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Abstract

Probabilistic approaches have been applied to the theory of rough set in several forms, including decision-theoretic
analysis, variable precision analysis, and information-theoretic analysis. Based on rough membership functions and rough
inclusion functions, we revisit probabilistic rough set approximation operators and present a critical review of existing
studies. Intuitively, they are defined based on a pair of thresholds representing the desired levels of precision. Formally,
the Bayesian decision-theoretic analysis is adopted to provide a systematic method for determining the precision param-
eters by using more familiar notions of costs and risks. Results from existing studies are reviewed, synthesized and critically
analyzed, and new results on the decision-theoretic rough set model are reported.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In the standard rough set model proposed by Pawlak [26,27], the lower and upper approximations are
defined based on the two extreme cases regarding the relationships between an equivalence class and a set.
The lower approximation requires that the equivalence class is a subset of the set. For the upper approxima-
tion, the equivalence class must have a non-empty overlap with the set. A lack of consideration for the degree
of their overlap unnecessarily limits the applications of rough sets and has motivated many researchers to
investigate probabilistic generalizations of the theory [11,14,25,28–30,32,33,42–46,52,54,56–58,60,66,69].

Probabilistic approaches to rough sets have appeared in many forms, such as the decision-theoretic rough
set model [52,54,56–58], the variable precision rough set model [14,66,69], the Bayesian rough set model
[11,34,35], information-theoretic analysis [3,41], probabilistic rule induction [6,8,13,19–21,31,37–
39,64,65,67,68], and many related studies [44,45]. The extensive results increase our understanding of the the-
ory. At the same time, it seems necessary to provide a unified and comprehensive framework so that those
results can be put together into an integrated whole, rather than separated studies [54]. Most of the papers
in this special issue aim at such a goal. The current paper focuses specifically on the issues of probabilistic
approximations. The existing results are revisited and critically reviewed and new results are provided.
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Probabilistic rough set approximations can be formulated based on the notions of rough membership func-
tions [28] and rough inclusion [30]. Both notions can be interpreted in terms of conditional probabilities or a

posteriori probabilities. Threshold values, known as parameters, are applied to a rough membership function
or a rough inclusion to obtain probabilistic or parameterized approximations. Three probabilistic models have
been proposed and studied intensively. They are the decision-theoretic rough set model [52,54,56,58], the var-
iable precision rough set model [14,66], and the Bayesian rough set model [11,34,35]. The main differences
among those models are their different, but equivalent, formulations of probabilistic approximations and
interpretations of the required parameters.

The variable precision rough set model treats the required parameters as a primitive notion. The interpre-
tation and the process of determining the parameters are based on rather intuitive arguments and left to
empirical studies. There is a lack of theoretical and systematic studies and justifications on the choices of
the threshold parameters. In fact, a solution to this problem was reported earlier in a decision-theoretic frame-
work for probabilistic rough set approximations [52,56,58], based on the well-established Bayesian decision
procedure for classification [7]. Within the decision-theoretic framework, the required threshold values can
be easily interpreted and calculated based on more concrete notions, such as costs and risks. Unfortunately,
many researchers are still unaware of the decision-theoretic model and tend to estimate the parameters based
on tedious trial-and-error approaches. By explicitly showing the connections of the two models in this paper,
we hope to increase further understanding of the theoretical foundations of probabilistic approximations.

The Bayesian rough set model [11,34,35] attempts to provide an alternative interpretation of the required
parameters. The model is based on the Bayes’ rule that expresses the change from the a priori probability to
the a posteriori probability, and a connection between classification and hypothesis verification. Under specific
interpretations, the required parameters can be expressed in terms of various probabilities. It is not difficult to
establish connections between the probabilities used in the Bayesian rough set model and the costs used in the
decision-theoretic model. Additional parameters are introduced in the Bayesian rough set model. There
remains the question of how to interpret and determine the required parameters systematically.

With the objective of bringing together existing studies on probabilistic rough set approximations in a uni-
fied and comprehensive framework, the rest of the paper is organized into four parts. In Section 2, we review
the basic concepts of the standard rough set approximations. This establishes a basis and guidelines for var-
ious probabilistic generalizations. In Section 3, we examine the two fundamental notions of rough membership
functions and rough inclusions. They serve as a foundation on which probabilistic rough set approximations
can be developed. In Section 4, we critically review different formulations of probabilistic rough set approx-
imations. In Section 5, we explicitly show the conditions on a loss function so that many specific classes of
probabilistic rough set approximations introduced in Section 4 can be derived in the decision-theoretic model.

2. Standard rough set approximations

Suppose U is a finite and non-empty set called the universe. Let E � U · U be an equivalence relation on U,
i.e., E is reflexive, symmetric, and transitive. The basic building blocks of rough set theory are the equivalence
classes of E. For an element x 2 U, the equivalence class containing x is given by

½x�E ¼ fy 2 U jxEyg: ð1Þ

When no confusion arises, we also simply write [x]. The family of all equivalence classes is also known as the
quotient set of U, and is denoted by U/E = {[x]jx 2 U}. It defines a partition of the universe, namely, a family
of pairwise disjoint subsets whose union is the universe.

For an equivalence relation, the pair apr = (U, E) is called an approximation space [26,27]. In the approx-
imation space, we only have a coarsened view of the universe. Each equivalence class is considered as a whole
granule instead of many individuals [51]. Equivalence classes are the elementary definable, measurable, or
observable sets in the approximation space [26,27,50]. By taking unions of elementary definable sets, one
can derive larger definable sets. The family of all definable sets contains the empty set ;, the whole set U,
and is closed with respect to set complement, intersection, and union. It is an r-algebra over U. Furthermore,
r(U/E) defines uniquely a topological space (U, r(U/E)), in which r(U/E) is the family of all open and closed
sets [26].
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In general, the sigma-algebra r(U/E) is only a subset of the power set 2U. An interesting issue is therefore
the representation of undefinable sets in 2U � r(U/E) in terms of definable sets, in order to infer knowledge
about undefinable sets. Similar to the interior and closure operators in topological spaces, one can define
rough set approximation operators [26,27]. For a subset A � U, its lower approximation is the greatest defin-
able set contained in A, and its upper approximation is the least definable set containing A. That is, for A � U,

aprðAÞ ¼
[
fX jX 2 rðU=EÞ;X � Ag;

aprðAÞ ¼
\
fX jX 2 rðU=EÞ;A � Xg:

ð2Þ

In the study of rough set theory, one often uses the following equivalent definitions [49]:

aprðAÞ ¼ fx 2 U j8y 2 U ½xEy ) y 2 A�g;
aprðAÞ ¼ fx 2 U j9y 2 U ½xEy; y 2 A�g

ð3Þ

and

aprðAÞ ¼ fx 2 U j½x� � Ag;
aprðAÞ ¼ fx 2 U j½x� \ A 6¼ ;g:

ð4Þ

An element is in the lower approximation of A if all of its equivalent elements are in A, and an element is in the
upper approximation of A if at least one of its equivalent elements is in A.

Definition given by Eq. (2) is referred to as the subsystem based definition. Definitions given by Eqs. (3) and
(4) are referred to as the element based definitions [53]. Equivalently, from Eq. (4), one can also have a granule
based definition:

aprðAÞ ¼
[
f½x� 2 U=Ej½x� � Ag;

aprðAÞ ¼
[
f½x� 2 U=Ej½x� \ A 6¼ ;g:

ð5Þ

It provides a new interpretation of rough set approximations. The lower approximation is the union of equiv-
alence classes that are subsets of A and the upper approximation is the union of equivalence classes that have a
non-empty intersection with A.

Let Ac denote the complement of the set A. Some of the useful properties satisfied by the pair of approx-
imation operators are summarized below [26,27,49]: for A, B � U,

ðL0Þ aprðAÞ ¼ ðaprðAcÞÞc;
ðU0Þ aprðAÞ ¼ ðaprðAcÞÞc;
ðL1Þ aprðA \ BÞ ¼ aprðAÞ \ aprðBÞ;
ðU1Þ aprðA [ BÞ ¼ aprðAÞ [ aprðBÞ;
ðL2Þ aprðA [ BÞ � aprðAÞ [ aprðBÞ;
ðU2Þ aprðA \ BÞ � aprðAÞ \ aprðBÞ;
ðL3Þ A � B) aprðAÞ � aprðBÞ;
ðU3Þ A � B) aprðAÞ � aprðBÞ;
ðL4Þ aprðAÞ � A;

ðU4Þ A � aprðAÞ;
ðL5Þ aprðAÞ ¼ aprðaprðAÞÞ;
ðU5Þ aprðAÞ ¼ aprðaprðAÞÞ;
ðL6Þ aprðAÞ ¼ aprðaprðAÞÞ;
ðU6Þ aprðAÞ ¼ aprðaprðAÞÞ;
ðL7Þ aprðAÞ ¼ A() A 2 rðU=EÞ;
ðU7Þ aprðAÞ ¼ A() A 2 rðU=EÞ:
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Properties (L0) and (U0) state that the lower and upper approximations are a pair of dual operators. Prop-
erties (L1) and (U1) show the distributivity of apr over set intersection, and apr over set union. Properties
(L2) and (U2) state that the lower approximation operator is not necessarily distributive over set union,
and the upper approximation operator is not necessarily distributive over set intersection. According to prop-
erties (L3)and (U3), both operators are monotonic with respect to set inclusion. By properties (L4) and (U4), a
set lies within its lower and upper approximations. The next two pairs of properties state that the result of
applying a consecutive approximation operators is the same as the result of the operator closest to A. Prop-
erties (L7) and (U7) state that a set and its approximations are the same if and only if the set is a definable set
in r(U/E).

Given a subset A � U, the universe can be divided into three disjoint regions, namely, the positive, the neg-
ative, and the boundary regions [26]:

POSðAÞ ¼ aprðAÞ;
NEGðAÞ ¼ POSðAcÞ ¼ ðaprðAÞÞc;
BNDðAÞ ¼ aprðAÞ � aprðAÞ:

ð6Þ

An element of the positive region POS(A) definitely belongs to A, an element of the negative region
NEG(A) definitely does not belong to A, and an element of the boundary region BND(A) only possibly
belongs to A.

The three regions and the approximation operators uniquely determine each other. One may therefore use
any of the three pairs to represent a subset A � U:

ðPOSðAÞ;POSðAÞ [ BNDðAÞÞ ¼ ðaprðAÞ; aprðAÞÞ;
ðPOSðAÞ;BNDðAÞÞ ¼ ðaprðAÞ; aprðAÞ � aprðAÞÞ;
ðPOSðAÞ;NEGðAÞÞ ¼ ðaprðAÞ; ðaprðAÞÞcÞ:

Each of them makes explicit certain particular aspect of the approximations. The first pair is the most com-
monly used one, defining the lower and upper bounds within which lies the set A. It is related to the notions of
the core and support of a fuzzy set. The second pair explicitly gives the boundary elements under the approx-
imations. The third pair focuses on what is definitely in A, in contrast to what is definitely not in A.

3. Rough membership functions and rough inclusion

Since the lower and upper approximations are dual operators, it is sufficient to consider one of them.
According to Eqs. (3) and (4), generalized approximation operators can be introduced by relaxing the
conditions:

ðLCÞ 8y 2 U ½xEy ) y 2 A�;
ðSCÞ ½x� � A:

For the logic condition (LC), one can use probabilistic versions. The results from graded modal logic [10,24],
variable precision logic [22], and probabilistic logic [16] may be adopted. For the set-theoretic condition (SC),
we may adopt the notion of the degree of set inclusion from many studies, such as approximate reasoning
[46,61] and rough mereology [30].

3.1. Rough membership functions

The concept of rough membership functions is based on the generalization of the strict logic condition (LC)
into a probabilistic version. More specifically, the rough membership value of an element x, with respect to a
set A � U, is typically defined in terms of a measure of the degree to which the logic condition (LC) is true.

The notion of a rough membership function was explicitly introduced by Pawlak and Skowron [28],
although it had been used and studied earlier by Wong and Ziarko [43], Pawlak et al. [29], Yao et al. [58],
Yao and Wong [56], and many authors.
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Let P:2U! [0, 1] be a probability function defined on the power set 2U, and E an equivalence relation on U.
The triplet apr = (U, E, P) is called a probabilistic approximation space [29,43]. For a subset A � U, its rough
membership function is given by the conditional probability as follows:

lAðxÞ ¼ P ðAj½x�Þ: ð7Þ
Rough membership value of an element belonging to A is the probability of the element in A given that the
element is in [x]. With the probabilistic interpretation of rough membership function, we will use lA(x) and
P(Aj[x]) interchangeably in subsequent discussions.

For a finite universe, the rough membership function is typically computed by Pawlak and Skowron [28]:

lAðxÞ ¼
jA \ ½x�j
j½x�j ; ð8Þ

where jAj denotes the cardinality of the set A.
Rough membership functions satisfy the following properties [28,55]:

ðm1Þ lUðxÞ ¼ 1;

ðm2Þ l;ðxÞ ¼ 0;

ðm3Þ xEy ) lAðxÞ ¼ lAðyÞ;
ðm4Þ x 2 A) lAðxÞ 6¼ 0;

ðm5Þ x 62 A) lAðxÞ 6¼ 1;

ðm6Þ lAðxÞ ¼ 1() ½x� � A;

ðm7Þ lAðxÞ > 0() ½x� \ A 6¼ ;;
ðm8Þ A � B) lAðxÞ 6 lBðxÞ;
ðm9Þ lAcðxÞ ¼ 1� lAðxÞ;
ðm10Þ lA[BðxÞ ¼ lAðxÞ þ lBðxÞ � lA\BðxÞ;
ðm11Þ A \ B ¼ ; ) lA[BðxÞ ¼ lAðxÞ þ lBðxÞ;
ðm12Þ maxð0; lAðxÞ þ lBðxÞ � 1Þ 6 lA\BðxÞ 6 minðlAðxÞ; lBðxÞÞ;
ðm13Þ maxðlAðxÞ; lBðxÞÞ 6 lA[BðxÞ 6 minð1; lAðxÞ þ lBðxÞÞ:

Those properties easily follow from the properties of a probability function. While (m1)–(m8) show the prop-
erties of rough membership functions, (m9)–(m13) show the properties of set-theoretic operations with rough
membership functions. The property (m3) is particularly interesting, which shows that elements in the same
equivalence class must have the same degree of membership. In other words, equivalent elements must have
the same membership value.

3.2. Rough inclusion

The concept of rough inclusion generalizes the set-theoretic condition (SC) in order to capture graded
inclusion. The degree to which [x] is included in A depends on both the overlap and non-overlap parts of
[x] and A.

In the rough set theory literature, the notion of rough inclusion, introduced explicitly by Polkowski and
Skowron [30], has been studied using other names, including relative degree of misclassification [66], majority
inclusion relation [66], vague inclusion [33], inclusion degrees [46,60,61], and so on.

Recall that the notion of rough membership functions is a generalization of the logic condition (LC). By the
equivalence of the two conditions (LC) and (SC), we can extend the notion of a rough membership function to
rough inclusion [30,33]. For the maximum membership value 1, we have [x] � A, namely, [x] is a subset of A.
For the minimum membership value 0, we have [x] \ A = ;, or equivalently [x] � Ac, namely, [x] is totally not
a subset of A. For a value between 0 and 1, it may be interpreted as the degree to which [x] is a subset of A.
Thus, one obtains a measure of graded inclusion of two sets [30,32,33,61]:
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vðBjAÞ ¼ jA \ Bj
jAj : ð9Þ

For the case where A = ;, we define v(Bj;) = 1, namely, the empty set is a subset of any set. Accordingly, the
degree to which the equivalence class [x] is included in a set A is given by

vð½Aj½x�Þ ¼ j½x� \ Aj
j½x�j : ð10Þ

It follows that v(Aj[x]) = lA(x). From the properties of a rough membership function, one can easily obtain
the corresponding properties of rough inclusion. Similar to a rough membership function, the value of v(BjA)
can be interpreted as the conditional probability P(BjA) that a randomly selected element from A belongs to
B. There is a close connection between graded inclusion and fuzzy set inclusion [33,59].

In the development of the variable precision rough set model, Ziarko [66] used an inverse measure of v

called the relative degree of misclassification:

cðBjAÞ ¼ 1� vðBjAÞ ¼ 1� jA \ Bj
jAj : ð11Þ

Bryniarski and Wybraniec-Skardowska [4] proposed to use a family of inclusion relations called context
relations, indexed by a bounded and partially ordered set called rank set. The unit interval [0, 1] can be treated
as a rank set. From a measure of graded inclusion, a context relation with respect to a value a 2 [0, 1] can be
defined by

�a ¼ fðA;BÞjvðBjAÞP ag: ð12Þ
If one interprets v as a fuzzy relation on 2U, the relation �a may be interpreted as an a-cut of the fuzzy relation.
The use of a complete lattice, or a rank set, corresponds to the study of L-fuzzy sets and L-fuzzy relations in
the theory of fuzzy sets [15].

Many proposals have been made to generalize and characterize the notion of graded inclusion. Skowron
and Stepaniuk [33] suggested that graded (vague) inclusion of sets may be measured by a function,
v:2U · 2U! [0, 1], with monotonicity regarding the first argument, namely, for A, B, C � U, v(BjA) 6 (CjA)
for any B � C. In this case, the function defined by Eq. (9) is an example of such a measure. Skowron and
Polkowski [32] suggested new properties for rough inclusion, in addition to the monotonicity. The unit inter-
val [0, 1] can also be generalized to a complete lattice in the definition of rough inclusion [30]. Rough inclusion
is only an example for measuring degrees of inclusion in rough mereology. A more detailed discussion on
rough mereology and related concepts can be found in [30,32].

Zhang and Leung [61] and Xu et al. [46] proposed a generalized notion of inclusion degree in the context of
a partially ordered set. Let (L, �) be a partially ordered set. A function D: L · L! [0, 1] is called a measure of
inclusion degree if it satisfies the following properties [46]: for a, b, c 2 L,

ðiÞ 0 6 DðbjaÞ 6 1;

ðiiÞ a � b) Dðb j aÞ ¼ 1;

ðiiiÞ a � b � c) DðajbÞP DðajcÞ;
ðivÞ a � b) DðajcÞ 6 DðbjcÞ:

Property (i) is the normalization condition. Property (ii) ensures that the degree of inclusion reaches the max-
imum value for the standard inclusion. Properties (iii) and (iv) state two types of monotonicity. When the con-
cept of inclusion degree is applied to the partially ordered set (2U, �), we immediately obtain a rough inclusion
[60].

4. Probabilistic rough set approximations

The standard approximation operators ignore the detailed statistical information of the overlap of an
equivalence class and a set [29,43]. By exploring such information, probabilistic approximation operators
can be introduced.
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4.1. Standard approximations as the core and the support of a fuzzy set

According to properties (m6) and (m7) of rough membership functions, lA(x) = 1 if and only if for all
y 2 U, xEy implies y 2 A, and lA(x) > 0 if and only if there exists a y 2 U such that xEy and y 2 A. A rough
membership function lA may be interpreted as a special kind of fuzzy membership function. Under this inter-
pretation, it is possible to re-express the standard rough set approximations [28,29,43], and to establish their
connection to the core and support of a fuzzy set [55], as follows:

aprðAÞ ¼ fx 2 U jlAðxÞ ¼ 1g ¼ coreðlAÞ;
aprðAÞ ¼ fx 2 U jlAðxÞ > 0g ¼ supportðlAÞ:

ð13Þ

That is, the lower and upper approximations of a set A are in fact the core and support of the fuzzy set lA,
respectively.

In the theory of fuzzy sets, fuzzy set intersection and union are commonly defined in terms of a pair of t-
norm and t-conorm [15]. Suppose fuzzy set complement is defined by 1 � (Æ). For a pair of t-norm and t-con-
orm, core and support of fuzzy sets satisfy the same properties of (L0)–(L6), and (U0)–(U6), except in which
the lower approximation is replaced by the core, and the upper approximation by the support, respectively
[55]. If the core and support are interpreted as a qualitative representation of a fuzzy set, one may conclude
that the theories of fuzzy sets and rough sets share the same qualitative properties.

4.2. The 0.5 probabilistic approximations

An attempt to use probabilistic information for approximations was suggested by Pawlak et al. [29]. Their
model is based essentially on the majority rule. An element x is put into the lower approximation of A if the
majority of its equivalent elements [x] are in A. That is,

apr0:5 ¼ fx 2 U jPðAj½x�Þ > 0:5Þ;
apr0:5 ¼ fx 2 U jPðAj½x�ÞP 0:5Þ:

ð14Þ

The lower and upper 0.5 probabilistic approximation operators are dual to each other. The boundary region
consists of those elements whose conditional probabilities are exactly 0.5, which represents maximal
uncertainty.

4.3. Probabilistic approximations as the a-cuts of a fuzzy set

The standard approximations and 0.5 probabilistic approximations use special points of the probability,
namely, the two extreme points 0 and 1, and the middle point 0.5. By considering other values, Yao and Wong
[56] introduced more general probabilistic approximations in the decision-theoretic model.

In the theory of fuzzy sets, a-cut and strong a-cut are important notions [15]. For a 2 [0, 1], the a-cut and
strong a-cut are defined, respectively, by

ðlAÞa ¼ fx 2 U jlAðxÞP ag;
ðlAÞaþ ¼ fx 2 U jlAðxÞ > ag:

ð15Þ

Using a-cuts, the standard rough set approximations can be expressed apr(A) = (lA)1 and aprðAÞ ¼ ðlAÞ0þ .
The 0.5 probabilistic approximations can be expressed as apr0:5ðAÞ ¼ ðlAÞ0:5þ and apr0:5ðAÞ ¼ ðlAÞ0:5.

For generalized probabilistic approximations, a pair of parameters a, b 2 [0, 1] with a P b are used. The
condition a P b ensures that the lower approximation is smaller than the upper approximation in order to
be consistent with existing approximation operators. Yao and Wong [56] considered two separate cases,
0 6 b < a 6 1 and 0 5 b = a. For 0 6 b < a 6 1, the standard rough approximations are extended by the def-
inition [56]:

apra ¼ fx 2 U jP ðAj½x�ÞP aÞ;
aprb ¼ fx 2 U jP ðAj½x�Þ > bÞ:

ð16Þ
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For a = b 5 0, the 0.5 probabilistic approximations are extended by the definition [56]:

apra ¼ fx 2 U jP ðAj½x�Þ > aÞ;
apra ¼ fx 2 U jP ðAj½x�ÞP aÞ:

ð17Þ

For 0 < b 6 a < 1, Wei and Zhang [42] suggested another version in which the lower approximation is defined
by > and the upper approximation by P instead. One advantage of their definition is that we do not need to
have two separated cases. However, their definition cannot produce the standard rough set approximations.
As will be shown in the following section, both versions are derivable from the decision-theoretic model if dif-
ferent tie-breaking criteria are used.

With a pair of arbitrary a and b, the probabilistic approximation operators are not necessarily dual to each
other. In order to obtain a pair of dual operators, we set b ¼ 1� a. Then, the lower and upper probabilistic
approximation operators are dual operators.

Although the above formulation is motivated by the notion of a-cuts in fuzzy set theory, similar
notions have in fact been considered in many fields, such as variable precision (probabilistic) logic [22],
probabilistic modal logic [10], graded/fuzzy modal logic [24], and many others. The use of thresholds
on probability values for making a practical decision is in fact a common method in many fields, such
as pattern recognition and classification [7], machine learning [23], data mining [2], and information retrie-
val [40], to name just a few.

Consider the condition a > b. Based on the definition of Eq. (16), the probabilistic rough set operators sat-
isfy the following properties [56,66]: for 0 6 b < a 6 1, a 0 2 (0, 1] and b 0 2 [0, 1),

ðPL0Þ apraðAÞ ¼ ðapr1�aðAcÞÞc;
ðPU0Þ apraðAÞ ¼ ðapr1�aðAcÞÞc;
ðPL1Þ apraðA \ BÞ � apraðAÞ \ apraðBÞ;
ðPU1Þ aprbðA [ BÞ � aprbðAÞ [ aprbðBÞ;
ðPL2Þ apraðA [ BÞ � apraðAÞ [ apraðBÞ;
ðPU2Þ aprbðA \ BÞ � aprbðAÞ \ aprbðBÞ;
ðPL3Þ A � B) apraðAÞ � apraðBÞ;
ðPU3Þ A � B) aprbðAÞ � aprbðBÞ;
ðPLU4Þ apraðAÞ � aprbðAÞ;
ðPL5Þ apraðAÞ ¼ aprbðapraðAÞÞ;
ðPU5Þ aprbðAÞ ¼ apraðaprbðAÞÞ;
ðPL6Þ apraðAÞ ¼ apra0 ðapraðAÞÞ;
ðPU6Þ aprbðAÞ ¼ aprb0 ðaprbðAÞÞ;
ðPL7Þ apraðAÞ ¼ A() A 2 rðU=EÞ;
ðPU7Þ aprbðAÞ ¼ A() A 2 rðU=EÞ:

They are counterparts of the properties (L0)–(L7) and (U0)–(U7) of the standard rough set approximation
operators. As stated earlier, apra and aprb are defined differently for the case when a = b, where similar prop-
erties can be obtained. For probabilistic approximation operators, one can have additional properties: for
a, a 0 2 (0, 1] and b, b 0 2 [0, 1),

ðPL8Þ a P a0 ) apraðAÞ � apra0 ðAÞ;
ðPU8Þ b P b0 ) aprbðAÞ � aprb0 ðAÞ;
ðPL9Þ aprðAÞ ¼ apr1ðAÞ;
ðPU9Þ aprðAÞ ¼ apr0ðAÞ:
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Properties (PL8) and (PU8) show that both probabilistic approximation operators are monotonic decreas-
ing with respect to the parameters a and b. Properties (PL9) and (PU9) establish the connection between prob-
abilistic approximation operators and the standard approximation operators.

4.4. The variable precision and parameterized rough set models

With the introduction of rough inclusion, the standard approximation space can be generalized to
apr = (U, I, v), where I:U! 2U is an information function and v is a measure of rough inclusion [25,33].
The mapping [Æ] that maps an element to its equivalence class is an instance of the information function I.
By applying threshold values on a rough inclusion v, it is possible to derive variable precision or parameterized
approximations [11,33,66] by generalizing Eq. (4) of the element based definition or Eq. (5) of the granule
based definition. The variable precision rough set model is one of the well known such formulations [66].

In formulating the variable precision rough set model, Ziarko [66] used the relative degree of misclassifi-
cation function c and the granule based definition of approximations. To be consistent with the previous
and subsequent discussions, we present a slightly different, but equivalent, formulation based on the rough
inclusion,

vðAj½x�Þ ¼ jA \ ½x�jj½x�j ¼ P ðAj½x�Þ; ð18Þ

and the element based definition. As mentioned in the earlier discussion, based on the rough inclusion v, we
can define different levels of set inclusion [4,66]:

½x��aA() vðAj½x�ÞP a() P ðAj½x�ÞP a; ð19Þ
where a 2 (0, 1].

When defining the lower approximation, the majority requirement of the variable precision rough set model
suggests that more than 50% of elements in an equivalence class [x] must be in A in order for x to be in the
lower approximation. In other words, the set-theoretic condition (SC) must hold to a degree greater than 0.5.
We need to choose the threshold value a in the range (0.5, 1]. By generalizing Eq. (4), the a-level lower approx-
imation is given by: for a 2 (0.5, 1],

apraðAÞ ¼ fx 2 U j½x��aAg ¼ fx 2 U jP ðAj½x�ÞP ag: ð20Þ

The corresponding upper approximation is defined based on the dual of the lower approximation:

apr1�aðAÞ ¼ ðapraðAcÞÞc ¼ fx 2 U jP ðAj½x�Þ > 1� ag: ð21Þ

The condition 0.5 < a 6 1 implies 0 6 1 � a < 0.5. It follows that the lower approximation is a subset of the
upper approximation. The pair of parameters (a, 1 � a) is referred to as the symmetric bounds, as it produces
a pair of dual approximation operators ðapra; apr1�aÞ.

Variable precision rough sets with asymmetric bounds were examined by Katzberg and Ziarko [14]. It is only
required that 0 6 b < a 6 1, where b is used to define the upper approximation and a is used to define the lower
approximation, as defined in Eq. (16). Although apra and aprb are not necessarily dual to each other, Yao and
Wong [56] showed that the two pairs of operators, ðapra; aprbÞ and ðapr1�b; apr1�aÞ are complement to each other.

For the special rough inclusion v(Aj[x]) = P(Aj[x]), the probabilistic approximations from the decision-the-
oretic model and the variable precision model are equivalent. The main differences are their formulations. The
decision-theoretic model systematically derives many types of approximation operators and provides theoret-
ical guidelines for the estimation of required parameters, while the variable precision model relies much on
intuitive arguments.

Śle�zak and Ziarko [35] and Śle�zak [34] introduced the Bayesian rough set model in an attempt to provide an
alternative interpretation of the required parameters in the variable precision rough set model. By setting the
parameters as the a priori probabilities, a pair of probabilistic approximations is defined by [35]: for A � U,

aprPðAÞðAÞ ¼ fx 2 U jP ðAj½x�Þ > P ðAÞg;
aprPðAÞðAÞ ¼ fx 2 U jP ðAj½x�ÞP P ðAÞg:

ð22Þ
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They correspond to the case where a = b = P(A). Śle�zak [34] examined a more complicated version of Bayes-
ian rough set approximations by comparing probabilities P([x]jA) and P([x]jAc):

baprd1
ðAÞ ¼ fx 2 U jP ð½x�jAÞP d1P ð½x�jAcÞg;

baprd2
ðAÞ ¼ fx 2 U jP ð½x�jAÞP d2P ð½x�jAcÞg;

ð23Þ

where d1 and d2 are parameters. Based on the Bayes’ rule, one can easily find their corresponding variable pre-
cision approximations [34]. The corresponding parameters of the variable precision approximations are ex-
pressed in terms the probability P(A), d1 and d2. In comparison with the variable precision model, the new
parameters of the Bayesian rough set model are less intuitive and their estimation becomes a challenge.

Greco et al. [11,12] observed that rough membership functions and rough inclusions, as defined by the con-
ditional probabilities P(Aj[x]), consider the overlap of A and [x] and do not explicitly consider the overlap of A

and [x]c. By considering both overlaps, they introduced a relative rough membership function:

l̂AðxÞ ¼
jA \ ½x�j
j½x�j �

jA \ ½x�cj
j½x�cj ¼ PðAj½x�Þ � P ðAj½x�cÞ: ð24Þ

The relative rough membership function is an instance of a class of measures known as the Bayesian con-
firmation measures [9]. By incorporating a confirmation measure to the existing parameterized models, they
proposed two-parameterized approximations [11,12]:

apra;a ¼ fx 2 U jP ðAj½x�ÞP a and bcð½x�;AÞP ag;
aprb;b ¼ fx 2 U jP ðAj½x�Þ > b or bcð½x�;AÞ > bg;

ð25Þ

where bc(Æ) is a Bayesian confirmation measure, and a and b are parameters in the range of bc(Æ). They have
shown that the variable precision and Bayesian rough set models are special cases. More details of the two-
parameterized approximation models can be found in their paper in this issue [12]. The extra parameters
may make the model more effective, which at the same time leads to more difficulties in estimating those
parameters.

5. The decision-theoretic rough set model

A fundamental difficulty with the probabilistic, variable precision, and parameterized approximations
introduced in the last section is the physical interpretation of the required threshold parameters, as well as
systematic methods for setting the parameters. This difficulty has in fact been resolved in the decision-theoretic
model of rough sets proposed earlier [52,56,58]. This section reviews and summarizes the main results of the
decision-theoretic framework and its connections to other studies. It draws extensive results from two previous
papers [52,56] on the one hand and re-interprets these results on the other. For clarity, we only consider the
element based definition of probabilistic approximation operators. The same argument can be easily applied
to other cases.

5.1. An overview of the Bayesian decision procedure

Bayesian decision procedure deals mainly with making decision with minimum risk or cost under probabi-
listic uncertainty. We present an overview by following the discussion in the textbook by Duda and Hart [7], in
which more detailed information can be found.

Let X = {w1, . . . , ws} be a finite set of s states, and let A = {a1, . . . , am} be a finite set of m possible actions.
Let P(wjjx) be the conditional probability of an object x being in state wj given that the object is described by
x. Without loss of generality, we simply assume that these conditional probabilities P(wjjx) are known.

Let k(aijwj) denote the loss, or cost, for taking action ai when the state is wj. For an object with description
x, suppose action ai is taken. Since P(wjjx) is the probability that the true state is wj given x, the expected loss
associated with taking action ai is given by

RðaijxÞ ¼
Xs

j¼1

kðaijwjÞP ðwjjxÞ: ð26Þ
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The quantity R(aijx) is also called the conditional risk. Given description x, a decision rule is a function s(x)
that specifies which action to take. That is, for every x,s(x) assumes one of the actions, a1, . . . , am. The overall
risk R is the expected loss associated with a given decision rule. Since R(s(x)jx) is the conditional risk associ-
ated with action s(x), the overall risk is defined by

R ¼
X

x

RðsðxÞjxÞP ðxÞ; ð27Þ

where the summation is over the set of all possible descriptions of objects, i.e., the knowledge represen-
tation space. If s(x) is chosen so that R(s(x)jx) is as small as possible for every x, the overall risk R is
minimized.

The Bayesian decision procedure can be formally stated as follows. For every x, compute the conditional
risk R(aijx) for i = 1, . . . , m defined by Eq. (26), and then select the action for which the conditional risk is
minimum. If more than one action minimizes R(aijx), any tie-breaking rule can be used.

5.2. Probabilistic rough set approximations

In an approximation space apr = (U, E), all elements in the equivalence class [x] share the same description
[27,43]. For a given subset A � U, the approximation operators partition the universe into three disjoint clas-
ses POS(A), NEG(A), and BND(A). Furthermore, one decides how to assign x into the three regions based on
the conditional probability P(Aj[x]). It follows that the Bayesian decision procedure can be immediately
applied to solve this problem [52,56,58].

For deriving the probabilistic approximation operators, we have the following problem. The set of states is
given by X = {A, Ac} indicating that an element is in A and not in A, respectively. We use the same symbol to
denote both a subset A and the corresponding state. With respect to three regions, the set of actions is given by
A = {a1, a2, a3}, where a1, a2, and a3 represent the three actions in classifying an object, namely, deciding
POS(A), deciding NEG(A), and deciding BND(A), respectively.

Let k(aijA) denote the loss incurred for taking action ai when an object in fact belongs to A, and let k(aijAc)
denote the loss incurred for taking the same action when the object does not belong to A. The rough mem-
bership values lA(x) = P(Aj[x]) and lAcðxÞ ¼ PðAcj½x�Þ ¼ 1� P ðA j ½x�Þ are in fact the probabilities that an
object in the equivalence class [x] belongs to A and Ac, respectively. The expected loss R(aij[x]) associated with
taking the individual actions can be expressed as

Rða1j½x�Þ ¼ k11PðAj½x�Þ þ k12P ðAcj½x�Þ;
Rða2j½x�Þ ¼ k21PðAj½x�Þ þ k22P ðAcj½x�Þ;
Rða3j½x�Þ ¼ k31PðAj½x�Þ þ k32P ðAcj½x�Þ;

ð28Þ

where ki1 = k(aijA), ki2 = k(aijAc), and i = 1, 2, 3. The Bayesian decision procedure leads to the following min-
imum-risk decision rules:

ðPÞ If Rða1j½x�Þ 6 Rða2j½x�Þ and Rða1j½x�Þ 6 Rða3j½x�Þ; decide POSðAÞ;
ðNÞ If Rða2j½x�Þ 6 Rða1j½x�Þ and Rða2j½x�Þ 6 Rða3j½x�Þ; decide NEGðAÞ;
ðBÞ If Rða3j½x�Þ 6 Rða1j½x�Þ and Rða3j½x�Þ 6 Rða2j½x�Þ; decide BNDðAÞ:

Tie-breaking rules should be added so that each element is classified into only one region.
Since P ðAj½x�Þ þ P ðAcj½x�Þ ¼ 1, the above decision rules can be simplified so that only the probabilities

P(Aj[x]) are involved. We can classify any object in the equivalence class [x] based only on the probabil-
ities P(Aj[x]), i.e., the rough membership values, and the given loss function kij, i = 1, 2, 3 and j = 1, 2.

Consider a special kind of loss functions with k11 6 k31 < k21 and k22 6 k32 < k12. That is, the loss of
classifying an object x belonging to A into the positive region POS(A) is less than or equal to the loss
of classifying x into the boundary region BND(A), and both of these losses are strictly less than the loss
of classifying x into the negative region NEG(A). The reverse order of losses is used for classifying an
object that does not belong to A. For this type of loss functions, the minimum-risk decision rules (P)–
(B) can be written as

Y. Yao / Internat. J. Approx. Reason. 49 (2008) 255–271 265



ðPÞ If P ðAj½x�ÞP c and P ðAj½x�ÞP a; decide POSðAÞ;
ðNÞ If P ðAj½x�Þ 6 b and P ðAj½x�Þ 6 c; decide NEGðAÞ;
ðBÞ If b 6 P ðAj½x�Þ 6 a; decide BNDðAÞ;

where

a ¼ k12 � k32

ðk31 � k32Þ � ðk11 � k12Þ
;

c ¼ k12 � k22

ðk21 � k22Þ � ðk11 � k12Þ
;

b ¼ k32 � k22

ðk21 � k22Þ � ðk31 � k32Þ
:

ð29Þ

By the assumptions, k11 6 k31 < k21 and k22 6 k32 < k12, it follows that a 2 (0, 1], c 2 (0, 1), and b 2 [0, 1).
If a loss function with k11 6 k31 < k21 and k22 6 k32 < k12 further satisfies the condition:

ðk12 � k32Þðk21 � k31ÞP ðk31 � k11Þðk32 � k22Þ; ð30Þ
then a P c P b. The condition ensures that probabilistic rough set approximations are consistent with the
standard rough set approximations. In other words, the lower approximation is a subset of the upper approx-
imation, and the boundary region may be non-empty.

The physical meaning of condition (30) may be interpreted as follows. Let l = (k12 � k32)(k21 � k31) and
r = (k31 � k11)(k32 � k22). While l is the product of the differences between the cost of making an incorrect clas-
sification and cost of classifying an element into the boundary region, r is the product of the differences
between the cost of classifying an element into the boundary region and the cost of a correct classification.
A larger value of l, or equivalently a smaller value of r, can be obtained if we move k32 away from k12, or move
k31 away from k21. In fact, the condition can be intuitively interpreted as saying that cost of classifying an ele-
ment into the boundary region is closer to the cost of a correct classification than to the cost of an incorrect
classification. Such a condition seems to be reasonable.

When a > b, we have a > c > b. After tie-breaking, we obtain the decision rules:

ðP1Þ If P ðAj½x�ÞP a; decide POSðAÞ;
ðN1Þ If P ðAj½x�Þ 6 b; decide NEGðAÞ;
ðB1Þ If b < PðAj½x�Þ < a; decide BNDðAÞ:

Based on the relationship between approximations and the three regions, we obtain the probabilistic
approximations:

apraðAÞ ¼ fx 2 U jP ðAj½x�ÞP ag;
aprbðAÞ ¼ fx 2 U jP ðAj½x�Þ > bg:

When a = b, we have a = c = b. In this case, we use the decision rules:

ðP2Þ If P ðAj½x�Þ > a; decide POSðAÞ;
ðN2Þ If P ðAj½x�Þ < a; decide NEGðAÞ;
ðB2Þ If P ðAj½x�Þ ¼ a; decide BNDðAÞ:

For the second set of decision rules, we use a tie-breaking criterion so that the boundary region may be non-
empty. Probabilistic approximations can be obtained, which is similar to the 0.5 probabilistic approximations
introduced by Pawlak et al. [29].

As an example to illustrate the probabilistic approximations, consider a loss function:

k12 ¼ k21 ¼ 4; k31 ¼ k32 ¼ 1; k11 ¼ k22 ¼ 0: ð31Þ

It states that there is no cost for a correct classification, 4 units of cost for an incorrect classification, and 1 unit
cost for classifying an object into the boundary region. From Eq. (29), we have a = 0.75, b = 0.25 and c = 0.5.
By decision rules (P1)-(B1), we have a pair of dual approximation operators apr0.75 and apr0:25.
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In general, the relationships between a loss function k and the pair of parameters (a, b) can be established.
For a loss function with k11 6 k31 < k21 and k22 6 k32 < k12, we have [52]:

• a is monotonic non-decreasing with respect to k12 and monotonic non-increasing with respect to k32.
• If k11 < k31, a is strictly monotonic increasing with respect to k12 and strictly monotonic decreasing with

respect to k32.
• a is strictly monotonic decreasing with respect to k31 and strictly monotonic increasing with respect to

k11.
• b is monotonic non-increasing with respect to k21 and monotonic non-decreasing with respect to k31.
• If k22 < k32, b is strictly monotonic decreasing respect to k21 and strictly monotonic increasing with respect

to k31.
• b is strictly monotonic increasing with respect to k32 and strictly monotonic decreasing with respect to k22.

Such connections between the required parameters of probabilistic rough set approximations and loss func-
tions have significant implications in applying the decision-theoretic model of rough sets. For example, if we
increase the cost of an incorrect classification k12 and keep other costs unchanged, the value a would not be
decreased. Parameters a and b are determined from a loss function. One may argue that a loss function may be
considered as a set of parameters. However, in contrast to the standard threshold values, they are not abstract
notions, but have an intuitive interpretation. One can easily interpret and measure loss or cost in a real appli-
cation. In fact, the results and ideas of the decision-theoretic model have been successfully applied to many
fields, including data analysis and data mining [5,42,44,62], information retrieval [17,36], feature selection
[48], web-based support systems [47], intelligent agents [18], and email classifications [63]. Some authors have
generalized the decision-theoretic model to multiple regions [1].

5.3. Derivations of existing probabilistic approximations

By imposing various conditions on a loss function, we can easily derive other more specific probabilistic
rough set approximations introduced by many researchers.

5.3.1. Probabilistic rough set approximations

In the development of decision-theoretic model, we have considered the basic condition:

ðBÞ k11 6 k31 < k21; k22 6 k32 < k12:

From the condition (B), we cannot infer the desired relationship between a and b. In order to make sure
that a P b, we have further imposed a condition:

ðGÞ ðk12 � k32Þðk21 � k31ÞP ðk31 � k11Þðk32 � k22Þ:
A loss function satisfying both (B) and (G) guarantees that a P b. We therefore obtain the variable pre-

cision rough set approximation with asymmetric bounds [14]. The lower and upper approximations, apra and
aprb, are not necessarily dual operators.

5.3.2. Majority based probabilistic rough set approximations
In addition to the constraint a P b, many authors suggested that the value of a should be in the range

[0.5, 1]. With this condition, an element is in the lower approximation if the majority of its equivalent elements
are in the set [33,56,58,66]. If a loss function satisfies condition (B) and the following condition (M):

ðMÞ k12 � k32 P k31 � k11;

then a P 0.5. Condition (M) says that the difference between the cost of classifying an element not in A into
positive region and the cost of classifying the element into the boundary region is more than the difference
between the cost of classifying an element in A into the boundary region and a correct classification.

Condition (M) is only a part of condition (G). They do not imply each other. The conditions for a P 0.5
and a P b are (B), (G), and (M).

Y. Yao / Internat. J. Approx. Reason. 49 (2008) 255–271 267



5.3.3. Dual probabilistic rough set approximations

Properties (PL0) and (PU0) suggest one can define dual probabilistic approximation operators based on a
pair of parameters (a, b) with aþ b ¼ 1. The dual probabilistic approximation operators were examined in the
decision-theoretic rough set model [52,57] and the variable precision rough set model [66].

If dual approximation operators are required, one needs to impose additional conditions on a loss function
[52,57]. If a loss function satisfies condition (B) and the following condition (D):

ðDÞ ðk12 � k32Þðk32 � k22Þ ¼ ðk31 � k11Þðk21 � k31Þ;

then b = 1 � a.
Conditions (B) and (D) do not guarantee that a P b ¼ 1� a, or equivalently a P 0.5 and aþ b ¼ 1. The

condition for a ¼ 1� b P 0:5 can be obtained by combining conditions (G) and (D), or combining conditions
(M) and (D). In other words, for a ¼ 1� b P 0:5, we have two sets that are equivalent. One set consists of (B),
(G), and (D), the other set consists of (B), (M), and (D).

5.3.4. Standard rough set approximations

Consider the loss function:

k12 ¼ k21 ¼ 1; k11 ¼ k22 ¼ k31 ¼ k32 ¼ 0: ð32Þ

There is a unit cost if an object belonging to A is classified into the negative region or if an object not belong-
ing to A is classified into the positive region; otherwise there is no cost. This loss function satisfies the condi-
tions (B), (G), (M), and (D). A pair of dual approximation operators can be obtained. From Eq. (29), we have
a = 1 > b = 0, a ¼ 1� b, and c = 0.5. According to decision rules (P1)–(B1), we obtain the standard rough set
approximations [26,27].

The loss function for deriving the standard rough set approximations is intuitively appealing. There may
exist more than one loss function to produce the standard rough set approximations. If a loss function satisfies
(B) and the condition:

ðSÞ k11 ¼ k31; k32 ¼ k22;

we have a = 1 and b = 0. The condition (S) requires that the cost of classifying an element not in A into the
negative region (i.e., a correct classification) is the same as classifying the element into the boundary region,
and the cost of classifying an element in A into the positive region (i.e., a correct classification) is the same as
classifying the element into the boundary region. By condition (B), those costs should be strictly less than that
of incorrect classification. That is, if a loss function satisfies conditions k11 = k31 < k21 and k22 = k32 < k12, we
derive the standard rough set approximations.

5.3.5. The 0.5 probabilistic rough set approximations

For the derivation of 0.5 probabilistic rough set approximations [29], we need a = b = 0.5. It suggests that
we can consider conditions (M) and (D) together. Thus, we examine the special case where the P relation in
(M) becomes the equality =. Suppose a loss function satisfies (B) and the condition:

ðPÞ k12 � k32 ¼ k31 � k11; k32 � k22 ¼ k21 � k31:

By substituting these kij’s into Eq. (29), we obtain a = b = c = 0.5. From decision rules (P2)–(B2), we obtain
the 0.5 probabilistic rough set approximations proposed by Pawlak et al. [29].

Consider the loss function:

k12 ¼ k21 ¼ 1; k31 ¼ k32 ¼ 0:5; k11 ¼ k22 ¼ 0: ð33Þ

That is, a unit cost is incurred if the system classifies an object belonging to A into the negative region or an
object not belonging to A is classified into the positive region; half of a unit cost is incurred if any object is
classified into the boundary region. For other cases, there is no cost. This loss function has a very clear
and concrete physical interpretation. It satisfies the conditions (B) and (P), which produces the required
parameters a = b = 0.5.
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5.3.6. The Bayesian and two-parameterized rough set models

It has been shown that one can find the corresponding variable precision approximations for the Bayesian
rough set approximations [34]. It has also been shown that both variable precision and Bayesian rough set
models may be viewed as special cases of the two-parameterized model [34]. As illustrated by the previous dis-
cussion, variable precision approximations can be derived naturally in the decision-theoretic rough set model.
Consequently, it is a relatively easy, although may be tedious, task to interpret the results of the Bayesian and
the two-parameterized rough set models in the decision-theoretic framework.

The parameters of the Bayesian and the two-parameterized models may be mathematically expressed in
terms various probabilities and loss functions. However, the mixture of probabilities and loss functions
may decrease the simplicity and understandability of the decision-theoretic model. In solving many practical
problems, it is extremely important to strive for the right balance between the simplicity and the power of a
model. Although the introduction of extra parameters may increase the power and flexibility of a model, such
a power cannot be materialized unless a simple and systematic procedure exists for estimating those param-
eters. Future research efforts may be put on the study of this problem.

6. Conclusion

Several forms of probabilistic approaches to rough sets have appeared in the last decade and new proposals
were made recently. It is evident that a general framework is needed for comparing and synthesizing existing
results. A revisit to probabilistic rough set approximations suggest that the Bayesian decision-theoretic frame-
work can help us to achieve this goal.

In this paper, we critically reviewed existing studies on the probabilistic rough set approximations. Results
from the decision-theoretic model, the variable precision model, the Bayesian rough set model, and the two-
parameterized model are pooled together and studied based on the notions of rough membership functions
and rough inclusion. Since both notions are defined by the same conditional probabilities, one can formulate
probabilistic rough set approximations by using any one of them. The decision-theoretic model uses rough
membership functions and the variable precision model uses rough inclusions. Although the same results
are produced, the variable precision model suffers from a fundamental difficulty in the interpretation and
determination of the required parameters. In contrast, the decision-theoretic model adopts loss functions as
a primitive notion and derives systematically all required parameters. By providing a concrete physical inter-
pretation of loss functions, the decision-theoretic model provides theoretical guidelines on the application of
approximations. More specifically, approximations lead to loss or risk, and the decision-theoretic model
ensures that such loss is minimal.

The Bayesian rough set model aims at interpreting the parameters of the variable precision model based on
the Bayes factor. The two-parameterized model extends one-parameterized approximations by introducing
also threshold values on a Bayesian confirmation measure. Both models bring new insights into probabilistic
rough set approximations. A problem of the two models is a lack of a systematic procedure for setting the
required parameters. Although it is possible to link them mathematically to loss functions, their physical
meanings need to be further explored.
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