
Europ. f . Combinatorics (1983) 4,37-44 

Vertex-transitive Graphs of Valency 3 

PETER LORIMER 

A regular graph of valency 1 is necessarily a disjoint union of paths of length 2 and 
one of valency 2 must be a disjoint union of cycles. However, regular graphs of valency 
3 are so many and varied that it seems to be impossible to describe them all. Among 
regular graphs are the vertex-transitive ones, those on which a group of automorphisms 
acts transitively on the vertices. Every regular graph of valency 1 is vertex transitive and 
those of valency 2 are vertex transitive if and only if they are a disjoint union of cycles 
of the same length. This paper is intended to be a starting point for a possible description 
of all vertex transitive graphs of valency 3. It describes them in terms of graphs which 
can be built up from graphs of smaller valency, bipartite graphs and graphs on which 
simple groups act as groups of automorphisms. In that simple groups have now been 
classified, this suggests a program for classifying the graphs. 

My interest in these graphs was stimulated by the conjecture of L. Lovasz [1, page 
249] that every connected vertex-transitive graph has a Hamiltonian path. A likely place 
to look for counterexamples to this conjecture is among graphs of low valency, perhaps 
among those of valency 3. I am indebted to C. C. Chen for conversations on this problem. 

In a group acting on a graph of valency 3, the stabilizer of any vertex acts as a group 
of permutations on the vertices adjacent to the one it fixes and as such either has three 
orbits of length one, one of length one and one of length two, or one of length three. 
These three possibilities are dealt with separately in sections 2, 3 and 4. The first is the 
easiest and the third is part of a more general result in another of my papers [3]; the 
middle one requires the most space here. 

The outcome of this paper can be summarized in the following statement: 

THEOREM. Let 0 be a vertex transitive group of automorphisms of a connected graph 
I of valency 3. Let H be the stabilizer of a vertex v of I and let X be the set of three 
vertices adjacent to v. 

Let 0 1 be a subgroup of 0 minimal among the subgroups of 0 which act transitively 
on the vertices of I and have the property that their intersection with H has the same orbits 
in X that H does. 

Let O 2 be a subgroup of 0 1 maximal among the normal subgroups of 0 1 which contain 
no member except 1 fixing a vertex of I. 

Then either I is one of the graphs listed under (I), (II), (III) or (IV) in Section 2 or 
Oti02 is a simple group which acts as a vertex-transitive group of automorphisms of a 
graph of valency 3 in such way that the stabilizer of each vertex has the same orbit structure 
on the vertices adjacent to it that H has on X. 

This statement is necessarily a little vague at this stage but its various components will 
be made precise later. In particular, the relationship between the graph I and the graph 
on which 0 1102 acts will be defined exactly. 

1. PRELIMINARIES 

The subject of this paper is a connected graph I of valency 3 on which a group 0 
acts as a vertex-transitive group of automorphisms. Let v be a fixed, but arbitrarily 
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chosen vertex of I and let H be its stabilizer in G. Let X = {x, y, z} be the vertices of 
I adjacent to v and let a, b, c be members of G with the properties a (v) = x, b (v) = 
y, c (v) = z respectively. Let D be the subset of G containing all members g of G with 
the property that g(v) is adjacent to v. 

The notations in the previous paragraph will be maintained throughout the paper. 
The first proposition in this section contains the basic properties of the set D. 

PROPOSITION 1. 
(i) D =D-1

• 

(ii) D = aHubHucH. 
(iii) D is a union of double eosets of H in G. 

PROOF: A proof of this can be found in Theorem 1 of [3]. 

In these circumstances the vertices of the graph can be identified with the left cosets 
of H in G and two cosets aH and (3H are adjacent if and only if a-1(3 ED: for details 
see [3, Theorems 1 and 2]. 

The subgroup H of G is the stabilizer of v. As it acts as a group of automorphisms 
of I it necessarily acts as a permutation group on the set X of vertices adjacent to v. 
The graphs which are the subject of this paper split into three types, depending on the 
action of H on X and these three types are considered separately in Sections 2, 3 and 
4. In terms of what has been written so far, they can be described as follows. 

PROPOSITION 2. One of the following is true. 
(I) H ={1} and, equivalently, G acts regularly on I. D ={a, b, c} and G is generated by 
a, band c. 
(II) X has two orbits under the action of H and, without loss of generality, these can be 
taken as {x, y} and {z}; c lies in the normalizer of Hand HaH = HbH = aH u bH; 
D = HaH u cH; G is generated by H, a and c; IHI = 21H n aHa -11. 
(III) H acts transitively on X; D = HaH = HbH = HcH and G is generated by H and a ; 
IHI = 31H n aHa -11. 

PROOF. In the action of H on X, the members of X fall into three orbits of length 
1, one of length one and one of length 2 or one of length 3. 

(I) Suppose that the orbits of X under H all have length 1. Then every member of 
G which fixes v, also fixes every vertex adjacent to v. Because G is vertex transitive the 
same is true for each vertex of I in place of v. The connectedness of I then implies 
that every member of H fixes every vertex of I. Hence H ={1}. 

As I is connected, it follows from [3, Theorem 6] that G is generated by D and hence 
by a, band c. 

(II) As {x, y} is an orbit under H, there is a member h of H with h (x) = y. Then 
ha(v)=b(v) and bEhaH~HaH; hence HaH=HbH. On the other hand, if gEHaH, 
say g = hlahz with hi> hzEH, then g(v) = h1ah z(v) = h1(x). As {x, y} is an orbit under 
H, either h 1 (x ) = x, in which case g E aH, or h 1 (x) = y in which case g E bH. Hence 
HaH = aH u bH. As {x, y} is an orbit under H, the stabilizer of x in H has just two 
cosets, i.e. IHI = 21H n aHa-l 

As {z} is an orbit under H, this subgroup is also the stabilizer of z in G; i.e. H = cHc-1 

Hence cH = Hc = HcH. 
As I is connected, it follows from [3, Theorem 6] that G is generated by D. As 

D = HaH u cH, it is generated by H, a and c. 
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(III) The proof follows the form of (II); in this case {x, y, z} is the only orbit of X 
under H. 

The theorems in this paper are established by examining the normal structure of G 
and what were called, in [3], the quotient graphs of I and their factor subgraphs. Here 
is the way that these things are related. 

Let N be a normal subgroup of G. Put K = HN and E = KDK - K; K is a subgroup 
of G. A graph A, called a quotient graph of I, can be defined as follows: the vertices 
are the left cosets of K in G and two cosets aK and {3K are adjacent in A if and only 
if a -1{3 EE. If, as suggested earlier, the vertices of I are identified with the left cosets 
of H in G, then each vertex of A is a union of vertices of I, and, in this way, the vertices 
of A partition the vertices of I. Let g1H, ... , grH be the cosets of H in one coset of K. 
If g i 1gj is a member of D, then g i 1gj ED n K. Hence, the induced subgraph of I with 
these vertices has two vertices giH, gjH adjacent if and only if g i 1 gj ED n K. This is 
called a factor subgraph defined by HN. 

There are a number of vertex-transitive graphs of valency 3 which are easily described 
because of their simple structure. As these necessarily playa role in the statements of 
the theorems of the paper, they are now described. The numbers established here will 
be used throughout the paper to refer to these graphs. 

(I) I could be a bipartite graph. 
(II) The vertices of I could be partitioned into two equal sets each consisting of a 

disjoint union of cycles of the same size, with each vertex in one set joined to exactly 
one vertex of the other. 

(III) The vertices of I could be partitioned into two equal sets each consisting of a 
disjoint union of paths of length 2, with each vertex of one set joined to exactly two 
vertices of the other. 

(IV) The vertices of I could be partitioned into r > 2 equal sets, arranged in a cycle, 
with each set of the partition consisting of a disjoint union of paths of length 2, and with 
each vertex of I joined to one vertex before it and one after it in the cycle of the partition. 

2. G Is REGULAR 
In this section G is supposed to act"regularly on I. Two theorems are proved: the 

first is a structure theorem and the second describes this case in terms of simple groups 
and the graphs described in Section 1. 

THEOREM 3. Suppose that G acts regularly on I and N is a proper normal subgroup 
of G. Then either I is a graph of type I, II, III or IV in which N maps each set of the 
partition mentioned onto itself or the quotient graph A defined by N has valency 3, GIN 
acts on it as a regular group of automorphisms and the factor sub graphs defined by HN have 
no edges. 

PROOF. D ={a, b, c}. As D =D-1 there are two possibilities for the orders of the 
members of D which can be described, without loss of generality, as a 2 = 1, b -1 = c ¥- b 
anda 2 =b 2 =c 2 =1. 

The different possibilities that can arise for D nN need to be considered separately. 
Notice first that, as D generates G and N ¥- G, D is not a subset of N. 

Suppose that D n N = 0. In this case the factor subgraphs defined by HN have no 
edges and the quotient graph has valency at most 3. (A proof of this latter fact can be 
found in [3 Theorem 5]). If the quotient graph A has valency smaller than 3 it is a path 
of length 2 or a cycle, because it must be connected. If it is a path of length 2 the graph 
is bipartite. Suppose that it is a cycle. As D n N = 0, G / N contains an involution and, 
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as GIN acts regularly, has an even number of vertices: in this case also, I is bipartite. 
Otherwise D n N contains one or two members. For the rest of the proof the two 

possible types of sets that D can be must be considered separately. 
Suppose that D={a,b,c} where a 2 =I,b-1 =c-.6b and that DnN={a}. Because 

D n N = {a}, the factor subgraphs induced by N have valency one and are disjoint unions 
of paths of length 2. As D generates G, the quotient group GIN is generated by band 
c = b -1 and is cyclic. The quotient graph A is a cycle and A is described by type (IV) of 
the first section. 

Suppose that D is as in the last paragraph and that D n N = {b, c}. Because D n N = 
{b, c}, the factor subgraphs induced by N have valency two and are a disjoint union of 
cycles which must all be of the same length. As D generates G, G = N u aN and the 
quotient graph defined by N is a path of length 2. Thus I is defined by type (II) of the 
last section. 

Now suppose that D = {a, b, c} where a 2 = b2 = c 2 = 1 and that D nN contains just 
one member. Without loss of generality it may be supposed that D nN ={a}. In this 
case the factor subgraphs defined by N have valency 1 and are a disjoint union of paths 
of length 2. The quotient graph is connected and as NDN = DN = bN u cN, the quotient 
graph is either a path of length 2, (if bN = cN) or a cycle (if bN -.6 cN). Thus I is of 
type (III) or (IV). 

Finally, suppose that D is as in the last paragraph and that D nN contains two 
members. Without loss of generality it may be supposed that D n N = {a, b}. Then the 
factor subgraphs have valency 2 and are a disjoint union of cycles. GIN = N u cN and 
the quotient graph defined by N is a path of length 2. Thus I is described by type (II) 
of the last section. 

This completes the proof of Theorem 3. 

The consequence of this theorem to be noted in building up the proof of the Theorem 
mentioned in the introduction is 

THEOREM 4. Suppose that G acts regularly on I and let N be a maximal proper normal 
subgroup of G (permitting the possibility that N = 1). Then either 
(1) I is a graph of type I, II, III or IV and ft1!tis the subgroup of G containing those 
members of G which fix, as a whole, anyone of the subgraphs into which I is partitioned 
in the descriptions of types I, II, III or IV. G IN is cyclic of prime order, or 
(2) the factor graph A has valency 3 and GIN is a simple nonabelian group which acts 
regularly as a group of automorphisms of A. 

PROOF. Notice, first, that if GIN is abelian then it is cyclic of prime order. The result 
then follows directly from Theorem 3. 

3. X HAS Two ORBITS UNDER H 
The subgroup H which is the stabilizer of the vertex v acts as a permutation group 

on the set X of vertices adjacent to v. As such it is possible that it splits X into two 
orbits, one of length 1 and the other of length 2. That is the case dealt with in this 
section. The main structure theorem is: 

THEOREM 5. Suppose that, as a permutation group on X, H has two orbits. Let N be a 
normal subgroup of G. Then either 

(1) I is a graph of type (I), or 
(2) N acts regularly on I, or 
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(3) H has order 2, GIN is a dihedral group and N is a subgroup of a normal subgroup of 
G which acts regularly on I, or 
(4) N acts transitively on I and H nN has the same orbits as a permutation group on X 
that H does, or 
(5) HN is a normal subgroup of index 2 in G, I is a graph of type (II) or (III), HN is 
the stabilizer of each of the two sets into which I is partitioned and each member of G - HN 
interchanges these two sets, or 
(6) H n N = 1, the quotient graph A induced by HN has valency 3 and the factor subgraphs 
have no edges. The vertices v, x, y, z of I lie in four different vertices v*, x*, y*, z*, say, 
of A. The kernel of the representation of G on A is N, HN is the stabilizer of v* and the 
orbits of HN on the set {x*, y*, z*} are those induced by the orbits of H on {x, y, z}. 

PROOF. Without loss of generality it may be supposed that the orbits of H on X are 
{x, y} and {z}. By Proposition 2 (II) it follows that c lies in the normalizer of H, 
HaH = HbH = aH u bH, D = HaH u cH, G is generated by H, a and c, and IHI = 
21H n aHa -11. 

As the following facts are needed throughout the proof they are separated as a Lemma 

LEMMA. 

(1) IHaHI IHI 
lHI IHnaHa 11; 

IHNI IH nNI IHN naHa - 1NI IHI 
(2) IHN n aHa INIIH n aHa 1 nNll(H n aHa l)NI = IH n aHa 11; 

(3) one of the numbers 

IHNI 
IHN n aHa 1 NI' 

is 2 and the other two are equal to 1. 

PROOF. (1) It is a standard result of group theory that 

IH H -11 = IHllaHa - 11 
a a IHaHa 11 

See, for example, [2 page 8]. (1) follows because IHaHa -11 = IHaHI and laHa -11 = IHI. 
(2) is proved using the identities 

IHNI = IHIINI d I(H H -1)NI = IH n aHa -l1INI 
IHnNI an na a IHnaHa InN!, 

(3) In each of the three quotients mentioned, the group in the denominator is a 
subgroup of the group in the numerator, and hence, by Lagrange's Theorem, each 

. .. A h' d' I IHI h' h h b h quotient IS an mteger. s t elr pro uct IS equa to I 11 w lC as een sown 
HnaHa 

to be equal to 2, this result is established. 
This completes the proof of the Lemma and we return to the proof of the theorem. 

Suppose, first, that HN = G . Then, also, aHa -1 N = G and it follows from the Lemma 
that one of 

IHnNI IHN naHa - 1NI 
I(H n aHa l)NI 
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is equal to 2 and the other is equal to 1. If IHnNI=IHnaHa-InNI , then a(Hn 
N)a - I = aHa -I n N = H n N. As G is generated by H, a and c, and c normalizes H, it 
follows that H n N is a normal subgroup of G. As G is a permutation group in which 
H is the stabilizer of a point, H n N = 1 and in this case N is a regular subgroup of G, 
a conclusion which is in the Theorem. Alternatively, 

IHnNI -I-I 

I 
1 NI = 2 and HN n aHa N = (H n aHa )N. 

HnaHa n 

Consider the action of N on I . As HN = G, N acts vertex-transitively. In N, the stabilizer 
of the vertex v is H nN and, as IH nNI = 21H n aHa -I nNI = 
21(H n N) n a (H n N)a - II it follows that the vertices of I adjacent to v fall into the 
orbits {x, y} and {z } under the action of H nN. This is conclusion (4) of the Theorem. 
This completes consideration of the case thatHN = G. 

Suppose next that HN is a normal subgroup of G, but HN ¥- G. 
As a-IEHaH, Ha - IH=HaH and aHN =HNaHN =HNa - IHN = a-IHN. Hence 

(aHN)2 = HN and either a E HN or aHN is an involution in G IHN. As c -I E HcH and 
c E N(H), (CH)2 and hence (cHN)2 = HN. 

As G is generated by H, a and c, but G ¥- HN, either a fl HN or c fl HN. If a fl HN 
and c fl HN then D n HN = 0 and the factor subgraphs defined by HN have no edges. 
As HNDHN = HNaHN u HNcHN = aHN u cHN, the quotient graph A has valency 2. 
As G is generated by H, a and c it is connected. As G IHN contains an element aHN 
of order 2, A has an even number of edges. Thus I is bipartite. Suppose that a E HN 
and c fl HN. Then D n HN = HaH and the factor subgraphs induced by HN have valency 
2. Thus the factor subgraphs are all a disjoint union of cycles. As G is generated by H, 
a, c, G is also generated by HN, c. As (cHN)2 = HN, G = HN u cHN and the quotient 
graph induced by HN has just vertices, HN and cHN. As it is connected, it is a path of 
length 2. Finally, suppose that c E HN and a ~ HN. Then D n HN = HcH = cH and the 
factor subgraphs defined by HN all have valency 1; they are thus a disjoint union of 
paths of length 2. As G is generated by H, a, c it is also generated by HN and a; then 
G = HN u aHN and, as in the last case, the quotient graph induced by HN is a path of 
length 2. 

All the outcomes in the last paragraph are among the conclusions of the theorem and 
the possibility that HN is a normal subgroup of G has been completely covered. 

Suppose, for the rest of the proof, that HN is not a normal subgroup of G. As G is 
generated by H, a, and c, and c normalizes H, it must be that aHNa -1 ¥- HN. Hence, 
by the Lemma at the beginning of this proof IHNI = 21HN n aHa -1 NI, H n N = 
H naHa- 1 nN and HN naHa - IN = (H naHa- 1)N. 

As H nN =H naHa - 1 nN, a(H nN)a-1 =H nN. As H is normalized by Hand c 
which, together with a, generate G, H n N must be a normal subgroup of G. As G is 
a permutation group, transitive on the vertices of I and H is the stabilizer of one of 
these vertices it follows that H n N = 1. 

Let A be the quotient graph of I induced by HN. Let K be the kernel of the 
representation of G as a group of automorphisms of A. As G is transitive and HN is 
the stabilizer of a point of A, K is the intersection of HN and all its conjugates. As N 
is a normal subgroup of G and N ~ HN, it follows that N ~ K. On the other hand, 
K ~ HN so that HK = HN. As HN is not a normal subgroup of G, neither is HK. Now 
apply what has passed so far in this proof to K in place of N. As HK is not a normal 
subgroup of G, IHKI = 21HK n aHa- 1KI, H nK =H naHa- 1 nK, and thusH nK = 1. 
Thus N ~ K, HK = HN, H n N = H n K = 1 and N = K. This show that G IN acts as a 
group of automorphisms of A; because H n N = 1, the representation of H on A is 
faithful. 
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As c normalizes H, it also normalizes HN. As G is generated by H, a and c but HN 
is not a normal subgroup of G, a does not normalize HN. In particular, agHN. 

Suppose that c E HN. Then HNDHN - HN = HN(HaH u HcH)HN - HN = 
HNaHN = aHN u bHN. Hence, the quotient graph A induced by HN has valency 2 if 
aHN ¥- bHN or 1 if aHN = bHN. As G is generated by HN and a, A is connected and 
hence is a cycle or a path of length 2. As HN n D = HcH = cH, each factor graph is a 
disjoint union of paths of length 2. Now GIN acts faithfully as a group of automorphisms 
of A. As H also acts faithfully on A, HNIN is not a normal subgroup of GIN. Hence 
A is a cycle of length greater than 2 and the automorphism group of A is dihedral. GIN 
acts transitively on A and the stabilizer of a vertex is not trivial. Hence G IN is the full 
automorphism group of A. Thus G contains a normal subgroup L such that LIN is the 
cyclic subgroup of index 2 in GIN. Then L is a transitive normal subgroup of G and 
conclusion (3) of the Theorem is true. 

Finally, suppose that c g HN. As c normalizes HN but a does not, cHN ¥- aHN and 
cHN ¥- bHN. As a does not normalize HN, aHN ¥- bHN. Hence HNDHN - HN = 
aHN u bHN u cHN contains three cosets of HN. Thus the quotient graph A has valency 
3. As HNaHN = aHN u bHN and HNcHN = cHN, the orbits of HNIN on the vertices 
adjacent to the one which it stabilizers have lengths 2 and 1. This situation is described 
by conclusion (6) of the Theorem. This completes the proof of Theorem 5. 

This structure theorem has the following consequence: 

THEOREM 6. Suppose that I is not a group of type (I), (II) or (III). 
Let G l be a subgroup of G which is minimal among the subgroups of G which act 

transitively on the vertices of I and have the property that the stabilizer in them of each 
vertex has two orbits on the vertices adjacent to that vertex. 

Let G 2 be a subgroup of G l which is maximal among those normal subgroups of G l 

which contain no member, except 1, which fixes a vertex. 
Let H be the stabilizer of one of the vertices of I and let A be the quotient graph of I 

defined by (H n G 2)G2 • 

Then either G l acts regularly on I or G l IG2 is a simple group which acts faithfully as 
a group of automorphisms of A and the stabilizer in G l IG2 of a vertex of A has orbits of 
length 1 and 2 on the vertices adjacent to that vertex. A has valency 3. 

4. H ACTS TRANSITIVELY ON X 

Another possibility that can occur is that the stabilizer in G of each vertex acts 
transitively on the vertices adjacent to that one. In these circumstances G is said to act 
symmetrically on I. Graphs like these having prime valency, rather than just three, are 
the subject of another paper [3] by the author and the following two theorems come 
from there. 

THEOREM 7. Suppose that G acts symmetrically on I. If N is a normal subgroup of 
G then either 
(1) I is a bipartite graph, or 
(2) N acts regularly on the vertices of I, or 
(3) N acts symmetrically on I, or 
(4) H nN = 1, the quotient graph A induced by HN has valency 3, the factor subgraphs 
have no edges, N is the kernel of the representation of G on A and GIN acts symmetrically 
onA. 



44 P. Lorimer 

THEOREM 8. Suppose that I is not a bipartite graph and let 0 act symmetrically on I. 
Let 0 1 be a subgroup of 0 which is minimal among the subgroups of 0 which act 

symmetrically on the vertices of I. 
Let O 2 be a subgroup of 0 1 which is maximal among the normal subgroups of 0 1 having 

no element except the identity fixing a vertex of I. 
Then either 0 1 acts regularly on I or 0 1102 is a simple group which acts symmetrically 

as a group of automorphisms of the quotient graph A defined by (0 1 nH)02' A has 
valency 3. 

REFERENCES 

1. J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan, London. 
2. B. Huppert, Endliche Gruppen 1, Springer, Berlin, 1967. 
3. P. Lorimer, Vertex-transitive graphs, particularly 2-transitive graphs of prime valency, 1. Graph Theory (to 

appear). 

Received 11 May 1981 and in revised form 1 September 1982 

P. LORIMER 

Department of Mathematics, University of Auckland, 
Auckland, New Zealand 




