Decomposition of a scalar operator into a product of unitary operators with two points in spectrum

Sergio Albeverioa,b,c, Slavik Rabanovichd,*

a Institut für Angewandte Mathematik, Universität Bonn, Wegelerstr. 6, D-53115 Bonn, Germany
b SFB 611, IZKS, Bonn, BiBoS, Bielefeld-Bonn, Germany
c CERFIM, Locarno, Accademia di Architettura, USI, Mendrisio, Switzerland
d Institute of Mathematics, Ukrainian National Academy of Sciences, 3 Tereshchenkivs'ka, Kyiv 01601, Ukraine

\begin{abstract}
We consider products of unitary operators with at most two points in their spectra, 1 and $e^{i\alpha}$. We prove that the scalar operator $e^{i\gamma}I$ is a product of k such operators if $\alpha\left(1 + 1/(k - 3)\right) \leq \gamma \leq \alpha\left(k - 1 - 1/(k - 3)\right)$ for $k \geq 5$. Also we prove that for $e^{i\alpha} \neq -1$, only a countable number of scalar operators can be decomposed in a product of four operators from the mentioned class. As a corollary we show that every unitary operator on an infinite-dimensional space is a product of finitely many such operators.
\end{abstract}

1. Introduction

A well known problem on eigenvalues of sums of Hermitian matrices was solved towards the end of the last century (see e.g. [7]). A similar problem concerning the spectrum of a product of unitary matrices was also solved, see [1,2]. There exists an interesting connection between these two problems. For a collection of k pairwise commuting Hermitian matrices A_1, A_2, \ldots, A_k, it is easy to show...
\[e^{i(A_1+A_2+\cdots+A_k)} = e^{i\tilde{A}_1} e^{i\tilde{A}_2} \cdots e^{i\tilde{A}_k}. \] (1)

However the corresponding property for non-commuting \(A_j \),
\[e^{i(A_1+A_2+\cdots+A_k)} = e^{i\tilde{A}_1} e^{i\tilde{A}_2} \cdots e^{i\tilde{A}_k}, \] (2)

where \(\tilde{A}_j \) is a matrix unitarily similar to \(A_j \), is not so trivial to prove. The validity of the formula (2) was noticed in [1] for sufficiently small norms of \(A_j \). The main question of the article is: how big can the norms of \(A_j \) be if we take instead of \(A_j \) multiples of orthogonal projections \(P_i, P_i^2 = P_i^* = P_i \)? The following theorem was proved in [10]:

Theorem 1. A scalar operator \(\lambda I \) is a sum of \(k \) orthogonal projections if and only if \(\lambda \in \Sigma_k \), where \(\Sigma_k \subset \mathbb{R} \),
\[\Sigma_k \supseteq \left[\frac{k-\sqrt{k^2-4k}}{2}, \frac{k+\sqrt{k^2-4k}}{2} \right] \] and contains all points of the sequences
\[
\begin{align*}
a_0 &= 0, \quad a_i = \phi(a_{i-1}), \quad i = 1, 2, \ldots, \quad \phi(x) = 1 + \frac{1}{k-1-x}, \\
b_0 &= 1, \quad b_1 = \phi(b_{i-1}), \quad i = 1, 2, \ldots, \\
k - a_j, \quad k - b_j \text{ for } j = 0, 1, 2, \ldots
\end{align*}
\]

Let us denote by \(U^\alpha \) the set of unitary operators on a separable Hilbert space \(H \) whose spectra lie in \(\{1, e^{i\alpha}\} \):
\[U^\alpha = \{ X \in L(H) | XX^* = X^* X = I, \sigma(X) \subset \{1, e^{i\alpha}\} \} \]
and consider the equation
\[ul = U_1 U_2 \cdots U_k. \quad U_j \in U^\alpha. \] (3)

Let \(\Omega^\alpha_k \) be the set of all unitary \(u \in \mathbb{C} \) for which a solution of Eq. (3) exists. We shall prove in Section 3 that \(\Omega^\alpha_k \supseteq \{ e^{i\alpha x} | x \in \left[1 + \frac{1}{k-3}, k - 1 - \frac{1}{k-3} \right] \} \) for \(k > 4 \). Whence for big enough \(k, \alpha \), the sets \(\{ e^{i\alpha x} | x \in \Sigma_k \} \) and \(\Omega^\alpha_k \) coincide with the unit circle \(\mathbb{T} \). In contrast to the equality \(\Omega^\pi_4 = \mathbb{T} \) proven in [8], we shall show that \(\Omega^\alpha_k \) is a discrete set for \(\alpha \neq \pi \). Using the described results, we conclude in the last section that every unitary operator is a product of finitely many operators from \(U^\alpha \).

Returning to the property (2), we note that the sum \(A_1 + A_2 + \cdots + A_k \) does not depend on the order of the summands. But since \(U_1 U_2 = U_2^* (U_2 U_1) U_2 \) for any unitary matrices \(U_1 \) and \(U_2 \), then for every permutation \(\omega \), there exist Hermitian matrices \(\hat{A}_1, \hat{A}_2, \ldots, \hat{A}_k \) such that \(\hat{A}_j \) is similar to \(\tilde{A}_j \) for \(j = 1, \ldots, k \)
\[e^{i\hat{A}_{\omega(1)}} e^{i\hat{A}_{\omega(2)}} \cdots e^{i\hat{A}_{\omega(k)}} = e^{i\tilde{A}_1} e^{i\tilde{A}_2} \cdots e^{i\tilde{A}_k}. \]

Hence the existence of (2) does not depend on the order. In Section 2 we show that (2) holds for a wide class of Hermitian matrices when
\[\sum_{1}^{k} \|A_j\| \leq 2\pi. \] (4)

We also give examples of matrices for which both (2) and (4) do not hold.

In what follows we shall denote the trace of a matrix \(A \) by \(\text{tr} A \), the identity and zero \(n \times n \) matrices by \(I_n \) and \(0_n \), respectively. The diagonal matrix will be denoted by \(\text{diag}(a_1, \ldots, a_n) \). Similarity we shall denote by \(\cong \).

2. Unitary reflections and dilations

We start with products of two unitary operators. Let us denote by \(R^\psi_\alpha \) the \(2 \times 2 \) matrix
\[
\begin{pmatrix}
1 - \psi + \psi e^{i\alpha} & (e^{i\alpha} - 1) \sqrt{\psi - \psi^2} \\
(e^{i\alpha} - 1) \sqrt{\psi - \psi^2} & \psi + e^{i\alpha} - \psi e^{i\alpha}
\end{pmatrix}
\]
for $\psi \in [0, 1]$. Its eigenvalues are 1 and $e^{i\alpha}$. So $R^\alpha_\psi \subset U^\alpha$. Since for any $U \in U^\alpha$, the operator $(U - I)/(e^{i\alpha} - 1)$ is an orthoprejection, then the spectral theorem for a pair of orthoprejections [14] can be reformulated for a pair of unitary operators from U^α_1 and U^α_2, respectively. This means that a pair of unitary elements u_1 and u_2 of an associative algebra with the identity e which satisfies the relations
\[(u_1 - e)(u_1 - e^{i\alpha_1}) = 0 \quad \text{and} \quad (u_2 - e)(u_2 - e^{i\alpha_2}) = 0\]
has only one- and two-dimensional irreducible representations in unitary operators. The one-dimensional representations are given by $u_1 \rightarrow 1, e^{i\alpha_1}, u_2 \rightarrow 1, e^{i\alpha_2}$ and all two-dimensional unitary representations up to unitary equivalence can be defined by the formulas
\[
\pi_\psi(u_1) = R^\alpha_0, \quad \pi_\psi(u_2) = R^\alpha_\psi \quad \text{for} \quad \psi \in (0, 1).
\]

The following Lemma about the spectrum of the product of two unitary operators can be derived from [3].

Lemma 2. Let $U_1 \in U^\alpha_1$ and $U_2 \in U^\alpha_2$. If the number u does not belong to the set $\{1, e^{i\alpha_1}, e^{i\alpha_2}, e^{i(\alpha_1 + \alpha_2)}\}$, then
\[
u \in \sigma(U_1U_2) \iff e^{i\alpha_1}e^{i\alpha_2}/u \in \sigma(U_1U_2).
\]

Proof. Using the spectral theorem, it suffices to prove the Lemma for the case of 2×2 matrices R^α_0 and R^α_ψ, and this case is verified directly. □

Note that in the notations of Lemma 2, if $e^{i\phi} \in \sigma(U_1U_2)$, then for some ψ, $e^{i\phi}$ is an eigenvalue of $R^\alpha_0R^\alpha_\psi$. Whence ϕ and ψ satisfy the relation
\[
\psi = \frac{(e^{i\phi} - e^{i\alpha_1}e^{i\alpha_2})(1 - e^{i\phi})}{e^{i\phi}(1 - e^{i\alpha_1})(1 - e^{i\alpha_2})}. \tag{7}
\]

Remark 3. For $0 \leq \alpha_1 \leq \alpha_2 < 2\pi$, $\alpha_1 + \alpha_2 < 2\pi$, we have $\psi \in [0, 1]$ if and only if $\phi \in [0, \alpha_1]$ or $\phi \in [\alpha_2, \alpha_1 + \alpha_2]$. Or for $\alpha_1 + \alpha_2 \geq 2\pi$, $\psi \in [0, 1]$ if and only if $\phi \in [\alpha_2, 2\pi]$ or $\phi \in [\alpha_1 + \alpha_2 - 2\pi, \alpha_1]$.

This gives us the first example of matrices for which the equality (2) does not hold. For example, let
\[
A_1 = \begin{pmatrix} 0 & 0 \\ \psi & 0 \end{pmatrix} \quad \text{and} \quad A_2 = B \begin{pmatrix} \psi & \sqrt{\psi - \psi^2} \\ \sqrt{\psi - \psi^2} & 1 - \psi \end{pmatrix}, \quad \pi < \beta < 2\pi.
\]

Then the similarity $A_1 + A_2 \approx\text{diag}(\beta(1 + \sqrt{\psi}), \beta(1 - \sqrt{\psi}))$ holds and so for $\psi = \pi^2 / \beta^2$,
\[
e^{i\beta} = e^{i(\beta + \pi)}I_2 = e^{i(\beta - \pi)}I_2.
\]

At the same time $e^{i\beta} \approx e^{i\beta_2} \approx R_0^\beta$. So if
\[
e^{i(\beta - \pi)}I_2 = R_0^\beta R_\psi,
\]
and hence $e^{i(\beta - \pi)} \in \sigma(R_0^\beta R_\psi)$ for some $\psi \in [0, 1]$, then by Remark 3, $\beta - \pi \in [\beta, 2\pi]$ or $\beta - \pi \in [2\beta - 2\pi, \beta]$. Therefore the equality $e^{i(\beta - \pi)}I_2 = U_1U_2$ has no solution in matrices belonging to U^β.

Another example comes from products of unitary reflections, which are matrices $U_j \in U^\psi$ with the property $\text{rank}(U_j - I) = 1$. According to Fillmore’s result [6], a Hermitian matrix A is a sum of orthoprejections P_1, P_2, \ldots if and only if $A \geq 0$, $\text{tr}A \in \mathbb{Z}$ and $\text{tr}A \geq \text{rank}A$.

Moreover one can choose the orthoprejections $P_1, P_2, \ldots, P_{\text{tr}A}$ so that $A = P_1 + P_2 + \cdots + P_{\text{tr}A}$ with $\text{tr}P_j = 1$ for every j. Note that $e^{i(\pi P_j)}$ is a unitary reflection. It was proved in [13] that any unitary $n \times n$ matrix U, $\det U = \pm 1$ is a product of at most $2n - 1$ reflections. And later in [5] the authors proved that if $W = \text{diag}(e^{i\phi_1}, e^{i\phi_2}, \ldots, e^{i\phi_n})$ with $\phi_j > 0, j = 1, \ldots, n$ and
\[\phi_1 + \cdots + \phi_n = \pi, \]
then \(W \) is not a product of \(2n - 2 \) reflections. So for \(n \) odd, let Eq. (8) hold and \(A \) be a Hermitian matrix \(\text{diag}(\phi_1, \ldots, \phi_n + (n - 1)\pi) \). Then \(\text{tr} A = n\pi \) whence \(A \) is a multiple of a sum of \(n \) rank-one orthoprojections. As we mentioned above the matrix \(W = e^{iA} \) cannot be decomposed into a product of \(n \) unitary reflections.

Let \(\alpha_j > 0, j = 1, \ldots, n \). The following theorem reformulates Fillmore’s result for products of dilations, i.e. matrices \(U_j \) with two eigenvalues and rank \((U_j - I) = 1 \).

Theorem 4. A unitary matrix \(U = \text{diag}(e^{i\alpha_1}, e^{i\alpha_2}, \ldots, e^{i\alpha_n}) \) with \(\sum_1^n \alpha_j = k\alpha, k \geq s = \text{rank}(U - I_n) \) and \(s\alpha \leq 2\pi \) is a product of \(k \) dilations from \(U^\alpha \).

Proof. We may assume that \(U - I_n \) is invertible because \(U \) is a product of elements from \(U^\alpha \) if and only if \(U \oplus I \) is. The basic case is for \(k = n \) since if \(k > n \), then for some \(j \), we have \(\alpha_j > \alpha \) and putting

\[W = \text{diag}(1, 1, \ldots, e^{i\alpha_j}, 1, \ldots, 1), \]

we have that \(\det W^*U = (k - 1)\alpha \) and all conditions of the theorem are fulfilled with the smaller \(k \).

Let \(k = n \). Then there exists \(J_1, J_2 \in \mathbb{N} \) such that \(\alpha_{J_1} \leq \alpha \leq \alpha_{J_2} \). Since for \(\psi = (e^{i\alpha_{J_1}} - e^{i(\alpha_{J_1} + \alpha_{J_2})})/(e^{i\alpha_{J_1}} (1 - e^{i\alpha}) (1 - e^{i(\alpha_{J_1} + \alpha_{J_2} - \alpha)})) \),

\[\text{diag}(e^{i\alpha_{J_1}}, e^{i\alpha_{J_2}}) \approx R_\psi^\alpha \text{diag}(1, e^{i(\alpha_{J_1} + \alpha_{J_2} - \alpha)}) \]

then there exists \(W \approx \text{diag}(R_\psi^\alpha, 1, \ldots, 1) \) such that \(W^*U \) has the same eigenvalues as those of \(U \) except that \(e^{i\alpha_{J_1}} \), respectively \(e^{i\alpha_{J_2}} \), are replaced by 1, respectively \(e^{i(\alpha_{J_1} + \alpha_{J_2} - \alpha)} \). This reduces the size of the decomposing matrix. Repeating the process, we obtain at last a \(2 \times 2 \) matrix with determinant \(e^{i(2\alpha)} \) which is the product of \(R_\psi^\alpha \) and \(R_\psi^\alpha \) for some \(\psi_1 \) and \(\psi_2 \). \(\square \)

For decompositions of special dilations we can weaken the inequality on the sum of \(\alpha_j \) in Theorem 4.

Lemma 5. Let \(\alpha_1, \phi > 0, \alpha_1 \leq \alpha \leq \pi, \gamma \geq \alpha \) and, for some integer \(m \), \(\phi + m\gamma = \alpha_1 + m\alpha \). Then the matrix \(W = \text{diag}(e^{i\gamma}I_m, e^{i\phi}) \) is the product of \(m \) dilations from \(U^\alpha \) and a dilation from \(U^{\alpha_1} \).

Proof. This follows from a straightforward application of formula (7), because for the notation \(L_{\psi_j} = I_{j-1} \oplus R_{\psi_j}^\gamma \oplus I_{m-j} \), the chain

\[\begin{array}{c}
L_0^{\alpha_1} \oplus I_{m-1} \rightarrow \text{diag}(e^{i\psi_1}, e^{i(\alpha_1 + (\alpha - \gamma))}) \oplus I_{m-1} \rightarrow \cdots \\
\times L_{\psi_1}^\gamma \rightarrow \text{diag}(e^{i\psi_1}I_{m}, e^{i(\alpha_1 + s(\alpha - \gamma))}) \oplus I_{m-s} \times L_{\psi_{1+1}}^\gamma \rightarrow \cdots \times L_{\psi_m}^\gamma \rightarrow \text{diag}(e^{i\psi_1}I_{m}, e^{i\phi})
\end{array} \]

leads to transformations of \(2 \times 2 \) matrices with eigenvalues \(1, \alpha, \alpha_1 + j(\alpha - \gamma) \) and the existence of \(\psi_{j+1} \) comes from \(\alpha + \alpha_1 + j(\alpha - \gamma) \leq 2\alpha \leq 2\pi \) and \(\alpha_1 + (j + 1)(\alpha - \gamma) \geq 0 \). \(\square \)

Corollary 6. Let \(\alpha \leq \pi, 0 \leq \phi \leq \alpha \leq \gamma \) and for some integer \(m > 0, \phi + m\gamma = (m + 1)\alpha \). Then the matrix \(W = \text{diag}(e^{i\gamma}I_m, e^{i\phi}) \) is the product of \(m + 1 \) dilations from \(U^\alpha \).

3. Decompositions of a scalar operator

As was mentioned in the introduction our basic case is a product of operators with two points in their spectra. We are going to describe some properties of \(\Omega_k^\alpha, \alpha > 0 \). In the proofs of the following
Lemmas we shall construct various solutions of (2) for multiples of orthoprojections $\alpha P_1, \alpha P_2, \ldots, \alpha P_k$ such that $\alpha (P_1 + P_2 + \cdots + P_k) = \gamma I$, where $\gamma \in \mathbb{R}$.

Lemma 7. The set Ω_γ^α has the following properties.

(1) For any $u \in \Omega_\gamma^\alpha$, $0 \leq \arg(u) \leq k\alpha$;
(2) If $u \in \Omega_\gamma^k$, then $e^{ik\alpha}/u \in \Omega_\gamma^\alpha$;
(3) $\Omega_\gamma^\alpha = \{u \in \mathbb{T} \mid u \in \Omega_\gamma^{2\pi - \alpha}\}$
(4) $\Omega_\gamma^\alpha \cap \{u \in \mathbb{C} \mid 0 < \arg(u) < \alpha\} = \emptyset$ for $k\alpha < 2\pi$;
(5) $\Omega_\gamma^1 = \{1, e^{i\alpha}, \ldots, e^{i(3\alpha/2)}\}, \Omega_\gamma^2 = \{1, e^{i\alpha}, e^{i(2\alpha)}, e^{i(3\alpha)}\}$ for $m \leq k$

and if $2\pi/3 < \alpha < 4\pi/3$, then Ω_γ^2 contains both numbers $e^{i(3\alpha/2)}$ and $-e^{i(3\alpha/2)}$.

Proof. The first statement is trivial if $k\alpha \geq 2\pi$. So suppose that the equality (3) holds for some $u \in \mathbb{T}$ and $k\alpha < 2\pi$. Every unit vector \vec{h} is an eigenvector of $U_1 U_2 \cdots U_k$, by definition of U^α. Let us define $\vec{h}_0 = \vec{h}, \vec{h}_1 = U_{k-1} U_{k-2} \cdots U_h \vec{h}$ and denote by H the finite dimensional Hilbert space $\{\vec{h}_0, \vec{h}_1, \vec{h}_2, \ldots, \vec{h}_k\}$. Let \vec{U}_i be a unitary pseudo-reflection (dilation) acting on $U_1 U_2 \cdots U_k$ and the eigenvector corresponding to the eigenvalue α be $\vec{h}_{k-1}, \vec{h}_{k-2} = 0$, otherwise let \vec{U}_i be the identity matrix. By construction, $\vec{U}_i \vec{h}_i = \vec{h}_{i-1}$. Hence, $\vec{U}_1 \cdots \vec{U}_k \vec{h}_0 = \vec{h}_0$ and so $u \in \sigma(\vec{U}_1 \cdots \vec{U}_k)$. Let $u = e^{i\theta}, 0 \leq \phi < 2\pi$. To obtain that $\phi \leq k\alpha$ we apply the interlace theorem for eigenvalues of a unitary matrix perturbed by a pseudo-reflection [4]. It states that eigenvalues of the two unitary matrices W_1 and $W_2 = W_1 I$, where U is a pseudo-reflection, are interlaced on the unit circle. Using the theorem for eigenvalues 1, $\theta_1, \theta_2 \in \sigma(\vec{U}_k \cdots \vec{U}_1)$, where $0 < \theta_1 < \theta_2 < 2\pi$, we have that $0 < \theta_1 < \alpha < \theta_2$. Moreover $\theta_1 \leq 2\pi$. Then for eigenvalues 1, $\theta_1, \theta_2, \theta_3 \in \sigma(\vec{U}_k \cdots \vec{U}_1)$, where $0 < \theta_1 < \theta_2 < \theta_3 < 2\pi$, we have that $0 < \theta_1 < \theta_2 < \theta_3 < 2\pi$. Hence $\theta_1 < \theta_3 < \theta_2$. By induction, we conclude that arguments of eigenvalues of $\vec{U}_1 \cdots \vec{U}_k$ are less or equal to $k\alpha$. Therefore $\phi < k\alpha$.

The second is true, since for an operator $u \in U^\alpha$, the operator $e^{i\alpha} U^\alpha$ belongs to U^α. Thus the decomposition $u = U_k U_{k-1} \cdots U_1$ leads to the decomposition

$e^{i\alpha}/u = e^{i\alpha} U_1^* e^{i\alpha} U_2^* \cdots e^{i\alpha} U_k^*$.

Conjugating both sides of the equality (3), we obtain the third property.

To prove the fourth property we suppose that for some ϕ, $0 < \phi < \alpha$, there exist unitary operators $U_1, \ldots, U_k \in U^\alpha$ such that $e^{i\phi} I = U_1 U_2 \cdots U_k$ and U_1 is not the identity. Then the operator $U_1 U_2 \cdots U_k = e^{i\phi} U_k^*$ has the eigenvalue $e^{i(2\pi + \phi - \alpha)}$. But $2\pi + \phi - \alpha > (k-1)\alpha$. Thus we obtain a contradiction to the proof of the first statement.

In the fifth statement the set Ω_γ^α is equal to $\{1, e^{i\alpha}\}$ by definition of U^α. It is obvious that $\Omega_\gamma^\alpha \subset \{1, e^{i(m\alpha)}\}$ for $m \leq k$. So let us show that $\Omega_\gamma^\alpha \subset \{1, e^{i\alpha}, e^{i(2\alpha)}, e^{i(3\alpha)}\}$. In view of the property (3) it suffices to consider the case $0 < \alpha < \pi$. Suppose $u = e^{i\phi} \in \{1, e^{i\alpha}, e^{i(2\alpha)}\}, 0 < \phi < 2\pi$ and $u \in \sigma(U_1 U_2)$ for some unitary operators $U_1, U_2 \in U^\alpha$. By Lemma 2, we have that $e^{i(2\pi - \phi)} \in \sigma(U_1 U_2)$. If $U_1 U_2 = u$, then $e^{i(2\pi - \phi)} = e^{i\phi}$. Whence $\phi = \alpha$ or $\phi = \alpha + \pi$. The first equality contradicts our assumption and the second denies the truth of the property (1) of Lemma 7 since $\phi \neq 2\pi$ and hence $\alpha + \pi > 2\alpha$.

Assume now that $e^{i\gamma} I = U_1 U_2 U_3$ for some non-scalar unitary operators $U_1, U_2, U_3 \in U^\alpha, 0 < \alpha < \pi, 0 < \gamma < 2\pi$. Then $e^{i\gamma} U_3^* = U_1 U_2$. So

$\sigma(U_1 U_2) = \{e^{i\gamma}, e^{i(\gamma - \alpha)}\}.$

If $\gamma \neq 0, 2\alpha$, then by Lemma 2, $e^{i(2\alpha - \gamma)} \in \sigma(U_1 U_2)$. This defines completely the points of Ω_γ^α. Really, if $e^{i(2\alpha - \gamma)} = e^{i\gamma}$, then $\gamma = \alpha$ or $\gamma = \pi + \alpha$. The number $e^{i(\pi + \alpha)}$ cannot be in the spectra $\sigma(U_1 U_2)$ by
Remark 3 because \(\alpha + \pi > 2\alpha \) and \(\gamma \neq 2\alpha \). So \(e^{i(2\alpha - \gamma)} = e^{i(\gamma - \alpha)} \), i.e. \(\gamma = 3\alpha/2 \) or \(\gamma = 3\alpha/2 \pm \pi \). If \(3\alpha/2 < \pi \), then \(3\alpha/2 + \pi > 3\alpha \). Whence \(3\alpha/2 + \pi \notin \Omega_{3\alpha/2}^\alpha \) by property (1).

Let us show that \(e^{i(3\alpha/2)} \in \Omega_{3\alpha/2}^\alpha \) for every \(\alpha \leq \pi \) and \(-e^{i(3\alpha/2)} \in \Omega_{3\alpha/2}^\alpha \) for \(2\pi/3 < \alpha \leq \pi \). By Theorem 4, there exist \(2 \times 2 \) matrices \(U_1 \) and \(U_2 \) from \(U^\alpha \) such that

\[
U_1 U_2 = \text{diag}(e^{i(3\alpha/2)}, e^{i(\alpha/2)}).
\]

Putting \(U_3 = \text{diag}(1, e^{i\alpha}) \), we obtain \(e^{i(3\alpha/2)} I_2 = U_1 U_2 U_3 \). Using Theorem 4 again, one can find \(2 \times 2 \) matrices \(V_1 \) and \(V_2 \) from \(U^\alpha \) such that

\[
V_1 V_2 = \text{diag}(e^{i(3\alpha/2 - \pi)}, e^{i(\pi + \alpha/2)}).
\]

for \(2\pi/3 < \alpha \leq \pi \). Thus \(-e^{i(3\alpha/2)} I_2 = V_1 V_2 U_3 \).

The case \(\alpha > \pi \) follows from the property (3). \(\square \)

In the following two Lemmas we construct decompositions of a scalar operator on an infinite dimensional Hilbert space. These Lemmas are analogous of corresponding ones for sums of orthoprojections discussed in \([10,11]\).

Lemma 8. Let \(k \geq 4 \) and \(0 < \alpha \leq \pi \). The set \(\Omega_k^\alpha \) contains every number \(u = e^{i\gamma} \) with \(2\alpha \leq \gamma \leq (k - 2)\alpha \).

Proof. Obviously \(u = e^{i(2\alpha)} \in \Omega_4^\alpha \) and only \(\gamma = 2\alpha \) satisfies the conditions of the Lemma for \(k = 4 \).

It is sufficient to prove the Lemma for \(k = 5 \) because if \(e^{i\gamma} I = U_1 U_2 \cdots U_s \) then \(e^{i\gamma} e^{i\alpha} I = U_1 U_2 \cdots U_s \) is a product of \(s + 1 \) operators from \(U^\alpha \).

Thus let \(k = 5 \) and \(2\alpha \leq \gamma \leq 2.5\alpha \). Let \(\vec{e}_1, \vec{e}_2, \vec{e}_3, \ldots \) be the orthonormal basis of a Hilbert space \(H \). For \(0 \leq \phi \leq 2\alpha \) and \(\psi \) calculated by the formula (7) with \(\alpha_1 = \alpha_2 = \alpha \), the product \(R_0^\alpha R_\psi^\alpha \) has two eigenvalues:

\[
R_0^\alpha R_\psi^\alpha \approx \text{diag}(e^{i\phi}, e^{i(2\alpha - \phi)}).
\]

So for any sequence \(0 \leq \phi_j \leq 2\alpha, j = 1, 2, \ldots \), there exist two operators \(U_1, U_2 \in U^\alpha \) such that

\[
U_1 U_2 = \text{diag}(e^{i(2\pi - \phi_j)}, e^{i\phi_j}, e^{i(2\alpha - \phi_j)}, e^{i(2\alpha - \phi_j)}), \quad \text{where } \phi_j = 0, 1, 2, \ldots.
\]

The operator \(U_3 \) is defined by the formulas \(U_3 \vec{e}_j = e^{i(\alpha + \pi)} \vec{e}_j \), where \(\tau_{2j - 1} = 0 \),

\[
\tau_{2j} = \begin{cases}
0, & \text{if } \theta_j < \alpha, \\
1, & \text{otherwise}.
\end{cases}
\]

Then

\[
U_1 U_2 U_3 U_4 U_5 = \text{diag}(e^{i(2\alpha + \phi_1)}, e^{i(2\alpha + \phi_1 + \phi_2)}, e^{i(2\alpha + \phi_1 + \phi_2 + \phi_3)}, \ldots).
\]

Putting \(\theta_1 = \gamma - 2\alpha, \)

\[
\theta_{j+1} = \theta_j + 2\gamma - (4 + \tau_{2j})\alpha \quad \text{and} \quad \phi_j = \theta_j + \gamma - (2 + \tau_{2j})\alpha,
\]

we have that \(U_1 U_2 U_3 U_4 U_5 = e^{i\gamma} I \). The only property we need to prove is that \(0 \leq \theta_j \leq 2\alpha \) and \(0 \leq \phi_j \leq 2\alpha \). Note that \(0 \leq \theta_1 < \alpha \) and if \(0 \leq \theta_j < \alpha \), then \(\theta_j + 1 = (2\gamma - 4\alpha) + \theta_j \leq 2\alpha \). On the other hand, if \(\theta_j > \alpha \), then \(\theta_{j+1} = (2\gamma - 5\alpha) + \theta_j \leq \theta_j \). The inequality \(0 \leq \phi_j \leq 2\alpha \) can be checked by a similar reasoning. So for all \(\gamma, 2\alpha < \gamma < 2.5\alpha \), the decomposition \(U_1 U_2 U_3 U_4 U_5 = e^{i\gamma} I \) holds. Using property (2) of Lemma 7, we complete the proof. \(\square \)
Lemma 9. Let \(k \geq 5 \). The set \(\Omega_k^\alpha \) contains every unitary number \(u = e^{iv} \) with \((1 + \frac{1}{k-3})\alpha \leq \gamma \leq (1 + \frac{1}{k-4})\alpha \) for \(\alpha \leq \pi \).

Proof. If \(\gamma = (1 + \frac{1}{k-3})\alpha \), then \((k-3)\gamma = (k-2)\alpha\) and by Corollary 6, the matrix \(\text{diag}(e^{iv}, e^{i(\gamma - \alpha)}) \) is a product of \(k-3 \) matrices from \(U_\alpha \). Whence, the scalar matrix

\[
e^{iv}I_{k-3} = \text{diag}(e^{iv}, e^{i(\gamma - \alpha)}) \text{diag}(I_{k-4}, e^{i\alpha})
\]

is a product of \(k-2 \) matrices from \(U_\alpha \). So we assume further that

\[
\left(1 + \frac{1}{k-3} \right)^2 \alpha < \gamma < \left(1 + \frac{1}{k-4} \right)\alpha.
\]

Let \(0 \leq \phi_j \leq \alpha \) and \(0 \leq \theta_j \leq \alpha \), \(j = 1, 2, \ldots \), be two sequences of real numbers. By Lemma 5 for all \(j \in \mathbb{N} \), there exist unitary matrices \(V_j^{(s)} \in M_{k_j+1} \), and \(W_j^{(l)} \in M_{q_j+1} \), \(V_j^{(s)}, W_j^{(l)} \in U_\alpha \) such that

\[
V_j^{(1)} \ldots V_j^{(k_j)} \text{diag}(e^{i\phi_j}, I_{k_j}) \approx \text{diag}(e^{iv}I_{k_j}, e^{i(\phi_j - k_j(\gamma - \alpha))})
\]

and

\[
\text{diag}(e^{i\theta_j}, I_{q_j})W_j^{(1)} \ldots W_j^{(q_j)} \approx \text{diag}(e^{iv}I_{q_j}, e^{i(\theta_j - q_j(\gamma - \alpha))})
\]

with

\[
0 \leq \phi_j - k_j(\gamma - \alpha) < \gamma - \alpha \quad \text{and} \quad 0 \leq \theta_j - q_j(\gamma - \alpha) < \gamma - \alpha.
\]

To simplify the formulas further we put \(V_j^{(l)} = I_{k_j+1} \) if \(i > k_j \) and \(W_j^{(i)} = I_{q_i+1} \) if \(i > q_i \) and define the direct sums of matrices:

\[
V_1 := V^{(s)}_1 \oplus V^{(s)}_2 \oplus V^{(s)}_3 \oplus \cdots \quad \text{and} \quad W_1 := W^{(l)}_1 \oplus W^{(l)}_2 \oplus W^{(l)}_3 \oplus \cdots,
\]

where \(s, l = 1, \ldots, k-4 \) and

\[
\Phi = \text{diag}(e^{i\phi_1}, I_{k_1}, e^{i\phi_2}, I_{k_2}, e^{i\phi_3}, I_{k_3}, \ldots), \quad \Psi = \text{diag}(e^{i\theta_1}, I_{q_1}, e^{i\theta_2}, I_{q_2}, e^{i\theta_3}, I_{q_3}, \ldots).
\]

We shall show below that \(k_j \) and \(q_j \) will be less than \(k-3 \). Matrices \(V_1, \ldots, V_{k-4} \) and \(\Phi \) define unitary operators on a separable Hilbert space \(G_1 \). By the relations (11) and (12), we obtain

\[
V_1V_2 \ldots V_{k-4}\Phi \approx \text{diag}(e^{iv}I_{k_1}, e^{i(\phi_1 - k_1(\gamma - \alpha))}, e^{iv}I_{k_2}, e^{i(\phi_2 - k_2(\gamma - \alpha))}, \ldots)
\]

So in the orthogonal basis of eigenvectors \(\{\tilde{f}_1, \tilde{f}_2, \tilde{f}_3, \ldots\} \), the matrix associated with the operator \(V_1V_2 \ldots V_{k-4} \Phi \) is diagonal. We split this basis in two parts \(\tilde{f}_{m_1}, \tilde{f}_{m_2}, \ldots, \tilde{f}_{m_s} \) and \(\tilde{f}_{n_1}, \tilde{f}_{n_2}, \ldots, \tilde{f}_{n_l} \) such that

\[
V_1V_2 \ldots V_{k-4}\Phi\tilde{f}_{m_i} = e^{iv}\tilde{f}_{m_i}, \quad i = 1, 2, 3, \ldots,
\]

\[
V_1V_2 \ldots V_{k-4}\Phi\tilde{f}_{n_j} = e^{i(\phi_j - k_j(\gamma - \alpha))}\tilde{f}_{n_j}, \quad j = 1, 2, 3, \ldots
\]

Let

\[
H_1 = (\tilde{f}_{m_1}, \tilde{f}_{m_2}, \ldots, \tilde{f}_{m_s})
\]

be a Hilbert space, the closure of the linear span of the vectors \(\tilde{f}_{m_1}, \tilde{f}_{m_2}, \ldots, \) and \(H_2 = H_1^\perp \). Then in the basis \(\{\tilde{f}_{m_1}, \tilde{f}_{m_2}, \ldots, \tilde{f}_{n_1}, \tilde{f}_{n_2}, \ldots\} \) the matrix associated with \(V_1V_2 \ldots V_{k-4} \Phi \) will be of the form

\[
V_1 \ldots V_{k-4}\Phi = e^{iv}I_{H_1} \oplus \text{diag}(e^{i(\phi_1 - k_1(\gamma - \alpha))}, e^{i(\phi_2 - k_2(\gamma - \alpha))}, e^{i(\phi_3 - k_3(\gamma - \alpha))}, \ldots),
\]

where \(I_{H_1} \) is the identity operator on \(H_1 \).
Matrices W_1, \ldots, W_{k-4} and $Ψ$ define unitary operators on a separable Hilbert space G_2. We use the same argument as above for the unitary operator $ΨW_1 \cdots W_{k-4}$. One can find an orthogonal basis $\langle \vec{h}_1, \vec{h}_2, \ldots, \vec{h}_1, \vec{h}_2, \ldots \rangle$ in G_2 such that in this basis

$$ΨW_1 \cdots W_{k-4} = e^{iγ} I_{H_3} \oplus \text{diag}(e^{i(θ_1-φ_1)(γ-α)}, e^{i(θ_2-φ_2)(γ-α)}, e^{i(θ_3-φ_3)(γ-α)}, \ldots),$$

where $H_3 = \langle \vec{h}_1, \vec{h}_2, \ldots, \vec{h}_1, \vec{h}_2, \ldots \rangle$. Let $H_4 = H_2^\perp$ in G_2. The needed k operators $U_1, \ldots, U_k \in U^α$ will act on the Hilbert space $H = H_1 \oplus H_2 \oplus H_3 \oplus H_4$. We fix now the following basis in H:

$$\{j \vec{f}_1, j \vec{f}_2, \ldots, j \vec{f}_1, j \vec{f}_2, \ldots, j \vec{h}_1, j \vec{h}_2, \ldots \}.$$

Let $U_j = V_j \oplus W_j$ for $j = 1, \ldots, k - 4, U_{k-1}$ and U_k be such that

$$U_{k-1}U_k = Φ \oplus I_{H_3} \oplus \text{diag}(e^{i(2α-φ_2)}, e^{i(2α-φ_3)}, \ldots) \quad \text{(15)}$$

for $φ_1 = α$ and U_1 and U_2 be such that

$$U_1U_2 = I_{H_1} \oplus \text{diag}(e^{i(2α-θ_1)}, e^{i(2α-θ_2)}, e^{i(2α-θ_3)}, \ldots) \oplus Ψ. \quad \text{(16)}$$

Note that in Eqs. (15) and (16) by $Φ$ and $Ψ$ we do not mean the diagonal form (14), but the act of the operators on the corresponding subspaces. The product

$$U_1U_2 \cdots U_k = e^{iγ} I_{H_3} \oplus \text{diag}(e^{i(2α+φ_1-θ_1-k_1(γ-α))}, e^{i(2α+φ_2-θ_2-k_2(γ-α))}, \ldots)$$

$$\oplus e^{iγ} I_{H_3} \oplus \text{diag}(e^{i(2α+φ_1-θ_1-k_1(γ-α))}, e^{i(2α+φ_2-θ_2-k_2(γ-α))}, \ldots)$$

is the scalar operator $e^{iγ} I_{H}$ if

$$2α + φ_j - θ_j - k_j(γ-α) = γ \quad \text{and} \quad 2α + φ_j - θ_{j+1} - q_j(γ-α) = γ. \quad \text{(17)}$$

Thus putting $φ_1 = α$,

$$θ_j = α + φ_j - (k_j + 1)(γ-α),$$

$$φ_{j+1} = α + φ_j - (q_j + 1)(γ-α),$$

where we define k_j and q_j to be the unique integers satisfying (13), we have (17). Beside this in view of (13), the inequality $φ_1 \leq α$ inductively yields

$$α - (γ - α) \leq θ_j < α \quad \text{and} \quad α - (γ - α) \leq φ_{j+1} < α. \quad \text{(18)}$$

Since $α/(k - 4) > γ - α > α/(k - 3)$, it follows directly from (13) and (18) that $0 \leq q_j \leq k - 4$ and $0 \leq k_j \leq k - 4$. Therefore, all operators U_1, \ldots, U_k are defined correctly and this completes the proof.

Theorem 10. For $0 < α \leq π$ and $k > 4$, we have the set inclusion

$$Ω_k^α \supset \{u ∈ \mathbb{T} | (1 + \frac{1}{k - 3}) α ≤ \arg(u) ≤ (k - 1 - \frac{1}{k - 3}) α \}. \quad \text{(19)}$$

Proof. By Lemmas 8 and 9, $Ω_2^α \supset \{e^{iγ} | γ ∈ [2α, 3α]\}$ and $Ω_3^α \supset \{e^{iγ} | γ ∈ [1.5α, 2α]\}$. Using the property (2) of Lemma 7, we conclude that $Ω_2^α \supset \{e^{iγ} | γ ∈ [1.5α, 3.5α]\}$. Since $Ω_k^α \subset Ω_{k+1}^α$, in view of Lemma 9, we obtain the set inclusion (19).

Corollary 11. For big enough k the value

$$\left(k - 1 - \frac{1}{k - 3}\right) α ≥ 2π + \left(1 + \frac{1}{k - 3}\right) α$$

Therefore $Ω_k^α = \mathbb{T}$ in this case.
We denote by $\mu(\alpha)$ the value of the biggest root of the equation

$$
(x - 1 - 1/(x - 3))\alpha = \pi,
$$

$$
\mu(\alpha) = \frac{\pi/\alpha + 4 + \sqrt{(\pi/\alpha - 2)^2 + 4}}{2}.
$$

In the following corollary the expression $[x]$ means the smallest integer $n \geq x$.

Corollary 12. Let $0 < \alpha \leq \pi$ and U be a unitary symmetry on a Hilbert space H, i.e. $U^2 = 1_H$. If the dimension $\dim \ker (U + I_H) = \infty$, then U is a product of 6 operators from U^α for $2\pi/3 < \alpha < 6\pi/7$ and of $\max(5, \lceil \mu(\alpha) \rceil)$ operators from U^α for other cases of α.

Proof. Let $H_1 = \operatorname{Im} (U + I_H)$ and $H_2 = \operatorname{Im} (U - I_H)$. We are going to prove that $-I_{H_1}$ is a product of k operators from U^α, where

$$
\left\{ \begin{array}{ll}
k = 6, & \text{if } 2\pi/3 < \alpha < 6\pi/7, \\
\max(5, \lceil \mu(\alpha) \rceil), & \text{otherwise}.
\end{array} \right.
$$

Really if $2\pi/3 \leq \alpha \leq 6\pi/7$, then $4\alpha/3 \leq 3\pi \leq 14\alpha/3$. Hence by Theorem 10, $-1 = e^{i(3\pi)} \in \Omega_6^\alpha$. Also if $6\pi/7 \leq \alpha \leq \pi$, then $3\alpha/2 \leq 3\pi \leq 7\alpha/2$. Whence $-1 \in \Omega_7^\alpha$. Besides this, by definition of $\mu(\alpha)$, the inequalities

$$
\left(1 + \frac{1}{k - 3} \right) \alpha \leq \pi \leq \left(k - 1 - \frac{1}{k - 3} \right) \alpha
$$

hold for $k \geq \mu(\alpha)$ and $\alpha \leq 2\pi/3$. Therefore $-I_{H_1} = U_1 U_2 \cdots U_k$, where $U_i \in U^\alpha$ and

$$
U = (U_1 \oplus I_{H_2})(U_2 \oplus I_{H_2}) \cdots (U_k \oplus I_{H_2})
$$

is a product of k unitary operators on H with $U_i \oplus I_{H_2} \in U^\alpha$, $i = 1, \ldots, k$. \qed

Theorem 13. Let $\alpha < \pi$. Then the set inclusion holds:

$$
\Omega_4^\alpha \subset \left\{ e^{i\gamma} | \gamma = 2\alpha - \frac{s\alpha + 2q\pi}{m}, s = 0, \pm 1, \pm 2, q \in \mathbb{Z}, m \in \mathbb{N} \right\}.
$$

Remark 14. It was proved in [8] that any unitary operator in a separable Hilbert space is a product of four operators from U^2. In finite dimensional spaces for any matrix U with $\det U = \pm 1$, a corresponding result was obtained in [12]. So $\Omega_4^{\pi/2} = \mathbb{T}$.

Proof. Suppose that for some $\gamma \in \mathbb{R}$ and unitary operators $U_1, \ldots, U_4 \in U^\alpha$, one has $e^{i\gamma} I = U_1 U_2 U_3 U_4$. Then

$$
e^{i\gamma} U_4 U_3^s U_2^t = U_1 U_2.
$$

Let $\gamma \neq 2\alpha - (s\alpha + 2q\pi)/m$, where the parameters s, q and m are from the formulation of the theorem and $e^{i\phi} \in \sigma(U_1 U_2)$. Then the sequence of the numbers

$$
e^{i\phi}, e^{i(\phi + (2\alpha - \gamma))}, e^{i(\phi + 2(2\alpha - \gamma))}, \ldots, e^{i(\phi + n(2\alpha - \gamma))}
$$

or the sequence

$$
e^{i(s_1 \alpha)}, e^{i(s_1 \alpha + (2\alpha - \gamma))}, e^{i(s_1 \alpha + 2(2\alpha - \gamma))}, \ldots, e^{i(s_1 \alpha + n(2\alpha - \gamma))}
$$

are the points of the union of the spectrum $\sigma(U_1 U_2)$ and the spectrum $\sigma(U_3 U_4)$ for some integer $s_1 \in \{0, 1, 2\}$. Let us show this by two steps.

Step 1. By Eq. (20), we have $e^{i(\gamma - \phi)} \in \sigma(U_3 U_4)$. Suppose for a moment that

$$
e^{i(\phi + j(2\alpha - \gamma))} \neq e^{i(s_2 \alpha)}, \quad \forall j = 1, 2, 3, \ldots, s_2 = 0, 1, 2,
$$

where

$$
\gamma = 2\alpha - \frac{s\alpha + 2q\pi}{m}, \quad s = 0, \pm 1, \pm 2, q \in \mathbb{Z}, m \in \mathbb{N}.
$$
then we deduce by the equivalence stated in Lemma 2, that $e^{i(\phi+(2\alpha-\gamma))} \in \sigma(U_2U_4)$. By Eq. (20), $e^{i\gamma(\phi+(2\alpha-\gamma))} \in \sigma(U_1U_2)$ and using Lemma 2, we get

$$e^{i(\phi+2(2\alpha-\gamma))} \in \sigma(U_1U_2).$$

Repeating such a process n times, we obtain that n elements of the sequence (21) have to be in $\sigma(U_1U_2) \cup \sigma(U_2U_4)$.

Step 2. If (23) is not true, then on some step of the process we have that one of the number $1, e^{i\alpha}$ or $e^{i(2\alpha)}$ is in $\sigma(U_1U_2)$ or in $\sigma(U_2U_4)$. Let $s_1 = \{0, 1, 2\}$ be fixed. Without loss of generality we can assume that $e^{i(2\alpha)} \in \sigma(U_1U_2)$. Starting the described process with $\phi = s_1 \alpha$, we conclude by Step 1 that the sequence (22) belongs to $\sigma(U_1U_2) \cup \sigma(U_2U_4)$. This is really so since

$$s_1 \alpha + j(2\alpha - \gamma) = s_2 \alpha + 2l \pi \iff \gamma = 2\alpha - \frac{(s_2 - s_1)\alpha + 2l \pi}{j},$$

whence the property (23) is fulfilled.

By assumption, $e^{i(2\alpha-\gamma)}$ is an irrational rotation of a unit circle. So for every ϕ, there exist n_1 and p_1 such that

$$\tilde{\phi} = \phi + n_1(2\alpha - \gamma) - 2p_1 \pi \in (2\alpha, 2\pi).$$

In view of Remark 3, the number $e^{i\tilde{\phi}}$ cannot belong to $\sigma(U_1U_2)$ or to $\sigma(U_2U_4)$. Therefore $\sigma(U_1U_2)$ is empty and hence such a γ is not in Ω_4^{α}.

A product of two matrices from U^α in some orthonormal basis $\vec{e}_1, \vec{e}_2, \ldots$, has the form (9), putting aside from the consideration the common eigen-subspaces. Hence by Eq. (20), U_2U_4 is also a diagonal matrix in the basis. Therefore the construction from the proof of Lemma 8 provides a general scheme for finding U_1, \ldots, U_4 that satisfy Eq. (20). For example, we define the operators U_1, U_2, U_3 and U_4 such that Eqs. (9) and (10) hold. Let $\gamma = (2 + \frac{1}{m}) \alpha$ and m be even. Putting $\tau_1 = 0, \theta_1 = \gamma - 2\alpha = \alpha/m,$

$$\theta_{j+1} = \theta_j + 2\gamma - 4\alpha = \frac{2j + 1}{m} \alpha, \quad 1 \leq j \leq m/2,$$

$$\theta_j = \theta_j + \gamma - 2\alpha = \frac{2j}{m} \alpha, \quad 1 \leq j \leq m/2,$$

$$\theta_j = 0 \text{ for } j \geq m/2 + 1 \text{ and } l \geq (m + 1)/2,$$

we obtain that

$$U_1U_2U_3U_4 = e^{i\gamma}I_m \oplus (e^{i\alpha}) \oplus e^{i(2\alpha)}I.$$

The product U_1U_2 has the form

$$U_1U_2 = \text{diag}(e^{i(2\alpha)}, e^{i(2\alpha)/m}, \ldots, e^{i\alpha}, e^{-i\alpha}) \oplus \text{diag}(1, e^{i(2\alpha)}, 1, e^{i(2\alpha)}, 1, \ldots).$$

We choose the pair U_1 and U_2 so that $U_1\vec{e}_m = \vec{e}_m$ and $U_2\vec{e}_{m+1} = \vec{e}_{m+1}$. The space $H_1 = \langle \vec{e}_1, \vec{e}_2, \ldots, \vec{e}_m \rangle$ is invariant under the action of every operator U_j. Whence the restriction of the product $U_1U_2U_3U_4 |_{H_1} = e^{i\gamma}I_m$.

Corollary 15. Let $0 < \alpha \leq \pi$. Then $e^{i\alpha(2 \pm 1/m)} \in \Omega_4^{\alpha}$ for every even m.

4. **Concluding remarks**

1. We described various decompositions of a scalar operator. In all cases known to us the formula (2) remains true provided $\sum_k |A_k| \leq 2\pi$, even on a separable Hilbert space. It is interesting to find a basic explanation for such a property.

2. By Corollary 11, we have that $\Omega_4^{\alpha} = \mathbb{T}$ for big enough k, e.g. $(k - 3)\alpha \geq 2\pi$. The structure of the set $\Omega_4^{\alpha} \cap \{e^{i\gamma} | 0 < \gamma < \alpha \}$ for
remains unclear. This set contains points that have no connections with Σ_k. For example, $e^{i(k\alpha - 2\pi s)/s} \in \Omega_k^\alpha$ for $s = 2, \ldots, k-1$. Really for $\alpha < 2\pi/(k-1)$ and $\phi = (k\alpha - 2\pi)/s$, the matrix $e^{i\phi} I_{s-1} \oplus e^{i(s\alpha - s\phi + \phi)}$ is a product of s operators from U^α by Theorem 4 and hence
\[
\left(\text{diag}(I_{s-1}, e^{i\alpha}) \right)^{k-s} \text{diag}(e^{i\phi} I_{s-1}, e^{i(s\alpha - s\phi + \phi)}) = e^{i\phi} I_s
\]
is a product of k operators from U^α.

3. We may conjecture by analogy with results of [8,12] that any unitary operator is a product of k operators from U^α for $(k - c_k)\alpha > 2\pi$, where $c_k \in [0,5]$. As we mentioned above every unitary operator is a product of four symmetries on infinite-dimensional space [8]. Moreover for a unitary operator U, the authors constructed the decomposition
\[
U = V_1 V_2 V_3 V_4, \quad V_j \in U^\pi
\]
such that the subspace $\ker(V_j + I)$ is infinite-dimensional for every $j = 1, 2, 3, 4$. Therefore, it follows directly from Corollary 12 that every unitary operator is a product of $\max(24, 4 \lceil \mu(\alpha) \rceil)$ operators from U^α. See also [15] for various other decompositions.

4. It is interesting to see whether the equation
\[
\Omega_k^\alpha = \{ e^{k\alpha} | x \in \Sigma_k \}
\]
holds or is violated for $k\alpha < 2\pi$. One of the methods for finding new decompositions of operators comes from representation theory. In [10] a transformation (a reflection functor) was found such that for a decomposition of a scalar operator into a sum of ortho-projections, it gives a decomposition of different from former scalar operator into a sum of ortho-projections. It will be worthwhile to construct similar transformations for products of unitary operators. For finite matrices satisfying additional conditions, the existence of such transformations was found in [9].

Acknowledgements

The second author would like to thank the Institute of Applied Mathematics, University of Bonn for the hospitality. We sincerely thank the referee for numerous helpful remarks and professor Yu. S. Samoilenko for stimulating suggestions. The partial financial support by the DFG project 436 UKR 113/87 is gratefully acknowledged.

References