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1. Introduction 

It gives us great pleasure to honour, on the occasion of his seventieth birthday, 

our friend and mentor Saunders MacLane; and to acknowledge that our interest in 

coherence problems stems from his influence, beginning with his fundamental paper 

[13], and continued through personal contacts-whose value to us, and whose 

warmth, much transcend what we can express in a formal dedication. 

Our purpose is to give an explicit description of the free compact closed category 

on a given category. A compact closed category is a symmetric monoidal one whose 

internal-horn [A, C] has the form CBA’. Before giving examples of these we 

analyze and simplify the definition. 

A monoidal category d with tensor product @ and unit object I can be regarded 

as a bicategory B with a single O-cell, the l-cells of B being the objects of ti with @ 

as their composition, and the 2-cells of B being the morphisms of do’. We can there- 

fore speak of a lefr adjoinf of an object A of .9, meaning thereby an object A * of .I 

together with a “unit” map & : I-+.4 @A * and a “counit” eA : A * @A -I satis- 

fying the usual “triangular equations”, namely that each of the composites 

A z I@Ad 
I-’ A x 

(A@A*)@A G A@(A*@A)-g+A@I z A, (1.1) 
0 .4 I 

A’ s A’@1 
r-1 

-A*@(A@A’) = (A*@A)@A*- ,~,d 
.4 a-’ 

eA8, /@A* 2 A’, (1.2) 
/ 

should be the identity (a, I, and r being the associativity and unit isomorphisms of 

9). 
Whenever A has such a left adjoint we have a natural isomorphism 3(B@A, C) 

= .d(B, CBA’); so that if every object in .a has a left adjoint, the monoidal category 

D is closed, with internal-horn [A, C] = CBA’. Conversely it is easily verified that 

* The first author gratefully acknowledges the support of an Australian Research Grant. 
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an object A in a monoidal closed category has a left adjoint if and only if the 
canonical map B@ [A, C] -+ [A, B@ C] . IS an isomorphism for all B and C; for which 
it suffices that its component A@[A,I]--[A,A@I] 3 [A,A] be an isomorphism; 

whereupon A l is [A, f]. 
We can therefore adopt the following simple definition of compact closed 

cafegory, which does not explicitly mention any “closed” structure: it is a 
symmetric monoidal category (with symmetry isomorphism c : A @B s E@A, say), 

in which every object A has a left adjoint; or rather, for our present purposes, one in 
which every object A has an assigned left adjoint (A *, dA, eA)-for left adjoints are 
unique only to within isomorphism, while we want the extra structure on the 
category to be equational. 

As examples of compact closed categories we have: finitely-generated projective 
modules over a commutative ring; finite-dimensional representations of a compact 
group; the category with sets for objects, relations for morphisms, and Cartesian 
product for 0; Conway’s games [2] as made into a category, with strategies as 
maps, by Joyal (unpublished); Lawvere’s (also unpublished) category of physical 
quantities, in which the objects are physical “dimensions” such as MLT2. In any 
symmetric monoidal category those objects that do have left adjoints form a full 
subcategory that is compact closed. Those compact closed categories that are 
ordered sets are precisely the ordered abelian groups; there is clearly a connexion 
with K-theory. The “category” of small categories and profunctors fails to be a 
compact closed category only because it fails to be an honest category with asso- 
ciative composition. {The *-aufonomous categories in the sense of Barr [l] 
include the compact closed categories, but are more general; such a category has an 
internal-horn of the form [A, C] = (ABC’)‘, and is compact closed exactly when it 
satisfies (A@B)‘sB*@A’. Having I’=:I is not enough to ensure this, as is shown 
by the example of complete upper semi-lattices}. 

Small compact closed categories form a category Comp if we take as morphisms 
those functors that strictly preserve both the symmetric monoidal structure and the 
assigned adjunctions (A l , dA, eA). The equationality of the extra structure on the 
underlying category ensures, by general principles, that the forgetful functor 
U : Comp-rCat has a left adjoint F and is monadic; and in fact a direct proof of 
this has been given by Day [3], who shows that Comp may be obtained from the 
category of symmetric monoidal closed categories as a category of fractions. 

Our goal is to give this left adjoint F(and hence the monad on Cat) explicitly, thus 
completely solving the “coherence problem” for this structure. It is in fact a 
structure of special interest in the search for a deeper understanding of coherence 
problems, being perhaps the simplest practical case in which the data and axioms are 
expressible entirely in terms of the “good” generalized natural transformations of 
[4], but in which there occur “incompatible” composites, such as 
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it was put forward by the first author ((5, p. 1021 and [6, p. 1341) as a kind of test 
case. At the end of the paper we make some remarks on coherence problems in the 
light of our results. 

2. Cycles and traces 

For a category .Ywwe define the set of endomorphisms to be the disjoint union 

E(..d) = c .@&A), 

and define the set of cycles [.?/I to be the quotient set of I?(.?/) modulo the equi- 

valence relation generated by the relation 

gf-fg whenever f : A-B and g : B-A. 

The name “cycle” reflects the fact that, for a “cyclic sequence” of maps 

Al- /, A2TA3 -.e.-A,,-I-A,,-A~, 
f.- I f” 

the different endomorphisms fdn_ ~e..f$-~ and f,,- 1...f2fifn have the same image in 
[Z/l. 

The image of an endomorphism under the canonical projection r : E(.i)*[.d] 

may be called its truce. For any set X, a function Q : E(d)-+X factorizes (uniquely) 
through r, as g = pr say, if and only if I =&g) for f : A-B and g : B-A; such 
a .Q may be called a trace function, and r is the universal trace function. 

One source of trace-functions is pairs of incompatible natural transformations in 
the sense of [4]. The general case involves a functor 

T: d”~x~x~o~x;y’x~~~x~o~x~~~~ 

of 2n variables, objects K and L of g, and natural transformations with typical 
components 

a: K-T(AI,AI,Az,Az,A~ ,..., An-l,An,An), 

P: T(BI,B~,B~,B~,B~ ,..., B~,&,BI)-+L; 

and the result is (cf. [5, p. 1021): 

(2.1) 

(2.2) 

Proposition 2.1. For maps fl : BI+AI, f2 : Al+Bz, f3 : Bz-+Az, 

f4 : Az’B3 ,..., fin-1 : Bn-+An, fzn : An+Bl, 

the composite of the three maps (2. I), Tcfi,fz, . . . . fzn - I, fzn), and (2.2), depends only 
on the cycle rCfi,&_ 1 . ..ftfi). so that a and j? give rise to a function y : [d] 

+ g(K, L). 
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Proof. For simplicity we give the proof only for n = 1, this being the only case we 

actually use below. The above composite then takes the form 

which we may denote by d(g,f). The naturality of a gives Th!, hhm = T((lB,g)c@, 

whence s(g,f) = ~BT( l&)7( 18, g)cre = G(ls,fg) depends only on the endomorphism 

fg. But the naturality of /? gives /&T(g, l~)=p~T(l~,g), so that we also have 

6(&O = d(I.4,gf). 0 

Note that any functor T : .++ .J sends endomorphisms of .?/to endomorphisms of 

.$, and passes to the quotient to give a function [T] : [.:/I-[_#I. 
The remaining remarks about cycles and traces are not used below, and we 

include them for general interest. It is easily seen that the function [T] above 

depends only on the isomorphism-class of T. Since clearly [.Y/x .“1] = [Y’] x [A), a 

functor of the form @ : .~/x.++.~‘induces a binary operation [@] on [.?/I, and 

similarly for ternary functors .Y3 d.Yand so on. Moreover [@I is associative [com- 

mutative] if @ is associative [commutative] to within isomorphism. Hence if .:/is 

[symmetric] monoidal, [.:/I is a [commutative] monoid. Then if X is a monoid, 

,b : [.2/]-X is a monoid-map if and only if g=Qr satisfies g(k@k’) = _o(k)~(k? and 

,o(ll)= 1; in particular 7 satisfies these. Further, since [.-PP] = [.:/I, an internal-horn 

.v’OP x .++.Ygives another binary operation on [-/I, and so on. 

It is immediate that Q : E(.d)-X is a trace function if and only if its components 

Q4 : .+I, A)-X constitute a natural transformation in the sense of [4]; whence [ ~‘1 

is the coend 1” .:/(A,A). If now .Y is replaced by a Y-category for a symmetric 

monoidal closed category Y, we can define [.:{I E 1 by this same formula, interpreted 

now as a Y-coend; and everything above carries over, with x replaced by 0. Note 

that for an additive category .:/, this Ab-based [.Y] E Ab is quite different from our 

original [.?/I E Set for the underlying category; the former is an abelian group which 

is universal for addifive trace functions-those for which g(k + k’) = p(k) + ,o(k’). 

The reader may find it instructive to compute [.:/I when .:/is the (ordinary) category 

of finite sets, along with the operations on [V] induced by coproduct, by product, 

and by exponentiation; and to compute the R-linear [.+I when .-/is the category of 

matrices over a commutative ring R. We observe finally that [T] : [ -i] -, [ .#A] can be 

defined not only for a r-functor T but for an adjoint pair of Y-profunctors; so that 

[.v] really depends only on the Cauchy completion of .:/in the sense of Lawvere [ 121 

(who also has some brief remarks about traces in his Section 5). 

3. The explicit description of F.9 

We define a signedset P to be a set 1 Pi together with a “sign” function from P to 

the two-element set { - , + ). We write P@Q for the disjoint union of signed sets, 
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with I for the empty signed set; we write P’ for P with the signs reversed: and we 

write 1 for the one-element signed set with sign + . 

By an involution 0 we mean a category which is a coproduct of copies of the 

arrow-category 2; these are really the fixed-point-free involutions, but we need no 

others. Such an involution is a special kind of order on its object-set /PI ; and, as 

with orders in general, we do not distinguish two involutions on lPl which differ 

only in the “names” of their maps. This object-set /Pi becomes signed when we 

attribute - to the source and + to the target of each arrow 2; we call ~3 an invo- 
lution on the signed set P when this signing agrees with that of P. 

By a loop L we mean the free category on a graph of the form 

A1-A2- . ..-+An-+Ai. 

for some nr 1. The composite represented by this string determines a canonical 

element (15 > of the set [L] of cycles of L, independently of where the loop is started. 

We use + for the coproduct of categories, and henceforth suppose all signed sets 

and involutions to be finite. If 8 is an involution on the signed set P * @ Q and @ is 

one on Q*@R, consider the pushout 0 + IQ] @I in Cat, obtained from the coproduct 

8+ @ by identifying the two copies of the discrete category j Ql , one in 6~ and one in 

0. Write @B for the full subcategory of 0 + Q @ determined by the object-set 

j PI + 1 R 1; it is clearly an involution on P*@R; moreover we clearly have 8 + Q# @ 

= qM+ 0 * 0, where 0 or 0 is a coproduct 1 Li of loops with objects in I Q; . If now w 

is a third involution on R*@S, it is further immediate that 

w(@@=(w@)e and w*(~e)+~*e=(w~)*8+w*~. (3.1) 

For any category .:/we now define an explicit compact closed category G -/‘and a 

functor Y-/ : +-G.-i. Our main theorem below in Section 8 will be a proof that G-C/ 

is (isomorphic to) the free compact closed category F.9 on :I, with ‘Y.-i as the unit 

of the adjunction. Until then, we need the distinct names F.-i and G.-i for clarity. 

We define the objects of G.rdas words in an abstract language: 

each object of .+is an object of G -J; 

Z is an object of G.-i; 

for any objects X, Y of G.-/there is an object X@ Y of G.v; 

for any object X of G.-/there is an object X* of G.-A 

To each such object X we assign inductively a signed set P(X), setting P(A) = 1 if 

A E .:/, P(Z) = I, P(X@ Y) = P(X)@ P( Y), and P(X’) = (P(X))*. To each such X we 

also assign inductively an “argument” function (YX : /P(X) / -ob .+; here c1.4 for 

A E .:/sends 1 to A; aI is the unique function from the empty set 1 f j ; axg y is the 

function (ax, (TY) from the disjoint union; and ax- = ax. 
For any set V we denote by MV the free commutative monoid on V, written 

additively. 

We define a morphism X-t Yin G.:/to be a triple (B,p, I.), where 0 is an involution 
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on (P(X))* @P( Y) =P(X* @ Y), where p is a functor p : 19-d whose value on 
objects is given by ax.@ y, and where i, is an element of M[d]. 

Given another morphism (#,q,,~) : Y-Z, write s and t respectively for the re- 
strictions of the functor @,q) : 0 + ip( @-+d to the subcategories $4 and @+8 

(= C Li, say). Then we define the composite of (&p,A) and (@,q,,~) to be 
(@,s,A +D+ Ci [t](L;)). This composition is associative by (3.1); and the identity 
(B,p,A) : X+X has for 8 the obvious involution on (P(X))*@P(X), while p takes 
every map to an identity, and A = 0. Some pictorial representations of composition- 
laws of this general kind are given in [5, pp. 98-1011 and [6, p. 1301. 

The tensor product of Gdis given on objects by the formal 0 of words, and on 
maps by (O,p, A)@(@, q,p) = (O+ @, @, q), I +p); it is clearly a functor. The operation 
( )* is needed only on objects, and is the formal ( )*. Each component of the basic 
data a, r, c, d, e is of the form (O,p, A) where 0 is the obvious involution, p sends every 
map to an identity, and A= 0. Clearly a, r, c are natural isomorphisms satisfying the 
coherence conditions of [13] (I is not needed, being defined in terms of r and c); 
while d and e satisfy (1.1) and (1.2). Thus G.dis a compact closed category. 

Finally we define Yd: J+G.$ to be the functor sending A to A and sending 
f : A -+B to (2,f, 0), where 2 is the unique involution on P(A * @ B) = 1 l @ 1 and f 
loosely denotes the functor 2+.TJsending the non-identity map of 2 to f : A-B. 

If F.-/denotes the free compact closed category on .Y: with unit @.r/: .++F.:/, we 
have a unique functor 0 in Comp rendering commutative 

(3.2) 

and ultimately we shall prove 0 to be an isomorphism. But even without that 
knowledge there is one conclusion we can draw already: since PAS clearly faithful, 
it follows from (3.2) that 

Proposition 3.1. The adjunction-unit Q.9: .:+F.r/is faithful. 

4. Generators and relations for F.:/ 

Starting with a given category .?/we now describe by generators and relations a 
compact closed category F.Jthat is clearly the free one on .A The method is perfectly 
general, applying to categories with any explicitly-given equational extra structure. 
It proves existence, and allows us to make some general assertions about the nature 
of F.P/. To pass from this generators-and-relations description of F.:/ to an explicit 
description in closed form, however, involves the solution of a word-problem: 
which may be called the coherence problem for the structure in question. 
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For compact closed categories, since none of the axioms involves an equation 
between objects, it is easy to give the objects of F.& they are just what we called in 
0 3 the objects of G.d, which form the free (@,1, ( )*)-algebra on ob d 

We next describe the arrows of a graph H.$with these objects. For objects X, Y, Z 
of F.yl there are to be arrows 

uxyz : (X@ Y)@Z-X@(Y@Z), dxyz : X@(Y@Z)-(X@ Y)@Z, 

rx : xgr-x, Px : x-xgr, cxy : X@ Y+ rgx, 

dx : I-X0X’, and ex : X*@X-(; 

while for eachf : A +B in .&here is to be an arrow {f} : A-B in H.% These arrows 
may be called formal instances of a, . . . . f. We complete the description of the arrows 
of H.dby decreeing that, whenever t : X -, Y is such an arrow and Z is an object of 
F.$ there are to be arrows Z@t : Z@X+Z@ Y and r@Z : X@Z+ Y@Z. All of 
these arrows live of course in a formal language, and are distinct if they have 
different names. If we define an expansion of t to be an arrow of one of the forms t, 

Z@t, t@Z. W@(Z@t), W@(t@Z), and so on, then the arrows of H.?/ are 
precisely the expansions of the formal instances of a, . . ..f. and may be called the 
formal expanded instances. 

We now describe a relation t-.7/, or - for short, on the free category K.?/generated 
by the graph H.3/. As is usual in word problems, we also use the word “relation” for 
an element of r.:% In this language, the relations that make up r.iare as follows. 
First, there are the relations 

and 
(t@ W)(X@s)-(Y@s)(t@Z) : xgz- Y@ W 

IxOY-X@ly-lX@Y, 

that we need for @ to be a functor. Then there are the relations that assert the 
naturality of a, 0, r, 7, c. Next there are the coherence relations of [13] for a, r, and c, 
along with ad- 1, aa- 1, rf- 1, and rrr- 1. Then come the relations (1.1) and (1.2) 
for d and e. And then the relation {f)(g) = {fg} f or each composable pair of maps 
in .:/, along with 1~ = { 1~)~ that we need for .++F.?/to be a functor. Finally, we need 
all the expansions of these relations. 

We end by defining F.&as the quotient of the free category K.-Jon H.:/modulo the 
relation r.d; that is, modulo the category-congruence q.?/generated by r.;L We recall 
that g, h : X- Yin K.?/are related under q.T/, or equivalently have the same image in 
F.74 exactly where there is a sequence g = k~, ICI,. . ., k, = h in which each k;- I, k, has 
the form ypx, yqx, where p and 4 are related, in one order or the other, under r.?/. 
Thus finding the maps X+ Yin F&s exactly a wordproblem in the classical sense of 
Thue, except for the fact that the “letters” (the arrows of Hz/) are not always 
composable. In another language, we may express the relation of q.3/to r.?/by saying 
that a diagram g,h in K./commutes in F.dif and only if it can be “filled in” with 



diagrams p, Q from r Y; which makes it reasonable to call the determination of q.-/ the 
coherence problem. 

It is clear from the construction that FV does admit a canonical structure of 
compact closed category, and that it is the free one on -/, the unit 0.~‘: ~/-F-/being 

the functor sending A to A and f to {f}. By Proposition 3.1 it can do no harm to 
replace {f} by the simplerf, and we henceforth do so. 

The one general assertion about the nature of F-1, apart from the precise de- 
scription of its objects, that follows from the above construction, and that we need 
for the sequel, is the following. If .B is any compact closed category, we can define 
an instance in d of any one of a, . . . . e to be an actual component such as C.UBC or &; 
and if we have some functor .-/ -+ / we can define an instance in .d of a mapfin v as 
its image. We can define an expanded instance in .9 of one of a, . . ..f to be the result 
of starting with an actual instance and tensoring repeatedly with identity maps. 
Since the images in F.:iof formal instances and formal expanded instances in Hr/are 
clearly actual instances and expanded instances, we have: 

Proposition 4.1. Every map in F.9is a composite of expanded instances of a,a-‘, 
r, r- I, c, d, e, and maps f in .Y II 

5. Central maps 

To handle expeditiously that fragment of the word problem represented by the 
central maps-those that involve only the symmetric-monoidal data a,~-‘, r, r-l, c 

-we use a suitable form of MacLane’s coherence theorem [13]. 
We define a category .? whose objects form the free (0, {)-algebra on a single 

“formal variable” 1, assigning to each such object a numerical “arity” I-T, namely 
the number of l’s in it. The maps T-S in dare to be the bijections I-T-TS; there 
are none unless TT= TS= n say, and in that case they are the permutations r of n. 
The composition is that of permutations. 

For any category .-J we define a category .d 0 .:A An object is an expression 

TV I, . . . . An] where TTE d with TT= n and where the ALE & The maps have the form 

<VI, . . . . fnl: T[AI, . . . . A~]~S[BI, . . . . Bnl where <: T-S in B and where the 
f;: A:-l;-E; are maps in .Y//; composition is evident. We use the convention that the 
name of an object is the name of its identity map, in writing such special maps as 

TLfl, . . . . frill : T[A I ,..., A~]+T[BI ,..., Bn] 

where f; : A;*B;, or 

5tAt, . . . . A,,] : T[A<I ,..., Aen]-+S[Ai ,..., A,,]. 

As was shown in [6] (where 3 was called the club for symmetric monoidai cate- 
gories), MacLane’s coherence theorem is equivalent to the assertion that 9 Od is 
the free symmetric monoidal category on .-J. Thus for every symmetric monoidal 



category .A’, the structure is given by an acfion p 2 A- A. We write T(A I, . . . . A,) and 

(VI, . . . . f,,) for the images of ~AI, . . . . An] and Q/i , . ..&I under this action; thus for 

instance ((l@l)@I)(A,B) denotes (A@B)@I. 

In particular we can apply this language when A is one of the compact closed cate- 

gories F.-/or G.-L First, define an object of F-1 to be prime if it is either an object A 

of .:/or else of the form Y *. Then every object of F-/clearly has a unique expression 

as 7(X1, . . . . Xn) with TE .dand with the X, prime; we call this itsprimefactorizarion. 
Observe that n may be 0: the prime factorization of 1 is I( ). 

We now define a central map x : Y-Z, whether in F.-i or in G.-i, as one that can 

be written in the form ((Xi, . . . . X,,) : T(X<I, . . . . X,:,)--(XI, . . . . X,,) wirh T, SE Pand 

the X, prime. In the case of G.-/this map x can be identified at once as (0,p, O), where 

0 is the evident involution on P( Y*@Z) corresponding to the permutation <, and p 

sends every map to an identity. If none of the P(X,) is empty-that is, if no X, is a 

corxtant such as (I@,*)* -then < is determined in turn by 0, and thus by the map x 

of G -% Since the strict functor 0 of (3.2) sends the central map <(XI, . . . . X,,) of F.dto 

the map also so denoted in G.c/, it follows that in F.-/too a central map x : Y-Z can 

be written as <(XI, . . . . X,,) in only one way, provided that none of the primes Xi is 

constant. We can then speak of 5 as the association of the prime factors of Y to 

those of Z corresponding to the central map x. 

The following properties of the central maps in F.ior in G.-/are evident (cf. [7, 

p. 2001): {(Xl, . ..) X,,) is central even if the X; are not prime; T&I, . . ..x.,) is central if 

each X, is; they constitute a symmetric monoidal subcategory of F.r/ or G r/, con- 

sisting entirely of isomorphisms; and they coincide with the composites of the 

expanded instances of the central data a,a- I, r,r-‘, c. 

6. Elementary properties of compact closed categories 

We next describe certain “derived operations” of the theory of compact closed 

categories, which will be used later to simplify the description of F.N: 
The “pasting” composition of diagrams containing 2-cells works as smoothly in a 

bicategory as in a 2-category, provided that the appropriate associativity iso- 

morphisms, connecting the various composites of l-cells, are incorporated into the 

definition of “pasting”. It follows that the simple discussion in [ll, $ 21 of 

adjunction in a 2-category applies with trivial modifications to a bicategory, pro- 

viding immediate proofs of the assertions below. A reader preferring more direct 

proofs will find it easy, if somewhat tedious, to give them. We consider throughout 

a compact closed category J. 

First, there is by Proposition 2.1 of [l l] a bijection between maps f : A-B in .d 

and mapsf’ : B.-A* between their left adjoints. The point of that proposition is 

that the triangular equations for the unit and the counit of an adjunction-in our 

case the equations (1.1) and (1.2) for dA and e.4 -express them as two-sided pasting 
inverses. Thus the bijection between f and f * can be determined by any one of four 

equivalent equations, whose respective analogues in ordinary associative algebra 
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have the forms d’f’ =fd, f *e=e)f, f * = e’fd, and d’f l e=f, in which d, e and d’, e’ 
are supposed to be pairs of inverses. 

In the present setting one of the four equations asserts the equality of the two 
maps (f@ l)dA and (1 @f ‘)ds from I to BOA’, and another the equality of the 
maps es(l Of) and eAcf*@ 1) from B*@A to I: in other words the nafurality in the 
sense of [4] of d and e. A third gives f l explicitly in terms off, as 

B’ r: B*@I 
1 3 d,,, 

* B*@(A@A*) 

and the fourth, which we do not need, gives f in terms off *. 
That this definition off * actually makes ( )* into a functor .d”P+ .A follows from 

Proposition 2.2 of [II]. Thus in fact there is exactly one way of making ( )* 
functorial that makes d and e natural; and we could have included this functoriality 
and naturality as part of the definition of compact closed category. However for our 
purposes this would complicate matters unnecessarily, by increasing both the data 
to be given and the axioms to be verified. 

Since adjunctions compose, one left adjoint of A 0 B is B*@A *, with the appro- 
priate d and e. Hence, by Proposition 2.3 of [ 111, this is related to the assigned left 
adjoint (A @B)* by a canonical isomorphism UAB : (A @ B)’ z B*@A l . There are 
now eight equivalent equations each serving to determine u: four for u and four for 
u-t. One of these gives u explicitly as a composite of expanded instances of the basic 
data a, a- ‘, r, r- I, c, d, e; and another does the same for u- I. One of the others gives 
dA@s in terms of dA and de as 

I 
d, 

4sB 
1 I 

UCWB)OI (6.2) 

(A@B)@(A@B)*~ 10UAB (AOB)O(B’OA’)~(AO(BOB’))OA*; 

while another does the analogue for eA@B. 

Similarly, since I is a left adjoint of itself, we have an isomorphism v : I’ z I, one 
of the defining equations for which gives d/ as 

(6.3) 

while another gives the analogue for q. 
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Again, because .;A is symmetric, A is one left adjoint of A’, and we have an iso- 
morphism WA : A l * z:A, one of the defining equations for which gives do. as 

d,. s c (6.4) 

1 t 
A’OA ***A*@A, 

A 

while another gives the analogue for e,_,.. 
We next need: 

Proposition 6.1. In any monoidal category .d (symmetric or not), the endo- 
morphism-monoid 9(1, I) is commutative, and moreover the value of the composite 

I~I@I,op-I@IzI 

is fg=gf. 

Proof. By naturality, the composites 

I--J+ IC?Xy IOI- 1, 
‘I r/ 

I- Z@I- 
i; ’ 1”s I@I/, 1, 

are f and g respectively; but the isomorphisms II and r/ coincide by coherence, 
whencefg=gfsince cf@l)(l@g)=(l@g)cf@l)=f@g. •1 

Returning to a compact closed category 9, define 6(g,f) for f : A+B and 
g : B-A as the composite 

I-yA@A*zA*@A~B*@B~-I. (6.5) 
c 

The part of the following that refers to the multiplicative structure of [.a] (see the 
penultimate paragraph of Section 2) is not actually needed below: 

Proposition 6.2. cY(g,f) depends only on the cycle r&f) = 7cfg), and therefore defines 
a function y : [a]+ J(Z,I). In fact y is a map of commutative monoids with 
involution, satisfying y(k@k? = y(k)y(k?, y(11) = 1, y(k*) = y(k). 

Proof. The first assertion follows from Proposition 2.1, since d, e and c are natural. 
For the second we merely indicate the proof: first observe that y does not change if 
we alter the choice of adjoints, and then observe that the above equations are 
immediate if U, v, and w are identities. 0 
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7. Reduced maps in F..d 

As the next step in solving the word problem, we show in effect that those 
expanded instances of dx and ex for which X is not a mere object of .?/ can be 
absorbed inside isomorphisms at the ends of the word. 

Let us agree that in future “expanded instance” means “expanded instance of 
one of a,a-I, r,r-I, c, d, e or of some mapfin .-J”. Now define a reduced object of 
F.dto be one whose prime factors are all of the form A or A l for A E .$ and call a 
map X+ Y in F~dreduced if it can be written for some n 2 0 in the form 

x=zo,IzI~z2 - . ..y-+z.= Y, (7.1) 

where each f; is an expanded instance and each Z, is reduced: which implies that X 
and Y are themselves reduced. Clearly a t, in (7.1) cannot then be an expanded 
instance of dv or of ev unless V is an object A of .T/. The purpose of this section is 
now to prove: 

Proposition 7.1. Every object in F.:/is isomorphic to a reduced one, and every map 
in F.dbetween reduced objects is reduced. 

We begin by assigning to each object Z of F.da numerical rank K(Z). We first 
define it inductively for prime Z by 

K(A) = 0, 

K(A*)=o, 

K(I*)= 1, 

K((X@Y)*)=K(X*)+K(Y*)+ 1, 
K(X**)=JK(X’)+ 1, 

where A denotes an object of .r//; then for any Z, with prime factorization 

T(Xl, . . ..X”). we set K(Z)= c K(_%). Clearly K(T(XI, . . ..X.,)) iS then c K(X,) 

whether the Xi are prime or not; or equivalently K(X@ Y) = K(X) + K(Y) and 
K(I) = 0. It is immediate that K(Z) =0 if and only if Z is reduced. 

We next assign to each object Z of F..-/another object RZ and an isomorphism 
~2 : Z+RZ in F.9. If Z has prime factorization 7(x1, . . ..X.) we set RZ 
= T(RXi, . . . . RX,) and QZ = T(QXI , . . ..QX.); so it suffices then to give the definition 
for prime Z. For the reduced primes A and A l with A E .9, we set RA = A, QA = 1, 
RA’ = A*, ,oA* = I. For the remaining primes of the form Z= V*, we use in the case 
of reduced V the isomorphisms u, v, w of (6.2)-(6.4) to define 

R((X@ Y)*) = Y*@X*, ,o((X@ Y)‘) = UXY, for X, Y reduced; 
R(I l ) = 1, &I’) = v; 
R(A**)=A, &I**) = W.-I, for A E .r% 
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For the primes V’ with V not reduced, we complete the definition inductively, using 

the functorial character of ( )* from Section 6: 

R( I’*) = (R V*, Q( V*) = ((Q If)‘)-‘, for V not reduced. 

Clearly for reduced Z we have RZ = Z and oZ = 1. The first assertion of Proposition 

7.1 follows immediately from 

Lemma 7.2. If Z is not reduced, K(RZ) < K(Z). 

Proof. It suffices to check it for prime Z, and it is immediate if Z= V’ with V 

reduced. So it remains to prove that 

K((R V)‘) < K( V’) for Vnot reduced. (7.2) 

We prove this by induction (on the complexity of V). If V=X@ Y, the respective 

ranks of (R V)’ = (RX@R Y)’ and of V’ =(X@ Y)* are K((RX)*) + K((R Y)*) + 1 

and x(X’) + K( Y*) + I, giving (7.2) by induction since X and Y are not both 

reduced. If V= W’ with W not reduced, the respective ranks of (R V)* =(R W)** 

and of V’= W” are 34(RW)‘)+ 1 and 34 W’)+ 1, again giving (7.2) by 

induction. There remain the cases V= W’ with W reduced. If V is I’ or A** for 

A E .T/; (7.2) is immediate since ~(1’) <K(l* ‘) and K(A *)<K(A * **). Finally if 

V= (X@ Y)’ with X and Y reduced, (7.2) follows from the calculations 

and 

To complete the proof of Proposition 7.1 we use: 

Lemma 7.3. For any expanded instance t : X- Y in F.$ there is a commutative 

diagram 

x i 
+Y 

gx I I gr 

RX= Vo,, I’132 VI-..e----- V,=RY 
1, 

(7.3) 

in which each s, is an expanded instance, and in which K( V,) I max(K(RX), K(R Y)) 

for each i. 

Proof. Since R( V@ W) = R V@R W and Q( L’@ W) =oV@g W, and since K is 

additive over tensor products, it suffices to consider the case where r is a mere 

instance. If it is an instance of one of the centrals a, a-‘, r,r-‘, c, the desired (7.3) is 

given by a naturality diagram such as 
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If t is an instance of a map f : A-+B in A, the result is trivial since A and B are 
reduced. It remains to consider the cases where t is an instance of d or e; we do the 
first only, the second being entirely dual using the analogues for e of (6.2)-(6.4). 

We suppose then that t : X+ Y is dz : Z-Z@Z*, and we consider first the case 
where Z is reduced. If it is A E .a’, the matter is trivial, since QX and @Y are each 1. If 
Zis VOWwith Vand Wreduced,@l=l while~(Z@Z’)=l@@(Z*)=l@uv~;so 
a suitable diagram (7.3) is just (6.2) re-written as 

where the unnamed isomorphisms are the obvious centrals; clearly no object in the 
bottom row has greater rank than the last object. The cases Z=Z and Z=A* for 
A E .?ifollow similarly, replacing (6.2) by (6.3) and (6.4). 

This leaves only the case where Z is not reduced. But then ,o(Z *) = ((@Z)*)-i by 
the definition of Q, and a suitable diagram (7.3) is given by 

dz 
I- Z@Z’ 

‘I I 

&?z8((Qz)‘)-’ 

I--yg RZO(RZ)‘, 

which commutes by the naturality of d. C 

Proof of Proposition 7.1. We already have the first assertion. For the second, given 
a map X-Y in F.dbetween reduced objects, write it in the form (7.1) with the t; 

expanded instances but with the Z; not necessarily reduced: we can do this by Propo- 
sition 4.1. Then apply Lemma 7.3 with t equal to each t, in turn, to get a diagram of 
the form 

X= RZo,, RZI ,;RZz- ... ,,RZ,, =Y, 
I n 
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where each t; is the bottom edge of a diagram (7.3). Then the bottom edge of the 
above diagram is a (longer) composite of expanded instances, in which the new 
intermediate objects (the Vi of the diagrams (7.3)) all have rank (max K(RZi). But 
this maximum is, by Lemma 7.2, strictly less than max K(Z;), unless all the Z; are 
already reduced. Hence the result follows by induction. 0 

8. Proof of the main theorem 

We now analyze reduced maps in F.d as tensor products, leading to a direct 
proof that F.dis isomorphic to G.?/. 

We name some maps in F.sI’. For a mapf : A -B in .-J, we havef as a map in F.Y; 
and we also have f * : B*-A l . We write CZ” and q for the respective composites 

r-ABA’- 
dA ,@, BOA*, B”@A- ,@, B’OB7 1. 

We denote by E the composite 

l.4 2 V’4 7 (FWU, 0, 

where this is the y of Proposition 6.2. We also use the same names for the corre- 
spondingly-defined maps in G.A We adopt some conventional meaning for repeated 
tensor products Xt@...@X,,, such as bracketing from the right if n>O and I if 

n = 0. Then 

Proposition 8.1. Any map s : X- Yin F.dbetween reduced objects is of the form 

where x and y are central isomorphisms, and where each h; is either f, f l , df, or ef 
for some map f in ~4 or else E(k) for some cycle k in [.:/I. 

Proof. We use induction over the minimum length n of expressions of s as compo- 
sites (7.1) of expanded instances with the Z; reduced-such expressions existing by 
Proposition 7.1. Since the result is trivial if n =0 or 1, it suffices to show that the 
composite of (8.1) with a single expanded instance t : Y+Z, where Z too is reduced, 
is again of the form (8.1). 

If t is central it can be absorbed in y; so the only cases to consider are those where 
t is an expanded instance of d,.I or of eA for some A E ./, or else of some map g in .?i. 
(We reiterate that dv and ev, where V is not a mere object of .4 are impossible 
because Y and Z are reduced.) Note that the central y at the end of (8.1) gives us 
every flexibility about the order of factors and their bracketing. We leave the reader 
to fill in the fine detail of simple arguments involving centrals; similar arguments are 
given in full detail in [IO]. Observe that the association of prime factors corre- 
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sponding to a central (cf. Section 5) is here unique, since no constant primes occur in 

reduced objects. 

If I is an expansion of d.4 : I-ABA’, we can by evident central adjustments 

move d..r to a position before y in (8.1), and then include it among the h; as a new 

A,,,, I, of the form df where!= 1,~. 

If t is an expansion of some g : B-C in .v, the central y associates the prime 

factor B of Y with the same prime in some W,, say WI. Then hl has one of the forms 

for do for f : A-B in .9; for otherwise WI has no prime factors of the form B. 
Using central adjustments we can move g back before y, and combine it with hr to 

form a new hi: when hr isf, hi is just gf; and when ht is &, hi is (glz l)a/, which is 

of course dg_r; in both cases h’, is of one of the desired forms. 

There remains the case where f is an expansion of Ed : A*@A --I. If the prime 

factors associated by y to A * and to A lie in the same W;, let it be WI. Then ht must 

have the form dy for some endomorphism f : A 4~4. Carrying e.4 back through y, we 

can combine it with hi to make a new hi of the form eAcd/, which by (6.5) and the 

naturality of c is e(k) where k = r(f) E [.:/I. 
If the prime factors associated by y to A * and to A lie in different factors WI and 

u/z, there are four possibilities. If hi isf’ : B * -A * and hz is g : C--A, the carried- 

back e,+t combines with hi and hz to form h’=eACf*@g), which is eh by the natu- 

rality of e. If hi is f * : B’-A* and hz is dp : I-A@C’* where g : C--A, we 

combine e,A with these to get the composite h’ given by 

B*=B*@Ix 
s 

A*~(A~C’)~(A*~A)~C’~z~c’rC’, 

which by (6.1) and the definition of ds is g*f * = (fg)‘. The case where hl is 

df : I-BOA* and hz is g : C-A is similar to this last, transformed by the 

symmetry c. Finally, if hl is dy : /*BOA * and hz is ds : 1-A @C*, we combine e+t 

with these to get the composite h’ given by 

IWrx (B@A’)@(A@C*)SB@(A*@A)@C’~B@I@C*~B@C’, 

which is d/s by (1.1) and the naturality of d. 0 

Theorem 8.2. The function 0 : F.:++G.d of (3.2) is an isomorphism of compact 
closed categories. 

Proof. Since 0 by its definition is a strict map of compact closed categories, we have 

only to show that it is an isomorphism of categories. Since 0 is clearly the identity 

on objects, it remains to show that it is fully faithful. Since every object of F2is 

isomorphic by Proposition 7.1 to a reduced one, it suffices to show that, for reduced 

X and Y, the map OXY : (F.&)(X, Y)+(Gss’)(X, Y) is a bijection. 

The image under 0 of a central in F&is the central with the same name in G.A 

The images under 0 of the above maps f: A+B, f * : B*+A’, df : IdBOA’, 
ey : B*@A+I, where f is a map in .$ are the maps with the same names in G.-J; and 
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it is immediate from the explicit description of G -/ in section 3 that each is of the 

form (ZJO), where 2 is the unique involution on P(A *@B) = 1’0 1 and where 

j-:2 + -1 is the functor corresponding to the mapf. Similarly 0 sends c(k) : f--I for 

ke [-iI to the a(k) in G -J, which is at once seen to be (O,O, k) : I-1, where 0 denotes 

both the empty involution and the unique functor O+ -x, while ke [.-/I is here 

identified with its image in the free commutative monoid M[ -/I on [-/I. 

To show that O,VY is surjective it suffices therefore to show that any map 

(@p, A) : X- Yin G.-/between reduced objects can also be written in the form (8.1). 

But this is clear: since the involution .Q is a coproduct of copies of 2, we can express 

the map (&p,O) : X-Y in the form (8.1) by choosing centrals x,y providing the 

necessary permutations; while (O,O, E.) is a tensor product of various (O,O, k) = E(k) 

for kE [-/I; and finally the tensor product of (0,p,O) and (O,O,A) is (e,p,A). 

It remains to show that Oxr is injective, by showing that two maps of the form 

(8.1) in Fedcoincide if they have the same image in G.:I: This comes to showing the 

following. Let s : X- Y in F-y be the tensor product, in this order, of maps 

fi : Al-+Bi,...,fn : A,-Bn, 

gT : Di-ci, . . . . d(hl) : I+FI@E~ ,..., e(il) : HT@GI-I ,..., 

c(kl):I--+I,...,c(k,,,):I+I; 

where d(h) and eu) are now written for & and e,, and where thef,, g;, h,, j; are maps 

in .:/and the k, are elements of [.:/I. Let s’ : X’- Y’ be a similar tensor product of 

primed data, and let x : X-X’, y : Y- Y’ be centrals. Then we are to show that s’x 

and ys coincide in Fy/, if they have the same image under 0. 

The commutativity in G.-i, just at the level of the involutions, shows that the 

central x must associate the prime factor AI of X with a prime factor Al in X’; must 

associate Di with some D;‘; and must associate Hi with H;’ and Gr with G; for the 

same i. Exactly corresponding remarks apply to y. So x has the form XI@XZ@X~ 

@x~@xs, wherext is acentral from Al@...@A,, to Aj@...@AL (note that n’must 

indeed be n), xz one from Bt@-.. to Bi*@+.., x3onefrornIO...%IIto10...O1,xl 

one from (HT@Gt)@.=e to (Hi*@G’t)@..., andxj one from I@...@Zto Z@...@Z; 

and y has a corresponding form yl By2 By3 @y~@ys. 

By using a central to change the order of the @-factors ins’, we can suppose that 

XI = 1; then commutativity in G.9 clearly implies that ye = 1. Similarly we can 

suppose x? = 1, which forces y2 = 1. By another order-change in s’ we can suppose 

y3= 1; this does not really change x3, which as a central I@...@I-I@...@I is 

already 1, and remains 1 after a permutation of the factors I in the codomain. 

Similarly we can suppose XJ = 1 and ye = 1. That xj = 1 and ys = 1 is automatic once 

we know that their domain and codomain have the same number of factors I, that 

is, that the number m of e(ki)-factors in s is the same as the number m’ of the &(k;)- 

factors in s’. This follows because commutativity in G.v’ implies that kl + ... + km 
=k;+...+k’,, in M[.?/], whence m=m’ because we have the augmentation map 

M[.d] +N sending each element of [.d] to 1. 

Thus we may suppose x = 1 and y = 1; and we must show that s = s’, given OS = OS' 
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= (0,~. A) say. That f, =f;, g; =g;, h, = h;, j, =i; is immediate, since these are recap- 
tured from p. It only remains to show that &(kt)@ ***@&(krn) in F.Yis determined by 
a knowledge of kl + ... +~,EM[.-1.1. But by Proposition 6.1, &(k~)@...@~(k,,,) is 
determined by the product e(kr)...&(k,,,) in the commutative monoid (F.-i)(Z,/); 
which product is the image of ICI + ... + k,, under the monoid-homomorphism 
E : M[.-i] -(F.:/)(Z, I) extending E : [ -/‘I -_(F.Y)(l, I). Z 

9. Related structures 

Let us call a compact closed category .J+ monoidally strict if A is strict as a 
monoidal category; that is, if @ is strictly associative and I a strict unit, with a, I, r 
identities. Let us call the compact closed category .tisfrict if it is monoidally strict 
and if, in addition, the isomorphisms U, v, w of Section 6 are identities, so that 
(A @B)* = B*@A * and so on. Write F’ri [resp. F”.-J] for the free monoidally strict 
(resp. strict] compact closed category on .r: Then we have canonical functors 
F.c/+F’.++F”.d corresponding to the obvious “maps of theories”; and in this 
section we show these canonical functors to be equivalences of categories. 

First, each of F’.Yand F”.:/has a description by generators and relations like that 
of F./in Section 4. The objects of F’ziare a quotient set of those of F.$ by the 
relations of strict associativity and strict unity; those of F”.Y are a still smaller 
quotient set, and are just the Xr@...@X, where each Xi is A or A’ for A E.V: In 
defining the maps of F’.?/or F”.$ the only difference is that there are no instances of 
a, I, or r to consider, and that in the case of F”.Ywe have to add (6.2)-(6.4), with U, 
v, w identities, as new axioms. In both cases Proposition 4.1 still holds, with a, a-l, 

r, r -I omitted. 
The proofs of Proposition 7.1 and Proposition 8.1 go through unchanged in the 

case of F’J. In the case of F”.Yevery object is reduced, and Proposition 7.1 must be 
replaced by the assertion that every map has the form (7.1) where each f, is an 
expanded instance of c, off, or of dA or e+r for A E ,;r’; this follows directly from the 
axioms (6.2)-(6.4) with U, v, w identities. Then in both cases Proposition 8.1 follows 
as before. 

We can define G’z/and G”.:/as we defined G.;< the objects are those of F’.-Jand 
F”.drespectively, but the maps are triples (O,p, %) just as in Cd Since G’.,Yand G”.rr’ 
are respectively a monoidal strict, and a strict, compact closed category, we get strict 
functors 0’ : F’z++G’.;i/ and 0” : F”.-J-tG”..-J analogous to 0. There are evident 
strict functors G.J++ G’J* G”.$ and a commutative diagram 

GA----’ G’d- G”.:/ 
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where the functors in the top row are the canonical ones. But 0’ and 0” are 
category-equivalences, like 0, since Theorem 8.2 for these follows as before from 
Proposition 8.1. Since the functors in the bottom row are obviously equivalences, so 
are those in the top row, as required. 

10. Remarks on coherence problems 

In Section 4 we saw that, for categories with any equational extra structure at all, 
the explicit determination of the free such F.:/ on a given category .:/involved the 
solution of a word problem, namely the determination of q.?/ (the commuting 
diagrams) from r.?/(the basic ones). In principle there is a prior word problem even 
in finding the objecls of Fd, if there are axioms expressing equations between 
objects, as for instance in a strict monoidal category; but in practice the word 
problem for the objects is usually easy. In any case we can define the coherence 
problem as the explicit determination of F.~/in terms of .:/, and hence the determi- 
nation of the functor F and the monad on Cat. 

There is a lack of absoluteness in the above notion of “commuting diagrams”: 
the diagrams in q.Ydepend upon ~1, and involve its objects and maps. We could get a 
more “absolute” list of commuting diagrams by specializing to discrete .:i, or better 
to an .-i which was a coproduct of copies of the unit category 1 and the arrow 
category 2. 

However MacLane’s original coherence theorem [ 131 for symmetric monoidal 
categories was formulated quite absolutely, in terms of diagrams of natural trans- 

formalions; not in terms of components of these, and not in terms of the free model 
Fd. The same was true of the Kelly-MacLane coherence result [lo] for symmetric 
monoidal closed categories, the natural transformations there being the generalized 
ones of [4] between functors of mixed variances. 

The first author of the present paper established in [5] and [6] the following 
connexion, in such cases, between these two formulations. If 1 denotes the unit 
category, the objects of Fl are just the formal iterates of the structural functors, 
modulo any equations imposed by the axioms; while the maps of Fl are all the 
composites of formal expanded instances of the structural natural transformations 
(not components of these), modulo the diagrams q which necessarily commute as a 
consequence of the basic diagrams r expressing functoriality, naturality, and the 
axioms. There is a functor I- with domain Fl, assigning to each formal functor its 
“arity” and to each formal natural transformation its “type” or “graph”. The pair 
I= (FLf) is a monoid in a certain monoidal category .;U, whose tensor product 
represents formal substitution of functors and natural transformations into other 
functors and natural transformations. There is an action 0 of the monoidal category 
.Xon Cat, representing the substitution of actual objects and maps into functors and 
natural transformations. The free model F./d on ..d is then .X0 ,r’. In such cases, 
therefore, the determination of F reduces to that of .X, and hence of Fl; and the 
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coherence problem can be discussed purely in terms of natural transformations, 

abstracting entirely from any particular .-J. A monoid .Xin K was called a club, and 

the monad UF=.Xo - on Cat was said in such cases to arise from a club. 

The above results were proved in [5] and [6] only when the natural transfor- 

mations involved were those of [4], and then only when all composites actually 

occurring were compatible in the sense of [4]. In the case of symmetric monoidal 

closed categories it had been shown ([lo] Theorem 2.2) that no incompatibilities in 

fact occur; and a very general result of the same nature was proved in [7], thus 

providing many examples of monads arising from clubs. 

There is no need for an equational extra structure on a category to be defined by 

functors and natural transformations; but many are, and with natural transfor- 

mations more general than those of [4], in that each variable no longer appears 

exactly twice. [5] and [6] went on to speculate about possible extensions of the club 

notion to at least some larger classes of natural transformations, predicting success 

when these admitted operations of composition and subs!itution. In fact an 

extension was later given in [S] to structures defined by purely covariant functors, 

and by natural transformations which related the variables of the domain and the 

codomain no longer by a mere pairing-off, but not by a general relation either: 

instead by a relation that was either a function or the inverse of one. 

In another direction there remained the question whether it was possible to extend 

the club notion to those structures defined by mixed-variance functors and by the 

“good” natural transformation of [4], in cases where incompatible composites did 
occur. As we saw in Section 1, they do occur for compact closed categories, and this 

was put forward as a test case. The lack of an evident way of composing incompa- 

tibles was not a disproof. 

Subsequently the first author has given (in the forthcoming [9]) an absolute 
definition of “club”, as a monad on Cat in which Fdis related in a particular way 

to Fl. The explicit determination above of the F for compact closed categories now 

allows an easy verification (see [9]) that these do not arise from a club. 

We conclude that those structures whose coherence problem can be discussed 

purely in terms of suitably-generalized natural transformations are quite special 

ones, with particularly simple descriptions and particularly good properties; and 

that in general we must pose the coherence problem in terms of finding F.Y. 
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