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Abstract: Stability properties of numerical methods for delay differential equations are considered. Some suitable definitions for the 
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1. Introduction 

Consider a delay differential equation (DDE) of the type 

u'(t)  =f(t, u(t), u(t  - d ( t ,  u ( t ) ) ) ) ,  to :r, 

u ( t )  = g ( t ) ,  min(t*,  to) ~< t ~< t o , (1.1) 

where t* = min t - d ( t ) ,  t ~ [t 0, T], g ( t )  is the initial function and d( t ,  u ( t ) )  >~ 0 is the delay term. 
The stability of numerical methods for DDEs has previously been considered by Brayton and 

Willoughby [7], Cryer [8] and Widerholt [9,10]. In this paper  we first discuss the asymptotic properties of 
the solution of linear DDEs, then consider suitable definitions for the stability of the numerical methods 
and finally some Runge-Kut t a  methods satisfying these properties are tested on some numerical example. 

Consider a system of linear DDEs of the form 

u ' ( t ) = A u ( t ) + B u ( t - d ) ,  t>~t o, 

u ( t ) = g ( t ) ,  - d  <~ t <~ t o , (1.2) 

where d >/0 is the delay, A and B are constant n x n real matrices, u is an n-dimensional vector and g ( t )  a 

continuous function. 
One of the fundamental methods for finding the solution of (1.2) is to build up the solution as a sum of 

simple exponential terms. Assuming the solution of the form u ( t ) =  ce st, where s is constant and c an 
n-dimensional constant vector, then this solution will be a solution of (1.2) if and only if the number s is a 
zero of the transcendental function 

H (  s ) = de t ( I s  - A - B e - a s ) .  (1.3) 

H ( s )  = 0 is called the characteristic equation of (1.2) and s r a characteristic root if it is a zero of this 
equation. These results have been summarized by a theorem given in [6] which states that there are in 
general infinitely many characteristic roots of (1.3) and therefore, infinitely many exponential solutions of 
(1.2). To have a good idea of the location of zeros of H ( s ) ,  we discuss first the distribution of the zeros of 
the characteristic equation of a single linear D D E  of the form 

u ' ( t ) = a u ( t ) + b u ( t - d ) ,  t>~t o, 

u ( t ) = g ( t ) ,  - d<~  t <~ O. (1.4) 
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The characterist ic equat ion has the fo rm 

h ( s ) = s - a - b e - d ~ = O ,  

which can be writ ten 

h ( s )  = s { 1  + , ( s ) }  - b e  - ' a =  0, 

where c(s)  + 0 as Isl --+ oc. It  is reasonable  to suppose the zeros of  h ( s )  and the zeros of  

f l ( s ) = s - b e  ' a = 0  

are close together  for s r large and that  the zeros of (1.7) satisfy 

IseSal=lbl, b = 0 

o r  

(1.5) 

(1.6) 

(1.7) 

(1.8) 

1 1 
R e ( s )  + ~  lnls I = ~  lnlbl. (1.9) 

Hence  zeros of h ( s )  lie asymptot ica l ly  along the curve defined in (1.9). It  is shown in [6] that  the roots s r of 
(1.5) are infinite, complex  conjugate  and that  all lie in the left half  p lane Re( s )  < c, for some constant  c. 
This  last p roper ty  is a characterist ic of  D D E s  with cons tant  delay. 

Before we consider the concept  of  stability, we give some definitions. 

Definition 1.1. The  D D E  (1.2) is called stable if for any sufficiently small initial funct ion the solution u ( t )  
approaches  zero as t approaches  infinity, that  is, for a small constant  8 > 0 ,  l i m , ~ [ l u ( t ) l l = 0 ,  for 

Ilu(t)ll < & - d ~ <  t ~< t 0. 

This type of stabili ty is common ly  referred to as asympto t ic  stability. To  find condi t ions for D D E  (1.2) 
to be stable, we have the following result. 

Theo rem 1.1. A necessary and sufficient condition for all continuous solutions of  (1.2) to approach zero as 
t -+ oo is that all the characteristic roots have negative real parts. 

So the best  model  for s tudying stability is D D E  (1.4) if a and b, in general, are complex numbers .  
We now give results which impose  condit ions on a and b in (1.5) for the roots of  h ( s ) =  0 to have 

negat ive real parts.  

Case 1. a and b are real. This case is discussed by Bellman and Cook  [6] and their result is: 

Theorem 1.2. All  roots o f  equation (1.5) have negative real parts if and only if 
(i) a < 1, 

(ii) a < - b < l / 0  2 + a 2 ,  
where 0 is the root o f  O = a t an (0d )  such that 0 < Od < ~r, i f  a = 0 we take 0 = ½"~/d. 

Case 2. a = 0, and b complex.  This case has been considered by Barwell [4] and his result is: 

Theorem 1.3. Let  b = re io, then a sufficient condition that all the roots of  (1.5) have negative real parts & 
(i) Re(b)  < 0 (½-~ < q~ < 3~), 

(ii) 0 < rd < min(-~,~ - q), ff - ½"~). 

Case 3. a and b are complex.  This is also considered by  Barwell [4] and his result is: 

Theorem 1.4. A sufficient condition that all the roots of  (1.5) have negative real parts is 

R e ( a )  < - Ib l .  
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2. Definitions and comparison of different approaches 

Assume that a numerical  method is applied to the D D E  (1.1) with a fixed stepsize h, then the global 
error is defined by 

e ~ = y ( t , , ) - u ( t ~ ) ,  (2.1) 

where t ,  = t o + nh, y ( t )  is the numerical solution and u( t )  the exact solution at t. 
In a stability analysis of  a numerical method one is concerned not  with the source of  the error but only 

with the behaviour of  the global error as t,  --* ~ after some error has been introduced. Since the behaviour 
of  the global error (2.1) depends on the behaviour of  the solution of  the D D E  (1.1), we adopt  the model 
D D E  (1.4) as 

u ' ( t ) = a u ( t ) + b u ( t - 1 ) ,  t>~t o, 

u ( t ) = g ( t ) ,  - l  <~t<.t o , (2.2) 

where a, b, in general, are complex and g( t )  is a cont inuous function. 
Since the definition of  absolute stability is only concerned with the case where the solution u( t )  satisfies 

u ( t ) ~ O  a s t ~ o o ,  (2.3) 

we need to know the asymptot ic  stability properties of  the solution (2.2) which have been discussed in an 
earlier section with some conditions imposed on a and b so that the solution satisfies (2.3). 

For  a numerical  method for solving (2.2) we expect the global error e, ~ 0 as n ~ ~ if the solution 
satisfies (2.3), which leads us to adopt  the following definition. 

Definition 2.1. A numerical  method applied to D D E  (2.2) is said to be absolutely stable for the stepsize h, if 
for any problem whose solution satisfies (2.3), the numerical solution at step h satisfies y(t , )--- ,  0 as 
tn ---~ oo. 

If  the absolute stability of a method is independent  of  h, then we get the following definition similar to 
the A-stabili ty definition of  ordinary differential equation (ODE). 

Definition 2.2. A numerical  method is said to be DA-stable if for any solution of (2.2) which satisfies (2.3), 
the numerical solution y ( t , ) ~  0 as t,  ---, ~ ,  for any h > 0. 

The definition of  DA-stabi l i ty  depends on knowing the necessary and sufficient condit ions on a and b 
such that the solution satisfies (2.3). By assuming mh = 1, m ~ I ÷ (set of  positive integers), Cryer [8] 
considers a definition of  DA-stabil i ty for linear multistep methods using D D E  (2.2) with a = 0 and b real. 
Later, Barwell [5] generalizes Cryer 's  definition by considering the D D E  (2.2) with a = 0 and b complex. 
His definition is adopted  here for one-step methods. 

Definition 2.3. Let b = re i't' and a = 0 in (2.2). A numerical method is said to be Q-stable if under  the 
condit ions provided in Theorem 1.3, the numerical solution y( tn)  ---> 0 as t ~ ~ for all h satisfying mh = 1, 
m ~ I  +. 

Barwell [5], after getting a sufficient condit ion on a and b, as in (2.2), such that u ( t ) ~  0 as t ~ ~ ,  
considers the following definition. 

Definition 2.4. A numerical method,  applied to (2,2) is said to be P-stable if under  the condit ion 
Re(a )  < - Ib l ,  the numerical s o l u t i o n y ( t , )  ~ 0 as t, ~ ~ for all h satisfying mh = 1, m ~ I +. 

It is clear f rom Definitions 2.3 and 2.4 that if the method is P-stable then it is A-stable, but  if it is 
Q-stable then it is not  necessarily A-stable. 

For  a definition of  an absolute stability region, we introduce the following. 
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Definition 2.5. For the stepsize h: 
(1) If a and b are real in (2.2), the region RP(a,  b) in the a, b plane is called the P-stability region if for 

any a, b E RP(a,  b) the numerical solution of (2.2) satisfies y ( t , )  ~ 0 as t, ---, o0. 
(2) If a = 0 and b is complex in (2.2), the region RQ(b)  in the b-plane is called the Q-stability region if 

for any b ~ RQ(b)  the numerical solution y(t~) ~ 0 as t, ~ oo. 

3. Stability properties of some numerical methods 

We now consider the stability properties of the methods given in [2,3] Assume that for each method, the 
numerical solution of (2.2) is calculated up to point t n with a fixed stepsize h such that 

t n = t o + n h  and m h = l ,  m ~ I  +. (3.1) 

Since the purpose of introducing P-stability and Q-stability, in Definitions 2.3 and 2.4, is to find 
methods which can be used in practice with no restriction on stepsize because of stability, and since 
h = 1 / m ,  m increases as h decreases. Hence, the important case is to show that the method is Q-stable or 
P-stable for small values of m. For each of the following methods for solving DDE (also given in [1]), we 
give the results for m = 1, 2, 3, 4. Let z ( s )  be the approximation of the delay term at s. 

3.1. Kut ta-Merson method for solving D D E  

To advance the numerical solution of the D D E  (2.2) to the point tn+ 1, the Kut t a -Merson  method of [2] 
yields intermediate values Yl, Y2, Y3, Y4 and Ys, thus we have 

Y(  tn+l) =Ys = (1 + ha + ½h2a 2 + ~h3a 3 + 1 h 4 a 4  + ~ h S a S )  y (  t , )  

+ ~hb(1 + ha + ¼h2a 2 + ~h3a 3 + l h n a 4 ) Z ( t n  - 1) (3.2) 

+ ½h3ba2(1 + ~ h a ) z ( t ,  + ~h - 1) + ~hb(1 + ½ha)z ( t ,  + ½ h -  1 )  

+ l h b z ( t ,  + h - 1). 

Using condition (3.1), and assuming that the values of the solution and its derivative are stored at earlier 
mesh points, then using Hermite interpolation for evaluating the delay term, we get 

Z ( t n + ½ h - 1 ) = z ( t n _ m +  lab) 

= (~7 + ~ 7 h a ) y ( t n - , , ) +  (~7 - 2 h a ) y ( t n - m + l )  

+ 2~hby(t,_2m ) - 2~hby(t~_2m+l ), (3.3) 

z ( t , + ½ h - 1 ) = z ( t ~ _ m + ½ h )  

=(½ + ~ h a ) y ( t , - m ) + ( ½ - ~ h a ) y ( t , - m + l ) +  ~ h b y ( t ~ - 2 , , ) -  18hby(t,, 2.,+1)" 

(3.4) 
On replacing values of the function z in (3.2), we get a difference equation whose solutions tend to zero as 
n ~ ~ ,  provided that all the roots of the following characteristic equation are in the unit circle: 

~2,,+ 1 _ (1 + ha + ½h2a 2 + ~h3a 3 + l h4a4 + l-~hSaS)~ 2m 

-- l h b ( 1  + ~ha - ~h2a 2 - 6~h3a 3 - -  3~z4haa4) ~ 'n+l (3.5) 

-½hb(1 +~ha 19 2_2 + 3~h u q- ~48h3a 3 + 6-~sh4a4)~ " 

+ ~h2b2(1  + ½ha + ~h2a 2 + l h 3 a 3 ) ~ -  ~2hZa2(1 + lha  + ~h2a 2 + 2~h3a 3) = 0. 

When a and b are real we give in Fig. 1, the P-stability region for m = 1, 2, 3, 4 and compare it with the 
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Fig. 1. P-stability regions of the Kutta-Merson method for 
solving DDE, with the stability region of the DDE (2.2), a and 
b real. 

Re(a) 

Fig. 2. Q-stability regions of the Kutta-Merson method for 
solving DDE with the stability region of the DDE (2.2), a = 0 
and b complex. 

stabili ty region of the D D E  (2.2) in the (a ,  b)  plane. All the P-stabili ty regions are closed regions, they 
intersect the a-axis at the point  a = 3.54m. The  interval on the a-axis gives the absolute  stabili ty interval for 
O D E  according to Defini t ion 2.1. 

If  a = 0 and b is complex,  we give in Fig. 2 the Q-stabil i ty region for m = 1, 2, 3, 4 and compare  it with 
the stabili ty region of the D D E  (2.2) in the b-plane. 

3.2. The trapezium method for solving DDE 

To advance  the solution f rom the point  t .  to the point  t .  + 1, the t rapezium method  of [3] yields 

y ( t . + a )  = y ( t . )  + l h a ( y ( t . )  + y ( t .+ l )  ) + ½ h b ( z ( t . -  1) + z ( t .  + h - 1)). (3.6) 

Using condi t ion (3.1), it is clear that  we get the same solution at t.+~ in (3.6) whether  we use linear or 
Hermi te  in terpolat ion for approx imat ing  the delay term, therefore, 

y(  t.+ l) = y ( t . )  + ½ha( y(  t . )  + y(  t .+l) ) + ½hb( y(  t ._m) + y(  t._,~+ ~) ). (3.7) 

The  characterist ic po lynomia l  is 

__b m b 
( l _ - - q - a  ] ~ - , + 1 _ ( 1 +  _ _ _ _  2m } 2m ] 2m 2m = 0. (3.8) 

For  a and b real, we give in Fig. 3 the P-stabil i ty region for m = 1, 2, 3, 4 and compare  it with the stability 
region of D D E  (2.2) in the (a ,  b)-plane.  When  a = 0 and b is complex,  we give in Fig. 4 the Q-stabi l i ty 
region for m = 1, 2, 3, 4 and compare  it with the stabili ty region of the D D E  (2.2) in the b-plane. We 
ment ion  here that  Cryer  [8] proved  that  the method is Q-stable  for b real. 

3.3. The implicit Runge-Kutta method for solving DDE 

By applying the four th  order  implicit  R u n g e - K u t t a  method  of [3] to advance  the solution of the linear 
D D E  (2.2) f rom the point  t .  to t .+  1, we get 

1 - - 2  2 ~hb(1 + ½ha) 
y ( t . + l )  = l + ½ h a + ~ n a _  " " +  - - - -  - - _  - 1 )  

1 ½ha + #2h2a - - - - - -Ty( t")  1 - ½ha + #2h2a 2z( t"  
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Fig. 3. P-stability regions of the trapezium method, with the 
stability region of the DDE (2.2), a and b real. 
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Fig. 4. Q-stability region of the trapezium method, with the 
stability region of the DDE (2.2), a = 0 and b complex. 

]hb ~hb(1 - ½ha) 
+ z ( t  n + l h -  1) + z ( t ,  + h -  1). (3.9) 

1 - ½ha + l~hZa 2 1 - 1ha + ~h2a 2 

Using (3.1) and Hermite interpolation of the third degree for approximating the delay term, z ( t ,  + ½h - 1) 
has the same form as in (3.4), then (3.9) becomes 

__ I h2a 2 ~hb l + ½ h a + ~ , , .  . . +  
Y(t"+l) = 1 ½ha + ~hZa 2y ( t " )  1 - ½ha + ~hZa z 

× [ ( 3 + h a ) y ( t  n m) + ( 3 - h a ) y ( t n  re+l) +½hby( tn-z , - ) -½hby( t . -2m+l) ]"  (3.10) 

Then the characteristic polynomial is 

( a a 2 ) ( a a 2 ] , 2 m  b (1 _ __a__a ],~.,+ l 
l_~._mq_ 1_ .~  2 ~2m+1_ lq._~...~ q_ 1_~21 2rn 3m] 

b (1 ÷ a ) b 2 b 2 
- - -  = 0 .  ( 3 . 1 1 )  

2m ~ m  ~'~ + 12m 2 ~ 12m 2 

For a and b real, we give in Fig. 5 the P-stability regions for m = 1, 2, 3, 4 and the stability region of the 
DDE (2.2). 

For a = 0 and b complex, the Q-stability characteristic polynomial of this method is the same as that of 
Kutta-Merson method namely, equation (3.5), hence the Q-stability region is the same as for the 
Kutta-Merson method for solving DDE (2.2) for m = 1, 2, 3, 4. 

Remark 3.1. It is clear from Figs. 2 and 4 that the regions of Q-stability for m = 1, 2, 3, 4 are all greater 
than or equal to the stability region of the DDE (2.2) in the b-plane for all the methods considered. Also in 
Figs. 3 and 5 the P-stability regions for the trapezium method and the implicit Runge-Kutta  method are 
greater than the stability region of the DDE (2.2) in the a, b-plane, and so the stepsize is not restricted by 
the stability properties of the method. For the Kutta-Merson method, Fig. 1 shows the effect of choosing a 
certain stepsize on the P-stability region. We will give numerical results in the next section to show the 
effect of the stability properties of the method on the choice of the stepsize. 
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Fig. 5. P-stability regions of the implicit Runge-Kutta method, with the stability region of the DDE (2.2), a and b real. 

Remark  3.2. To calculate the stability region, for example Fig. 1, we take different values of  (a, b) along 
the co-ordinate axes, and find the roots of  the  stability polynomial  using the N A G  library routine 
C O 2 A D A .  If all the roots have magni tude less than one then we accept the value of  (a,  b) as part  of the 
stability region. For  the P-stability regions we change the values of  a and b by 0.25 each time, and for the 
Q-stabili ty region by 0.1 each time. If it appears in some of  the figures that the curves are identical, this is 
not  exactly so, but  they are the same for the accuracy we are using. 

Remark  3.3. It is not  easy to prove P-stability or Q-stability results for general m. Our  conjecture is that all 
the methods we have considered are Q-stable, and the trapezium method and the implicit R u n g e - K u t t a  
method  for solving D D E  are also P-stable. 

4. Numerical  example  

The following example is chosen to show the advantage of  methods  which have no restriction on the 
stepsize because of  stability properties of  the methods.  We present the maximum global discretization error 
on the range of integration as a measure of  the reliability of  the method and the number  of  derivative 
evaluations on this interval as a measure of  the efficiency of  the method. We use the starting stepsize 
h = 0.1 and use an absolute error test unless otherwise stated. The calculations are performed on the C D C  
7600 computer  at Victoria University, Manchester,  U.K.. The following notat ions are used in the tables: 

= the required error tolerance, N D  = number  of  derivative evaluations, G E  = the maximum global 
discretization error on the interval of integration. 

Problem 4.1. 

u ' ( t ) = a u ( t ) + b u ( t - d ) ,  O<t  T, (4.1) 

u( t )=e  s~', t ~ [ - d , O ] ,  (4.2) 

where s i are some of  the real roots of  the characteristic equation, 

h ( s ) = s - a - b e - a ' = O .  

Equat ion (4.1) has a smooth  solution u(t) = Ee s't, t >/0. As a special case we take a = 0, b = - 1, d = 10 -3, 
s 1 = - 1.001001502672 and s 2 = - 9118.006470403. 
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Tab le  1 

Us ing  the t rapez ium m e t h o d  for solving D D E  with linear in terpolat ion 
i 

In terval  

0 , 1 0  0 , 2 0  0 , 4 0  

G E  N D  G E  N D  G E  N D  

10 2 2 .0227× 10 -2  84 2.0227 × 10 2 87 

10 4 1 . 5 5 2 8 x 1 0  -3  172 1 .5 5 2 8 ×1 0  3 178 

10 -6  7.4131 × 10 . 5  589 7.4131 × 10 -5  604 

10 . 8  3.4522 x 10 . 6  2648 3.4522 × 10 . 6  2629 
10 - l o  , 

2.0227 × 10 -2  

1.5528 × 10 -3  

7.4131 × 10 -5  

3 . 4 5 2 2 × 1 0  6 

90 

181 

610 

2705 

Tab le  2 

Us ing  the t rapez ium me thod  for solving D D E  with He rmi t e  in terpolat ion 

In terval  

0, 10 0, 20 0, 40 

G E  N D  G E  N D  G E  N D  

10 2 2.0223 × 10 - z  84 2.0223 × 1 0 - 2  87 

10 - 4  1.5528 × 10 3 172 1.5528 × 10 3 178 

10 6 7.4122 × 10 -5  582 7.4122 x 10 -5  598 

10 -8  3.4517 × 10 6 2555 3.4517 x 10 6 2603 
10 10 . 

2.0223 × 10 -2  

1.5528 × 10 -3  

7 . 4 1 2 2 × 1 0  5 

3.4517 × 10 -6  

90 

181 

604 

2609 

T ab l e  3 

Us ing  the implicit  R u n g e - K u t t a  for solving D D E  

Interval  

0, 10 0, 20 0, 40 

G E  N D  G E  N D  

10 2 4.0057 × 10 2 125 4 .0057×  10 -2  131 

10 - 4  2.2729 N 10 -4  163 2.2729 × 10 - 4  169 

10 -6  2.8902 × 10 -6  255 2.8902 × 10 6 273 

10 -8  1.0867 X 10 -7  475 1.0867 × 10 7 505 

10 -1°  3.1965 X 10 - 9  1059 3.1965 x 10 9 1131 

G E  

4 . 0 0 5 7 × 1 0  2 

2 .2 7 2 9 x  10 -4  

2.8902 × 10 - 6 

1 . 0 8 6 7 ×1 0  7 

3.1965 x 10 -9  

N D  

137 

175 

285 

517 

1155 

T ab l e  4 

U s i ng  the K u t t a - M e r s o n  m e t h o d  for solving D D E  

In te rva l  

0, 10 0, 20 0, 40 

G E  N D  G E  N D  

10 - 2 3.3632 X 1 0 -  3 171 3.3632 X 1 0 -  3 183 

10 4 2 . 2 6 2 2 X 1 0 - 5  261 2 . 2 6 2 2 × 1 0  5 279 

10 6 1.0314 X 10 -6  532 1.0314X 10 - 6  562 

1 0 -  8 1.2216 X 1 0 -  8 1431 1.2216 × 1 0 -  8 1497 

10 -1 °  1.2181 X 10 -1 °  4459 1.2181 × 10 -1 °  4621 

G E  

6 .2623X10  3 

7 .6883X10 5 

1.0314 x 10 6 

1 .2 2 1 6 ×1 0  8 

1 . 2 1 8 1 × 1 0  -1°  

N D  

225 

321 

598 

1533 

4657 
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Since all the methods considered are Q-stable, there should be no stability problem in solving this 
problem. In Tables 1 and 2 we give the results for the trapezium method with linear interpolation and for 
the trapezium method with Hermite interpolation respectively. In Table 3 we give the results when using 
the implicit Runge -Ku t t a  method with Hermite interpolation, and in Table 4 we give the results when 
using the Ku t t a -Merson  method of [2] for solving D D E  with Hermite interpolation. For high accuracy 
requirements the Kut t a -Merson  method and the implicit Runge-Kut t a  achieve the required accuracy, but 
the trapezium method does not because of the low order of the method. Also, Tables 1 and 2 show that 
there is no significant improvement in using higher order interpolation formula for approximating the 
delay term with the trapezium method. 

5. Concluding remarks 

All three methods are discussed, being Q-stable, face no stability problem. Howver, the stability 
properties of numerical methods for solving DDE need further investigation. It would be interesting to 
know necessary and sufficient conditions on a linear D D E  with constant delay and complex coefficients 
such that the solution is asymptotically stable, and then one can use the more general definition of 
DA-stability suggested in Section 2. It would also be interesting to know the relation between the roots of 
the characteristic equation of the linear D D E  and the roots of the stability polynomial of the numerical 
methods for solving DDE. 
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