

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Biomass acid-catalyzed liquefaction – Catalysts performance and polyhydric alcohol influence

Maria Margarida Mateus, Ricardo Carvalho, João Carlos Bordado, Rui Galhano dos Santos

CERENA, Departamento de Engenharia Química e Biológica, Torre Sul, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

ARTICLE INFO

Article history: Received 8 October 2015 Received in revised form 26 October 2015 Accepted 26 October 2015 Available online 6 November 2015

Keywords: Liquefaction Catalysts Solvents Biooils cork

ABSTRACT

Herein, the data acquired regarding the preliminary experiments conducted with different catalyst, as well as with two polyhydric alcohols (glycerol and 2-ethylhexanol), for the preparation biooils from cork liquefaction at 160 °C, is disclosed. This data may be helpful for those who intent to outline a liquefaction procedure avoiding, thus, high number of experiments.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area More specific sub- ject area	Chemistry Chemical Engineering
Type of data	figure
How data was acquired	Conversion yield was determined based on solid residue content
Data format	analyzed
Experimental factors	The samples were subjected to moderate temperatures in the presence of a acid catalyst and polyhydric alcohols without pre-treatment

E-mail address: rui.galhano@ist.utl.pt (R.G.d. Santos).

http://dx.doi.org/10.1016/j.dib.2015.10.037

^{2352-3409/© 2015} The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Experimental features	Thermochemical liquefaction of cork catalyzed by acids
Data source location	Lisbon, Portugal, GPS: 38° 44′ 10.31″N; 9° 08′ 19.66″W
Data accessibility	Data is provided in the article

Value of the data

- The assembled data regards the performance of different catalyst during the liquefaction of cork.
- Comparison between a mineral, organic and a Lewis acid.
- The influence of two different polyhydric alcohols was screened.

1. Experimental design, materials and methods

1.1. Materials and chemicals

Cork Supply SA kindly supplied Cork powder. The reagents used were chemical grade and purchased from Sigma-Aldrich.

1.2. Liquefaction procedure

The adopted procedure for the liquefaction of cork was as described by Mateus et al. [1]: the reaction vessels were loaded with a mixture of solvents with a ratio of 1/2 w/w of polyhydric alcohol (glycerol or 2-ethylhexanol) and diethylene glycol (DEG) ratio, containing a 3% or 1.5% of catalyst [sulfuric acid (H₂SO₄), p-Toluenesulfonic acid (*p*-TsOH) and Praseodymium(III) trifluoromethanesulfonate (Pr(OTf)₃)] 10% w/w of cork powder. The reaction mixture was heated and the temperature controlled at 160 °C.

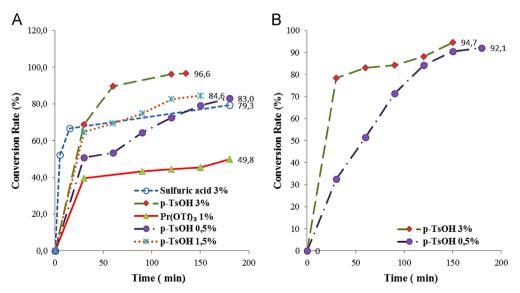


Fig. 1. Liquefaction of cork at 160 °C in: (A) glycerol/DEG and (B) 2-ethylhexanol/DEG.

The reaction was stopped when the conversion was higher than 95%. Afterwards the vessels were allowed to cool to room temperature. During the liquefaction process, samples were regularly retrieved to evaluate the liquefaction yield.

1.3. Measurement of liquefaction extent

The conversion was gravimetrically evaluated based on the residue content (unreacted raw material). A sample of the reaction mixture was diluted with acetone and filtered Afterwards the residual solid was washed with acetone and then dried in an oven set to 120 °C until constant weight. The liquefaction yield was calculated by the following equation:

Liquefaction yield (%) =
$$\left(1 - \frac{M_2 \times M_m}{M_5 \times M_1}\right) \times 100$$
 (1)

where M_1 is the initial mass of cork, M_2 the mass of the residue obtained, M_s the weight of the sample withdrawn and the M_m is the initial mass of the reaction mixture.

2. Data analysis

The data acquired is analyzed and plotted in Fig. 1.

Acknowledgements

CorkSupply is acknowledged for supplying cork powder.

Reference

 M.M. Mateus, N.F. Acero, J.C. Bordado, R.Gd Santos, Sonication as a foremost tool to improve cork liquefaction, J. Ind. Crop. Prod. 74 (2015) 9–13.