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Massive gravity (mGR) describes a dynamical “metric” on a fiducial, background one. We investigate 
fluctuations of the dynamics about mGR solutions, that is about its “mean field theory”. Analyzing mean 
field massive gravity (mGR) propagation characteristics is not only equivalent to studying those of the full 
non-linear theory, but also in direct correspondence with earlier analyses of charged higher spin systems, 
the oldest example being the charged, massive spin 3/2 Rarita–Schwinger (RS) theory. The fiducial and 
mGR mean field background metrics in the mGR model correspond to the RS Minkowski metric and 
external EM field. The common implications in both systems are that hyperbolicity holds only in a weak 
background-mean-field limit, immediately ruling both theories out as fundamental theories; a situation 
in stark contrast with general relativity (GR) which is at least a consistent classical theory. Moreover, 
even though both mGR and RS theories can still in principle be considered as predictive effective models 
in the weak regime, their lower helicities then exhibit superluminal behavior: lower helicity gravitons 
are superluminal as compared to photons propagating on either the fiducial or background metric. Thus 
our approach has uncovered a novel, dispersive, “crystal-like” phenomenon of differing helicities having 
differing propagation speeds. This applies both to mGR and mGR, and is a peculiar feature that is also 
problematic for consistent coupling to matter.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Consistency is a powerful tool for studying field theories. Al-
ready classically, there are stringent conditions that are extremely 
difficult to fulfill for systems with spin s > 1, the most important 
exception being (s = 2, m = 0) general relativity. Key consistency 
requirements are

(i) Correct degree of freedom (DoF) counts.
(ii) Non-ghost kinetic terms.

(iii) Predictability.
(iv) (Sub)luminal propagation.

Requirements (i) and (ii) are closely related (as are (iii) and (iv)). 
Models whose constraints do not single out the correct propagat-
ing DoF suffer from relatively ghost kinetic terms: the relevant 
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example here is the sixth ghost excitation that plagues generic 
massive gravity (mGR) theories [1]. The discovery that a class of 
mGR models satisfied requirements (i) and (ii) generated a revival 
of interest in massive spin 2 theories [2–7] even though failure of 
the propagation requirements (iii) and (iv) were long known to be-
devil higher spin theories [8,9].

The predictability requirement is that initial data can be prop-
agated to the future of spacetime hypersurfaces. In PDE terms, 
this means that the underlying equations must be hyperbolic [10]. 
The final requirement, that signals cannot propagate faster than 
light, can be imposed once the hyperbolicity requirement is sat-
isfied. The classic example of a model that obeys requirements 
(i) and (ii) as well as (iii) but only in a weak field region, is the 
charged, massive, s = 3/2 RS theory. Curiously enough, the propa-
gation problems of this model were first discovered in a quantum 
setting by Johnson and Sudarshan [11] who studied the model’s 
canonical field commutators (this is easy to understand in ret-
rospect, because field commutators and propagators are directly 
related [12]). The first detailed analysis of the model’s propagation 
characteristics was carried out by Velo and Zwanziger; our aim is 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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to reproduce their RS results in mGR, so we quote their 1971 ab-
stract verbatim [8]:

The Rarita–Schwinger equation in an external electromagnetic 
potential is shown to be equivalent to a hyperbolic system 
of partial differential equations supplemented by initial condi-
tions. The wave fronts of the classical solutions are calculated 
and are found to propagate faster than light. Nevertheless, for 
sufficiently weak external potentials, a consistent quantum me-
chanics and quantum field theory may be established. These, 
however, violate the postulates of special relativity.

In previous works we and other authors have shown that simi-
lar conclusions hold for the full non-linear mGR models [5,6,13,
14,7,15]. These investigations rely on the method of characteris-
tics, which amounts to studying leading kinetic terms and is thus 
essentially equivalent to an analysis of linear fluctuations around 
a mean field background. Since this mean field massive gravity 
(mGR) fluctuation model depends both on a background and a 
fiducial metric, it is in direct correspondence with the charged RS 
model. Hence, without any computation at all, one can readily pre-
dict that: (a) mGR loses hyperbolicity in some strong field regime 
and (b) in the weak field hyperbolic regime where predictability 
is restored, lower helicity modes have propagation characteristics 
differing from maximal helicity ±2; thus superluminality with re-
spect to (luminal) photons is inevitable. Apart from confirming 
earlier conclusions in a very simple setting, our results give a pre-
cise description of mGR’s effective, weak field, regime.

2. Massive gravity

At its genesis, the first known non-linear mGR model of [16]
was originally formulated in terms of dynamical and fiducial vier-
beine em and f m . It took some forty years for researchers — 
independently in an effective field theory-inspired metric formu-
lation — to discover that this model was one of a three-parameter 
family [2] that avoided the sixth, ghost-like excitation of [1]. The 
action describing these fiducial mGR models is given by1

SmGR[e,ω; f ] = −
∫

εmnrsem
{

1

4
en [

dωrs + ωr
tω

ts]

−m2
[

β0

4
eneres + β1

3
ener f s

+ β2

2
en f r f s + β3 f n f r f s

]}
.

The parameter β0 governs a standard cosmological term; this 
is required to obtain the Fierz–Pauli (FP) linearized limit when 
both the fiducial and mGR backgrounds are Minkowski. When 
both the fiducial and mGR backgrounds are Einstein with cos-
mological constant �̄, the model’s parameters must obey �̄

3! =
m2 (β0 + β1 + β2 + β3) and the linearized theory is FP with mass 
m2

FP := m2(β1 + 2β2 + 3β3).
Varying the model’s dynamical fields (em, ωmn) gives equations 

of motion

∇em ≈ 0 ≈ Gm − m2 tm , (1)

where tm := εmnrs
[
β0eneres + β1ener f s + β2en f r f s + β3 f n f r f s

]
. 

Also, the Einstein three-form is defined by Gm := 1
2 εmnrsen Rrs and 

1 Here d is the exterior derivative and the dynamical vierbiene and spin connec-
tion (e, ω), are one-forms. We suppress wedge products unless necessary for clarity.
Rmn := dωmn + ωm
rω

rn is the Riemann curvature; ∇ is the con-
nection of ωmn . The forty equations above are subject to thirty 
constraints that are spelled out in detail in [7]. In particular, these 
include the covariant algebraic relations2

em fm ≈ 0 ≈ Kmnem f n ≈ εmnrs Mmn K rs ,

where the tensor K mn := ωmn − χmn denotes the contorsion and 
Mmn := β1emen + 2β2e[m f n] + 3β3 f m f n .

3. Mean field massive gravity

Consider mGR propagating in an arbitrary fiducial (pseudo-)
Riemannian manifold (M, ̄gμν) with corresponding vierbeine and 
spin connections ( f m, χmn). Now let (em, ωmn) be a solution to 
the mGR equations of motion (1). We wish to study fluctuations 
(εm, λmn) about this configuration:

ẽm = em + εm , ω̃mn = ωmn + λmn .

The action governing these is the quadratic part of SmGR[ẽ, ω̃; f ] −
SmGR[e, ω; f ], namely

S[h, λ; e, f ] := −1

2

∫
εmnrs

[
emεn∇λrs

+ 1

2

(
emenλr

tλ
ts + Rmnεrεs)

− m2(3β0emenεrεs + 2β1em f nεrεs

+ β2 f m f nεrεs)] .

The mean field model is a theory of forty dynamical fields 
(εm, λmn). In the above, ∇ is the Levi-Civita connection of em , 
and Rmn its Riemann tensor; we stress that henceforth the 
fiducial field

(
f m,χmn( f ), ̄gμν( f )

)
and mGR background fields (

em, ωmn(e), gμν(e)
)

are non-dynamical; all index manipulations 
will be carried out using the mGR background metric and vier-
bein.

The mGR equations of motion are

T m := ∇εm + λmnen ≈ 0 ,

Gm := 1

2
εmnrs

[
en∇λrs + εn Rrs] − m2 τm ≈ 0 , (2)

where τm := εmnrs

[
3β0 enerεs + 2β1 en f rεs + β2 f n f rεs

]
.

4. Mean field degrees of freedom

In principle, since we are describing the linearization of a 
model whose constraints have been completely analyzed in [7], 
we know a priori that mGR describes five propagating degrees of 
freedom. However, for completeness and our causality study, we 
reanalyze its constraints.

The first step is to introduce a putative choice of time coordi-
nate t , which for now need not rely in any way on either the fidu-
cial or background metric, and use this to decompose any p-form θ

(with p < 4) as

θ := θ + θ̊ , (3)

where θ̊ ∧ dt = 0. Thus θ is the purely spatial part of the form θ . 
Hence for any on-shell relation P ≈ 0 polynomial in (∇, ε, λ), 

2 The first of these assumes invertibility of the operator Mmn as a map from 
two-forms to antisymmetric Lorentz tensors; we shall always work on the mod-
el’s branch where this holds.
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its spatial P ≈ 0 part is a constraint because it contains no 
t-derivatives.

Thus we immediately find sixteen primary constraints:

T m = ∇εm + λmnen ≈ 0 ≈ Gm

= 1

2
εmnrs

[
en∇λrs + εn Rrs] − m2 τm .

There are ten secondary constraints in total. The first six of these 
follow from the integrability condition e[m∇T n] ≈ 0 which yields 
the so-called symmetry constraint

e[mτn] + ε[mtn] ≈ 0 .

As mentioned above, we assume that the set of two forms {Mmn}
is a basis for the space of two-forms, so the symmetry constraint 
yields

εm fm ≈ 0 .

The remaining four secondary constraints come from the covariant 
curl ∇Gm ≈ 0 and give the vector constraint

∇τm + λm
ntn ≈ 0 .

Employing the equation of motion T m ≈ 0, this implies

εmnrs
[
Mmnλrs + 2(β1em + β2 f m) εn K rs] ≈ 0 .

Finally there are four tertiary constraints stemming from covariant 
curls of the secondaries: the temporal part of the curled symmetry 
constraint Kmnε

m f n + λmnem f n ≈ 0, i.e.

K̊mnε
m f n + K mnε̊

m f n + K mnε
m f̊ n + λ̊mnem f n

+ λmne̊m f n + λmnem f̊ n ≈ 0 ,

and the scalar constraint

εmnrs

(
β1(ε

met + emεt) − 2β2ε
(m f t)

)
K nr K s

t

+ εmnrs

(
β1emet − 2β2e(m f t) − 3β3 f m f t

)
(λnr K s

t + K nrλs
t)

+ 2 m2 β1ε
mtm + 2 m2 (

β1em + 2β2 f m)
τm

+ 3εmnrsβ3 f m f n∇λrs − 4β2ε
mḠm − 2εmnrsβ1ε

men R̄rs ≈ 0 .

The ∇λrs term seems to indicate that the above display is not 
a constraint for β3 �= 0, however, as shown in [7], this quantity 
(weakly) equals one without time derivatives of fields. In summary, 
the model describes forty fields subject to thirty constraints and 
thus propagates five3 DoF.

5. Characteristic matrix

We now study whether mGR can propagate initial data off a 
given hypersurface �. This amounts to asking if derivatives nor-
mal to � are determined by the equations of motion (2). For that, 
we simply replace all derivatives in the equations of motion and 
gradients of their constraints by the normal covector ξμ to � mul-
tiplied by the normal derivative of the corresponding field:

3 Although this conclusion for mGR is guaranteed by previous studies [3,4,7] of 
the non-linear model’s DoF count, it verifies the linearized mGR study [17]. In that 
work, the fiducial metric is eliminated in terms of the mean field in order to ar-
gue that linearized spin 2 fields can propagate consistently in any gravitational 
background. This result is consistent with earlier work in [18] which relies on a 
1/m2 expansion to study leading DoF and causality properties of gravitating, mas-
sive spin 2 models.
∂μεm
∣∣
�

= ξμ∂nε
m and ∂μλmn

∣∣
�

= ξμ∂nλmn .

We will also, for simplicity alone, restrict to the parameter choices 
β2 = β3 = 0 (the model’s characteristic matrix for its entire pa-
rameter range has been computed in [7]). In particular, we must 
focus on the question whether the linear system of equations for 
the normal derivatives ∂nϕ := (∂nε, ∂nλ) implied by the equations 
of motion along � is invertible. This amounts to a matrix problem 
encoded by the theory’s characteristic matrix C . In what follows 
we compute the system of equations given by the homogeneous 
linear system C · ∂nϕ = 0. Starting with the equations of motion 
we find

ξ ∧ ∂nε
m = 0 ,

εmnrsen ∧ ξ ∧ ∂nλrs = 0 . (4)

The gradients of the secondary and tertiary constraints then imply

ξμ fm ∧ ∂nε
m = 0 = ξμ εmnrsem ∧ [

en ∧ ∂nλrs − 2K nr ∧ ∂nε
s] ,

ξμ f m ∧ [
Kmn ∧ ∂nε

n + en ∧ ∂nλmn
] = 0 ,

ξμ εmnrsem∧[
en∧K rt ∧∂nλt

s

+ (
K nt ∧Kt

r − R̄nr + m2(4β0en∧er + 3β1en∧ f r)
)∧∂nε

s] = 0 .

(5)

In the above the prefactor ξμ was included to indicate the origin 
of these equations but can be removed with impunity. To handle 
Equation (4) we decompose form-valued normal derivatives as ear-
lier in Equation (3), and find4

∂nε
m = 0 = ∂nλmn .

Supposing that the one-form ξ = dt , for some evolution coor-
dinate t , we now use a shorthand notation ∂nε

m = dt ε̇m
t and 

∂nλmn = dt λ̇mn
t . We thus have the reduced characteristic system

⎛
⎜⎜⎝

f m 0

2εmnrsen × K rs εmnrser × es

f n × K nm f m × en

Rm Kmn

⎞
⎟⎟⎠

(
ε̇m

t

λ̇mn
t

)
= 0 . (6)

In the above square matrix, × denotes the standard three-
dimensional cross product while the spatial densities on its last 
line can be read off from (5) and are simple for flat fiducial met-
rics. Vanishing of the determinant of the above 10 × 10 matrix 
completely characterizes the boundary of the model’s predictive 
hyperbolic regime (modulo the restriction explained in footnote 4). 
As we shall see, the reduced characteristic system describes the 
propagation of superluminal lower helicity modes: In the next sec-
tion, we specialize to flat fiducial spaces and show how to analyze 
this determinant in direct analogy with the RS system.

6. Analogy with Rarita–Schwinger

The charged, spin 3/2, Rarita–Schwinger (RS) equation of mo-
tion reads

γ μνρ
(∇ν + ie Aν + m

2
γν

)
ψρ = 0 .

Here ∇ is the Levi-Civita connection of the fiducial spacetime 
and A is the background EM potential. These are analogous to the 

4 Here we assumed that the pullback of the mGR background vierbeine to the 
hypersurface � is invertible and ignore likely pathologies when this fails.
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mGR fiducial and background-mean-field metrics. The RS charac-
teristic matrix was computed in [8] for flat fiducial metrics and 
spacelike hypersurfaces � and found to have zero determinant 
when the magnetic field B obeyed5

1 −
( 2e

3m2

)2
B2 = 0 . (7)

The condition 2e|B|
3m2 < 1 thus determines the weak field, hyperbolic, 

regime. Our aim now is to develop the analogous statement for 
mGR and inherit the conclusions of [8].

We begin with a short calculation. Consider now a flat fidu-
cial metric so f m = δm

μdxμ and ds̄2 = −dt2 + dx2. This simplifies 
the reduced characteristic system considerably. Firstly the equation 
f mε̇m

t = 0 of (6) implies ε̇a
t = 0, where we have decomposed the 

Lorentz index m = (0, a). Let us introduce an EM-like notation

εabc K bc =: Ba , K 0a =: Ea .

For simplicity only, we now restrict to the case where e0 = Ea = 0. 
Thus using ε0

abc = εabc the second equation of (6) implies

λ̇0a
t = −1

2
εabc Bb · ẽc ε̇0

t .

Here the 3-vectors ẽa form the 3-inverse of ea so that ẽa · eb = δb
a . 

The third equation of (6) then gives

f [a × eb]λ̇ab
t = 0 .

This equation generically allows λ̇ab
t to be expressed as a function 

of ε̇0
t but this requires a non-trivial condition on ea . Under the 

hypothesis that the eigenvalue spectra of the matrices f a · ẽb and 
− f a · ẽb do not intersect, the above equation implies that λ̇ab

t = 0. 
In this framework, the last equation of (6) gives the single VZ-type 
condition[

m2
FP

(
4 − ( f a · ẽa)

) − 1

6

(
(Ba · ẽb

)(B[a · ẽb])

− 1

2
(Ba · ẽ[a)(Bb · ẽb])

)]
ε̇0

t = 0 . (8)

In the weak field limit where the mean field approaches Minkowski 
space, the coefficient of m2

FP approaches unity but can change sign 
in a strong-field, large ẽ limit. Hence there are certainly strong 
field configurations where the model loses hyperbolicity [10] and 
closed causal curves are unavoidable. (This signals the onset of 
strong coupling in an effective field theory.) Now, comparing Equa-
tions (7) and (8), we see that we have reduced mGR’s weak field 
propagation analysis to a previous — well understood — case. Fi-
nally, we note that the same analogy and characteristic method can 
also be applied to the bimetric theory by treating the two back-
ground metrics as a (fiducial, background) pair [20], and clearly 
will lead to similar findings as exhibited here for mGR.

7. Conclusions

mGR is not a fundamental theory but rather an effective one 
with a range of validity determined by requiring hyperbolicity in 
a weak field regime. Excepting the further caveats explained in 
the text, the reduced characteristic matrix of Equation (6) com-
pletely determines this allowed regime. Even in the weak regime, 
modes exhibit a crystal structure with differing helicities’ maximal 
propagation speeds. For mGR to give a useful effective theory for 

5 See [19] for models designed to cure this pathology by adding higher back-
ground derivative, string-inspired terms to the RS action.
physical applications, one must couple to matter (or at least pho-
tons) and require consistent causal cones for all modes. Once these 
couplings are decided upon, the characteristic method will deter-
mine their effective range of validity, if any. There is, in principle, 
also the logical possibility that there exists a causal, luminal, UV 
completion of mGR analogous to that for QED in curved space [21]. 
The general discussion of UV completions [22] supports the con-
clusion that quantizing these models is unlikely to improve their 
causal consistency properties — indeed quite the opposite.
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