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Abstract

A newtopological transversality theorem is presented &yciic maps. The analysis relies on Urysohn’s Lemma
and the fact that the unit sphere is contrdetib infinite dimensional normed linear spaces.
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1. Introduction

This work establishes a topological transversality theorem of Granas %ypar [multivalued acyclic
maps. he proof differs from that given for Kututani maps,§] and rdies on the fact that in a infinite
dimensional normed linear space there exists a retraction from the unit ball to the unit gphere |

For the remainder of this section we look at the resultsliB][ Let E = (E, ||.||) be an infinite
dimensional normed linear space with= {x € E : ||X|| < 1} andS = {x € E : ||X]| = 1}. From
[1,3] we know that there exists a Lipschitz (Lipschitz constigsay) retractiorr from B onto S. Next
fix R>0andletBg ={x e E: ||X|| < RlandSg = {x € E : ||X|]| = R}. Also let

ri(x) = % and r>(X) = RX,
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sory: Br > Bandr, : S— Sg. Itiseasy to check thak = rorr; : Bg — Sgis a Lipschitz retraction
(Lipschitz constankp) from Bg onto Sg. Now letU be an open convex subset Bfwith 0 € U. Then
there existR > 0 with Bg C U. Let

X X

— = XeE and rqx) = ——, xeE\{0

max( L. 11200} 0= o0 X € B

where p; is the Minkowski functional onBg and ., is the Minkowski functional onU. Notice
r;: U — Brandry : Sy — dU. Thenrsrrrz : U — 93U is a continuous retraction frotd ontooU.

rs(x) =

2. Topological transversality
Let E be an infinite dimensional normed linear space dnah open convex subset Bfwith 0 € U.

Definition 2.1. We let F € M(U, E) denote the set of all upper semicontinuous compact maps
F : U — AC(E); hereAC(E) denotes the family of nonempty, compact, acydlicqubsets ofE.

Definition 2.2. We letF € Myy (U, E) if F € M(U, E) with x ¢ F(x) for x € 9U.

Definition 2.3. Amap F € M,y (U, E) is essential inVlyy (U, E) if for every G € M,y (U, E) with
Glsu = F|yu there existx € U with x € G(x). Othewise F is inessential ifM,y (U, E).

Definition 2.4. F, G € M,y (U, E) are homotopic inM,y (U, E), written F = G in Myy (U, E), if
there exists an upper semicontinuous compact iap U x [0, 1] — AC(E) such thatN;(u) =
N(u,t) : U - AC(E) belongs toM,y (U, E) for eacht € [0, 1] andNp = F with N; = G.

Remark 2.1. Notice that= is an equivalence relation i,y (U, E).

Theorem 2.1. Let E be an infinite dimensional normed linear space and U an open convex subset of E
with 0 € U. Suppose that e M,y (U, E). Then he following conditions are equivalent:

(i) Fisinessential in My (U, E); B B
(ii) there existsamap @ M,y (U, E) withx € G(x) forx e U and F= G in M,y (U, E).

Proof. To show that (i) implies (ii) letG € M,y (U, E) with Glsu = Flu andx ¢ Gx for x € U.
From Section 1we know there exists a continuous retractionU — dU. Let the mapF* be given by
F*(X) = F(r(x)) for x € U. Of courseF*(x) = G(r (x)) for x € U sinceG|yy = F|sy. With

— 1
HX, L) =G (X)) + (L —20)X) = Go j(X,A) for (x, 1) e U x [O, 5}
(herej : U x [0, 3] — U is given byj (x, A) = 2Ar (x) + (1 — 21)X) it is easy to see that
G = F*in My, (U, E); 2.1)
notice that if there existx € U and € [0, 1] with x € H,(x) then sincer (x) = x we have
X € G(2Ax 4+ (1 — 20)X) = G(X), a conradiction. Similarly with

Q(x, 1) = F((2—20)r(X) + (2» — 1)x) for (x, 1) e U x E 1}

it is easy to see that
F*= Fin Myy (U, E). (2.2)
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Combiring (2.1) and @.2) givesG = F in Myy (U, E).
We next show that (ii) implies (i). LeN : U x [0, 1] — AC(E) be an upper semicontinuous, compact
map with N; € My (U, E) for eacht € [0, 1] andN; = F with Ng = G. Let

B={xeU:xeN(xt) forsomet e [0,1]}.

If B = ¢ then in particularx ¢ N(x, 1) for x € U soF is inessential iltM,y (U, E). So it remains to
consider the case wheh # (. Clearly B is closed (and in fact compact). Also sinBeN dU = ¢ there
exists a continuoug : U — [0, 1] with £(dU) = 1 andu(B) = 0. Define amap : U — AC(E) by
J(X) = N(X, u(x)). Itis clear that] is an upper semicontinuous, compact map. Al§® = F|,y since
if x € aU thenJ(x) = N(x, 1) = F(x). In addition note that ¢ J(x) for x € U since ifx € J(x)
for somex € U thenx € B and sou(x) = 0, i.e.x € N(x,0) = G(x), a corradiction. ThusJ €
M,y (U, E) with J|yu = Flsu andx ¢ J(x) for x € U. As a esultF is inessential irvlyy (U, E). O

Theorem 2.Immediately yields the following continuation theorem.

Theorem 2.2. Let E be an infinite dimensional normed linear space and U an open convex subset of E
with 0 € U. Suppose that F and G are two maps in MU, E) with F = G in Myy (U, E). Then F is
essential in My (U, E) if and only if G is essential in i, (U, E).

To complete our discussion we now supply an example of an essential map (this is called a
normalization property).

Theorem 2.3. Let E be an infinite dimensional normed linear space and U an open convex subset of E
with 0 € U. Then the zero map is essential i,MU, E).

Proof. LetG : U — AC(E) be amap ilM,y (U, E) with G|,y = {0}. We must Bow that there exists
X € U with x € G(x). Let

G(x), x e U

I = {{0}, x € E\U.

Clealy J : E — AC(E) is an upper semicontinuous, compact map. Néwp[ 161] guarantees thak
has a fixed poink € E. In factx € U since Oc U. Hercex € G(x) and we are finished. O

Remark 2.2. It is also possible to combine the homotopy and normalization properties to obtain a
Leray—Stauder alternatives-§.

Next we discgs maps with values in a cone. LBt = (E, ||.||) be a normed linear space (not
necessarily infinite dimensional) and [t C E be a cone (i.eC is a closed, convex, invariant under
multiplication by nonnegative real numbers a@d) (—C) = {0}). Fix R > 0 and let

Br={xeC: x| <R and Sk={xeC:|x|=R).

Definition 2.5. We let F € CM(Bg, C) denote the set of all upper semicontinuous compact maps
F : B — AC(C).

Definition 2.6. We letF € CMs,(Bg, C) if F € CM(Bg, C) with x ¢ F(x) for x € Sr.
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Definition 2.7. AmapF € CMs,(Bg, C) is essential irC Ms,(Bg, C) if for every G € CMs,(Bg, C)
with G|s, = F|s, there existx € Bgr with X € G(x). Othewise F is inessential irC Mg, (Bg, C).

Definition 28. F,G € CMs,(Br,C) are homotopic inCMs,(Bg,C), wriiten F = G in
CMs,(Bg, C), if there exists an upper semicontinuous compact MapBgr x [0, 1] — AC(C) such
that N;(u) = N(u,t) : Bg — AC(C) belongs toC Ms,(Br, C) for eacht € [0, 1] and Ny = F with
N; = G.

Essentially the same reasoning asTineorem 2.1(once one realizes that there exists a continuous
retractionr : B — Sy (see P])) establishes the next result.

Theorem 2.4. Let E be anormed linear space, € E a wne and R> 0. Suppose F and G are two
maps in C M, (Br, C) with F = G in CMg,(Bg, C). Then F is essential in C ¥ (B, C) if and only if
G isessential in CM,(Bg, C).

Remark 2.3. The analogue ofTheorem 2.3s also immediate in this case.

3. Generalizations

In this section we generalize the topological transversality theorer8eofion 2 We discuss in
particular a subclass of tmﬂck mapsof Park [7]. Let X andY be Hausdorff topological vector spaces.
Recall that a polytope® in X is any convex hull of a nonempty finite subsetXf Givena classX’ of

maps,X (X, Y) denotes the set of mafs: X — 2¥ (the nonempty subsets ¥ belonging toX’, and
X; the set of finite compositions of mapsin A classi/ of maps is defined by the following properties:

(i) U contains the class of single-valued continuous functions;
(i) eachF e U, is upper semicontinuous and compact valued; and

(iii) for any polytopeP, F € U:(P, P) has a fixed point, where the intermediate spaces of composites
are suitably chosen for eath

Definition 3.1. F ¢ ug(x, Y) if for any compact subseK of X, thereis a G € U.(K,Y) with
G(X) € F(x) for eachx € K.

Recall that/X is closed under compositions. In this section we will consider a subglasfsthe 24X
maps. The following condition will be assumed throughout this section:

for Hausdorff topological spaces;, X, and X3,
if Fe A(Xl, Xg) andf € C(Xz, Xl), (31)
thenF o f € A(X5, X3).

In this sectionX is an infinite dimensional normed linear spa¥ea topological vector space and
an open convex subset &fwith 0 € U. AlsoL : dom L € X — Y will be a linear (not necessarily
continuous) single-valued map; helem Lis a vector subspace of. Finally T : X — Y will be a linear,
continuous single-valued map with4- T : dom L — Y an isomorphism (i.e. a linear homeomorphism);
for convenience we sal € H, (X, Y).

A multivalued mapF : U — 2 is said b be(L, T) upper semicontinuous . + T)"F : U —
K (X) is an upper semicontinuous map; h&eX) denotes the family of nonempty, compact subsets of
X.F:U — 2¥issaid to beL, T) compact if(L + T)"'F : U — K(X) is a compact map.
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Definition 3.2. We letF € DU, Y;L, T)if (L+T)'F € AU, X) andF : U — 2" isan(L,T)
upper semicontinuousl, T) compact map.

Definition 3.3. Dyy (U, Y; L, T) denotes the maps € D(U,Y;L,T) with Lx ¢ F(x) for x €
oU Nndom L

Definition 3.4. A map F € D,y (U, Y; L, T) is essential inDyy (U, Y; L, T) if for every mapG e
D,y (U, Y: L, T) with Gl;u = F|yu we have that there existx € U Nndom Lwith Lx € G(X).
Otherwise F is inessential iD,y (U, Y: L, T), i.e. thae existsG € D,y (U, Y; L, T) with G|y = Flsu
andLx ¢ G(x) for x e U ndom L

Definition 3.5. Two mapsF, G € Dyy (U, Y; L, T) are homotopic irD,y (U, Y; L, T), written F = G
in Dyu(U,Y; T, T), if there exigts an (L, T) upper semicontinuous,L, T) compact mappingN :
U x [0, 1] — 2" such thatN; (u) = N(u, t) : U — 2" belongs toD,y (U, Y; L, T) for eacht € [0, 1]
andNg = F with N; = G.

The following condition will be assumed throughout this section:
= is an equivalence relation D,y (U, Y; L, T). (3.2)

Theorem 3.1. Let X, Y, U, Land T be as above and assume t@&tl) and (3.2) hold. Suppose
F € Dy (U, Y; L, T). Then he following conditions are equivalent:

(i) Fisinessential in By(U,Y;L,T);
(ii) there exists a map G= Dyy (U, Y; L, T) with Lx ¢ G(x) for x € Undom L and F= G in
Dou(U,Y; L, T).

Proof. To show that (i) implies (i) letG € D,yu (U, Y; L, T) with G|y = Flsu and Lx & G(x) for
x € U Ndom L Also letr be as inTheorem 2.-andF*(x) = F(r (x)) = G(r(x)) for x € U. Let

HX, 1) =G@ir(x) + (1—20)x) =Goj(x, 1)  for (x,A) e U x [0, %]

wherej : U x [0,3] — U is given byj (x, 1) = 2ar(x) + (1 — 2A)x. Clearly H is an(L, T) upper
semicontinuous(L, T) compact map. In addition, assumptia®.) guarantees thatL + T)"'H ¢
A (U x [0, 3], X). Now if there existx € 3U Nndom Land € [0, 2] with Lx € H,(x) then since
r(x) = x we haveLx € Gx, a cortradiction. Consequently

G=F*inDyy(U,Y;L,T). (3.3
Similarly with

QX 3) = F(@—20r(x) + @ —1x)  for (. 1) € U x E 1}

we have
F*= FinDyyU,Y;L,T). (3.4)

Now (3.2—(3.4) imply G = F in Dyy (U, Y; L, T).
We next show that (ii) implies (i). LeN : U x [0, 1] — 2Y denote theL, T) upper semicontinuous,
(L, T) compact map wittN; € Dyy (U, Y; L, T) for eacht € [0, 1] and withN; = F andNg = G
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[in particularLx ¢ N;(x) for x € 9U ndom Land fort € [0, 1]]. Let
B={xeUndomL:Lxe N(x,t) for somet € [0, 1]} .

Of course, it is immediate that
B={xeU:xe(+T) "N+ T)(x) for somet € [0, 1]} .

If B = ¢ thenF is inessential i,y (U, Y; L, T). So it remains to consider the case whnz ¢. Now
B is closed andU N B = ¢ so there exists a continuous functipn: U — [0, 1] with ©(3U) = 1
and u(B) = 0. Define a mapl by J(x) = N(x, u(x)) = N o j(x) wherej : U — U x [0,1] is
given by j (X) = (X, u(x)). Clearly J is an(L, T) upper semicontinuougL, T) compact map. Also
from (3.1) we know that(L + T)"1J € A(U, X). Note al® thatJ|,y = F|yy. Finally Lx ¢ J(x) for
x € UNdom Lsince ifLx € J(x) for x € U Nndom Lthenx € B and sou(x) = 0(i.e.Lx € G(x)), a
contradiction. Thus) € Dyy (U, Y; L, T) with J|;u = Flsu andLx ¢ J(x) for x € U Ndom L As a
resultF is inessential i,y (U, Y; L, T) and we are finished. O

Now (3.2 together withTheorem 3.Yields the following continuation theorem.

Theorem 3.2. Let X, Y, U, Land T be as above and assume t(tatl) and (3.2 hold. Suppose F
and G are two maps in f(U,Y; L, T) with F = G in Dyy(U,Y; L, T). Then F is essential in
Dyu(U,Y; L, T)ifand only if G is essential in (U, Y; L, T).

Remark 3.1. If L = I andT = 0 the lesults in this section improve on thoseSection 2 In this case
also we could discuss maps.if{U, C) whereBg andC are as defined iBection 2
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