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A note on the topological transversality theorem for acyclic maps
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Abstract

A newtopological transversality theorem is presented for acyclic maps. The analysis relies on Urysohn’s Lemma
and the fact that the unit sphere is contractible in infinite dimensional normed linear spaces.
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1. Introduction

This work establishes a topological transversality theorem of Granas type [5] for multivalued acyclic
maps. The proof differs from that given for Kututani maps [5,6] and relies on the fact that in a infinite
dimensional normed linear space there exists a retraction from the unit ball to the unit sphere [1].

For the remainder of this section we look at the results in [1,3]. Let E = (E, ‖.‖) be an infinite
dimensional normed linear space withB = {x ∈ E : ‖x‖ < 1} and S = {x ∈ E : ‖x‖ = 1}. From
[1,3] we know that there exists a Lipschitz (Lipschitz constantk0 say) retractionr from B onto S. Next
fix R > 0 and letBR = {x ∈ E : ‖x‖ < R} andSR = {x ∈ E : ‖x‖ = R}. Also let

r1(x) = x

R
and r2(x) = Rx,
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sor1 : BR → B andr2 : S → SR. It iseasy to check thatr R = r2rr 1 : BR → SR is a Lipschitz retraction
(Lipschitz constantk0) from BR onto SR. Now let U be an open convex subset ofE with 0 ∈ U . Then
there existsR > 0 with BR ⊆ U . Let

r3(x) = x

max{1, µ1(x)} , x ∈ E and r4(x) = x

µ2(x)
, x ∈ E\{0}

where µ1 is the Minkowski functional onBR and µ2 is the Minkowski functional onU . Notice
r3 : U → BR andr4 : SR → ∂U . Thenr4r Rr3 : U → ∂U is a continuous retraction fromU onto∂U .

2. Topological transversality

Let E be an infinite dimensional normed linear space andU an open convex subset ofE with 0 ∈ U .

Definition 2.1. We let F ∈ M(U , E) denote the set of all upper semicontinuous compact maps
F : U → AC(E); hereAC(E) denotes the family of nonempty, compact, acyclic [4] subsets ofE.

Definition 2.2. We let F ∈ M∂U (U , E) if F ∈ M(U , E) with x �∈ F(x) for x ∈ ∂U .

Definition 2.3. A map F ∈ M∂U (U , E) is essential inM∂U (U , E) if for every G ∈ M∂U (U , E) with
G|∂U = F |∂U there existsx ∈ U with x ∈ G(x). Otherwise F is inessential inM∂U (U , E).

Definition 2.4. F, G ∈ M∂U (U , E) are homotopic inM∂U (U , E), written F ∼= G in M∂U (U , E), if
there exists an upper semicontinuous compact mapN : U × [0, 1] → AC(E) such thatNt (u) =
N(u, t) : U → AC(E) belongs toM∂U (U , E) for eacht ∈ [0, 1] andN0 = F with N1 = G.

Remark 2.1. Notice that∼= is an equivalence relation inM∂U (U , E).

Theorem 2.1. Let E be an infinite dimensional normed linear space and U an open convex subset of E
with 0 ∈ U. Suppose that F∈ M∂U (U , E). Then the following conditions are equivalent:

(i) F is inessential in M∂U (U , E);
(ii) there exists a map G∈ M∂U (U , E) with x �∈ G(x) for x ∈ U and F ∼= G in M∂U (U , E).

Proof. To show that (i) implies (ii) letG ∈ M∂U (U , E) with G|∂U = F |∂U andx �∈ Gx for x ∈ U .
FromSection 1we know there exists a continuous retractionr : U → ∂U . Let the mapF� be given by
F�(x) = F(r (x)) for x ∈ U . Of courseF�(x) = G(r (x)) for x ∈ U sinceG|∂U = F |∂U . With

H (x, λ) = G(2λr (x) + (1 − 2λ)x) = G ◦ j (x, λ) for (x, λ) ∈ U ×
[
0,

1

2

]

(here j : U × [
0, 1

2

] → U is given by j (x, λ) = 2λr (x) + (1 − 2λ)x) it is easy to see that

G ∼= F� in M∂U (U , E); (2.1)

notice that if there existsx ∈ ∂U and λ ∈ [
0, 1

2

]
with x ∈ Hλ(x) then sincer (x) = x we have

x ∈ G(2λx + (1 − 2λ)x) = G(x), a contradiction. Similarly with

Q(x, λ) = F((2 − 2λ)r (x) + (2λ − 1)x) for (x, λ) ∈ U ×
[

1

2
, 1

]

it is easy to see that

F� ∼= F in M∂U (U , E). (2.2)
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Combining (2.1) and (2.2) givesG ∼= F in M∂U (U , E).
Wenext show that (ii) implies (i). LetN : U ×[0, 1] → AC(E) be an upper semicontinuous, compact

map with Nt ∈ M∂U (U , E) for eacht ∈ [0, 1] andN1 = F with N0 = G. Let

B = {x ∈ U : x ∈ N(x, t) for somet ∈ [0, 1]}.
If B = ∅ then in particularx �∈ N(x, 1) for x ∈ U so F is inessential inM∂U (U , E). So it remains to
consider the case whenB �= ∅. Clearly B is closed (and in fact compact). Also sinceB ∩ ∂U = ∅ there
exists a continuousµ : U → [0, 1] with µ(∂U ) = 1 andµ(B) = 0. Define a mapJ : U → AC(E) by
J(x) = N(x, µ(x)). It is clear thatJ is an upper semicontinuous, compact map. AlsoJ|∂U = F |∂U since
if x ∈ ∂U then J(x) = N(x, 1) = F(x). In addition note thatx �∈ J(x) for x ∈ U since if x ∈ J(x)

for somex ∈ U then x ∈ B and soµ(x) = 0, i.e. x ∈ N(x, 0) = G(x), a contradiction. ThusJ ∈
M∂U (U , E) with J|∂U = F |∂U andx �∈ J(x) for x ∈ U . As a resultF is inessential inM∂U (U , E). �

Theorem 2.1immediately yields the following continuation theorem.

Theorem 2.2. Let E be an infinite dimensional normed linear space and U an open convex subset of E
with 0 ∈ U. Suppose that F and G are two maps in M∂U (U , E) with F ∼= G in M∂U (U , E). Then F is
essential in M∂U (U , E) if and only if G is essential in M∂U (U , E).

To complete our discussion we now supply an example of an essential map (this is called a
normalization property).

Theorem 2.3. Let E be an infinite dimensional normed linear space and U an open convex subset of E
with 0 ∈ U. Then the zero map is essential in M∂U (U , E).

Proof. Let G : U → AC(E) be a map inM∂U (U , E) with G|∂U = {0}. We must show that there exists
x ∈ U with x ∈ G(x). Let

J(x) =
{

G(x), x ∈ U
{0}, x ∈ E\U .

Clearly J : E → AC(E) is an upper semicontinuous, compact map. Now [4, p. 161] guarantees thatJ
has a fixed pointx ∈ E. In factx ∈ U since 0∈ U . Hencex ∈ G(x) and we are finished. �

Remark 2.2. It is also possible to combine the homotopy and normalization properties to obtain a
Leray–Schauder alternative [5–8].

Next we discuss maps with values in a cone. LetE = (E, ‖.‖) be a normed linear space (not
necessarily infinite dimensional) and letC ⊆ E be a cone (i.e.C is a closed, convex, invariant under
multiplication by nonnegative real numbers andC ∩ (−C) = {0}). Fix R > 0 and let

BR = {x ∈ C : ‖x‖ < R} and SR = {x ∈ C : ‖x‖ = R}.
Definition 2.5. We let F ∈ C M(BR, C) denote the set of all upper semicontinuous compact maps
F : BR → AC(C).

Definition 2.6. We let F ∈ C MSR(BR, C) if F ∈ C M(BR, C) with x �∈ F(x) for x ∈ SR.
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Definition 2.7. A map F ∈ C MSR(BR, C) is essential inC MSR(BR, C) if for every G ∈ C MSR(BR, C)

with G|SR = F |SR there existsx ∈ BR with x ∈ G(x). Otherwise F is inessential inC MSR(BR, C).

Definition 2.8. F, G ∈ C MSR(BR, C) are homotopic inC MSR(BR, C), written F ∼= G in
C MSR(BR, C), if there exists an upper semicontinuous compact mapN : BR × [0, 1] → AC(C) such
that Nt (u) = N(u, t) : BR → AC(C) belongs toC MSR(BR, C) for eacht ∈ [0, 1] and N0 = F with
N1 = G.

Essentially the same reasoning as inTheorem 2.1(once one realizes that there exists a continuous
retractionr : BR → SR (see [2])) establishes the next result.

Theorem 2.4. Let E be anormed linear space, C⊆ E a cone and R> 0. Suppose F and G are two
maps in C MSR(BR, C) with F ∼= G in C MSR(BR, C). Then F is essential in C MSR(BR, C) if and only if
G isessential in C MSR(BR, C).

Remark 2.3. The analogue ofTheorem 2.3is also immediate in this case.

3. Generalizations

In this section we generalize the topological transversality theorem ofSection 2. We discuss in
particular a subclass of theUk

c mapsof Park [7]. Let X andY be Hausdorff topological vector spaces.
Recall that a polytopeP in X is any convex hull of a nonempty finite subset ofX. Givena classX of
maps,X (X, Y) denotes the set of mapsF : X → 2Y (the nonempty subsets ofY) belonging toX , and
Xc the set of finite compositions of maps inX . A classU of maps is defined by the following properties:

(i) U contains the classC of single-valued continuous functions;
(ii) eachF ∈ Uc is upper semicontinuous and compact valued; and

(iii) for any polytopeP, F ∈ Uc(P, P) has a fixed point, where the intermediate spaces of composites
are suitably chosen for eachU .

Definition 3.1. F ∈ Uk
c (X, Y) if for any compact subsetK of X, there is a G ∈ Uc(K , Y) with

G(x) ⊆ F(x) for eachx ∈ K .

Recall thatUk
c is closed under compositions. In this section we will consider a subclassA of theUk

c
maps. The following condition will be assumed throughout this section:


for Hausdorff topological spacesX1, X2 andX3,

if F ∈ A(X1, X3) and f ∈ C(X2, X1),

thenF ◦ f ∈ A(X2, X3).

(3.1)

In this sectionX is an infinite dimensional normed linear space,Y a topological vector space andU
an open convex subset ofX with 0 ∈ U . Also L : dom L ⊆ X → Y will be a linear (not necessarily
continuous) single-valued map; heredom Lis a vector subspace ofX. Finally T : X → Y will be a linear,
continuous single-valued map withL +T : dom L→ Y an isomorphism (i.e. a linear homeomorphism);
for convenience we sayT ∈ HL(X, Y).

A multivalued mapF : U → 2Y is said to be(L , T) upper semicontinuous if(L + T)−1F : U →
K (X) is an upper semicontinuous map; hereK (X) denotes the family of nonempty, compact subsets of
X. F : U → 2Y is said to be(L , T) compact if(L + T)−1F : U → K (X) is a compact map.



R.P. Agarwal, D. O’Regan / Applied Mathematics Letters 18 (2005) 17–22 21

Definition 3.2. We let F ∈ D(U , Y; L , T) if (L + T)−1F ∈ A(U , X) and F : U → 2Y is an(L , T)

upper semicontinuous,(L , T) compact map.

Definition 3.3. D∂U (U , Y; L , T) denotes the mapsF ∈ D(U, Y; L , T) with Lx �∈ F(x) for x ∈
∂U ∩ dom L.

Definition 3.4. A map F ∈ D∂U (U , Y; L , T) is essential inD∂U (U , Y; L , T) if for every mapG ∈
D∂U (U , Y; L , T) with G|∂U = F |∂U we have that there existsx ∈ U ∩ dom L with Lx ∈ G(x).
OtherwiseF is inessential inD∂U (U , Y; L , T), i.e. there existsG ∈ D∂U (U , Y; L , T) with G|∂U = F |∂U

andLx �∈ G(x) for x ∈ U ∩ dom L.

Definition 3.5. Two mapsF, G ∈ D∂U (U , Y; L , T) are homotopic inD∂U (U , Y; L , T), written F ∼= G
in D∂U (U , Y; T, T), if there exists an (L , T) upper semicontinuous,(L , T) compact mappingN :
U × [0, 1] → 2Y such thatNt (u) = N(u, t) : U → 2Y belongs toD∂U (U , Y; L , T) for eacht ∈ [0, 1]
andN0 = F with N1 = G.

The following condition will be assumed throughout this section:

∼= is an equivalence relation inD∂U (U , Y; L , T). (3.2)

Theorem 3.1. Let X, Y , U, L and T be as above and assume that(3.1) and (3.2) hold. Suppose
F ∈ D∂U (U , Y; L , T). Then the following conditions are equivalent:

(i) F is inessential in D∂U (U , Y; L , T);
(ii) there exists a map G∈ D∂U (U , Y; L , T) with Lx �∈ G(x) for x ∈ U ∩ dom L and F∼= G in

D∂U (U , Y; L , T).

Proof. To show that (i) implies (ii) letG ∈ D∂U (U , Y; L , T) with G|∂U = F |∂U and Lx �∈ G(x) for
x ∈ U ∩ dom L. Also letr be as inTheorem 2.1andF�(x) = F(r (x)) = G(r (x)) for x ∈ U . Let

H (x, λ) = G(2λr (x) + (1 − 2λ)x) = G ◦ j (x, λ) for (x, λ) ∈ U ×
[
0,

1

2

]

where j : U × [
0, 1

2

] → U is given by j (x, λ) = 2λr (x) + (1 − 2λ)x. Clearly H is an(L , T) upper
semicontinuous,(L , T) compact map. In addition, assumption (3.1) guarantees that(L + T)−1H ∈
A (

U × [
0, 1

2

]
, X

)
. Now if there existsx ∈ ∂U ∩ dom L andλ ∈ [

0, 1
2

]
with Lx ∈ Hλ(x) then since

r (x) = x we haveLx ∈ Gx, a contradiction. Consequently

G ∼= F� in D∂U (U , Y; L , T). (3.3)

Similarly with

Q(x, λ) = F((2 − 2λ)r (x) + (2λ − 1)x) for (x, λ) ∈ U ×
[

1

2
, 1

]

we have

F� ∼= F in D∂U (U , Y; L , T). (3.4)

Now (3.2)–(3.4) imply G ∼= F in D∂U (U , Y; L , T).
Wenext show that (ii) implies (i). LetN : U × [0, 1] → 2Y denote the(L , T) upper semicontinuous,

(L , T) compact map withNt ∈ D∂U (U , Y; L , T) for eacht ∈ [0, 1] and with N1 = F and N0 = G
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[in particularLx �∈ Nt (x) for x ∈ ∂U ∩ dom Land fort ∈ [0, 1]]. Let

B = {
x ∈ U ∩ dom L : Lx ∈ N(x, t) for somet ∈ [0, 1]} .

Of course, it is immediate that

B = {
x ∈ U : x ∈ (L + T)−1(Nt + T)(x) for somet ∈ [0, 1]} .

If B = ∅ thenF is inessential inD∂U (U , Y; L , T). So it remains to consider the case whenB �= ∅. Now
B is closed and∂U ∩ B = ∅ so there exists a continuous functionµ : U → [0, 1] with µ(∂U ) = 1
andµ(B) = 0. Define a mapJ by J(x) = N(x, µ(x)) = N ◦ j (x) where j : U → U × [0, 1] is
given by j (x) = (x, µ(x)). Clearly J is an (L , T) upper semicontinuous,(L , T) compact map. Also
from (3.1) we know that(L + T)−1J ∈ A(U , X). Note also that J|∂U = F |∂U . Finally Lx �∈ J(x) for
x ∈ U ∩ dom Lsince ifLx ∈ J(x) for x ∈ U ∩ dom L thenx ∈ B and soµ(x) = 0 (i.e. Lx ∈ G(x)), a
contradiction. ThusJ ∈ D∂U (U , Y; L , T) with J|∂U = F |∂U andLx �∈ J(x) for x ∈ U ∩ dom L. As a
resultF is inessential inD∂U (U , Y; L , T) and we are finished. �

Now (3.2) together withTheorem 3.1yields the following continuation theorem.

Theorem 3.2. Let X, Y , U, Land T be as above and assume that(3.1) and (3.2) hold. Suppose F
and G are two maps in D∂U (U , Y; L , T) with F ∼= G in D∂U (U , Y; L , T). Then F is essential in
D∂U (U , Y; L , T) if and only if G is essential in D∂U (U , Y; L , T).

Remark 3.1. If L = I andT = 0 the results in this section improve on those inSection 2. In this case
also we could discuss maps inA(U , C) whereBR andC are as defined inSection 2.
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