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The contributions of this paper are twofold. First, a new necessary condi- 
tion is developed for optimal control problems with discontinuities. Second, a 
numerical algorithm employing the second variation is obtained for such 
problems. Some preliminary results were reported in references [I l] 
and [12].*” 

For the purpose of this paper “control problems with discontinuities” 
include those where there are jump discontinuities in the derivative of the 
state variables. Such discontinuities arise in problems with bang-bang 
control. 

If such discontinuities are present, it is desirable to determine whether 
they are optimally located. As shall be shown it is not sufficient to apply 
Pontryagin’s Maximum Principle (Weierstrass’s E condition) and the 
classical corner conditions alone. A further condition on the second variation 
is required. An attempt to derive this condition was made by Reid [I]. 
However, as will be shown later by means of an example, Reid’s result is 
incorrect. In this paper the correct second-order condition is developed. Ry 
including this condition with the other well-known conditions a sufficiency 
proof for a local maximum could be obtained. 

Most of the numerical algorithms for problems with discontinuitics have 
been based upon an extension of the gradient method (see [2]-[4], for exam- 
ple). Some special algorithm’s have been developed for bang-bang control 
problems (e.g., Neustadt [5] and Eaton [6]). A Newton-Raphson algorithm 
based upon Reid’s work was developed by Schmarack [7]. 

* This paper presents the results of one phase of research carried out at the Jet 
Propulsion Laboratory, California Institute of Technology, under contract No. 
NAS 7-100, sponsored by the National Aeronautics and Space Administration. 

** Note added in proof: It has been called to the authors’ attention that similar 
results have been obtained independently by Jacobson [14]. 
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I:or this pnpcr a SW ton-Raphson algorithm n-ill be developed by extend- 
ing the successive su wp method [ 13j. This method u as ohtaincd ly cxpnd- 
ing the dynamic programming equations to second o&r around a nominal 
solution. ‘I’he succ&vc s\\eep algorithm is ccluivalcnt to many of the 
Newton-Raphson tcchniqucs in the literature (e.g., [8] and [9]). ‘I’hc sweep 
method avoids, as do most second variation methods. discontinuities because 
the standard technique of weak variations breaks do\vn in the region con- 
taining the discontinuity. In order to extend Scwton-Raphson methods to 
such problems, the technique of strong variations must be employed. Here- 
tofore, the application of strong variations to Sewton-Raphson methods has 
been restricted to the region of the final time for free terminal time problems 
such as in Ref. [9]. Here the technique of strong variations is used to join 
together the solutions obtained bv weak variations at either side of the 
discontinuity. In the main hod!. of’the paper this is done by expanding the 
dynamic programming equations. In Appendix A an alternate approach 
is given in terms of the classical variational equations. 

The final results consist of jump conditions for the second partials of the 
return function, and, in the case of nonextremal solutions, a jump condition 
for the first partials. In the process, the second derivatives of the performance 
index with respect to the switching time is derived and hence the new necess- 
ary condition is developed. 

THE PROBLEM 

The following optimal control problem shall be considered. Find the 
control function u(t) = (ul(t),..., am(t)) which maximizes the performance of 
some system. The performance of the system is measured by the performance 
index, /, where 

The system dynamics are described by a set of first-order differential equa- 
tions, 

z =f(x, 24, t), (2) 

where x(t) = (xl(t) ,..., am) denotes the state of the system. 
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THE DYNAMIC PROGRAMMIKG SOLUTION 

Standard dynamic programming theory characterizes the solution of this 
problem in terms of the following boundary value problem. 

O=max L+gf+s]; u [ 
V(x, T) = qx, T) 

where V(x(t,), t,) is the optimized value of 1. It will be assumed that V has 
has all of the derivatives required below. At points where the control is 
discontinuous neither k(t) nor the derivatives of V will necessarily be con- 
tinuous. However from physical considerations x(t) must be continuous. 
If t, (z’ = l,...,p) denote the time of discontinuity 

x(2;) = x(q) (4) 

where the, -, and, +, refer to the left- and right-hand sides of the dis- 
continuity. 

Since the integral in (1) is a continuous function oft, , it follows that V(x, to) 
must also be continuous, i.e., 

V(x(t,), t;> = v(x(t:), t:). (5) 

The equations (2)-(5) must be satisfied by the optimal solution. 

PARTIAL DERIVATIVES OF V 

To facilitate the analysis in later sections certain derivatives of V are 
required. The notation will be simplified by considering a single discontinuity 
at time t*. V+(x, t) is used to denote the optimal return function to the right of 
t* as well as its analytic extension obtained by using a continuous control 
law. V+(x, t) satisfies the partial differential equations (3), viz., 

v;+ V,+f++L+=o. (6) 

The partial derivative of this identity with respect to, X, yields 

V& = - V,‘,f + - V,‘f ,; - L: (7) 

and the partial derivative with respect to, t, 

v; = - v;?f+- v,‘f:-Lf. (8) 
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Eliminating F,:t from (8), one obtains 

I,-;* .f T’,,.f -- (r’,‘f;.-L,)f-- --- r-:f; --L;. (9) 

It is the equations (6), (7), and (9) that arc required in the following 
analysis. 

THE FIRST AND SECWI~ \7~~~~~~~~~~ WITH RESPECT TO THE 
SWITCHING TIME 

Suppose that a constant control U- is used to the left of the discontinuity. 
Let l’(r ,, , t, , tl) denote the return function when the initial time and 
state are t, and x0 , and the discontinuity is at t, > t,, . The following relation 
holds, 

L~-(“o, t, , t1) = v (X(Q, t1) -1 @x, u-, t) dt. (10) 

The right-hand side is now expanded about the nominal solution t, = t*, 
x(fl) = x(t*), viz., 

!- L I“(x(t*), t*) -I- (‘L dt -1 (L- $ I’;-) dt -L C’; d,x 
u 

$- 4 [F& dx2+ 21,‘; dx dt -;- (L; + L;f - + V;,) dt’] 

_ - . . . I > (11) 

where dx -7 x(tJ --- x(t*), dt L= t, - t*, and the partials of VL are evaluated 
at s(t*), t*. Now 

dx ==f- jx*,te dt I- 4 (f; $ fif-) Ix*,te dt” + **a . (12) 

Substituting in Eq. (11) for dx gives, 

V- = If+ + (L- + f’: f V,‘f-) dt 

+ g [l’;(f, +f;f-) -j-f-v;xf- + 2I7:,f- + L,-f - 

-+ L, + V:,] dt2 + ..a . (13) 

Now substituting Eq. (6), (7), and (9) into (13) one obtains 

t* jJ’- = p-+ + 
s 

L- dt --I Pdt + 4 ti dt2 + e.0 , 
*0 
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where 

J7 =L- -LL’ + V,‘(f- -f’) (15) 

and 

P = (f- -f’)‘V,‘,(f- -f’) - (V,“f: + L;) (f- -f’) 

+ (C(f, 4:) f-G - G:)f- 

+ V$(f, -f:) + L; -LT. (16) 

If u- is not a constant, but V;f; + L; = 0, the above results are also valid. 

NECESSARY CONDITIOK FOR A MAXIMUM 

For V to be a maximum with respect to t* 

V=O at t = t”. (17) 

This condition implies the continuity of the Hamiltonian. Secondly v must 
be nonpositive i.e., 

P g 0. (18) 

The second condition, Eq. (18) is believed to be a new necessary condition 
for a maximum. 

JUMP CONDITIONS FOR THE PARTIAL DERIVATIVES V, , V,, 

Spatial variations will now be considered in order to relate I’: and VT, 
VLz and I’;. . In Eq. (14) let t, approach t* so that it may be written 

V-(x(t”), t*) = V+(x(t*), t*) + v dt + & r dt2 + -*- . (19) 

Expanding the right-hand side of (19) about xopt(tq) one obtains, to second 
order, 

v-(x(t*), t*) = v+(x,,t(t*), t*) + V,+& f- vat + &v,+, 6x 

+ vz 6x dt + -& v dt” -I- 0-e) 
where 

(20) 

c = cu- -f’) + CK --Jo) + L, - L,+ 

Choosing dt to maximize this expression gives 

dt = - i+‘( 3 + Vz 6x). 

(21) 

(22) 
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Replacing dt in I+. (20) by (22) leads to 

, .- q . [- ‘- _-- pal,‘- I -8 
[I;; - ppI’1 (jx .! &j (g[ 1 ‘Cr 

Hence because of the continuity of T;, Eq. (5), 

1’; :: V’ __ rpl& 3: 
and 

v;; =: y+ zz - pF’pz. 

lJ-J-‘P,] 6s. 

(23) 

(24) 

(25) 

Equation (24) determines the discontinuity in V, , which can be seen to be 
zero for an optimum as v - 0. There will, however, generally be a dis- 
continuity in FrJX at the switching time. Equations (22), (24), and (25) are 
required to extend the sweep method to include discontinuities. 

A MODIFICATION 

It is relevant to derive one further relation. Suppose the above linearization 
\\as made about some suboptimal trajectory, then it is possible that Eq. (22) 
wouId be invalid (such is the case when P > 0). In these circumstances a 
more suitable choice (gradient) of dt would be 

dt = EV, (26) 

where the parameter E is chosen to ensure the validity of the expansions. The 
jump discontinuities become 

v,- = v; - , v,-, = Vf zz - (27) 

AN EXAMPLE 

Next an example is given to demonstrate several points. The first point is 
that the above formulas for P and vZ are correct. This is done by checking 
the formula with an independent calculation. The second point is that Reid’s 
condition is incorrect. This is done by finding an example that satisfies all the 
classical conditions for optimality, including Reid’s condition, but not the 
new condition, and demonstrating that it is not a locally optimal solution. 

Consider the system 

9, = x2 + u Xl(O) = x10 

f,=---u x,(O) = X80 (28) 
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and the maximization of J where 

J = + x1( T)2 + + x2( T)2, (29) 

and where the control, u, is bounded i.e., 

1241 <I. 

The Hamiltonian, H, is given by 

H = (A, - h) u + hx, , (30) 

which is a maximum when 

24 = sgn(h, - A,) 

where the adjoint variables AI and A, are given by 

Mt) = x,(T) 

h,(t) = x,(T) - x,(T) (t - T). (31) 

Since the switching function is linear in t, it is clear that no more than a 
single switch may exist on an optimal solution. 

Because of the simplicity of the equations it is possible to express the 
terminal state in terms of the initial state and the single switching time, t*, 

x,(T) = Xl0 + x,OT + (T - 2t*) + t*2 - ( 
T--t* 2 2 ) 

x2(T) = x2” - (T - 2t*) 

(u+ has been taken as + 1). 
Hence the expression for (29) becomes 

(32) 

/=[+I xl0 + x,OT + (T - 2t*) + t*2 _ ( 
T ;2t* )“I” 

+ + {xz” - (T - 2t*)}2] . (33) 

The derivative of J with respect to t* is given by 

Jt* = - 2 /xIo(l - T) + xzo(- 1 + T - T2) + 2T - y + 7 

+ t*[x,O + x,OT - 4 + 5T2 - 3 T2] 

- 3(1 - T) t*2 - t*3 . 
I (34) 
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The second derivative of J with respect to t* is then 

Jt*t* = v = - 2(x,u + x,OT - 4 + 511’ - j T” --- 6(1 - T) t* - 3t*‘} 

(35) 

and Jt+ is 

JttzO= ---2(1 -- T+t *, _- 1 + I’.- II’” -b t*T). (36) 

However in the following analysis Jtiz(t*J is required (as opposed to Jtlzo). 
But 

J t*2(1’) = CJt*xm ’ 

where 

c= [:, -- :*I. 

Hence 

J te,..t)* = - 2[1 - T + t *, - 1 + T - t* - (T - t*)2] = vs. (37) 

The equations (35) and (37) will now be used to verify the formulas for v 
and rz (Eqs. (16) and (21)). 

The Ricatti variable P = T/z, is given by 

p=-cp-ppaf 
8X ax with P(T) = [i y] , 

and where 

Hence 

af 0 i -= 
[ I ax 00' 

p(t) = r; - t 
T-t 
1 + (T - t)’ 1 

also 

and 

f--f-+=2 -: [ 1 

Ii; - H; = 0, H:-HH;=O. 
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Hence 

=-2[1--++ *, - 1 + T - t* - (T - t*)‘], 

which agrees with (37). Similarly 

J7 = (f- -f+)‘p+(f- -f”) - f&‘(f- -f+) 

= 4[- 13 + 11 ‘T _ 5* ;r;; _ t*)e] [y ;] [ 

- 2[T - 1 - t”, 1 - T + t* + (T - t*)z] [I ;] . 

And 

P zz - 2[x,o -k x,OT - 4 + 5T - 5/2T” - 6(1 - T) t* - 3t*2], (38) 

which again checks. 
Now consider the particular case when x1(T) = 1, x2(T) = 0, and 

T = 2. Proceeding via Pontryagin’s principle the control, u, is chosen such 
that 

74 = w-@, - &J, 

i.e., u+ = + 1. 
A switch occurs when p1 = p, , i.e., when t = t*. In this case t* = 1 and 

Xl 0, x20 = 0. This trajectory completely satisfies Pontryagin’s principle 
and the Hamiltonian and the costate variables are continuous. Furthermore 
Reid’s condition 

ni-A- - *-A+ > 0 

gives 

[x: + u+, - u’l _ ‘: [ 1 - [X2 + u , - u-1 _; > a [ I 
and as U+ = + 1, u- = - 1 the equation becomes 

[+ 1 + 1, - 1 - I] [- ;] = + 2. 

Hence *+A- - &-A+ = 2 and Reid’s condition is satisfied. 
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Now evaluating the second dcrivati\;c of J (Eq. (38) WC have 

i,‘= - 2[- 4 -( 10 - 10 j- (j - 31 := + 2, 

which is posit&, indicating that the solution is nol a maximum. This result 
may be confirmed 1)) evaluation of the return function (33). 

For the nominal, t*, / is given by 

/ = $ [- (2 - 2t*) - t”* + (2 - 2t*)“]’ -:- 4 [2 -- 2t*y, 

substituting t * = 1 gives J = 0.5. 
Now considering a small perturbation in t*, At = J, .05 gives 

J = 4 [I .I - ($)” + .oo511 + ; [.l]” 

= -4 .9975 * [ 1 .9975 + 3 [.I]2 
= 0.502603125, 

i.e., J(t* f At) > J(t*), and clearly there is not a maximum. Hence the new 
necessary condition is shown to be valid while Reid’s condition is in error. 

A NUMERICAL EXAMPLE 

The design of a minimum fuel attitude control system for the rigid body 
in orbit is an ideal problem with which to illustrate the application of the 
second variations approach. The system equations are nonlinear and control 
is known to be of the bang-bang type. For analytic solutions of greatly 
simplified versions of this problem see Athans and Falb [lo], who include an 
extensive list of references. But, in general, a numerical technique must be 
used to solve the usual two-point boundary value problem. This problem 
has been approached by Flugge-Lotz [4] using a gradient technique. Con- 
sequently it will be possible to compare these results with the second varia- 
tions results. 

The system equations together with the detailed expressions required for 
the iterative procedure are given in Appendix B and only the results will be 
presented here. It must be remarked, however, that the choice of the priming 
trajectory is important. The initial trajectories used by Fliigge-Lotz (4) were 
found to be unsuitable, in fact, even the optimized trajectories presented 
there were unsuitable. A more profitable approach, in this case, was to 
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select one switching time in each control variable, the initial polarities being 
determined by the initial angular velocities. These switches were then opti- 
mized and extra switches were added as indicated by the Gtching function. 
Only then was rapid convergence obtained. 

The optimized trajectories are shown in Fig. I compared with the 
trajectories obtained by Fhiggc-Lotz. The minimum fuel was .13 as comapred 
to .16. The convergence is shown in ‘I’ablc I, Although tile state trajectories 
in Fig. 1 differ only slightly, the control is significantly different. 

DASH = STEEPEST DESCENT 
SOLID = SECOND VARIATION 

X, 
DEG,S 

x2 o 
DEG/SEC 

60.a 

FIG. 1. Comparison of response curves. 
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DASH =STEEPEST DESCENT 
SOLID = SECOND VARIATION 

2 

x”’ 

I 100 
T T 

-5 
I00 

T T 

0 x 
3 

FIG. lb. Comparison of response curves. 

The control obtained using the second variation method satisfied all of 
the conditions for a minimum including the new necessary condition and 
hence is at least locally optimal. 
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TABLE 1 

CONVERGENCE OF THE SECOND VARIATIONS METHOD 

Switching Times 
Iteration 

SO. cost f1 t3 t3 t4 ts t3 
__.__--..------ 

Prime .4101 3.500 4.000 5.000 57.500 58.000 59.000 
1 .2726 3.535" 4.035" 4.912" 57.625" 58.ooo" 59.127 
2 .2047 3.564" 4.073" 4.927 57.750 58.010 59.255 
3 .I612 3.606" 4.146" 4.962 57.618 58.009 59.382 
4 .I399 3.672" 4.145 5.011 57.562 58.003 59.446 
5 .1318 3.738 4.127 5.038 57.524 58.018 59.384 
6 .I303 3.780 4.116 5.055 57.499 58.028 59.344 
7 .I303 3.780 4.117 5.055 57.499 58.029 59.344 

--._ ----. 
Final Values of ii 

1.635 1.254 1.376 .854 .8.54 .849 

a Gradient Steps. dt = cv. 

APPENDIX A 

Derivation via Hamiltonian Theory 

In this appendix the jump conditions for the second derivatives of the 
return function will be derived by classical variational theory. 

The system equations are assumed to be given by 

f =f(x, t). (A-1) 

The explicit appearance of u will be ignored. The counterpart of the first 
derivative of the return with respect to X, usually denoted by /\, is referred 
to in the variational theory as the adjoint vector and is defined by the dif- 
ferential equation 

ii = - Hz=, (A-2) 
where 

H=hTf +L (A-3) 

is the standard variational Hamiltonian. 
At discontinuities it is necessary that h and H be continuous, 

x- = A+ (A-4) 
and 

H- = H+. (A-5) 
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‘L’he second derivative of the return, nhich is denoted by P, satisfied the 
standard matrix liicatti differential equation. The relation 

&i(t) -c P(t) h(t) (A-6) 

holds. 
Now as before, let t” denote a time at which a discontinuity in 2 occurs. 

To obtain the jump condition for P, the technique of strong variations must 
be applied. If on a neighboring path the time of the discontinuity in ff is 
changed to t* + dt, then 

x(t* + dt) - x(t*) = 6x- +f-(x(t*), t*) dt. (A-7) 

This relationship, together with the definition of Sx-, is pictured in Fig. 
(A-l). Also one obtains 

x(t* -1 dt) - x(t*) = 6x+ +f’(x(t*), t*) dt. 64-8) 

X 

NEIGHBORING 

TRAJECTORY 

DISPLACEMENT 
IN TIME dt 

FIG. A.1. Neighboring extremals near a discontinuity. 

Thus substracting (A-7) from (A-8) 

Sx- +f-dt =8x+ +f+dt. (A-9) 

A similar strong perturbation may be employed on Eq. (A-4) to give 

&I- - H;dt = Sh+ - H,idt. (A.lO) 
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Similarily a strong variation of Eq. (A-5) yields 

f - 6X- + H,-Sh- + H,-dt =f+SX++ H,+Sx+T H,+dt. (A.ll) 

Now since P is integrated backwards the relation 

a+ = P-1 6x+ (A-12) 

may be obtained. Employing it in Eq. (A-10) yields 

Sh- = P+ 6x+ - (Hz’ - H;) dt (A.13) 

and in (A-l 1) gives 

f - Sh- + H,-Sx- = (f +P+ + H,+) Sx+ + (II: - H;) dt. (A.14) 

Now Sh- may be eliminated from Eq. (A-14) by using (A-13), 

H,-Sx-=((f+-f-)P+$-H,+)Sx++(H,+-HH,-)f-+(H:--H;)dt. 

(A.15) 

Now Eq. (A-9) will be used to eliminate 6x+ giving 

where 

0 = I$ Sx- + ti dt, (A-16) 

Ti, = P+(f- -f+) + H;- H,’ 

and 

(A.17) 

+H;--H,+, (A.18) 

cf., Eqs. (21) and (16). 
Solving for dt gives, cf. Eq. (22), 

dt = - t;“‘r;; 6x. (A-19) 

And finally if dt is eliminated from Eq. (A-13) the jump condition for P 
results, viz., 

P-=P+- vzv-vz. (A-20) 

4’=‘9/23/3- 8 
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Minimum Fuel Cmtrol of o R(yid l3od~ in Orbit 

The purpose of this control system will be to correct for gross errors 
in orientation and angular wlocitics. Hence, a penalty function approach is 
used to ensure that the final state is within an acceptable region. 

The equations describing the motion of a rigid hod!- are well kno\j,n and to 
facilitate a comparison with [4] the four paramctcr system was used to dcscribc 
position. The system constants (moments of inertia) arc also taken from 
Ref. [4]. 

The system equations are: 

*l = ul - K,x,x, 

k, = u2 - Kvx1x3 

k3 = u2 - Kzx1x2 

k4 = 4 (XIX, - x2x2 + X3X5) 

xg = Q cw6 + %X7 - x2x4) 

2, = + (- x1x5 + .$x4 + x,x,) 

x7 = - if; (XIX4 + x&i + x&l), 

(B.1) 

where the states x1 , xa , and xa are angular velocities and x4 , X~ , X~ , and x7 
are parameters describing position. The parameters K, , K, , K, are -- .35125, 
.86058, and - .73000, respectively. For this example the initial state is taken 
to be 

1 
x1 = x2 czz x2 L - 

57.3 
radsisec 

x4 = .4 

x5 =x6 =0.8 

x, = 1.6. 

The desired final state, xi , is the origin, i.e, 

03.2) 

x, = 0 i = 1, 2,..., 6 

x7 = 2. (R-3) 

The control is constrained so that ] u( 1 < .412/57.3 rads/sec2. The perform- 
ance index is 

u1 1 + 1 u2 1 + / u2 1 dt + (x(60) - xf)‘A(x(60) - x,), (R.4) 
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where the weighting matrix, A, is chosen such that 

I,2 
<< 10-Z (B.5) 

for the optimized trajectory. Here suitable values were Aii = 2.5 x 57.32, 
i = 1, 2, 3 and A,, = 5, i = 4, 5, 6, 7, and A,j = 0, if j. 

The Riccati equation, in reverse time, is 

P = BTP + PB + H,,; P(T) = 2A, P-6) 

where 

r 0 - K& - K,x, 0 0 0 0. 
- Kg3 0 K,x, 0 0 0 0 - 
- Kax2 K,x, 0 0 0 0 0 - 

B = 1 0.59 - 0.5x, 0.5x, 0 0.5x3 -0.5x, 0.5x1 
0.5X6 0.5x, -0.5x, - 0.5x3 0 0.53 0.5x, 

-0.5x, 0.5x, 0.5x, 0.5x, -0.5x, 0 0.5x3 
- 0.5x4 0.5x, -0.5x, -0.5x, -0.5x, -0.5x, 0 - . 

r0 - X,K, h2K, 0.54 0.54, 0.54 0.5h, - - - 
0 - VG 0.54 - 0.5h, - 0.54 0.5x, 

0 - 0.5h, 0.5x, - 0.54 0.5x, 
f&s = I 0 0 0 0 1 , 

Symmetric 0 0 0 
0 0 

0 

and where the equation for A = V, is 

AC-p-h 

A(T) = 2/1(x(60) - x,). 

In this problem Hz = Hi and hence rz becomes 

VET = Af =P, 

P-7) 

where 

Af = 1~; - 4, u; - ui, u; - uj+, o, o, o, 01~. 

3 is given by 

where 
ii= AfTPAf - HzAf, 

Hz = BTh. 

P-8) 

P-9) 
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‘l’he equations (24) and (23, which arc used to update the value of P: 
and Pm- anil A antI A at cdl switclling tirnc, complctc the relations needed 
for the iterative proccdurc. 

‘I’his proccdurc ma!- now 1~ summarized as follows: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

Choose a suitable priming trajectory. 

lntegrate Ilqs. (B-l) fOr\Vard and store .v‘. 

Integrate Eqs. (U-6) and (B-7) 111 rcvcrsc time as far as the first switch. 

Compute and store SW, i’, and i;: Compute ,\ and P-. 

Continue the integration to the next switch. 

Repeat steps 4 and 5 until the initial time. 

Integrate the state equations for\\-ard to the first switch. Compute 
4t (r-) 1 (I’ 6s -1 I”) and form t,,, -- told ;-‘ dt. (1l.B. at 
the first siritch Sx : 0 always) 

Continue the integration storing the state X. 

Compute the performance index. 

Repeat steps 3-9 until no further improvement is made. 

Cheek that the switching function is satisfied. 

Here 
24, = - sgn(h,) for ‘A, / > 1 i- 1,2,3 

u, -0 for h,; i.l. 

It should be noted that in general several gradient steps would have to be 
taken before the full Newton-Raphson step could be used. In these cases, 
in step (7), 4t would be chosen as 

4t = - EV 

and appropriate equations should be used to form h- and P-, viz., Eq. (27). 
As has been mentioned the choice of priming trajectory is fairly important. 

Clearly any number of priming trajectories might be suitable. One techni- 
que, suggested by Fltigge-Lotz [4], was to start with a series of narrow pulses. 
This was found to he impracticable when using the second variations scheme 
as the system quickly converged on incorrect extrema. In this regard it is 
interesting to compare the control histories obtained by the two methods 
Fig. 1. The authors’ method of choosing one switching time and then increas- 
ing the number of switches was found to be more promising. 

A fixed integration step length of 0.5 set was used with a Runge-Kutta 
integration scheme. The switching time was chosen within the limits of single 
precision arithmetic although double precision was used in the integration 
scheme. One iteration (forward or backward integration) took about 23 set 
on the IBlLl 7090 Computer. 
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