Computers and Mathematics with Applications 47 (2004) 1667-1672

Neighborhoods of a Certain Family of Multivalent Functions with Negative Coefficients

O. Altintaş and Ö. Özkan
Department of Statistics and Computer Sciences
Başkent University
Bağlica, TR-06530 Ankara, Turkey
<oaltintas><oznur>@baskent.edu.tr
H. M. Srivastava
Department of Mathematics and Statistics
University of Victoria
Victoria, British Columbia V8W 3P4, Canada
harimsri@math.uvic.ca
(Received and accepted March 2003)

Abstract

By making use of the familiar concept of neighborhoods of analytic and p-valent functions, the authors prove coefficient bounds and distortion inequalities, and associated inclusion relations for the (n, δ)-neighborhoods of a family of multivalent functions with negative coefficients, which is defined by means of a certain nonhomogeneous Cauchy-Euler differential equation. Relevant connections of the various function classes investigated in this paper with those considered by earlier workers on the subject are also mentioned. (C) 2004 Elsevier Ltd. All rights reserved.

Keywords-Analytic functions, p-valent functions, Cauchy-Euler differential equation, Starlike functions, Convex functions, (n, δ)-neighborhood, Inclusion relations, Distortion inequalities, Univalent functions.

1. INTRODUCTION AND DEFINITIONS

Let $\mathcal{T}(n, p)$ denote the class of functions $f(z)$ normalized by

$$
\begin{equation*}
f(z)=z^{p}-\sum_{k=n+p}^{\infty} a_{k} z^{k} \quad\left(a_{k} \geqq 0 ; p, n \in \mathbb{N}:=\{1,2,3, \ldots\}\right), \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk

$$
\mathbb{U}=\{z: z \in \mathbb{C} \text { and }|z|<1\} .
$$

[^0]Following the earlier investigations by Goodman [1] and Ruscheweyh [2] (see also [3,4]), we define the (n, δ)-neighborhood of a function $f(z) \in \mathcal{T}(n, p)$ by

$$
\begin{equation*}
N_{n, \delta}(f ; g):=\left\{g \in \mathcal{T}(n, p): g(z)=z^{p}-\sum_{k=n+p}^{\infty} b_{k} z^{k} \text { and } \sum_{k=n+p}^{\infty} k\left|a_{k}-b_{k}\right| \leqq \delta\right\}, \tag{1.2}
\end{equation*}
$$

so that, obviously,

$$
\begin{equation*}
N_{n, \delta}(h ; g):=\left\{g \in \mathcal{T}(n, p): g(z)=z^{p}-\sum_{k=n+p}^{\infty} b_{k} z^{k} \text { and } \sum_{k=n+p}^{\infty} k\left|b_{k}\right| \leqq \delta\right\} \tag{1.3}
\end{equation*}
$$

where, and in what follows,

$$
\begin{equation*}
h(z)=z^{p} \quad(p \in \mathbb{N}) \tag{1.4}
\end{equation*}
$$

We denote by $\mathcal{S}_{n}^{*}(p, \alpha)$ and $\mathcal{C}_{n}(p, \alpha)$ the classes of p-valently starlike functions of order α in \mathbb{U} ($0 \leqq \alpha<p$) and p-valently convex functions of order α in $\mathbb{U}(0 \leqq \alpha<p)$, respectively. Thus, by definition, we have

$$
\begin{equation*}
\mathcal{S}_{n}^{*}(p, \alpha):=\left\{f \in \mathcal{T}(n, p): \mathfrak{R}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha(z \in \mathbb{U} ; 0 \leqq \alpha<p)\right\} \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{C}_{n}(p, \alpha):=\left\{f \in \mathcal{T}(n, p): \mathfrak{R}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha(z \in \mathbb{U} ; 0 \leqq \alpha<p)\right\} \tag{1.6}
\end{equation*}
$$

An interesting unification of the function classes $\mathcal{S}_{n}^{*}(p, \alpha)$ and $\mathcal{C}_{n}(p, \alpha)$ is provided by the class $\mathcal{T}_{n}(p, \alpha, \lambda)$ of functions $f \in \mathcal{T}(n, p)$, which also satisfy the following inequality:

$$
\begin{equation*}
\mathfrak{R}\left(\frac{z f^{\prime}(z)+\lambda z^{2} f^{\prime \prime}(z)}{\lambda z f^{\prime}(z)+(1-\lambda) f(z)}\right)>\alpha \quad(z \in \mathbb{U} ; 0 \leqq \alpha<p ; 0 \leqq \lambda \leqq 1) . \tag{1.7}
\end{equation*}
$$

The class $\mathcal{T}_{n}(p, \alpha, \lambda)$ was investigated by Altintaş et al. [5] and (subsequently) by Irmak et al. [6]. In particular, the class $\mathcal{T}_{n}(1, \alpha, \lambda)$ was considered earlier by Altintaş [7]. Clearly, we have

$$
\begin{equation*}
\mathcal{T}_{n}(p, \alpha, 0)=\mathcal{S}_{n}^{*}(p, \alpha) \quad \text { and } \quad \mathcal{T}_{n}(p, \alpha, 1)=\mathcal{C}_{n}(p, \alpha) \tag{1.8}
\end{equation*}
$$

in terms of the simpler classes $\mathcal{S}_{n}^{*}(p, \alpha)$ and $\mathcal{C}_{n}(p, \alpha)$ defined by (1.5) and (1.6), respectively (see also $[8,9]$).

The main object of the present sequel to the aforementioned recent works is to derive several coefficient bounds and distortion inequalities, and associated inclusion relations for the (n, δ)-neighborhood of functions in the subclass $\mathcal{K}_{n}(p, \alpha, \lambda, \mu)$ of the class $\mathcal{T}(n, p)$, which consists of functions $f \in \mathcal{T}(n, p)$ satisfying the following nonhomogeneous Cauchy-Euler differential equation:

$$
\begin{align*}
& z^{2} \frac{d^{2} w}{d z^{2}}+2(\mu+1) z \frac{d w}{d z}+\mu(\mu+1) w=(p+\mu)(p+\mu+1) g(z) \tag{1.9}\\
& \quad\left(w=f(z) \in \mathcal{T}(n, p) ; g \in \mathcal{T}_{n}(p, \alpha, \lambda) ; \mu>-p(\mu \in \mathbb{R})\right)
\end{align*}
$$

2. COEFFICIENT BOUNDS AND DISTORTION INEQUALITIES

In our present investigation of the class $\mathcal{K}_{n}(p, \alpha, \lambda, \mu)$, we shall require Lemmas 1 and 2 below.

Lemma 1. (See [5, p. 10, Theorem 1].) Let the function $f \in \mathcal{T}(n, p)$ be defined by (1.1). Then the function $f(z)$ is in the class $\mathcal{T}_{n}(p, \alpha, \lambda)$ if and only if

$$
\begin{gather*}
\sum_{k=n+p}^{\infty}(k-\alpha)[\lambda(k-1)+1] a_{k} \leqq(p-\alpha)[\lambda(p-1)+1] \tag{2.1}\\
(0 \leqq \alpha<p ; 0 \leqq \lambda \leqq 1 ; n, p \in \mathbb{N})
\end{gather*}
$$

The result is sharp with the extremal function given by

$$
\begin{equation*}
f(z)=z^{p}-\frac{(p-\alpha)[\lambda(p-1)+1]}{(n+p-\alpha)[\lambda(n+p-1)+1]} z^{n+p} \quad(n, p \in \mathbb{N}) \tag{2.2}
\end{equation*}
$$

Lemma 2. Let the function $f(z)$ given by (1.1) be in the class $\mathcal{T}_{n}(p, \alpha, \lambda)$. Then

$$
\begin{equation*}
\sum_{k=n+p}^{\infty} a_{k} \leqq \frac{(p-\alpha)[\lambda(p-1)+1]}{(n+p-\alpha)[\lambda(n+p-1)+1]} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=n+p}^{\infty} k a_{k} \leqq \frac{(n+p)(p-\alpha)[\lambda(p-1)+1]}{(n+p-\alpha)[\lambda(n+p-1)+1]} \tag{2.4}
\end{equation*}
$$

Proof. By using Lemma 1 , we find from (2.1) that

$$
\begin{aligned}
(n+p-\alpha)[\lambda(n+p-1)+1] & \sum_{k=n+p}^{\infty} a_{k} \\
& \leqq \sum_{k=n+p}^{\infty}(k-\alpha)[\lambda(k-1)+1] a_{k} \leqq(p-\alpha)[\lambda(p-1)+1],
\end{aligned}
$$

which immediately yields the first assertion (2.3) of Lemma 2.
By appealing to (2.1), we also have

$$
[\lambda(n+p-1)+1] \sum_{k=n+p}^{\infty}(k-\alpha) a_{k} \leqq(p-\alpha)[\lambda(p-1)+1],
$$

that is,

$$
[\lambda(n+p-1)+1] \sum_{k=n+p}^{\infty} k a_{k} \leqq(p-\alpha)[\lambda(p-1)+1]+\alpha[\lambda(n+p-1)+1] \sum_{k=n+p}^{\infty} a_{k}
$$

which, in view of the coefficient inequality (2.3), can be put in the following form:

$$
\begin{equation*}
[\lambda(n+p-1)+1] \sum_{k=n+p}^{\infty} k a_{k} \leqq(p-\alpha)[\lambda(p-1)+1]+\frac{\alpha(p-\alpha)[\lambda(p-1)+1]}{n+p-\alpha} \tag{2.5}
\end{equation*}
$$

Upon simplifying the right-hand side of (2.5), we are led eventually to the second assertion (2.4) of Lemma 2.

Our main distortion inequalities for functions in the class $\mathcal{K}_{n}(p, \alpha, \lambda, \mu)$ are given by Theorem 1 below.

Theorem 1. If $f \in \mathcal{T}(n, p)$ is in the class $\mathcal{K}_{n}(p, \alpha, \lambda, \mu)$, then

$$
\begin{equation*}
|f(z)| \leqq|z|^{p}+\frac{(p-\alpha)[\lambda(p-1)+1](p+\mu)(p+\mu+1)}{(n+p-\alpha)[\lambda(n+p-1)+1](n+p+\mu)}|z|^{n+p} \quad(z \in \mathbb{U}) \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
|f(z)| \geqq|z|^{p}-\frac{(p-\alpha)[\lambda(p-1)+1](p+\mu)(p+\mu+1)}{(n+p-\alpha)[\lambda(n+p-1)+1](n+p+\mu)}|z|^{n+p} \quad(z \in \mathbb{U}) . \tag{2.7}
\end{equation*}
$$

Proof. Suppose that $f \in \mathcal{T}(n, p)$ is given by (1.1). Also let the function $g \in \mathcal{T}_{n}(p, \alpha, \lambda)$, occurring in the nonhomogeneous Cauchy-Euler differential equation (1.9), be given as in the definitions (1.2) and (1.3) with, of course,

$$
b_{k} \geqq 0 \quad(k=n+p, n+p+1, n+p+2, \ldots) .
$$

Then we readily find from (1.9) that

$$
\begin{equation*}
a_{k}=\frac{(p+\mu)(p+\mu+1)}{(k+\mu)(k+\mu+1)} b_{k} \quad(k=n+p, n+p+1, n+p+2, \ldots), \tag{2.8}
\end{equation*}
$$

so that

$$
\begin{equation*}
f(z)=z^{p}-\sum_{k=n+p}^{\infty} a_{k} z^{k}=z^{p}-\sum_{k=n+p}^{\infty} \frac{(p+\mu)(p+\mu+1)}{(k+\mu)(k+\mu+1)} b_{k} z^{k}, \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
|f(z)| \leqq|z|^{p}+|z|^{n+p} \sum_{k=n+p}^{\infty} \frac{(p+\mu)(p+\mu+1)}{(k+\mu)(k+\mu+1)} b_{k} \quad(z \in \mathbb{U}) . \tag{2.10}
\end{equation*}
$$

Next, since $g \in \mathcal{T}_{n}(p, \alpha, \lambda)$, the first assertion (2.3) of Lemma 2 yields the following coefficient inequality:

$$
\begin{equation*}
b_{k} \leqq \frac{(p-\alpha)[\lambda(p-1)+1]}{(n+p-\alpha)[\lambda(n+p-1)+1]} \quad(k=n+p, n+p+1, n+p+3, \ldots), \tag{2.11}
\end{equation*}
$$

which, in conjunction with (2.10), yields

$$
\begin{gather*}
|f(z)| \leqq|z|^{p}+\frac{(p-\alpha)[\lambda(p-1)+1](p+\mu)(p+\mu+1)}{(n+p-\alpha)[\lambda(n+p-1)+1]}|z|^{n+p} \\
\cdot \sum_{k=n+p}^{\infty} \frac{1}{(k+\mu)(k+\mu+1)} \quad(z \in \mathbb{U}) . \tag{2.12}
\end{gather*}
$$

Finally, in view of the following telescopic sum:

$$
\begin{gather*}
\sum_{k=n+p}^{\infty} \frac{1}{(k+\mu)(k+\mu+1)}=\sum_{k=n+p}^{\infty}\left(\frac{1}{k+\mu}-\frac{1}{k+\mu+1}\right)=\frac{1}{n+p+\mu} \tag{2.13}\\
(\mu \in \mathbb{R} \backslash\{-n-p,-n-p-1,-n-p-2, \ldots\})
\end{gather*}
$$

the first assertion (2.6) of Theorem 1 follows at once from (2.12).
The second assertion (2.7) of Theorem 1 can be proven by similarly applying (2.9), (2.11), and (2.13).

By setting $\lambda=0$ and $\lambda=1$ in Theorem 1 , and using the relationships in (1.8), we arrive at Corollaries 1 and 2, respectively.

Corollary 1. If the functions f and g satisfy the nonhomogeneous Cauchy-Euler differential equation (1.9) with $g \in \mathcal{S}_{n}^{*}(p, \alpha)$, then

$$
\begin{align*}
|z|^{p}-\frac{(p-\alpha)(p+\mu)(p+\mu+1)}{(n+p-\alpha)(n+p+\mu)}|z|^{n+p} \leqq & |f(z)| \\
\leqq & |z|^{p}+\frac{(p-\alpha)(p+\mu)(p+\mu+1)}{(n+p-\alpha)(n+p+\mu)}|z|^{n+p} \tag{2.14}\\
& (z \in \mathbb{U}) .
\end{align*}
$$

Corollary 2. If the functions f and g satisfy the nonhomogeneous Cauchy-Euler differential equation (1.9) with $g \in \mathcal{C}_{n}(p, \alpha)$, then

$$
\begin{align*}
|z|^{p}-\frac{p(p-\alpha)(p+\mu)(p+\mu+1)}{(n+p)(n+p-\alpha)(n+p+\mu)}|z|^{n+p} & \leqq|f(z)| \\
& \leqq|z|^{p}+\frac{p(p-\alpha)(p+\mu)(p+\mu+1)}{(n+p)(n+p-\alpha)(n+p+\mu)}|z|^{n+p} \tag{2.15}\\
& (z \in \mathbb{U}) .
\end{align*}
$$

3. NEIGHBORHOODS FOR THE

CLASSES $\mathcal{T}_{n}(p, \alpha, \lambda)$ AND $\mathcal{K}_{n}(p, \alpha, \lambda, \mu)$

In this section, we determine inclusion relations for the classes $\mathcal{T}_{n}(p, \alpha, \lambda)$ and $\mathcal{K}_{n}(p, \alpha, \lambda, \mu)$ involving the (n, δ)-neighborhoods defined by (1.2) and (1.3).
Theorem 2. If $f \in \mathcal{T}(n, p)$ is in the class $\mathcal{I}_{n}(p, \alpha, \lambda)$, then

$$
\begin{equation*}
\mathcal{T}_{n}(p, \alpha, \lambda) \subset N_{n, \delta}(h ; f) \tag{3.1}
\end{equation*}
$$

where $h(z)$ is given by (1.4) and

$$
\begin{equation*}
\delta:=\frac{(n+p)(p-\alpha)[\lambda(p-1)+1]}{(n+p-\alpha)[\lambda(n+p-1)+1]} . \tag{3.2}
\end{equation*}
$$

Proof. Assertion (3.1) would follow easily from the definition of $N_{n, \delta}(h ; f)$, which is given by (1.3) with $g(z)$ replaced by $f(z)$, and the second assertion (2.4) of Lemma 2.
Theorem 3. If $f \in \mathcal{T}(n, p)$ is in the class $\mathcal{K}_{n}(p, \alpha, \lambda, \mu)$, then

$$
\begin{equation*}
\mathcal{K}_{n}(p, \alpha, \lambda, \mu) \subset N_{n, \delta}(g ; f), \tag{3.3}
\end{equation*}
$$

where $g(z)$ is given by (1.9) and

$$
\begin{equation*}
\delta:=\frac{(n+p)(p-\alpha)[\lambda(p-1)+1][n+(p+\mu)(p+\mu+2)]}{(n+p-\alpha)[\lambda(n+p-1)+1](n+p+\mu)} . \tag{3.4}
\end{equation*}
$$

Proof. Suppose that $f \in \mathcal{K}_{n}(p, \alpha, \lambda, \mu)$. Then, upon substituting from (2.8) into the following coefficient inequality:

$$
\begin{equation*}
\sum_{k=n+p}^{\infty} k\left|b_{k}-a_{k}\right| \leqq \sum_{k=n+p}^{\infty} k b_{k}+\sum_{k=n+p}^{\infty} k a_{k} \quad\left(a_{k} \geqq 0 ; b_{k} \geqq 0\right), \tag{3.5}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\sum_{k=n+p}^{\infty} k\left|b_{k}-a_{k}\right| \leqq \sum_{k=n+p}^{\infty} k b_{k}+\sum_{k=n+p}^{\infty} \frac{(p+\mu)(p+\mu+1)}{(k+\mu)(k+\mu+1)} k b_{k} . \tag{3.6}
\end{equation*}
$$

Next, since $g \in \mathcal{T}_{n}(p, \alpha, \lambda)$, the second assertion (2.4) of Lemma 2 yields

$$
\begin{equation*}
k b_{k} \leqq \frac{(n+p)(p-\alpha)[\lambda(p-1)+1]}{(n+p-\alpha)[\lambda(n+p-1)+1]} \quad(k=n+p, n+p+1, n+p+2, \ldots) . \tag{3.7}
\end{equation*}
$$

Finally, by making use of (2.4) as well as (3.7) on the right-hand side of (3.6), we find that

$$
\begin{equation*}
\sum_{k=n+p}^{\infty} k\left|b_{k}-a_{k}\right| \leqq \frac{(n+p)(p-\alpha)[\lambda(p-1)+1]}{(n+p-\alpha)[\lambda(n+p-1)+1]}\left(1+\sum_{k=n+p}^{\infty} \frac{(p+\mu)(p+\mu+1)}{(k+\mu)(k+\mu+1)}\right) \tag{3.8}
\end{equation*}
$$

which, by virtue of the telescopic sum (2.13), immediately yields

$$
\begin{equation*}
\sum_{k=n+p}^{\infty} k\left|b_{k}-a_{k}\right| \leqq \frac{(n+p)(p-\alpha)[\lambda(p-1)+1]}{(n+p-\alpha)[\lambda(n+p-1)+1]}\left(\frac{n+(p+\mu)(p+\mu+2)}{n+p+\mu}\right)=: \delta . \tag{3.9}
\end{equation*}
$$

Thus, by definition (1.2) with $g(z)$ interchanged by $f(z), f \in N_{n, \delta}(g ; f)$. This evidently completes the proof of Theorem 2.

REFERENCES

1. A.W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc. 8, 598-601, (1957).
2. St. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 81, 521--527, (1981).
3. O. Altintas and S. Owa, Neighborhoods of certain analytic functions with negative coefficients, Internat. J. Math. and Math. Sci. 19, 797-800, (1996).
4. O. Altintas, Ö. Özkan and H.M. Srivastava, Neighborhoods of a class of analytic functions with negative coefficients, Appl. Math. Lett. 13 (3), 63-67, (2000).
5. O. Altintas, H. Irmak and H.M. Srivastava, Fractional calculus and certain starlike functions with negative coefficients, Computers Math. Applic. 30 (2), 9-16, (1995).
6. H. Irmak, S.H. Lee and N.E. Cho, Some multivalently starlike functions with negative coefficients and their subclasses defined by using a differential operator, Kyungpook Math. J. 37, 43-51, (1997).
7. O. Altintaş, On a subclass of certain starlike functions with negative coefficients, Math. Japon. 36, 489-495, (1991).
8. P.L. Duren, Univalent Functions, Springer-Verlag, New York, (1983).
9. H.M. Srivastava and S. Owa, Editors, Current Topics in Analytic Function Theory, World Scientific, Singapore, (1992).

[^0]: The present investigation was supported, in part, by the Natural Sciences and Engineering Research Council of Canada under Grant OGP0007353.

