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The TOR pathway mediates nutrient-responsive regulation of cell growth and metabolism in animals. TOR
Complex 1 activity depends, amongst other things, on amino acid availability. MAP4K3 was recently
implicated in amino-acid signaling in cell culture. We report here the physiological characterization of
MAP4K3 mutant flies. Flies lacking MAP4K3 have reduced TORC1 activity detected by phosphorylation of S6K
and 4EBP. Furthermore MAP4K3 mutants display phenotypes characteristic of low TORC1 activity and low
nutrient availability, such as reduced growth rate, small body size, and low lipid reserves. The differences

I,;zgogﬁis{a between control and MAP4K3 mutant animals diminish when animals are reared in low-nutrient conditions,
TOR suggesting that the ability of TOR to sense amino acids is most important when nutrients are abundant.
Growth Lastly, we show physical interaction between MAP4K3 and the Rag GTPases raising the possibility they might
Metabolism be acting in one signaling pathway.

Rag GTPase © 2010 Elsevier Inc. All rights reserved.
Introduction via a calcium dependent mechanism (Gulati et al., 2008). This leads to

The multiprotein complex TORC1, containing TOR kinase, is a
central regulator of cellular growth and metabolism in animals
(Bjornsti and Houghton, 2004; Guertin and Sabatini, 2007). It is
activated by a number of inputs relating to cellular energy and nutrient
status. These include insulin, glucose, cellular energy levels and amino
acid availability (Avruch et al., 2006; Hay and Sonenberg, 2004). In
response, TORC1 activates protein synthesis via a number of mechan-
isms including activation of the ribosomal S6 kinase (S6K), repression
of the translational inhibitor 4E-BP, and promotion of ribosome
biogenesis via myc (Hay and Sonenberg, 2004; Teleman et al., 2008). In
particular since TORC1 is a master regulator of protein biosynthesis, its
regulation by amino acids, the building blocks of proteins, likely
constitutes an important regulatory feedback mechanism. Further-
more, the importance of amino acid signaling to TOR is highlighted by
the observation that circulating amino acids are elevated in humans
with obesity, where they have been shown to activate TORC1 activity
and modulate glucose metabolism (Krebs, 2005). Despite this, our
understanding of the molecular mechanism by which amino acids
regulate TOR remains fragmentary.

Three protein complexes have recently been implicated in the
activation of TORC1 in response to amino acids. The human class III
PI3K (phosphoinositide 3-kinase) hVps34 is activated by amino acids
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accumulation of phosphatidylinositol 3-phosphate (PI(3)P) in cells,
which is thought to cause the recruitment of proteins recognizing PI
(3)P to early endosomes, forming an intracellular signaling platform
that leads to TORC1 activation (Byfield et al., 2005; Nobukuni et al.,
2005). This feature of the pathway may be specific for vertebrates, as
flies mutant for Vps34 have been reported to not have TORC1 signaling
defects (Juhasz et al., 2008). Recently, two groups discovered that Rag
GTPases mediate amino acid signaling to TORC1 (Kim et al., 2008;
Sancak et al., 2008). The emerging picture is that amino acids change
the GDP/GTP loading of the Rag GTPases, thereby stimulating the
binding of Rag heterodimeric complexes to TORC1. This in turn causes
TORC1 to change its intracellular localization, perhaps relocalizing it to
vesicles containing the activator Rheb. This mechanism appears to be
evolutionarily conserved from flies to humans.

The third protein recently identified as a mediator of amino acid
signaling to TOR is MAP4K3 (Findlay et al., 2007). Findlay et al., (2007)
showed in HeLa cells that the kinase activity of MAP4K3 is activated in
the presence of amino acids. In turn, MAP4K3 is required for TOR to
phosphorylate its targets S6K and 4E-BP1 in response to amino acid
sufficiency. The cell-culture data also suggest this mechanism is
conserved from flies to humans as knockdown of Drosophila MAP4K3
causes a reduction in TOR activity.

Although considerable progress has been made, important questions
remain unanswered. The role of TORC1 activity in vivo has been well
studied in flies and mice, but fundamental issues regarding the
regulation of TOR by amino acids have thus far only been explored in
vitro in cell culture. To assess the functional significance of the ability of
TORC1 to sense amino acids in the organismal context we have made
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use of a Drosophila mutant for MAP4K3 (CG7097). We show that
dMAP4K3 mutant flies have reduced TOR activity, detected by
phosphorylation of TOR targets. dMAP4K3 mutants are viable but
display physiological aberrations emblematic of animals starved of
nutrients: MAP4K3 mutant flies have retarded growth, reduced size, and
low lipid reserves. Both the biochemical results and the phenotypes
indicate that MAP4K3 modulates, but is not absolutely required, for TOR
activity in vivo. This is similar to what is observed with other modulators
of the pathway, such as Melted. Unexpectedly, the function of MAP4K3
is most required when nutrient conditions are rich.

Materials and methods
Expression constructs and fly lines

Flies containing the 1(2)SH1261 P-element insertion were obtained
from the Bloomington Stock Center. The construct for expressing HA-
tagged MAP4K3 in S2 cells was built by subcloning cDNA GH26057
(BACPAC Resources Center) as a EcoRV-Sall fragment into pRmHa3b,
containing a copper-inducible promoter. An HA-tag was introduced
at the C-terminus of MAP4K3 into the Nhel site, using oligos 5'-
CTAGCTACCCCTACGACGTCCCGGACTATGCCTAA-3' and 5'-CTAGTTAGG-
CATAGTCCGGGACGTCGTAGGGGTAG-3". Similar constructs were built
for RagA and RagC by amplifying their coding sequences from
cDNA using oligos 5'GCGGCCGCAAGAAAAAGGTGTTACTGATGGG-3'
and 5'-CTCGAGCGGCAAATGGAGTTATGGAA-3' for RagA and 5'-GCGG-
CCGCAGCTACGATGATGATGACTATCC-3" and 5'-CTCGAGTTTTT-
TACGCTGCTCTGTGA-3' for RagC. A FLAG-tag was introduced into the
Notl site at the N-terminus using oligos 5'-GGCCATGGACTACAAGGAC-
GACGACGACAAG-3'" and 5'-GGCCCTTGTCGTCGTCGTCCTTGTAGTCCAT-
3" All final constructs were verified by sequencing. Mutant versions of
MAP4K3, RagA and RagC were generated by standard point mutagen-
esis. MAP4K3 mRNA levels were tested by quantitative RT-PCR using
oligos 5'-AACGTGGACAGCATTGTTTG-3" and 5'-CTCTCCAAGGCC-
ACAACC-3".

In vivo growth analyses and food conditions

Flies were grown under “growth controlled” conditions as
described previously (Teleman et al., 2005a). Flies were grown on a
rich food diet consisting of 3 L water, 36 g agar, 54 g dry yeast, 30 g
soya powder, 66 g sirup, 240 g malt extract, 240 g corn powder,
18.6 mL propionic acid and 7.2 g nipagin. For low-nutrient challenge,
20% food was prepared by mixing with PBS/0.6% agarose. Triglyceride
measurements and size measurements were performed as described
(Teleman et al., 2005a).

Immunoprecipitation and immunoblotting

Immunoprecipitations and immunoblotting were performed as
described previously (Teleman et al., 2005b). Anti-HA (Roche,
11867423001); anti-FLAG (Sigma, F1804) anti-pS6K(Thr398) (Cell
Signaling 9209 S); anti-pT37/46 4EPB1 (Cell Signaling 9459 S); anti-
engrailed (Developmental Studies Hybridoma Bank).

Results
Drosophila MAP4K3 mutants are viable

In order to study the in vivo function of amino acid sensing by
MAP4K3, we screened a panel of publicly available Drosophila lines
harboring P-element insertions in or near the dMAP4K3 (CG7097)
locus for loss of AMAP4K3 expression. The 1(2)SH1261 P-element is
inserted in the second intron of dMAP4K3 (Fig. 1A). By quantitative
RT-PCR, we found that flies homozygous for the 1(2)SH1261 insertion
have expression levels of dMAP4K3 that are only 1% that of control

flies (Fig. 1B). We back-crossed female flies harboring the 1(2)SH1261
insertion to w!!!8 flies for four generations in order to obtain two fly
stocks with similar genetic backgrounds, differing by presence or
absence of the 1(2)SH1261 insertion. The resulting stocks were then
used for all experiments described here, and we will refer to such flies
homozygous for the 1(2)SH1261 insertion as MAP4K3 mutant flies,
and the w'''® stock as control.

MAP4K3 mutant flies were able to reach adulthood, looked
normally patterned, and were fertile. Nonetheless, they were not
completely normal as they had reduced viability compared to control
flies. Only 77% of MAP4K3 mutant first-instar larvae reached
adulthood, compared to 91% of controls (t-test 0.001, Fig. 1C). Within
the first 2 days of life, 18% of MAP4K3 mutants died, compared to 7% of
controls (t-test <0.001, Fig. 1C), suggesting MAP4K3 mutants are
generally weaker than controls.

MAP4K3 mutants have reduced TOR activity levels in vivo

Knockdown of MAP4K3 in Drosophila S2 cells has been reported to
reduce TOR activity (Findlay et al., 2007). We asked whether MAP4K3
mutant animals also have lower TOR activity compared to controls.
We extracted protein from control and MAP4K3 mutant adult males
and assayed TOR activity by detecting phosphorylation of two TOR
targets, S6K and 4EBP (Fig. 2). MAP4K3 mutants compared to control
animals had significantly reduced S6K and 4EBP phosphorylation
levels (Fig. 2). As an additional control, we generated animals bearing
a precise excision of the 1(2)SH1261 P-element insertion, which
should revert the lesion causing the MAP4K3 mutation, and hence the
loss-of-function phenotype. In these animals, phosphorylation of S6K
and 4EBP were returned to normal levels (Fig. 2).

MAP4K3 mutants have retarded growth and reduced size

We asked whether MAP4K3 mutant flies display phenotypes
canonical of reduced TOR activity, such as reduced organismal growth
rate and smaller final body size in part due to smaller cells. When equally
staged MAP4K3 mutant and control first-instar larvae were seeded at
defined density in vials containing normal laboratory food, which is rich
in amino acids and other nutrients (hereafter referred to as “controlled
growth conditions”), MAP4K3 mutants were delayed in pupation
relative to controls by almost 2 days (Fig. 3A). We could not detect
any defects in ecdysone signaling in MAP4K3 mutants, assayed by
quantitative RT-PCR of transcriptional targets of the pathways (Supple-
mentary Fig. 1). Instead, MAP4K3 mutants displayed a slower growth
rate during larval stages. MAP4K3 mutant larvae were significantly
smaller than equally aged control larvae, as was evident by visual
inspection 4 and 5 days after egg laying (Fig. 3B) and when quantified
(Fig. 3C). Growth curves obtained by weighing larvae at successive days
of development showed that MAP4K3 mutants accumulated mass more
slowly than controls (Fig. 3D). MAP4K3 mutants also displayed a larger
inter-individual variation in growth rate compared to controls, as can be
seen by the larger standard deviation in the size (Fig. 3C) and the
shallower pupation curve of the MAP4K3 mutant population compared
to controls (Fig. 3A). MAP4K3 mutant adult flies were also significantly
reduced in size, as could be quantified by measuring wing area. Mutant
wings were roughly 20% smaller than wings from control flies
(t-test=1x10"7, Fig. 3E). The difference in size between mutant and
control adults was smaller than the difference between co-aged larvae
due to the 2-day extended larval growth period of the mutants allowing
them to grow to near normal size before pupation. In order to quantify
cell size in MAP4K3 mutant adults, we measured hair number per unit
area in MAP4K3 mutant and control wings (Fig. 3F). MAP4K3 mutants
had a significantly reduced cell size compared to controls
(t-test=2x107>, Fig. 3F). Since only strong growth defects can be
readily observed using mitotic clones, we could not detect striking
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Fig. 1. MAP4K3 mutant flies are viable. (A) Overview of the dMAP4K3 (CG7097) genomic locus, showing insertion point of the 1(2)SH1261 P-element relative to the two dMAP4K3
splice isoforms. 1(2)SH1261 is inserted in the second intron of the gene. (B) Quantitative RT-PCR on dMAP4K3 mRNA normalized to rp49. Flies homozygous for the 1(2)SH1261
insertion have 1% the level of MAP4K3 expression as compared to w'''® flies (“control”). Error bars indicate standard deviation. (C) Survival curve for control (dark bars) and
MAP4K3 mutant flies (light bars). The majority of MAP4K3 mutant flies survive to adulthood (“adults”) although viability is slightly but significantly reduced compared to control
flies (t-test=0.001). A significant number of MAP4K3 mutant adults die the first 2 days of life (circa 20%), significantly more than controls (t-test <0.001). Error bars indicate

standard deviation and * indicates significance.

defects in MAP4K3 mutant clones in the wing disc (Supplementary
Fig. 2).

MAP4K3 mutants are lean

Signaling through the insulin and TOR pathways has a significant
impact on fly metabolism (Baker and Thummel, 2007; Teleman et al.,
2005b). We asked whether MAP4K3 mutant animals have altered
metabolic characteristics compared to controls. Triglyceride levels are
one important metabolic parameter in Drosophila, as flies store most of

control
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total dS6K

P37/46 4E-BP # s s
total 4E-BP S

Fig. 2. MAP4K3 mutant flies have reduced TOR activity. Protein extracts from 5-day-old
adult males of control, MAP4K3 mutant or 1(2)SH1261 excision flies, probed for
phospho- and total S6K and 4EBP protein as indicated.

their energy in the form of triglycerides in their adipose tissue (Van der
Horst, 2003). We reared mutant and control animals under controlled
growth conditions, and measured total body triglycerides, normalized
to total body protein to control for animal size. MAP4K3 mutant animals
had roughly 40% less fat than control animals (t-test<0.01, Fig. 4A). This
phenotype was reversed in animals bearing a precise excision of the 1(2)
SH1261 P-element insertion (t-test<0.01, Fig. 4A). As a further control,
flies trans-heterozygous for the 1(2)SH1261 P-element insertion over a
deficiency uncovering the MAP4K3 locus were also lean (Fig. 4B, t-test
<0.01). The leanness of MAP4K3 mutants could be reversed by
expressing MAP4K3 via a UAS transgene together with the low-level
ubiquitous driver daughterless-GAL4 (Fig. 4C, t-test < 0.01).

The combination of growth and metabolic phenotypes displayed
by MAP4K3 mutants-reduced growth rate and low lipid levels-
suggest that the mutant animals are reacting physiologically as if they
were nutritionally starved, even though nutrients are available.

We postulated that the starvation-like phenotypes of MAP4K3
mutant flies might be exacerbated by rearing animals in a condition
where nutrient supply is limiting, rather than in high abundance as
under standard laboratory conditions. To this end, we seeded first-
instar larvae on food that had been diluted 1:5 with PBS/agarose,
reducing the concentration of all nutrients. Under these conditions,
both mutant and control animals took longer to pupate than under
normal food conditions (Fig. 3A and A'"). To our surprise, however,
MAP4K3 mutants were no longer disadvantaged in terms of growth
rate, and pupated at the same time as control flies (Fig. 3A"). This
finding is consistent with cell culture data showing that MAP4K3 is
required for full activation of TOR in the presence of amino acids, but
is less important for TOR activation in the absence of amino acids
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Fig. 3. MAP4K3 mutant flies display TOR-like growth phenotypes. (A,A’) Pupation curves for control (dark graphs) and MAP4K3 mutant flies (light graphs). Flies were grown on (A) normal
laboratory food or (A') normal laboratory food diluted 1:5 with PBS/agarose to generate a condition of limiting food supply. Error bars indicate standard deviation. (B) MAP4K3 mutant
larvae are smaller than equally aged control larvae, both 4 and 5 days after egg laying (4d AEL and 5d AEL respectively). (C) Quantification of larval size of equally aged, male animals grown
under controlled conditions (50 animals per vial). Size was quantified by measuring the area of individual larvae on pictures. Control, MAP4K3 mutant and 1(2)SH1261 precise excision
animals (“precise excision”) as indicated. Error bars indicate standard deviation. ** and * indicate statistically significant differences (t-test=0.002 and 0.01 respectively). (D) Growth
curves of control and MAP4K3 mutant larvae seeded on normal laboratory food at a density of 50 larvae per vial in triplicate. Larval weights were measured on indicated days after egg
laying. Error bars indicate standard deviation. (E) Relative wing size of control and MAP4K3 mutant flies. Error bars indicate standard deviation. * MAP4K3 mutant wings were significantly
smaller (t-test=1x10~7). (F) Wing cell size is reduced in MAP4K3 mutant animals compared to controls. Cell size in the wing was measured by counting hairs for an area of defined size,
posterior to vein 5. Error bars indicate standard deviation. Mutant animals have significantly smaller cells than control animals (t-test =2 x 10~ > indicated by *). In all cases (A-F), animals
were grown under controlled conditions, seeded as first instars at a density of 50 animals per vial.

(Findlay et al., 2007). To test whether the difference in growth rate
between control and MAP4K3 mutant flies is specifically due to the
sensing of amino acids, we generated food in which the two amino-
acid rich ingredients, yeast extract and soy meal, were reduced to 20%
their normal concentration whereas all other ingredients, including
the carbohydrate-rich malt extract, were left normal. Whereas
MAP4K3 mutant animals displayed a growth delay relative to controls
on normal laboratory food (Fig. 5A), both control and MAP4K3 mutant
animals grew equally slowly on low-amino acid food, so that the
difference between the two genotypes was no longer statistically
significant (Fig. 5B). We also assessed activation of TOR in control and

MAP4K3 mutant larvae grown on normal and low-amino acid food, by
quantifying phosphorylation of S6K (Fig. 5C). On normal food,
MAP4K3 mutant animals had reduced levels of phospho-S6K com-
pared to control animals (Fig. 5C, lanes 1 and 2). Whereas
phosphorylation of S6K dropped in wildtype animals growing on
low-amino acid food compared to normal food (Fig. 5C, lanes 1 and 3),
this drop was not visible in MAP4K3 mutant animals (Fig. 5C, lanes 2
and 4). Together, these data suggest that MAP4K3 is required in vivo
to activate TOR and spur growth when amino acid conditions are rich,
whereas its activity is not as necessary when amino acid levels are
limiting.
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Fig. 4. MAP4K3 mutant flies are lean. (A) Relative triglyceride levels, normalized to total
body protein, for control flies, MAP4K3- mutant flies homozygous for the 1(2)SH1261
insertion (“map4k3-") and flies in which the P-element was precisely excised (“precise
excision”). (B) Relative triglyceride levels, normalized to total body protein, for control
flies, MAP4K3- mutant flies homozygous for the 1(2)SH1261 insertion (“map4k3-"),
and flies trans-heterozygous for the 1(2)SH1261 insertion over the deficiency Df(2R)
Exel6069 uncovering the MAP4K3 locus (map4k3-/Df). (C) Relative triglyceride levels,
normalized to total body protein, for map4k3 mutant flies carrying either the
daughterless-GAL4 driver (“map4k3-; da-G4”), or a UAS-MAP4K3 transgene
(“map4k3-; UAS-MAP4K3”) or both, resulting in ubiquitous low-level expression of
MAP4K3 in the map4k3 mutant background (“map4k3-; da>MAP4K3"). In all cases,
error bars indicate standard deviation and * indicates statistical significance (t-test
<0.01).

MAP4K3 interacts physically with RagA and RagC

While working with MAP4K3, we noticed MAP4K3 protein
contains a CNH domain at its C-terminal end. This domain is present
in other kinases such as Citron kinase and Myotonic dystrophy kinase-
related Cdc42-binding kinase (MRCKa), which interact with small
GTPases such as Rho and Cdc42 (Madaule et al., 1995; Zhao and
Manser, 2005). Therefore, we postulated that MAP4K3 might interact
with a small GTPase in the TOR signaling pathway. To this end, we
tested whether MAP4K3 can bind Rheb, an activator of TOR. We
expressed HA-tagged MAP4K3 and myc-tagged Rheb in S2 cells, and
performed immunoprecipitations in both directions (anti-HA and
anti-myc), but were not able to detect any binding between MAP4K3
and Rheb (data not shown). Recently, a new set of GTPases have been
reported to regulate TOR—the Rag GTPases (Kim et al., 2008; Sancak et
al., 2008). Unlike Rheb, the Rag GTPases are important for TOR to be

responsive to amino acids. To test whether MAP4K3 can bind Rag
GTPases, we expressed HA-MAP4K3 together with FLAG-dRagA and
FLAG-dRagC in S2 cells and immunoprecipitated RagA and RagC with
anti-FLAG antibody (Fig. 6A). HA-MAP4K3 could be strongly detected
in the FLAG immunoprecipitate (Fig. 6A, lane 3). As a control,
HA-MAP4K3 could not be detected in the immunoprecipitate from
lysates of cells not co-transfected with FLAG-RagA and FLAG-RagC
(Fig. 6A lane 1) showing that immunoprecipitation of MAP4K3
required presence of the Rag proteins. As a further control for
specificity, an unrelated HA-tagged protein (HA-Medea) was not
co-immunoprecipitated despite being present in the lysate at equal
levels as HA-MAP4K3 (Fig. 6A).

We then tested whether the interaction between MAP4K3 and the
RagA/C complex is dependent on the presence of amino acids or the
state of activation of TORC1. Inactivation of TORC1 with rapamycin had
no detectable effect on binding between MAP4K3 and the RagA/C
complex (Fig. 6B, lane 3), whereas amino acid removal caused a slight
but reproducible reduction in binding (Fig. 6B, lane 2). As a control for
effectiveness of the treatments, both rapamycin treatment and amino
acid removal caused complete dephosphorylation of the TOR substrate
S6K (Fig. 6B).
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Fig. 5. Effects of amino acids on MAP4K3 mutant phenotypes. (A, B) Pupation curves for
control (dark graphs) and map4k3 mutant flies (light graphs). Flies were grown in
parallel on (A) normal laboratory food or (B) food containing only 1/5th the normal
amount of yeast extract and soy meal, the two principle amino-acid containing
components. Error bars indicate standard deviation. (C) Protein extracts from control or
MAP4K3 mutant pre-wandering third-instar female larvae, probed for phospho- and
total S6K, and ERK as a loading control.



Inresponse to amino acid deprivation, the activation state of both the
Rag proteins and of MAP4K3 changes: Rag proteins change their GDP/
GTP loading (Kim et al., 2008; Sancak et al., 2008) whereas MAP4K3
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becomes dephosphorylated (Yan et al., 2010). To study in more detail
whether these events affect binding between MAP4K3 and the RagA/C
complex, we first asked whether MAP4K3 binds preferentially to RagA
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or to RagC. S2 cells were co-transfected with HA-MAP4K3 and either
FLAG-RagA or FLAG-RagC, or both combined. Notably, the binding to
RagC was significantly stronger than the binding to RagA (Fig. 6C, lanes 1
and 2) suggesting that binding of MAP4K3 to the RagA/C complex is
mediated via binding to RagC. We then asked whether the activation
state of MAP4K3 or RagC affects binding of MAP4K3 to the RagA/C
complex. To this end, we generated a panel of mutations in either
MAP4K3 or RagC. Lamb and colleagues have reported that the
phosphorylation state of Ser170 of hMAP4K3 (Ser180 in Drosophila)
is dependent on the presence of amino acids (personal communication,
in press). Therefore, we generated dMAP4K3 variants in which Ser180
was mutated to either non-phosphorylatable alanine, or to glutamic
acid mimicking the phosphorylated state. Neither mutation, however,
affected binding of MAP4K3 to the RagA/C complex (Fig. 6D, lanes 2, 3
and 7). We also generated RagC variants that were either locked in the
GDP or GTP state, or had a phospho-mimicking mutation on Ser388
(S388E), as RagC is reported to be phosphorylated at this site in vivo
(http://www.phosphopep.org). Although mutation of Ser388 did not
alter binding between MAP4K3 and the RagA/C complex, locking RagC
into the GDP state strongly increased binding to MAP4K3 (Fig. 6D, lanes
4-7). Since amino acid availability regulates the GDP/GTP load of Rag
proteins (Kim et al., 2008; Sancak et al., 2008), we asked whether amino
acids regulate MAP4K3/Rag binding via modulation of the Rag GDP/GTP
load. Whereas removal of amino acids caused a slight reduction in
binding of MAP4K3 to the RagA/RagC(WT) complex (Fig. 6E, lanes 1-2),
amino acid removal no longer had an effect when RagC was locked in the
GDP state (Fig. 6E, lanes 3-4). This suggests that amino acids regulate
MAP4K3/Rag binding by modulating the GDP/GTP load of the Rag
proteins.

These biochemical data suggest that MAP4K3 and the Rag GTPases
might work together in a signaling pathway mediating amino acid
signaling to TORC1. They do not, however, shed light on which
component is upstream of the other. To this end, we tested in vivo
genetic epistasis between MAP4K3 and RagA. Overexpression of
constitutively active RagA (Q61L) in Drosophila leads to tissue
overgrowth, as would be expected from activation of TORC1 (Kim et
al., 2008). Expression of RagA(Q61L) in the posterior compartment of
the wing with engrailed-GAL4 caused an increase in the size of this
compartment relative to the anterior (Fig. 6F, columns 1-4). When
RagA(Q61L) was expressed in the posterior compartment in a
map4k3-mutant background, it was still able to induce tissue
overgrowth (Fig. 6F, column 5), indicating that MAP4K3 is not
downstream of RagA.

Discussion

MAP4K3 mutant flies display phenotypes typical of reduced TORC1
activity and reduced nutrient availability

Recent reports have shown that not all components identified in
cell culture as regulators of TORC1 activity also affect TORC1 in vivo in
an animal model (Juhasz et al., 2008). The purpose of our study was
two-fold: (1) to analyze whether MAP4K3 regulates TORC1 activity in

vivo in the fly, and (2) to study the physiological consequences for the
organism when the ability of TORC1 to sense amino acids is impaired.

We present biochemical evidence that TORC1 activity is reduced in
MAP4K3 mutant animals, consistent with published cell-culture data
showing that MAP4K3 is required for full TORC1 activation (Findlay et
al., 2007). Furthermore, MAP4K3 mutants have defects typical of
reduced TORC1 activity. They are delayed in their development due to
a reduced rate of growth. They eventually pupate leading to adults of
reduced size and their tissues are comprised of cells that are smaller
than normal. Furthermore, MAP4K3 mutants have significantly
reduced triglyceride stores compared to controls. These physiological
effects are similar to the phenotypes observed with mutants for other
regulators of TOR, such as Melted. Melted mutant flies are also 10%
smaller than controls and are significantly leaner (Teleman et al.,
2005b).

As a whole, the MAP4K3- mutant phenotypes emulate the
physiological effects observed when flies are grown on conditions of
limiting food. When wildtype larvae are put on a low-nutrient diet,
they are delayed in pupation and yield animals of small size that are
lean (KH unpublished). Thus loss of MAP4K3 activity phenocopies a
reduced nutrient environment, consistent with MAP4K3 playing a
role in the ability of animals to sense their nutrient conditions. This
suggests the ability of TORC1 to sense amino acids is most important
when nutrient conditions are rich, allowing animals to accelerate their
growth accordingly. In contrast, on a low-nutrient diet, control and
MAP4K3 mutant flies grow equally slowly (Figs. 3A", 5B) consistent
with TOR activity being low in both groups. This parallels nicely the
results reported in cell culture by (Findlay et al., 2007): In the absence
of amino acids, both control and MAP4K3 knockdown cells have low
TOR activity whereas in the presence of amino acids, TOR is activated
strongly in control cells but only weakly in MAP4K3 knockdown cells.

Unexpectedly, we found that MAP4K3 mutant animals are viable,
although they have an elevated mortality rate compared to controls.
This suggests that the amino acid sensing pathway might only modulate
TORC1 activity. If TORC1 activity were completely blunted in MAP4K3
mutants, the animals would be dead, as is the case for TOR or Rheb
mutants. Consistent with this, we observe residual TORC1 activity in
MAP4K3 mutants, as detected by phosphorylation of the TORC1 targets
S6K and 4EBP. This also parallels results from cell culture. The results
presented in Findlay et al., 2007 are obtained with cells starved of serum
and consequently of insulin signaling. In the presence of insulin
signaling, which resembles the physiological situation more closely,
MAP4K3 mutant cells still retain residual TOR activity (unpublished),
similar to what we observe in vivo here. Consistent with these findings,
we observed that the Rheb expression is able to drive tissue growth also
in the absence of MAP4K3 (Supplementary Fig. 3).

MAP4K3 binds Rag GTPases

Both MAP4K3 and the Rag GTPases have recently been shown to be
required for amino acids to stimulate TORC1 activity. While studying
dMAP4K3, we noticed that dMAP4K3 binds physically to the Rag
GTPases, suggesting they might act together as components of a single

Fig. 6. dMAP4K3 interacts physically with dRagA and dRagC. (A) dMAP4K3 co-immunoprecipitates with the dRagA/dRagC complex. S2 cells were transfected with constructs
expressing HA-dMAP4K3, HA-Medea, FLAG-dRagA, and FLAG-dRagC as indicated. Cell lysates and FLAG-tag immunoprecipitates were analyzed by immunoblotting against HA- and
FLAG-tags. HA-MAP4K3 but not HA-Medea co-immunoprecipitates with FLAG-Rags (lane 3). HA-MAP4K3 does not precipitate in the absence of the FLAG-Rags (lane 1). “IgG” label
marks the heavy chain of the anti-FLAG antibody, which runs slightly above dRagC. “NS” marks a non-specific band recognized by the anti-FLAG antibody in S2 cell lysates. (B) Effect
of rapamycin and amino-acid withdrawal on binding between MAP4K3 and RagA/C. Cells and lysates were treated as in (A) except cells were treated with 20 nM rapamycin or
treated with Schneider's medium lacking amino acids for 1 h prior to lysis. (C) dMAP4K3 binds dRagC more strongly than dRagA. Cells and lysates were treated as in (A). MAP4K3 can
be detected more strongly in the FLAG immunoprecipitate when FLAG-RagC was expressed compared to FLAG-RagA. (D) Effect of various MAP4K3 and RagC mutations on binding
between MAP4K3 and the RagA/C complex. MAP4K3 binds best to RagA/C complex when RagC is locked in the GDP conformation. Constructs used are wildtype MAP4K3 (“WT") or
MAP4K3 containing a S180A (“A”) or S180E (“E”) mutation, as well as wildtype RagC (“WT”"), RagC containing a S388E mutation (“E”), RagC locked in the GDP conformation (S54N,
“GDP”) or RagC locked in the GTP conformation (Q99L, “GTP"). (E) Binding of MAP4K3 to RagA/C is no longer sensitive to amino acid availability when RagC is locked in the GDP
state. Cells expressing wildtype MAP4K3 together with RagA and either RagC(WT) or constitutively active RagC(Q61L) were treated as in (B). (F) Constitutively active RagA can
induce tissue growth also in the absence of MAP4K3. Wing posterior compartment area normalized to anterior compartment area plotted for control w1118, map4k3 mutant, and
engrailed-GAL4 flies (enG4), as well as flies expressing constitutively active RagA(Q61L) either in the wildtype background (enG4>>UAS-RagA*) or in the map4k3 mutant
background (map4k3-; enG4>>UAS-RagA*). Error bars indicate standard deviation. *t-test<10-11 relative to w1118.
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signaling pathway. This interaction is likely specific for several
reasons: (1) we could not detect binding of MAP4K3 to another
GTPase, Rheb, (2) binding of MAP4K3 to the RagA/C complex was
significantly stronger than binding of an unrelated HA-tagged protein,
HA-medea (3) MAP4K3 bound FLAG-RagC significantly stronger than
FLAG-RagA showing that MAP4K3 distinguishes between two Rag
proteins and (4) binding of MAP4K3 to RagC depended on its GDP/
GTP state.

Further studies will be required to test whether this interaction is
important for TORC1 to sense amino acids. Our data suggest that
MAP4K3 might be functioning upstream of the Rag GTPases, and not
downstream since activated RagA does not require MAP4K3 to
promote tissue growth in vivo (Fig. 6F). This raises the possibility
that the Rag GTPases may be substrates for MAP4K3 phosphorylation.
Indeed, RagC is phosphorylated in vivo in Kc167 cells on Ser388
(http://www.phosphopep.org). If MAP4K3 were to phosphorylate
RagC, this would provide a mechanism for regulation of the Rag
GTPases, which to date is mysterious. Work in the near future should
shed further light on this issue.

In summary, we have characterized the physiological function of
MAP4K3 in Drosophila, and shown that it modulates TORC1 activity,
tissue growth and lipid metabolism in the animal. Physical interaction
data hints at a possible link between MAP4K3 and the Rag GTPases. We
show that the organismal function of amino acid sensing by TORC1 is
mainly required to spur growth when nutrient conditions are rich.
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