Erratum to "Intersecting codes and separating codes" [Discrete Applied Mathematics 128 (2003) $75-83]^{\text {/3 }}$

G. Cohen, S. Encheva, S. Litsyn, H.G. Schaathun
Ecole Nationale Supérieure des Télécommunications, 46 rue Barrault, 75634, Paris, France

The first author's name has been incorrectly given in the published article. The correct name is given above.
Propositions 3 and 4, as well as Corollary 1, should be replaced by the following proposition.

Proposition 1. Let t be an integer $t \geqslant 2$ and j an integer such that $1 \leqslant j \leqslant t$. Consider a t-wise intersecting, binary, linear code C, and a non-linear subcode $\Gamma \subseteq C$. Define

$$
y(t, j):= \begin{cases}t+1 & \text { when } t \text { and } j \text { are odd }, \\ t & \text { when } t \text { is even, } \\ t-1 & \text { when } t \text { is odd and } j \text { even. }\end{cases}
$$

Code Γ is $(j, t+1-j)$-separating if and only if any $y(t, j)$ non-zero codewords are linearly independent.

Theorem 1 should be replaced by the following proposition.
Theorem 1. Given an $[n, n R] t$-wise intersecting binary code, there is a construction of a non-linear $(j, t+1-j)$ separating code Γ of rate $R(1+o(1)) /\left\lfloor t^{\prime} / 2\right\rfloor$, where $t^{\prime}=t-1$ if t is odd and j is even, and $t^{\prime}=t+1$ otherwise.

Both Theorem 1 and Example 2 should be specialized to the case of even j. In Example 3, any four codewords must be independent, resulting in a rate of 0.001851 .

[^0]The proofs of the modified results are essentially the same, and they can be found in 'Asymptotic overview on separating codes' by G.D. Cohen and H.G. Schaathun, a technical report of the Department of Informatics at the University of Bergen, see
http://www.ii.uib.no/publikasjoner/texrap/index.shtml.

[^0]: ${ }^{4}$ PII of the original article: S0166-218X(02)00437-7
 E-mail address: cohen@inf.enst.fr (G. Cohen).

