1

(p − 1)!

= 1

π− 1
2

a2p−1(2p − 1)!
2p−12p−1

1

(p − 1)! ,

and

1

2

∫
S

2p−1
l sinα

B
(∇T CαS

2p−1
l sinα

1

) =
p−1∑
j=0

1

j !Γ (p − j + 1
2 )

j∑
h=0

(
j

h

)
(−1)h

(2(p − j + h) − 1)a2(j−h)

∫
S

2p−1
l sinα

B∫ S 2p−1
1

4

=
p−1∑
j=0

1

j !Γ (p − j + 1
2 )

j∑
h=0

(
j

h

)
(−1)h

(2(p − j + h) − 1)a2(j−h)

a2p−1(2p − 1)!
π− 1

2 4p(p − 1)!

=
p−1∑
j=0

2p−j

j !(2(p − j) − 1)!!
j∑

h=0

(
j

h

)
(−1)h

(2(p − j + h) − 1)a2(j−h)

a2p−1(2p − 1)!
4p(p − 1)! . �

We have now all the terms appearing in Eq. (22). In fact, the Reidemeister torsion of the cone over a sphere was
computed in [8, Proposition 2],

log τ
(
CαSm−1

l sinα

) = 1

2
Vol

(
CαSm−1

l sinα

)
.

Comparing with the results given in Theorem 1, we detect the contribution of the singularity. It is easy to see that
the formula in Eq. (22) holds for the cone over the circle and over the 3-spheres, while a contribution due to the
singularity appears in the case of the sphere. This motivates the following conjecture, that is a theorem for p < 3.

Conjecture 1. The analytic torsion of the cone CαS
2p−1
l sinα , of angle α, and length l > 0, over the odd dimensional

sphere S2p−1, with the standard metric induced by the immersion in R
m+1, and absolute boundary conditions is

(where p > 0):

logT
(
CαS

2p−1
l sinα

) = 1

2
log Vol

(
CαS

2p−1
l sinα

)

+
p−1∑
j=0

2p−j

j !(2(p − j) − 1)!!
j∑

h=0

(
j

h

)
(−1)h sin2(h−j) α

(2(p − j + h) − 1)

(2p − 1)! sin2p−1 α

4p(p − 1)! .
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Appendix A

We give here a formula for a contour integral appearing in the text. The proof is in [17, Section 4.2].
Let Λθ,c = {λ ∈ C | | arg(λ − c)| = θ}, 0 < θ < π , 0 < c < 1, a real, then

∞∫
0

t s−1 1

2πi

∫
Λθ,c

e−λt

−λ

1

(1 − λ)a
dλdt = Γ (s + a)

Γ (a)s
.
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