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Abstract

We give results about the dimension of continua, obtained by combining inverse limits of inverse sequences of metric spaces and
one-valued bonding maps with inverse limits of inverse sequences of metric spaces and upper semicontinuous set-valued bonding
functions, by standard procedure introduced in [I. Banič, Continua with kernels, Houston J. Math. (2006), in press].
© 2007 Elsevier B.V. All rights reserved.

MSC: 54C60; 54B10; 54D80; 54F65; 54B99

Keywords: Continua; Inverse limits; Upper semicontinuous set-valued functions

1. Introduction

As very complicated continua may be presented as inverse limits of inverse sequences of very simple spaces and
bonding maps, a representation of continua as inverse limits can be very useful when studying their properties. For
example, the Knaster continuum [11, p. 205] is the inverse limit of an inverse sequence of unit intervals [0,1] and
very simple bonding maps [13, p. 22] (for more examples see [2,6,10,13], etc.). One can construct new examples of
continua by constructing the inverse sequences of well known continua by choosing appropriate bonding maps among
them.

W.T. Ingram [9] and W.S. Mahavier [9,12] introduced the concept of inverse limits of inverse sequences of compact
Hausdorff spaces with upper semicontinuous bonding functions. They gave several sets of sufficient conditions under
which the inverse limit is a Hausdorff continuum, provided some interesting examples, and discussed their dimension.

The author [1] introduced the inverse limits of inverse sequences of unit intervals [0,1] and upper semicontinuous
bonding functions f̃n,t : [0,1] → 2[0,1], obtained from one-valued maps fn on [0,1], such that the graph Γ (f̃n,t ) is
the union of Γ (fn) and the segment {t} × [0,1], t ∈ [0,1]. For

K = lim←
{[0,1], fn

}∞
n=1,

* Correspondence to: I. Banič, Department of Mathematics, Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, Maribor
2000, Slovenia.

E-mail address: iztok.banic@uni-mb.si.
0166-8641/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.topol.2007.06.002

https://core.ac.uk/display/82696968?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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K̃t = lim←
{[0,1], f̃n,t

}∞
n=1

he proved the following theorem.

Theorem 1.1. Let f be a map from [0,1] to [0,1] and K = lim← {[0,1], fn}∞n=1. Then K̃t has dimension either 1 or ∞
for all t ∈ [0,1].

In this article we continue the research of such inverse limits but instead of inverse sequences of unit intervals [0,1],
we consider the inverse sequences of arbitrary continua Xn and upper semicontinuous multi-valued bonding functions
f̃n :Xn+1 → Xn, obtained from one-valued maps fn by the similar procedure as used in [1]: the graph Γ (f̃n) is the
union of Γ (fn) and the product An+1 × Xn, for a closed subset An+1 of Xn+1.

Our main goal is to prove the following generalization of Theorem 1.1:

Theorem 1.2. Let X be a nondegenerate continuum, A a closed subset of X, f :X → X a map, and K =
lim← {X,f }∞n=1. Then K̃ has dimension equal to either dim(X) or ∞.

2. Definitions and notations

A continuum is a nonempty, compact and connected metric space. When referring to a space, the term degenerate
is synonymous to being a one-point space, while the term nondegenerate means that the space consists of more than
one point.

A map is a continuous function. Let f be a function from X onto X, then f 2 denotes the composition f ◦ f , and
inductively f n denotes the composition f n−1 ◦ f . We use f −n(Y ) to denote (f n)−1(Y ) = {x ∈ X | f n(x) ∈ Y }.

Let (X1, d1), (X2, d2), (X3, d3), . . . be metric spaces, such that the metric dn is bounded by 1 for all n. The metric
we use on product

∏∞
n=1 Xn is given by

d
(
(x1, x2, x3, . . .), (y1, y2, y3, . . .)

) =
∞∑

n=1

dn(xn, yn)

2n
.

For details see [3, p. 259].
Given an inverse sequence {Xn,fn}∞n=1 of compact metric spaces Xn and maps fn :Xn+1 → Xn, we define the

inverse limit space lim← {Xn,fn}∞n=1 as the subspace of the product
∏∞

n=1 Xn, which consists of all sequences {xn}∞n=1

such that fn(xn+1) = xn for every positive integer n.
Let X and Y be compact metric spaces, 2Y be the set of all nonempty closed subsets of Y , and let f :X → 2Y

be a function. The function f is upper semicontinuous at a point x ∈ X provided that for each open set V in Y

containing f (x), there is an open set U in X containing x such that if y ∈ U , then f (y) ⊆ V . The function f is upper
semicontinuous, if it is upper semicontinuous at x ∈ X for all x ∈ X. The graph Γ (f ) of f is the set of all points
(x, y) ∈ X × Y such that y ∈ f (x).

For a given inverse sequence {Xn,fn}∞n=1, where all Xn are compact metric spaces and every fn is an upper
semicontinuous function Xn+1 → 2Xn , the inverse limit lim← {Xn,fn}∞n=1 is the subspace of the product

∏∞
n=1 Xn,

which consists of all sequences {xn}∞n=1 such that xn ∈ fn(xn+1) for every positive integer n.
We will use the following theorems:

Theorem 2.1. (See [9, p. 120].) Suppose each of X and Y is a compact metric space and M is a subset of X × Y

such that if x ∈ X then there is a point y ∈ Y such that (x, y) ∈ M . Then M is closed if and only if there is an upper
semicontinuous function f :X → 2Y such that M = Γ (f ).

Theorem 2.2. (See [9, p. 121].) Let {Xn,fn}∞n=1 be an inverse sequence of nonempty compact metric spaces and
upper semicontinuous functions fn :Xn+1 → Xn. Then lim← {Xn,fn}∞n=1 is a nonempty compact metric space.

Theorem 2.3. (See [9, p. 124].) Assume that for each positive integer i, Xi is a continuum and fi :Xi+1 → 2Xi is an
upper semicontinuous function such that for each x ∈ Xi+1, fi(x) is connected. Then lim{Xn,fn}∞n=1 is a continuum.
←
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For any compact metric space X we will use dim(X) for the topological (covering) dimension of X (for the
definition see [3, p. 385], [14, p. 10] or [5]).

For the reader’s convenience we list the following well-known results that will be used later:

Theorem 2.4. (See [8, p. 19], [4, p. 261].) Let {Xn,fn}∞n=1 be an inverse system of compact metric spaces Xn and
surjective bonding maps fn. If for some nonnegative integer k, dim(Xn) � k for all n, then

dim
(
lim← {Xn,fn}∞n=1

)
� k.

Theorem 2.5. (See [14, p. 15].) Let {Xn}∞n=1 be a sequence of compact metric spaces such that for some nonnegative
integer k, dim(Xn) � k for all n. Then

dim

( ∞⋃
n=1

Xn

)
� k.

Theorem 2.6. (See [4, p. 33].) Let X be a metric space such that dim(X) = 0. Then X is totally disconnected space.

We shall also use the following theorem.

Theorem 2.7. (See [7, p. 194].) Let X be a nonempty compact metric space with finite dimension and Y a separable
metric space with dimension greater than 0. Then

dim(X × Y) > dim(X).

We shall need also the characterization of the Cantor set.

Theorem 2.8. (See [15, p. 217].) A space X is homeomorphic to the Cantor set if and only if X is totally disconnected
compact metric space without isolated points.

The following results are obvious, but we state them for later use.

Theorem 2.9. Let for each positive integer n, Xn be a totally disconnected metric space. Then
∏∞

n=1 Xn is also totally
disconnected metric space.

Theorem 2.10. Let X and Y be compact metric spaces such that dim(X) = 0. Then

dim(X × Y) = dim(X).

3. Preliminaries

Let X and Y be compact metric spaces and f :X → Y a map. For a closed subset A ⊆ X we define the multi-valued
function f̃ :X → Y as

f̃ (x) =
{ {f (x)}, x /∈ A,

Y, x ∈ A.

Theorem 3.1. Let X and Y be compact metric spaces, f :X → Y a map, and A be a closed subset of X. Then f̃ is
an upper semicontinuous set-valued function from X to Y .

Proof. The graph Γ (f ) and A × Y are closed subsets of X × Y . Therefore Γ (f̃ ) = (Γ (f )) ∪ (A × Y) is a closed
subset of X × Y , and so by Theorem 2.1, f̃ is an upper semicontinuous set-valued function from X to Y . �

Let {Xn,fn}∞n=1 be an inverse sequence of compact metric spaces Xn and maps fn :Xn+1 → Xn and let for each
n = 1,2,3, . . . , An ⊆ Xn. If we use K to denote lim{Xn,fn}∞n=1 then K̃ will denote the inverse limit lim{Xn, f̃n}∞n=1.
← ←
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Theorem 3.2. Let {Xn,fn}∞n=1 be an inverse sequence of continua Xn and maps fn :Xn+1 → Xn, and let for each
n = 1,2,3, . . . ,An be a closed subset of Xn. Then lim← {Xn, f̃n}∞n=1 is a continuum.

Proof. It follows from Theorem 3.1 that for each n, f̃n :Xn+1 → Xn is an upper semicontinuous set-valued bonding
function. As f̃n(x) is connected for all n and x ∈ Xn+1, hence by Theorem 2.3, the inverse limit lim← {Xn, f̃n}∞n=1 is a

continuum. �
Definition 3.3. Let {Xn,fn}∞n=1 be an inverse sequence of compact metric spaces Xn and maps fn :Xn+1 → Xn, and
let for each n = 1,2,3, . . . ,An be a closed subset of Xn. For each m = −1,0,1,2, . . . we define Dm as the subspace
of the product

∏∞
i=m+2 Xi , consisting of all points x, x = (x1, x2, x3, . . .), such that

(1) x1 ∈ Am+2;
(2) for each i = 1,2,3, . . . , xi ∈ f̃i+m+1(xi+1).

We call Dm the m-tree of the sequences {Xn}∞n=1, {fn}∞n=1 and {An}∞n=1. If for certain {Xn}∞n=1, {fn}∞n=1 and
{An}∞n=1 all the m-trees are equal, we call the m-tree simply the tree of the corresponding sequences and write D

instead of Dm.

Remark 3.4. Obviously, Dm = π(π−1
m+2({Am+2}) ∩ (lim← {Xn, f̃n}∞n=1)) for each m, where πm :

∏∞
n=1 Xn → Xm is the

projection on mth factor, and π :
∏∞

n=1 Xn → ∏∞
n=m+2 Xn is defined by π(x1, x2, x3, . . .) = (xm+2, xm+3, xm+4, . . .).

Example 3.5. Let for each n, Xn = [0,1], fn : [0,1] → [0,1] be defined by fn(x) = 1 − x, and An = {1}. In this case
all the m-trees Dm of the sequences {Xn}∞n=1, {fn}∞n=1 and {An}∞n=1 are equal to the tree, shown on Fig. 1. Dm is the
set of all x = (x1, x2, x3, . . .), where for each n, xn lies on the nth level on Fig. 1, and there is an arrow pointing from
xn+1 to xn. For details see [1].

Example 3.6. Let Xn = [0,1], fn : [0,1] → [0,1] be defined with fn(x) = 1 − x, and

An =
{ {1}, n = 2k − 1,

{0}, n = 2k

for each n. In this case the m-trees Dm of the sequences {Xn}∞n=1, {fn}∞n=1 and {An}∞n=1 are shown on Fig. 2. The
left-hand side m-tree of Fig. 2 belongs to even m and the right-hand side m-tree on Fig. 2 belongs to odd m. We will
see later that all the m-trees of the sequences {Xn}∞n=1, {fn}∞n=1 and {An}∞n=1, given in Example 3.6, are 0-dimensional,
and this will be essential in proving that in this case dim(lim← {[0,1], f̃n}∞n=1) = 1.

Fig. 1. The m-tree Dm from Example 3.5.
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Fig. 2. The m-trees Dm from Example 3.6.

Theorem 3.7. Let for each n = 1,2,3, . . . ,Xn be a compact metric space, fn a map from Xn+1 to Xn, and An a
closed subset of Xn. Then for each m, Dm is compact.

Proof. It follows from Theorem 2.2, that lim← {Xn, f̃n}∞n=1 is compact. As the projection πm+2 is continuous and Am+2

a closed subset of Xm+2, also π−1
m+2({Am+2}) is compact. Therefore, as π :

∏∞
n=1 Xn → ∏∞

n=m+2 Xn is continuous, it
follows from Remark 3.4, that Dm is compact for each m. �
Definition 3.8. Let for each n = 1,2,3, . . . ,Xn be a compact metric space, fn a map from Xn+1 to Xn, and An a
closed subset of Xn. For all m = 0,1,2, . . . and each a ∈ Dm we define L(a,m) as follows.

L(a,m) = {(
f1

(
f2

(
. . . fm(x) . . .

))
, . . . , fm−1

(
fm(x)

)
, fm(x), x, a

) | x ∈ Xm+1
}

for m � 1, and

L(a,0) = {
(x, a ) | x ∈ X1

}
.

Lemma 3.9. For all m � 0 and all a ∈ Dm, L(a,m) is homeomorphic to Xm+1.

Proof. The map f (x) = (f1(f2(. . . fm(x) . . .)), . . . , fm−1(fm(x)), fm(x), x, a ), f :Xm+1 → L(a,m), is a continu-
ous bijection from a compact space onto a Hausdorff space, and is therefore a homeomorphism. �
Lemma 3.10. Let K be the inverse limit of the inverse sequence of compact metric spaces Xn and maps fn from Xn+1
to Xn, and for each n, let An be a closed subset of Xn. Then

K̃ = K ∪
( ∞⋃

m=0

( ⋃
a∈Dm

L(a,m)

))
.

Proof. If x ∈ K̃\K , let � = min{k ∈ {1,2,3, . . .} | xk+1 ∈ Ak+1, xk �= fk(xk+1)} and m = � − 1. Then

x = (
f1

(
f2

(
. . . fm−1(fm(x�)) . . .

))
, f2

(
. . . fm−1(fm(x�)) . . .

)
, . . . , fm(x�), x�, a

)
,

where a = (x�+1, x�+2, x�+3, . . .). For all i � 1, x�+i ∈ f̃�+i (x�+i+1), hence a ∈ Dm and x ∈ L(a,m).
Also K ⊆ K̃ , and it follows from the definition of L(a,m), that L(a,m) ⊆ K̃ for all m and all a ∈ Dm. �

Theorem 3.11. For every inverse sequence {Xn,fn}∞n=1 of compact metric spaces and maps fn :Xn+1 → Xn,⋃
L(a,m) is homeomorphic to Dm × Xm+1 for all integers m = 0,1,2, . . . .
a∈Dm
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Proof. It follows from Theorem 3.7 that Dm is compact, hence Dm × Xm+1 is compact. Define F :Dm × Xm+1 →⋃
a∈Dm

L(a,m) as

F(a, x) = (
f1

(
f2

(
. . . fm−1(fm(x)) . . .

))
, f2

(
. . . fm−1(fm(x)) . . .

)
, . . . , fm(x), x, a

)
.

Clearly F is continuous bijection from the compact space Dm × Xm+1 onto the Hausdorff space
⋃

a∈Dm
L(a,m).

Therefore F is a homeomorphism. �
Theorem 3.12. Let K be inverse limit of the inverse sequence of compact metric spaces X and maps fn from X to X

and An a closed subset of X for each n. Then dim(K̃) = dim(Dm × X) for some m or dim(K̃) = ∞.

Proof. Let M = l.u.b.{dim(Dn) | n = −1,0,1,2,3, . . .}. If M = ∞, then as K̃ = K ∪ (
⋃∞

n=0(
⋃

a∈Dn
(L(a,n))) and

each
⋃

a∈Dn
L(a,n) is homeomorphic to Dn ×X, we have dim(K̃) = ∞. If M < ∞, there is a positive integer m such

that M = dim(Dm). It follows from Theorem 2.4 that dim(K) � dim(X). As Dm ×X is homeomorphic to a subspace
of K̃ , therefore dim(Dm × X) � dim(K̃). K̃ is the union of K and the space, which is the union of countable many
compact metric spaces Kn = ⋃

a∈Dn
L(a,n), which are homeomorphic to spaces Dn × X. As dim(K),dim(Dn ×

X) � dim(Dm × X) for each n, hence dim(K̃) � dim(Dm × X). Therefore dim(K̃) = dim(Dm × X). �
Corollary 3.13. Let K be the inverse limit of the inverse sequence of compact metric space X and maps fn from X to
X, and An a closed subset of X for each n. If dim(Dn) = 0 for each n, then dim(K̃) = dim(X).

Proof. As dim(K̃) = dim(Dm × X) for all m, it follows from Theorem 2.10, that dim(K̃) = dim(X).

Let us look back to Example 3.6. Recall the standard homeomorphism, defined by

(x1, x2, x3, . . .) �→
∞∑

n=1

2xn

3n
,

mapping {0,1}ℵ0 onto C, where C ⊂ [0,1] is the ternary Cantor set. Using its restriction on Dm, we see that both the
m-trees from the Example 3.6 are homeomorphic to a countable closed subset of [0,1] with exactly one cluster point,
therefore they both have dimension 0, and hence K̃ has dimension 1 (by Corollary 3.13, dim(K̃) = dim([0,1]) = 1).

Note also that, if An = {1} for each positive integer n, all the 0-dimensional m-trees are either degenerate or are
homeomorphic to the Cantor set C (see [1]). But in Example 3.6, where for each n, A2n �= A2n−1, all the m-trees are
nondegenerate and none of them contains a Cantor set.

4. Proof of Theorem 1.2

In this section we prove Theorem 1.2. Before proving it, let us prove the following lemmas, which are essential for
the proof of Theorem 1.2.

Lemma 4.1. Let for each positive integer n, Xn be a compact metric space such that dim(Xn) > 0. Then

dim

( ∞∏
n=1

Xn

)
= ∞.

Proof. First we show that for each n, dim(
∏n

i=1 Xi) � n. As X2 is compact and therefore separable metric space, it
follows from Theorem 2.7 that dim(X1 ×X2) > dim(X1) > 0. Therefore dim(X1 ×X2) � 2. By induction on n, apply-
ing Theorem 2.7, we get dim(

∏n+1
i=1 Xi) > dim(

∏n
i=1 Xi) � n and therefore dim(

∏n+1
i=1 Xi) � n+ 1. For each positive

integer n, the finite product
∏n

i=1 Xi may be embedded into the infinite product
∏∞

i=1 Xi , hence dim(
∏∞

i=1 Xi) � n

for all positive integers n, and therefore dim(
∏∞

i=1 Xi) = ∞. �
Lemma 4.2. Let X be a nondegenerate continuum, A a nonempty closed subset of X, and f :X → X a map. Then
the tree of the sequences {X}∞ , {f }∞ and {A}∞ is either a 0-dimensional or an ∞-dimensional compactum.
n=1 n=1 n=1
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Proof. Let D be the tree of the sequences {X}∞n=1, {f }∞n=1 and {A}∞n=1. As for each a, b ∈ A a ∈ f̃ (b), therefore∏∞
n=1 A ⊆ D.
If dim(A) > 0, it follows from Lemma 4.1 that dim(

∏∞
n=1 A) = ∞. As

∏∞
n=1 A ⊆ D, dim(D) = ∞.

If dim(A) = 0, only the next two cases are possible.
Case 1. For all positive integers n, dim(f̃ −n(A)) = 0. By Theorem 2.6, f̃ −n(A) is totally disconnected space for

all n. In case 1 we will consider the next two subcases.
Subcase 1: A is a degenerate space and f −1(A) ⊆ A. Since f̃ −1(A) = A, it follows that D is degenerate and so

dim(D) = 0.
Subcase 2: A is a nondegenerate space or f −1(A) � A. We will show that in this subcase, D contains no isolated

points, and is totally disconnected compact metric space, and is by Theorem 2.8 homeomorphic to the Cantor set.

(1) By Theorem 3.7, D is a compact metric space.
(2) It follows from the definition of D, that D ⊆ ∏∞

n=0 f̃ −n(A). As f̃ −n(A) is totally disconnected for all n, it follows
from Theorem 2.9 that

∏∞
n=0 f̃ −n(A) is also totally disconnected. As D ⊆ ∏∞

n=0 f̃ −n(A), therefore D is totally
disconnected.

(3) Next we show that D has no isolated points. Let a = (a1, a2, a3, . . .) ∈ D and ε > 0. Take positive integer n such
that

∑∞
i=n+1

diam(X)

2i < ε. Take for (b1, b2, b3, . . . , bn) = (a1, a2, a3, . . . , an).

If A is nondegenerate, we may take bn+1 ∈ A\{an+1}. For any k � n + 2, we take any element from f̃ −1({bk−1})
for bk . For b = (b1, b2, b3, . . .), b ∈ D and d( a, b) <

∑∞
i=n+1

diam(X)

2i < ε.

If A is degenerate and f −1(A) � A, we consider the next two cases.

• If an ∈ A, then we take for bn+1 an element from f̃ −1(A) = f −1(A)∪A, which has at least two elements, differ-
ent from an+1. For any k � n + 2, we take any element from f̃ −1({bk−1}) for bk . Clearly, if b = (b1, b2, b3, . . .),
b ∈ D and d( a, b) <

∑∞
i=n+1

diam(X)

2i < ε.

• If an /∈ A, then we take bn+1 ∈ A and we choose bn+2 from f̃ −1(A), different from an+2, as in previous case. For
bk , k � n + 3, we can take any element from f̃ −1({bk−1}). Again for b = (b1, b2, b3, . . .), b ∈ D and d( a, b) <∑∞

i=n+1
diam(X)

2i < ε.

Case 2. There is a positive integer n such that dim(f̃ −n(A)) � 1. Now let H be defined as H = {(f n(x1), f
n−1(x1),

. . . , f (x1), x1, f
n(x2), f

n−1(x2), . . . , f (x2), x2, f
n(x3), f

n−1(x3), . . . , f (x3), x3, . . .) | x1, x2, x3, . . . ∈ f̃ −n(A)}.
Clearly for all positive integers k, f n(xk) ∈ f̃ n(A) ⊆ A and hence f̃ (f n(xk+1)) = X. Therefore xk ∈ f̃ (f n(xk+1)),
and hence H ⊆ D. Furthermore H is homeomorphic to the product space

∏∞
n=1 f̃ −n(A) (note that the func-

tion (x1, x2, x3, . . .) �→ (f n(x1), f
n−1(x1), . . . , f (x1), x1, f

n(x2), f
n−1(x2), . . . , f (x2), x2, f

n(x3), f
n−1(x3), . . . ,

f (x3), x3, . . .) is a homeomorphism from
∏∞

n=1 f̃ −n(A) to H ). As dim(f −n(A)) � 1, therefore by Theorem 4.1,

dim(H) = dim

( ∞∏
n=1

f̃ −n(A)

)
= ∞

and so dim(D) = ∞. �
Finally we prove Theorem 1.2.

Proof. Let D be the tree of the sequences {X}∞n=1, {f }∞n=1 and {A}∞n=1. By Lemma 3.10,

K̃ = K ∪
( ∞⋃

n=0

( ⋃
a∈D

L(a,n)

))
.

By Theorem 2.4, dim(K) � dim(X). By Theorem 3.11,
⋃

a∈D L(a,n) is homeomorphic to D × X for all integers
n = 0,1,2, . . . . By Lemma 4.2, only one of the following is true:



2778 I. Banič / Topology and its Applications 154 (2007) 2771–2778
(1) dim(D) = 0.
(2) dim(D) = ∞.

In the first case, when D is 0-dimensional, as
⋃

a∈D L(a,n) is homeomorphic to D ×X (by Theorem 3.11), it follows
from Theorem 2.10 that

dim

( ⋃
a∈D

L(a,n)

)
= dim(X).

By Theorems 3.7 and 3.11, each
⋃

a∈D L(a,n) is compact, hence it follows from Theorem 2.5 that

dim(K̃) = dim

(
K ∪

( ∞⋃
n=0

( ⋃
a∈D

L(a,n)

)))
= dim(X).

In the second case, when dim(D) = ∞, as D ⊆ K̃ , it follows that dim(K̃) = ∞. �
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