Graphs with diameter $n-e$ minimizing the spectral radius

Jingfen Lan ${ }^{\mathrm{a}, *}$, Linyuan Lu ${ }^{\mathrm{b}, 1}$, Lingsheng Shi ${ }^{\mathrm{a}, 2}$
${ }^{a}$ Department of Mathematical Sciences, Tsinghua University, Beijing, China
${ }^{\text {b }}$ University of South Carolina, Columbia, SC 29208, United States

ARTICLEINFO

Article history:

Received 17 July 2011
Accepted 29 May 2012
Available online 12 July 2012
Submitted by V. Nikoforov

Keywords:

Graphs
Characteristic polynomial
Spectral radius
Diameter

Abstract

The spectral radius $\rho(G)$ of a graph G is the largest eigenvalue of its adjacency matrix $A(G)$. For a fixed integer $e \geq 1$, let $G_{n, n-e}^{\min }$ be a graph with minimal spectral radius among all connected graphs on n vertices with diameter $n-e$. Let $P_{n_{1}, n_{2}, \ldots, n_{t}, p}^{m_{1}, m_{2}, \ldots, m_{t}}$ be a tree obtained from a path of p vertices $(0 \sim 1 \sim 2 \sim \ldots \sim(p-1))$ by linking one pendant path $P_{n_{i}}$ at m_{i} for each $i \in\{1,2, \ldots, t\}$. For $e=1,2,3,4,5$, $G_{n, n-e}^{\min }$ were determined in the literature. Cioabǎ et al. [2] conjectured for fixed $e \geqslant 6, G_{n, n-e}^{\min }$ is in the family $\mathcal{P}_{n, e}=$ $\left\{P_{2,1, \ldots, 1,2, n-e+1}^{2, m_{2}, \ldots, m_{e-4} n-e-2} \mid 2<m_{2}<\cdots<m_{e-4}<n-e-2\right\}$.

 For $e=6,7$, they conjectured $G_{n, n-6}^{\min }=P_{2,1,2, n-5}^{2,\left\lceil\frac{D-1}{2}\right\rceil, D-2}$ and $G_{n, n-7}^{\min }=$ $P_{2,1,1,2, n-6}^{2,\left\lfloor\frac{D+2}{3}\right\rfloor, D-\left\lfloor\frac{D+2}{3}\right\rfloor, D-2}$. In this paper, we settle their conjectures positively. Note that any tree in $\mathcal{P}_{n, e}$ is uniquely determined by its internal path lengths. For any $e-4$ non-negative integers $k_{1}, k_{2}, \ldots, k_{e-4}$, let $T_{\left(k_{1}, k_{2}, \ldots, k_{e-4}\right)}=P_{2,1, \ldots, 1,2, n-e+1}^{2, m_{2}, \ldots, m_{e-4}, n-e-2}$ with $k_{i}=m_{i+1}-m_{i}-1$, for $1 \leqslant i \leqslant e-4$. (Here we assume $m_{1}=2$ and $m_{e-3}=n-e-2$.)Let $s=\frac{\sum_{i=1}^{e-4} k_{i}+2}{e-4}$. For any integer $e \geqslant 6$ and sufficiently large n, we prove that $G_{n, n-e}^{\min }$ must be one of the trees $T_{\left(k_{1}, k_{2}, \ldots, k_{e-4}\right)}$ with the parameters satisfying $\lfloor s\rfloor-1 \leqslant k_{j} \leqslant\lfloor s\rfloor \leqslant k_{i} \leqslant\lceil s\rceil+1$ for $j=1$, $e-4$ and $i=2, \ldots, e-5$. Moreover, $0 \leq k_{i}-k_{j} \leq 2$ for $2 \leq i \leq$ $e-5, j=1, e-4$; and $\left|k_{i}-k_{j}\right| \leq 1$ for $2 \leq i, j \leq e-5$. These results are best possible as shown by cases $e=6,7,8$, where $G_{n, n-e}^{\min }$ are completely determined here. Moreover, if $n-6$ is divisible by $e-4$ and n is sufficiently large, then $G_{n, e}^{\min }=T_{(k-1, k, k, \ldots, k, k, k-1)}$ where $k=\frac{n-6}{e-4}-2$.
© 2012 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Let $G=(V, E)$ be a simple connected graph, and $A(G)$ be the adjacency matrix of G. The characteristic polynomial of G is defined by $\phi_{G}(\lambda)=\operatorname{det}(\lambda I-A(G))$. The spectral radius, denoted by $\rho(G)$, is the largest root of ϕ_{G}. The problem of determining graphs with small spectral radius can be traced back to Hoffman and Smith $[7,8,10]$. Smith completely determined all connected graphs G with $\rho(G) \leqslant 2$. The connected graphs with $\rho(G)<2$ are precisely simple Dynkin Diagrams $A_{n}, D_{n}, E_{6}, E_{7}$, and E_{8}. The connected graphs with $\rho(G)=2$ are exactly those simple extended Dynkin Diagrams $\tilde{A}_{n}, \tilde{D}_{n}, \tilde{E}_{6}$, \tilde{E}_{7}, and \tilde{E}_{8}. Note $A_{n}:=P_{n}$ (paths) and $\tilde{A}_{n}:=C_{n}$ (cycles). The rest of (extended) Dynkin Diagrams are drawn in Fig. 1 (for the details of Dynkin Diagrams, see [16]).

Cvetković et al. [4] gave a nearly complete description of all graphs G with $2<\rho(G) \leqslant \sqrt{2+\sqrt{5}}$. Their description was completed by Brouwer and Neumaier [1]. Those graphs are some special trees with at most two vertices of degree 3. Wang et al. [12] studied some graphs with spectral radius close to $\frac{3}{2} \sqrt{2}$. Woo and Neumaier [13] determined the structures of graphs G with $\sqrt{2+\sqrt{5}} \leqslant \rho(G) \leqslant \frac{3}{2} \sqrt{2}$; if G has maximum degree at least 4, then G is a dagger (i.e., a path is attached to a leaf of a star S_{4}); if G is a tree with maximum degree at most 3 , then G is an open quipu (i.e., the vertices of degree 3 lies on a path); else G is a closed quipu (i.e., a unicyclic graph with maximum degree at most 3 satisfies that the vertices of degree 3 lies on a cycle).

Van Dam and Kooij [3] used the following notation to denote an open quipu. Let $P_{n_{1}, n_{2}, \ldots, n_{t}, p}^{m_{1}, m_{2}, \ldots, m_{t}}$ be a tree obtained from a path on p vertices $(0 \sim 1 \sim 2 \sim \ldots \sim(p-1)$) by linking one pendant path $P_{n_{i}}$ at m_{i} for $i=1,2, \ldots, t$ (see Fig. 2.) The path $0 \sim 1 \sim 2 \sim \ldots \sim(p-1)$ is called main path. For $i=1, \ldots, t-1$, let $P^{(i)}$ be the ith internal path ($m_{i} \sim m_{i}+1 \sim \ldots \sim m_{i+1}$) and $k_{i}=m_{i+1}-m_{i}-1$ be the number of internal vertices on $P^{(i)}$. In general, an internal path in G is a path $v_{0} \sim v_{1} \sim \ldots \sim v_{S}$ such that $d\left(v_{0}\right)>2, d\left(v_{s}\right)>2$, and $d\left(v_{i}\right)=2$, whenever $0<i<s$. An internal path is closed if $v_{0}=v_{s}$.

Van Dam and Kooij [3] asked an interesting question "which connected graph of order n with a given diameter D has minimal spectral radius?". The diameter of a connected graph is the maximum distance among all pairs of its vertices. They [3] solved this problem explicitly for graphs with diameter

Fig. 1. Dynkin Diagrams.

Fig. 2. $P_{n_{1}, n_{2}, \ldots, n_{t}, p}^{m_{1}, m_{2}, \ldots, m_{t}}$
$D \in\{1,2,\lfloor n / 2\rfloor, n-3, n-2, n-1\}$. The cases $D=1$ and $D=n-1$ are trivial. A minimizer graph, denoted by $G_{n, D}^{\min }$, is a graph that has the minimal spectral radius among all the graphs of order n and diameter D. Van Dam and Kooij [3] proved that $G_{n, 2}^{\min }$ is either a star or a Moore graph; $G_{n,\lfloor n / 2\rfloor}^{\min }$ is the cycle $C_{n} ; G_{n, n-2}^{\min }$ is the tree $P_{1, n-1}^{1} ; G_{n, n-3}^{\min }$ is the tree $P_{1,1, n-2}^{1, n-4}$. They conjectured $G_{n, n-e}^{\min }=P_{\left\lfloor\frac{e-1}{2}\right\rfloor,\left\lceil\frac{e-1}{2}\right\rceil, n-e+1}^{\left\lfloor\frac{e-1}{2}\right\rfloor, n-e-\left\lceil\frac{e-1}{2}\right\rceil}$ for any constant $e \geqslant 1$ and n large enough.

The case $e=4$ was proved by Yuan et al. [5], and also independently by Cioabǎ et al. [2]. Cioabǎ et al. actually proved more results: they settled the case $e=5$ and disproved the case $e \geqslant 6$. (The case $e \geqslant 6$ was also disproved independently by Sun [11].) Cioabǎ et al. [2] proved the following theorem. Theorem 5.2 of [2] For $e \geq 6, \rho\left(G_{n, n-e}^{\min }\right) \rightarrow \sqrt{2+\sqrt{5}}$ as $n \rightarrow \infty$. Moreover $G_{n, n-e}^{\min }$ is contained in one of the following three families of graphs

$$
\begin{aligned}
\mathcal{P}_{n, e} & =\left\{P_{2, m_{2}, \ldots, m_{e-4}, n-e-2}^{2, m_{2}, n-e+1} \mid 2<m_{2}<\cdots<m_{e-4}<n-e-2\right\}, \\
\mathcal{P}_{n, e}^{\prime} & =\left\{P_{2,1, \ldots, 1,1, n-e+1}^{2, m_{2}, \ldots, m_{e-3}, n-e-1} \mid 2<m_{2}<\cdots<m_{e-3}<n-e-1\right\}, \\
\mathcal{P}_{n, e}^{\prime \prime} & =\left\{P_{1,1, \ldots, 1,1, n-e+1}^{1, m_{2}, \ldots, m_{e-2}, n-e-1} \mid 1<m_{2}<\cdots<m_{e-2}<n-e-1\right\} .
\end{aligned}
$$

Cioabǎ et al. [2] made three conjectures.
Conjecture 1 [2, 5.3]. For fixed $e \geqslant 5$, a minimizer graph with n vertices and diameter $D=n-e$ is in the family $\mathcal{P}_{n, e}$, for n large enough.

Conjecture $2[2,5.4]$. The graph $P_{2,1,2, n-5}^{2,\left\lceil\frac{D-1}{2}\right], D-2}$ is the unique minimizer graph with n vertices and diameter $D=n-6$, for n large enough.

Conjecture $3[2,5.5]$. The graph $P_{2,1,1,2, n-6}^{2,\left\lfloor\frac{D+2}{3}\right\rfloor, D-\left\lfloor\frac{D+2}{3}\right\rfloor, D-2}$ is the unique minimizer graph with n vertices and diameter $D=n-7$, for n large enough. ${ }^{3}$

In this paper, we settle these three conjectures positively.
Note that graphs in each family can be determined by the lengths of internal paths (see Fig. 3). The parameters k_{i} 's and m_{i} 's are related as follows. In the first family $\mathcal{P}_{n, e}, T_{\left(k_{1}, k_{2}, \ldots, k_{e-4}\right)}=$ $P_{2,1, \ldots, 1,2, n-e+1}^{2, m_{2}, \ldots, m_{e-4}, n-e-2}$ if $k_{i}=m_{i+1}-m_{i}-1$ for $1 \leqslant i \leqslant e-4$, where $m_{1}=2$ and $m_{e-3}=n-e-2$. In the second family $\mathcal{P}_{n, e}^{\prime}, T_{\left(k_{1}, k_{2}, \ldots, k_{e-3}\right)}^{\prime}=P_{2,1, \ldots, 1,1, n-e+1}^{2, m_{2}, \ldots, m_{e-3}, n-e-1}$ if $k_{i}=m_{i+1}-m_{i}-1$ for $1 \leqslant i \leqslant e-3$, where $m_{1}=2$ and $m_{e-2}=n-e-1$. In the third family $\mathcal{P}_{n, e}^{\prime \prime}, T_{\left(k_{1}, k_{2}, \ldots, k_{e-2}\right)}^{\prime \prime}=P_{1,1, \ldots, 1,1, n-e+1}^{1, m_{2}, \ldots, m_{e-2}, n-e-1}$ if $k_{i}=m_{i+1}-m_{i}-1$ for $1 \leqslant i \leqslant e-2$, where $m_{1}=1$ and $m_{e-1}=n-e-1$. In all three cases, the summation of all k_{i} 's is always equal to $n-2 e$.

We have the following theorem.
Theorem 1.1. For any e ≥ 6 and sufficiently large $n, G_{n, n-e}^{\min }$ must be a tree $T_{\left(k_{1}, k_{2}, \ldots, k_{e-4}\right)}$ in $\mathcal{P}_{n, e}$ satisfying

1. $\lfloor s\rfloor-1 \leqslant k_{j} \leqslant\lfloor s\rfloor \leqslant k_{i} \leqslant\lceil s\rceil+1$ for $2 \leqslant i \leqslant e-5$ and $j=1, e-4$, where $s=\frac{n-6}{e-4}-2$.
2. $0 \leq k_{i}-k_{j} \leq 2$ for $2 \leq i \leq e-5$ and $j=1, e-4$.
3. $\left|k_{i}-k_{j}\right| \leq 1$ for $2 \leq i, j \leq e-5$.

In particular, if $n-6$ is divisible by $e-4$, then $G_{n, n-e}^{\min }=T_{(s-1, s, \ldots, s, s-1)}$.

[^1]

Fig. 3. The three families of graphs: $\mathcal{P}_{n, e}, \mathcal{P}_{n, e}^{\prime}, \mathcal{P}_{n, e^{\prime}}^{\prime \prime}$

Here we completely determine the $G_{n, n-e}^{\min }$ for $e=6,7,8$ and settle the Conjectures 2 and 3 positively.

Theorem 1.2. For $e=6$ and n large enough, $G_{n, n-e}^{\min }$ is unique up to a graph isomorphism.

1. If $n=2 k+12$, then $G_{n, n-6}^{\min }=T_{(k, k)}$.
2. If $n=2 k+13$, then $G_{n, n-6}^{\min }=T_{(k, k+1)}$.

Theorem 1.3. For $e=7$ and n large enough, $G_{n, n-e}^{\min }$ is unique up to a graph isomorphism.

1. If $n=3 k+14$, then $G_{n, n-7}^{\min }=T_{(k, k, k)}$.
2. If $n=3 k+15$, then $G_{n, n-7}^{\min }=T_{(k, k+1, k)}$.
3. If $n=3 k+16$, then $G_{n, n-7}^{\min }=T_{(k, k+2, k)}$.

Theorem 1.4. For $e=8$ and n large enough, $G_{n, n-e}^{\min }$ is determined up to a graph isomorphism as follows.

1. If $n=3 k+16$, then $G_{n, n-8}^{\min }=T_{(k, k, k, k)}, T_{(k, k, k+1, k-1)}$, or $T_{(k-1, k+1, k+1, k-1)}$; all three trees have the same spectral radius.
2. If $n=3 k+17$, then $G_{n, n-8}^{\min }=T_{(k, k+1, k, k)}$.
3. If $n=3 k+18$, then $G_{n, n-8}^{\min }=T_{(k, k+1, k+1, k)}$.
4. If $n=3 k+19$, then $G_{n, n-8}^{\min }=T_{(k, k+1, k+2, k)}$.

For $e=6$, Theorem 1.2 is an easy corollary of Theorem 1.1. Theorem 1.3 and Theorem 1.4 show that the bounds on k_{i} 's in Theorem 1.1 are best possible.

The remaining of the paper is organized as follows. In Section 2, we prove some useful lemmas. The proof of Theorem 1.1 is presented in Section 3 and the proof of Theorem 1.3 and 1.4 are given in Section 4.

2. Basic notations and lemmas

2.1. Preliminary results

For any vertex v in a graph G, let $N(v)$ be the neighborhood of v. Let $G-v$ be the remaining graph of G after deleting the vertex v (and all edges incident to v). Similarly, $G-u-v$ is the remaining graph of G after deleting two vertices u, v. Here are some basic facts found in literature [14,6,7,9,11], which will be used later.

Lemma 2.1 [14]. Suppose that G is a connected graph. If v is not in any cycle of G, then $\phi_{G}=\lambda \phi_{G-v}-$ $\sum_{w \in N(v)} \phi_{G-w-v}$. If $e=u v$ is a cut edge of G, then $\phi_{G}=\phi_{G-e}-\phi_{G-u-v}$.

Lemma 2.2. Let G_{1} and G_{2} be two graphs, then the following statements hold:

1. [6] If G_{1} is connected and G_{2} is a proper subgraph of G_{1}, then $\rho\left(G_{1}\right)>\rho\left(G_{2}\right)$.
2. [15] If G_{1} is connected and G_{2} is a spanning proper subgraph of G_{1}, then $\rho\left(G_{1}\right)>\rho\left(G_{2}\right)$ and $\phi_{G_{2}}(\lambda)>\phi_{G_{1}}(\lambda)$ for all $\lambda \geq \rho\left(G_{1}\right)$.
3. If $\phi_{G_{2}}(\lambda)>\phi_{G_{1}}(\lambda)$ for all $\lambda \geq \rho\left(G_{1}\right)$, then $\rho\left(G_{2}\right)<\rho\left(G_{1}\right)$.
4. If $\phi_{G_{1}}\left(\rho\left(G_{2}\right)\right)<0$, then $\rho\left(G_{1}\right)>\rho\left(G_{2}\right)$.

Lemma 2.3 [11]. Let G_{1} and G_{2} be two (possibly single-vertex) connected graphs with $a \in V\left(G_{1}\right)$ and $b \in V\left(G_{2}\right)$, and let H_{1} and H_{2} be two graphs shown in Fig. 4. Then $\rho\left(H_{1}\right)=\rho\left(H_{2}\right)$.

Proof. Applying Lemma 2.1 to H_{1} with the cut edge $v_{1} v_{2}$, we get

$$
\begin{aligned}
\phi\left(H_{1}\right) & =\phi\left(G_{1}-\bullet\right) \phi\left(G_{1}-\bullet-\bullet-G_{2}\right)-\phi\left(G_{1}\right) \phi\left(G_{2}\right) \phi\left(G_{1}-\bullet\right) \\
& =\phi\left(G_{1}-\bullet\right)\left(\phi\left(G_{1}-\bullet-\bullet-G_{2}\right)-\phi\left(G_{1}\right) \phi\left(G_{2}\right)\right)
\end{aligned}
$$

Since G_{1} and G_{2} are connected, H_{1} is connected. Note $G_{1} \bullet$ is a subgraph of H_{1}. By Lemma 2.2 item 1 , we have $\rho\left(H_{1}\right)>\rho\left(G_{1}-\bullet\right)$. Thus, $\rho\left(H_{1}\right)$ is the largest root of

$$
\begin{equation*}
\phi\left(G_{1}-\bullet-\bullet-G_{2}\right)-\phi\left(G_{1}\right) \phi\left(G_{2}\right) \tag{1}
\end{equation*}
$$

Note the expression (1) is symmetric on G_{1} and G_{2}. By symmetry, $\rho\left(H_{2}\right)$ is also the largest root of the expression (1). Therefore $\rho\left(H_{1}\right)=\rho\left(H_{2}\right)$. The proof of the lemma is finished.

Lemma 2.4 [7]. Let uv be an edge of a connected graph G of order n, and denote by $G_{u, v}$ the graph obtained from G by subdividing the edge uv once, i.e., adding a new vertex w and edges $w u, w v$ in $G-u v$. Then the following two properties hold:

1. If $u v$ does not belong to an internal path of G and $G \neq C_{n}$, then $\rho\left(G_{u, v}\right)>\rho(G)$.
2. If $u v$ belongs to an internal path of G and $G \neq P_{1,1, n}^{1, n-2}$, then $\rho\left(G_{u, v}\right)<\rho(G)$.

Fig. 4. The graphs H_{1} and H_{2}.

Fig. 5. For $i=1,2,3$, three graphs $\left(G_{i}, v\right)$ are constructed from $\left(H, v^{\prime}\right)$.
Theorem 2.1 (Cauchy Interlace Theorem [16]). Let A be a Hermitian matrix of order n, and let B be a principal submatrix of A of order $n-1$. If $\lambda_{n} \leqslant \lambda_{n-1} \leqslant \cdots \leqslant \lambda_{1}$ lists the eigenvalues of A and $\mu_{n-1} \leqslant \mu_{n-2} \leqslant \cdots \leqslant \mu_{1}$ lists the eigenvalues of B, then

$$
\lambda_{n} \leqslant \mu_{n-1} \leqslant \lambda_{n-1} \leqslant \cdots \leqslant \lambda_{2} \leqslant \mu_{1} \leqslant \lambda_{1}
$$

Applying Cauchy Interlace Theorem to the adjacency matrices of graphs, we have the following corollary.

Corollary 2.1. Suppose G is a connected graph. Let $\lambda_{2}(G)$ be the second largest eigenvalue of G. For any vertex v, we have

$$
\lambda_{2}(G)<\rho(G-v)<\rho(G) .
$$

2.2. Our approach

A rooted graph (G, v) is a graph G together with a designated vertex v as a root. For $i=1,2,3$ and a given rooted graph $\left(H, v^{\prime}\right)$, we get a new rooted graph $\left(G_{i}, v\right)$ from H by attaching a path P_{i} to v^{\prime} and changing the root from v^{\prime} to v as shown in Fig. 5.

Note that any tree in the three families $\mathcal{P}_{n, e}, \mathcal{P}_{n, e}^{\prime}, \mathcal{P}_{n, e}^{\prime \prime}$ can be built up from a single vertex through a sequence of three operations above. Applying Lemma 2.1, we observe that the pair $\left(\phi_{G_{i}}, \phi_{G_{i}-v}\right)$ linearly depends on $\left(\phi_{H}, \phi_{H-v^{\prime}}\right)$ with coefficients in $\mathbb{Z}[\lambda]$. We can choose proper base to diagonalize the operation from $\left(H, v^{\prime}\right)$ to $\left(G_{i}, v\right)$.

Let λ_{0} be the constant $\sqrt{2+\sqrt{5}}=2.058 \ldots$. In this paper, we consider only the range $\lambda \geqslant \lambda_{0}$. Let x_{1} and x_{2} be two roots of the equation $x^{2}-\lambda x+1=0$. We have

$$
x_{1}=\frac{\lambda-\sqrt{\lambda^{2}-4}}{2}, \quad x_{2}=\frac{\lambda+\sqrt{\lambda^{2}-4}}{2}
$$

and

$$
\begin{equation*}
x_{1}+x_{2}=\lambda, \quad x_{1} x_{2}=1 \tag{2}
\end{equation*}
$$

For any vertex v in a graph G, we define two functions (of λ) $p_{(G, v)}$ and $q_{(G, v)}$ satisfying

$$
\begin{aligned}
& \phi_{G}=p_{(G, v)}+q_{(G, v)} \\
& \phi_{G-v}=x_{2} p_{(G, v)}+x_{1} q_{(G, v)}
\end{aligned}
$$

This definition can be written in the following matrix form:

$$
\binom{\phi_{G}}{\phi_{G-v}}=\left(\begin{array}{cc}
1 & 1 \tag{3}\\
x_{2} & x_{1}
\end{array}\right)\binom{p_{(G, v)}}{q_{(G, v)}}
$$

Using Eq. (2), we can solve $p_{(G, v)}$ and $q_{(G, v)}$ and get

$$
\binom{p_{(G, v)}}{q_{(G, v)}}=\frac{1}{x_{2}-x_{1}}\left(\begin{array}{cc}
-x_{1} & 1 \tag{4}\\
x_{2} & -1
\end{array}\right)\binom{\phi_{G}}{\phi_{G-v}}
$$

For example, let v be the center of the odd path $P_{2 k+1}$. We have

$$
\begin{align*}
\binom{p_{\left(P_{1}, v\right)}}{q_{\left(P_{1}, v\right)}} & =\frac{1}{x_{2}-x_{1}}\binom{-x_{1}^{2}}{x_{2}^{2}}, \tag{5}\\
\binom{p_{\left(P_{3}, v\right)}}{q_{\left(P_{3}, v\right)}} & =\lambda\binom{x_{1}^{2}}{x_{2}^{2}}, \tag{6}\\
\binom{p_{\left(P_{5}, v\right)}}{q_{\left(P_{5}, v\right)}} & =\frac{\lambda^{2}-1}{x_{2}-x_{1}}\binom{\left(\lambda-x_{1}^{3}\right) x_{1}}{\left(x_{2}^{3}-\lambda\right) x_{2}} . \tag{7}
\end{align*}
$$

We have the following lemma.
Lemma 2.5. For any tree G and any vertex v, we have

$$
\begin{equation*}
\lim _{\lambda \rightarrow+\infty} q_{(G, v)}(\lambda)=+\infty \tag{8}
\end{equation*}
$$

Proof. From Lemma 2.1, we have

$$
\phi_{G}=\lambda \phi_{G-v}-\sum_{w \in N(v)} \phi_{G-w-v} .
$$

By Eq. (4), we get

$$
\begin{aligned}
q_{(G, v)} & =\frac{1}{x_{2}-x_{1}}\left(x_{2} \phi_{G}-\phi_{G-v}\right) \\
& =\frac{1}{x_{2}-x_{1}}\left(x_{2}\left(\lambda \phi_{G-v}-\sum_{w \in N(v)} \phi_{G-w-v}\right)-\phi_{G-v}\right) \\
& =\frac{1}{x_{2}-x_{1}}\left(\left(\lambda x_{2}-1\right) \phi_{G-v}-x_{2} \sum_{w \in N(v)} \phi_{G-w-v}\right) \\
& =\frac{x_{2}}{x_{2}-x_{1}}\left(x_{2} \phi_{G-v}-\sum_{w \in N(v)} \phi_{G-w-v}\right) .
\end{aligned}
$$

Note that ϕ_{G-v} is a polynomial of degree $n-1$ with highest coefficient 1 while ϕ_{G-w-v} is a polynomial of degree $n-2$ with highest coefficient 1 . Since $x_{2}>1>x_{1}$, we have $x_{2} \phi_{G-v}-\sum_{w \in N(v)} \phi_{G-w-v}$ goes to infinity as λ approaches infinity.

Lemma 2.6. Let G_{1}, G_{2}, G_{3} be the graphs shown in Fig. 5. Then the following equations hold:

1. $\binom{p_{\left(G_{1}, v\right)}}{q_{\left(G_{1}, v\right)}}=\left(\begin{array}{cc}x_{1} & 0 \\ 0 & x_{2}\end{array}\right)\binom{p_{\left(H, v^{\prime}\right)}}{q_{\left(H, v^{\prime}\right)}}$.
2. $\binom{p_{\left(G_{2}, v\right)}}{q_{\left(G_{2}, v\right)}}=\frac{1}{x_{2}-x_{1}}\left(\begin{array}{l}\lambda-x_{1}^{3} x_{1} \\ -x_{2} \\ x_{2}^{3}-\lambda\end{array}\right)\binom{p_{\left(H, v^{\prime}\right)}}{q_{\left(H, v^{\prime}\right)}}$.
3. $\binom{p_{\left(G_{3}, v\right)}}{q_{\left(G_{3}, v\right)}}=\frac{1}{x_{2}-x_{1}}\left(\begin{array}{ll}-x_{1}^{4}+\lambda^{2}-1 & \lambda x_{1} \\ -\lambda x_{2} & x_{2}^{4}-\lambda^{2}+1\end{array}\right)\binom{p_{\left(H, v^{\prime}\right)}}{q_{\left(H, v^{\prime}\right)}}$.

Proof. By Lemma 2.1, we have

$$
\binom{\phi_{G_{1}}}{\phi_{G_{1}-v}}=\left(\begin{array}{ll}
\lambda & -1 \\
1 & 0
\end{array}\right)\binom{\phi_{H}}{\phi_{H-v^{\prime}}} .
$$

Combining it with Eqs. (3) and (4), we get

$$
\begin{aligned}
\binom{p_{\left(G_{1}, v\right)}}{q_{\left(G_{1}, v\right)}} & =\left(\begin{array}{cc}
1 & 1 \\
x_{2} & x_{1}
\end{array}\right)^{-1}\left(\begin{array}{ll}
\lambda & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
x_{2} & x_{1}
\end{array}\right)\binom{p_{\left(H, v^{\prime}\right)}}{q_{\left(H, v^{\prime}\right)}} \\
& =\frac{1}{x_{2}-x_{1}}\left(\begin{array}{ll}
2-\lambda x_{1} & x_{1}^{2}-\lambda x_{1}+1 \\
-x_{2}^{2}+\lambda x_{2}-1 & \lambda x_{2}-2
\end{array}\right)\binom{p_{\left(H, v^{\prime}\right)}}{q_{\left(H, v^{\prime}\right)}} \\
& =\left(\begin{array}{cc}
x_{1} & 0 \\
0 & x_{2}
\end{array}\right)\binom{p_{\left(H, v^{\prime}\right)}}{q_{\left(H, v^{\prime}\right)}} .
\end{aligned}
$$

The proofs of items 2 and 3 are similar as that of item 1 .

We denote the three matrices by A, B, and C. Namely,

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
x_{1} & 0 \\
0 & x_{2}
\end{array}\right), \quad B=\frac{1}{x_{2}-x_{1}}\left(\begin{array}{ll}
\lambda-x_{1}^{3} & x_{1} \\
-x_{2} & x_{2}^{3}-\lambda
\end{array}\right), \\
& C=\frac{1}{x_{2}-x_{1}}\left(\begin{array}{ll}
-x_{1}^{4}+\lambda^{2}-1 & \lambda x_{1} \\
-\lambda x_{2} & x_{2}^{4}-\lambda^{2}+1
\end{array}\right) .
\end{aligned}
$$

The diagonal elements of B are very useful parameters. To simplify our notations later, we define two parameters d_{1} and d_{2} as follows:

$$
\begin{align*}
& d_{1}=\lambda-x_{1}^{3} \tag{9}\\
& d_{2}=x_{2}^{3}-\lambda \tag{10}
\end{align*}
$$

Note that $d_{2}=0$ if $\lambda=\lambda_{0}$. The Eq. (7) can be written as

$$
\begin{equation*}
\binom{p_{\left(P_{5}, v\right)}}{q_{\left(P_{5}, v\right)}}=\frac{\lambda^{2}-1}{x_{2}-x_{1}}\binom{d_{1} x_{1}}{d_{2} x_{2}} . \tag{11}
\end{equation*}
$$

Fig. 6. The graph $\left(H_{1}, v_{1}\right) \cdot P_{1} \cdot\left(H_{2}, v_{2}\right)$.

Fig. 7. The graph $G_{i, j}$.

From the definitions of d_{1} and d_{2}, we can derive the following identity:

$$
\begin{equation*}
d_{1} x_{2}-d_{2} x_{1}=2 \tag{12}
\end{equation*}
$$

Given two rooted graphs $\left(H_{1}, v_{1}\right)$ and $\left(H_{2}, v_{2}\right)$, we define some new graphs. Denote by $\left(H_{1}, v_{1}\right) \cdot P_{i}$, the graph consisting of the graph H_{1} and a path P_{i} linking one of its ends at the vertex v_{1}. Similarly denote by $\left(H_{1}, v_{1}\right) \cdot P_{i} \cdot\left(H_{2}, v_{2}\right)$ the graph consisting of graphs H_{1}, H_{2} and a path P_{i} linking the two ends at v_{1}, v_{2} respectively.

Lemma 2.7. $\phi_{\left(H_{1}, v_{1}\right) \cdot P_{1} \cdot\left(H_{2}, v_{2}\right)}(\lambda)=\left(x_{2}-x_{1}\right)\left(q_{\left(H_{1}, v_{1}\right)} q_{\left(H_{2}, v_{2}\right)}-p_{\left(H_{1}, v_{1}\right)} p_{\left(H_{2}, v_{2}\right)}\right)$.
Proof. By Lemmas 2.1 and Eq. (3), we have

$$
\begin{aligned}
& \phi_{\left(H_{1}, v_{1}\right) \cdot P_{1} \cdot\left(H_{2}, v_{2}\right)}(\lambda) \\
&= \lambda \phi_{H_{1}} \phi_{H_{2}}-\phi_{H_{1}-v_{1}} \phi_{H_{2}}-\phi_{H_{2}-v_{2}} \phi_{H_{1}} \\
&=\left(x_{1}+x_{2}\right)\left(p_{\left(H_{1}, v_{1}\right)}+q_{\left(H_{1}, v_{1}\right)}\right)\left(p_{\left(H_{2}, v_{2}\right)}+q_{\left(H_{2}, v_{2}\right)}\right)-\left(p_{\left(H_{1}, v_{1}\right)} x_{2}+q_{\left(H_{1}, v_{1}\right)} x_{1}\right) \\
&\left(p_{\left(H_{2}, v_{2}\right)}+q_{\left(H_{2}, v_{2}\right)}\right)-\left(p_{\left(H_{1}, v_{1}\right)}+q_{\left(H_{1}, v_{1}\right)}\right)\left(p_{\left(H_{2}, v_{2}\right)} x_{2}+q_{\left(H_{2}, v_{2}\right)} x_{1}\right) \\
&=\left(p_{\left(H_{2}, v_{2}\right)}+q_{\left(H_{2}, v_{2}\right)}\right)\left(p_{\left(H_{1}, v_{1}\right)} x_{1}+q_{\left.\left(H_{1}, v_{1}\right) x_{2}\right)}-\left(p_{\left(H_{1}, v_{1}\right)}+q_{\left(H_{1}, v_{1}\right)}\right)\left(p_{\left(H_{2}, v_{2}\right)} x_{2}+q_{\left(H_{2}, v_{2}\right)} x_{1}\right)\right. \\
&= p_{\left(H_{2}, v_{2}\right)} p_{\left(H_{1}, v_{1}\right)} x_{1}+q_{\left(H_{2}, v_{2}\right)} q_{\left(H_{1}, v_{1}\right)} x_{2}-p_{\left(H_{2}, v_{2}\right)} p_{\left(H_{1}, v_{1}\right)} x_{2}-q_{\left(H_{2}, v_{2}\right)} q_{\left(H_{1}, v_{1}\right)} x_{1} \\
&=\left(x_{2}-x_{1}\right)\left(q_{\left(H_{1}, v_{1}\right)} q_{\left(H_{2}, v_{2}\right)}-p_{\left(H_{1}, v_{1}\right)} p_{\left(H_{2}, v_{2}\right)}\right) .
\end{aligned}
$$

Lemma 2.8. Let $G_{i, j}$ be the graph shown in Fig. 7 where i, j are the numbers of included vertices. Then

$$
\phi_{G_{i, j}}-\phi_{G_{i+1, j-1}}=\left(x_{1}-x_{2}\right)\left(p_{\left(H_{1}, v_{1}\right)} q_{\left(H_{2}, v_{2}\right)} x_{2}^{j-i-1}-q_{\left(H_{1}, v_{1}\right)} p_{\left(H_{2}, v_{2}\right)} x_{1}^{j-i-1}\right) .
$$

Proof. By Lemma 2.1, we have

$$
\begin{aligned}
& \phi_{G_{i, j}}=\lambda \phi_{\left(H_{1}, v_{1}\right) \cdot P_{i+j+1} \cdot\left(H_{2}, v_{2}\right)}-\phi_{\left(H_{1}, v_{1}\right) \cdot P_{i}} \phi_{\left(H_{2}, v_{2}\right) \cdot P_{j}}, \\
& \phi_{G_{i+1, j-1}}=\lambda \phi_{\left(H_{1}, v_{1}\right) \cdot P_{i+j+1} \cdot\left(H_{2}, v_{2}\right)}-\phi_{\left(H_{1}, v_{1}\right) \cdot P_{i+1}} \phi_{\left(H_{2}, v_{2}\right) \cdot P_{j-1}} .
\end{aligned}
$$

Thus, we get

$$
\begin{aligned}
\phi_{G_{i, j}}-\phi_{G_{i+1, j-1}}= & \phi_{\left(H_{1}, v_{1}\right) \cdot P_{i+1}} \phi_{\left(H_{2}, v_{2}\right) \cdot P_{j-1}}-\phi_{\left(H_{1}, v_{1}\right) \cdot P_{i}} \phi_{\left(H_{2}, v_{2}\right) \cdot p_{j}} \\
= & \left(p_{\left(H_{1}, v_{1}\right)} x_{1}^{i+1}+q_{\left(H_{1}, v_{1}\right)} x_{2}^{i+1}\right)\left(p_{\left(H_{2}, v_{2}\right)} x_{1}^{j-1}+q_{\left(H_{2}, v_{2}\right)} x_{2}^{j-1}\right) \\
& -\left(p_{\left(H_{1}, v_{1}\right)} x_{1}^{i}+q_{\left(H_{1}, v_{1}\right)} x_{2}^{i}\right)\left(p_{\left(H_{2}, v_{2}\right)} x_{1}^{j}+q_{\left(H_{2}, v_{2}\right)} x_{2}^{j}\right) \\
= & p_{\left(H_{1}, v_{1}\right)} q_{\left(H_{2}, v_{2}\right)}\left(x_{1}^{i+1} x_{2}^{j-1}-x_{1}^{i} x_{2}^{j}\right)+q_{\left(H_{1}, v_{1}\right)} p_{\left(H_{2}, v_{2}\right)}\left(x_{1}^{j-1} x_{2}^{i+1}-x_{1}^{j} x_{2}^{i}\right) \\
= & x_{1}^{i} x_{2}^{i}\left[p_{\left(H_{1}, v_{1}\right)} q_{\left(H_{2}, v_{2}\right)}\left(x_{1} x_{2}^{j-i-1}-x_{2}^{j-i}\right)+q_{\left(H_{1}, v_{1}\right)} p_{\left(H_{2}, v_{2}\right)}\left(x_{1}^{j-i-1} x_{2}-x_{1}^{j-i}\right)\right] \\
= & \left(x_{1}-x_{2}\right)\left(p_{\left(H_{1}, v_{1}\right)} q_{\left(H_{2}, v_{2}\right)} x_{2}^{j-i-1}-q_{\left(H_{1}, v_{1}\right)} p_{\left(H_{2}, v_{2}\right)} x_{1}^{j-i-1}\right) .
\end{aligned}
$$

The proof is completed.
Lemma 2.9. Suppose G_{1} and G_{2} are two connected graphs satisfying $G_{1}-u_{1}=G_{2}-u_{2}$ for some vertices $u_{1} \in V\left(G_{1}\right)$ and $u_{2} \in V\left(G_{2}\right)$. If $\phi_{G_{2}}\left(\rho\left(G_{1}\right)\right)>0$, then $\rho\left(G_{1}\right)>\rho\left(G_{2}\right)$.

Proof. Let $G=G_{1}-u_{1}=G_{2}-u_{2}$. By Corollary 2.1, we have

$$
\rho\left(G_{i}\right)>\rho(G) \geqslant \lambda_{2}\left(G_{i}\right) \text { for } i=1,2 .
$$

Here $\lambda_{2}\left(G_{i}\right)$ is the second largest eigenvalue of G_{i}. We have $\rho\left(G_{1}\right)>\lambda_{2}\left(G_{2}\right)$.
Since $\rho\left(G_{2}\right)$ is a simple root and $\lim _{\lambda \rightarrow \infty} \phi_{G_{2}}(\lambda)=+\infty$, we have

$$
\phi_{G_{2}}(\lambda)<0 \quad \text { for } \lambda \in\left(\lambda_{2}\left(G_{2}\right), \rho\left(G_{2}\right)\right) .
$$

Since $\phi_{G_{2}}\left(\rho\left(G_{1}\right)\right)>0$ and $\rho\left(G_{1}\right)>\lambda_{2}\left(G_{2}\right)$, we must have $\rho\left(G_{1}\right)>\rho\left(G_{2}\right)$.

2.3. A special tree $T_{(k-1, k, \ldots, k, k-1)}$

The tree $T_{(k-1, k, \ldots, k, k-1)}$ ($\in \mathcal{P}_{n, e}$) plays an important role in this paper. We have the following lemma.

Lemma 2.10. The spectral radius of the tree $T_{(k-1, k, \ldots, k, k-1)}$ is the unique root ρ_{k} of the equation $d_{2}=$ $\frac{2 x_{1}^{k}}{1-x_{1}^{k+1}}$ in the interval $(\sqrt{2+\sqrt{5}}, \infty)$.

Remark 1. The following equations are equivalent to one another.

$$
\begin{aligned}
& d_{2}=\frac{2 x_{1}^{k}}{1-x_{1}^{k+1}} \\
& d_{2} x_{2}^{k}-d_{1} x_{1}^{k}=2 \\
& d_{2}=d_{1} x_{1}^{k-1} \\
& d_{2} x_{2}^{\frac{k-1}{2}}=d_{1} x_{1}^{\frac{k-1}{2}} \\
& d_{2}=2 x_{1}^{k}+d_{1} x_{1}^{2 k}
\end{aligned}
$$

If " $=$ " is replaced by " \geqslant ", then these inequalities are still equivalent to each other. These equivalences can be proved by Eq. (12). The details are omitted.

Remark 2. For any $k \geqslant 4$, we have $\rho_{k} \leq \rho_{4}<\frac{3}{2} \sqrt{2}$. For any $e \geqslant 6$ and $n \geqslant(k+2)(e-4)+6$, we can obtain a tree T on n vertices and diameter $n-e$ by subdividing some edges on internal paths of
$T_{(k-1, k, \ldots, k, k-1)}$. By Lemma 2.4, we have

$$
\rho(T) \leqslant \rho\left(T_{(k-1, k, \ldots, k, k-1)}\right)=\rho_{k}<\frac{3}{2} \sqrt{2} .
$$

In particular, for $e \geqslant 6$ and $n \geqslant(k+2)(e-4)+6=\left|T_{(k-1, k, \ldots, k, k-1)}\right|$, we have $\rho\left(G_{n, n-e}^{\min }\right)<\frac{3}{2} \sqrt{2}$. In the set of graphs with spectral radius at most $\sqrt{2+\sqrt{5}}$ (see [1]), there is no graph with diameter $n-e$ for $e \geqslant 6$. Thus, $\rho\left(G_{n, n-e}^{\min }\right) \geqslant \sqrt{2+\sqrt{5}}$.

Proof of Lemma 2.10. Let $G=T_{(k-1, k, \ldots, k, k-1)}$ and v be the leftmost vertex. Note that G can be built up from a single vertex with a series of three operations as specified in Lemma 2.6. We have

$$
\begin{aligned}
\phi_{G} & =(1,1)\binom{p_{\left(T_{(k-1, k, \ldots, k, k-1)}, v\right)}}{q_{\left(T_{(k-1, k, \ldots, k, k-1)}, v\right)}} \\
& =(1,1) A^{2} C A^{k-1} B A^{k} \ldots B A^{k-1} C A\left(\begin{array}{cc}
1 & 1 \\
x_{2} & x_{1}
\end{array}\right)^{-1}\binom{\lambda}{1} \\
& =\frac{\left(\lambda^{2}-1\right)^{2}}{x_{2}-x_{1}}\left(-d_{1}, d_{2}\right) A^{k-1} B A^{k} \ldots B A^{k-1}\binom{d_{1} x_{1}}{d_{2} x_{2}} \\
& =\frac{\left(\lambda^{2}-1\right)^{2}}{x_{2}-x_{1}}\left(-d_{1}, d_{2}\right) A^{k-1} B A^{k} \ldots B A^{k}\binom{d_{1}}{d_{2}} .
\end{aligned}
$$

Let $l=\frac{k-1}{2}$; l does not have to be an integer. Define $A^{l}=\left(\begin{array}{cc}x_{1}^{l} & 0 \\ 0 & x_{2}^{l}\end{array}\right)$. We can write ϕ_{G} as

$$
\begin{equation*}
\phi_{G}=\frac{\left(\lambda^{2}-1\right)^{2}}{x_{2}-x_{1}}\left(-d_{1} x_{1}^{l}, d_{2} x_{2}^{l}\right)\left(A^{l} B A^{l+1}\right)^{r-1}\binom{d_{1} x_{1}^{l}}{d_{2} x_{2}^{l}} . \tag{13}
\end{equation*}
$$

It is easy to calculate

$$
A^{l} B A^{l+1}=\frac{1}{x_{2}-x_{1}}\left(\begin{array}{ll}
d_{1} x_{1}^{k} & 1 \tag{14}\\
-1 & d_{2} x_{2}^{k}
\end{array}\right)
$$

Now we prove that ρ_{k} is a root of ϕ_{G}. At $\lambda=\rho_{k}$, we have $d_{1} x_{1}^{l}=d_{2} x_{2}^{l}$ and $d_{1} x_{1}^{k}+1=d_{2} x_{2}^{k}-1$. Thus

$$
\begin{aligned}
\left(A^{l} B A^{l+1}\right)\binom{1}{1} & =\frac{1}{x_{2}-x_{1}}\left(\begin{array}{ll}
d_{1} x_{1}^{k} & 1 \\
-1 & d_{2} x_{2}^{k}
\end{array}\right)\binom{1}{1} \\
& =\frac{d_{1} x_{1}^{k}+1}{x_{2}-x_{1}}\binom{1}{1} .
\end{aligned}
$$

We have

Fig. 8. The graphs $T_{(i, k, j)}^{\prime \prime}$.

$$
\begin{aligned}
\phi_{G}\left(\rho_{k}\right) & =\frac{\left(\lambda^{2}-1\right)^{2}}{x_{2}-x_{1}}\left(-d_{1} x_{1}^{l}, d_{2} x_{2}^{l}\right)\left(A^{l} B A^{l+1}\right)^{r-1}\binom{d_{1} x_{1}^{l}}{d_{2} x_{2}^{l}} \\
& =\frac{\left(\lambda^{2}-1\right)^{2}}{\left(x_{2}-x_{1}\right)^{r}}\left(d_{1} x_{1}^{k}+1\right)^{r-1} d_{1}^{2} x_{1}^{k-1}(-1,1)\binom{1}{1} \\
& =0
\end{aligned}
$$

It remains to prove $\phi_{G}(\lambda)>0$ for any $\lambda>\rho_{k}$. When $\lambda>\rho_{k}$, we have $d_{2} x_{2}^{k}-1>d_{1} x_{1}^{k}+1$ (and $\left.d_{2} x_{2}^{l}>d_{1} x_{1}^{l}\right)$. It is easy to check $A^{l} B A^{l+1}$ maps the region $\left\{\left(z_{1}, z_{2}\right): z_{2} \geqslant z_{1}>0\right\}$ to $\left\{\left(z_{1}, z_{2}\right): z_{2}>\right.$ $\left.z_{1}>0\right\}$. By induction on $r,\left(A^{l} B A^{l+1}\right)^{r-1}$ maps the region $\left\{\left(z_{1}, z_{2}\right): z_{2} \geqslant z_{1}>0\right\}$ to $\left\{\left(z_{1}, z_{2}\right): z_{2}>\right.$ $\left.z_{1}>0\right\}$. Let

$$
\binom{z_{1}}{z_{2}}=\left(A^{l} B A^{l+1}\right)^{r-1}\binom{d_{1} x_{1}^{l}}{d_{2} x_{2}^{l}}
$$

Since $d_{2} x_{2}^{l}>d_{1} x_{1}^{l}>0$, we have $z_{2}>z_{1}>0$. From Eq. (13), we get

$$
\begin{aligned}
\phi_{G} & =\frac{\left(\lambda^{2}-1\right)^{2}}{x_{2}-x_{1}}\left(-d_{1} x_{1}^{l}, d_{2} x_{2}^{l}\right)\left(A^{l} B A^{l+1}\right)^{r-1}\binom{d_{1} x_{1}^{l}}{d_{2} x_{2}^{l}} \\
& =\frac{\left(\lambda^{2}-1\right)^{2}}{x_{2}-x_{1}}\left(-d_{1} x_{1}^{l}, d_{2} x_{2}^{l}\right)\binom{z_{1}}{z_{2}} \\
& =\frac{\left(\lambda^{2}-1\right)^{2}}{x_{2}-x_{1}}\left(d_{2} x_{2}^{l} z_{2}-d_{1} x_{1}^{l} z_{1}\right) \\
& >0 .
\end{aligned}
$$

The proof of the lemma is finished.

2.4. Limit points of some graphs

Using the tools developed in the previous section, we can compute the limit point of the spectral radius of some graphs.

Lemma 2.11. Let $T_{(i, k, j)}^{\prime \prime}$ be the tree shown in Fig. 8 and $\rho_{k}^{\prime \prime}$ be the unique root of $d_{2}=x_{1}^{k}$ in the interval $(\sqrt{2+\sqrt{5}},+\infty)$. Then $\lim _{i, j \rightarrow \infty} \rho\left(T_{(i, k, j)}^{\prime \prime}\right)=\rho_{k}^{\prime \prime}$.

Proof. By Lemma 2.4, we have

$$
\rho\left(T_{(i, k, i)}^{\prime \prime}\right) \geqslant \rho\left(T_{(i, k, j)}^{\prime \prime}\right) \geqslant \rho\left(T_{(j, k, j)}^{\prime \prime}\right) \quad \text { if } i \leqslant j .
$$

Fig. 9. The graph $T^{\prime \prime}(k, i)$.

Fig. 10. The graph $T^{\prime}(k, j)$.

It suffices to show $\lim _{l \rightarrow \infty} \rho\left(T_{(l, k, l)}^{\prime \prime}\right)=\rho_{k}^{\prime \prime}$. Let v be the leftmost vertex of $T_{(l, k, l)}^{\prime \prime}$. A simple calculation shows

$$
\begin{aligned}
\phi_{T_{(l, k, l)}^{\prime \prime}} & =(1,1)\binom{p_{\left(T_{(l, k, l}^{\prime \prime}, v\right)}}{q_{\left(T_{(l, k, l)}^{\prime \prime}, v\right)}} \\
= & (1,1) A B A^{l} B A^{k} B A^{l} B\left(\begin{array}{cc}
1 & 1 \\
x_{2} & x_{1}
\end{array}\right)^{-1}\binom{\lambda}{1} \\
= & \frac{x_{2}^{2 l-k+1}\left(d_{2} x_{2}+x_{1}^{2}\right)^{2}}{\left(x_{2}-x_{1}\right)^{5}}\left[\left(\left(d_{2} x_{2}^{k}\right)^{2}-1\right)-2 x_{1}^{2 l-k+3}\left(d_{1} x_{1}^{k}+d_{2} x_{2}^{k}\right)\right. \\
& \left.\quad-x_{1}^{2(2 l-k+3)}\left(\left(d_{1} x_{1}^{k}\right)^{2}-1\right)\right] .
\end{aligned}
$$

As l goes to infinity, $\lim _{l \rightarrow \infty} \rho\left(T_{(l, k, l)}^{\prime \prime}\right)$ is the largest root of $\left(d_{2} x_{2}^{k}\right)^{2}-1=0$; namely $d_{2}=x_{1}^{k}$. The proof is completed.

We have the following corollary from Lemma 2.11.
Corollary 2.2. Let $T_{(k, i)}^{\prime \prime}$ be the tree shown in Fig. 9. We have $\lim _{i \rightarrow \infty} \rho\left(T_{(k, i)}^{\prime \prime}\right)=\rho_{2 k+3}^{\prime \prime}$.
Proof. By Lemma 2.3, we have $\rho\left(T_{(k, i)}^{\prime \prime}\right)=\rho\left(T_{(i, 2 k+3, i)}^{\prime \prime}\right)$. Thus $\lim _{i \rightarrow \infty} \rho\left(T_{(k, i)}^{\prime \prime}\right)=\lim _{i \rightarrow \infty} \rho\left(T_{(i, 2 k+3, i)}^{\prime \prime}\right)=$ $\rho_{2 k+3}^{\prime \prime}$.

Lemma 2.12. Let $T_{(k, j)}^{\prime}$ be the tree shown in Fig. 10 and ρ_{k}^{\prime} be the unique root of $d_{2}=d_{1}^{\frac{1}{2}} x_{1}^{k+\frac{1}{2}}$ in the interval $(\sqrt{2+\sqrt{5}},+\infty)$. Then $\lim _{j \rightarrow \infty} \rho\left(T_{(k, j)}^{\prime}\right)=\rho_{k}^{\prime}$.

Proof. Similarly, we have

$$
\begin{aligned}
\phi_{T_{(k, j)}^{\prime}} & =(1,1)\binom{p_{\left(T_{(k, j)}^{\prime}, v\right)}}{q_{\left(T_{(k, j)}^{\prime}, v\right)}} \\
& =(1,1) A B A^{j} B A^{k} C A\left(\begin{array}{cc}
1 & 1 \\
x_{2} & x_{1}
\end{array}\right)^{-1}\binom{\lambda}{1} \\
& =\frac{x_{2}^{j+k+1}\left(\lambda^{2}-1\right)\left(d_{2} x_{2}+x_{1}^{3}\right)}{\left(x_{2}-x_{1}\right)^{3}}\left(d_{2}^{2}-d_{1} x_{1}^{2 k+1}-d_{2} x_{1}^{2 j+3}-d_{1}^{2} x_{1}^{2 j+2 k+4}\right) .
\end{aligned}
$$

As j goes to infinity, $\lim _{l \rightarrow \infty} \rho\left(T_{(k, j)}^{\prime}\right)$ is the largest root of $d_{2}^{2}=d_{1} x_{1}^{2 k+1}$; namely $d_{2}=d_{1}^{\frac{1}{2}} x_{1}^{k+\frac{1}{2}}$. The proof is completed.
2.5. Comparison of $\rho_{k}, \rho_{k}^{\prime}$, and $\rho_{k}^{\prime \prime}$

Observe that $\rho_{k}, \rho_{k}^{\prime}$, and $\rho_{k}^{\prime \prime}$ satisfy similar equations. Since $1<\sqrt{d_{1} x_{1}}<\frac{2}{1-x_{1}^{k+1}}$, we have

$$
\rho_{k}^{\prime \prime} \leqslant \rho_{k}^{\prime} \leqslant \rho_{k}
$$

For $\lambda \in\left[\lambda_{0}, \frac{3}{2} \sqrt{2}\right], x_{2}, d_{2}$, and $d_{1} x_{1}$ are increasing while x_{1} is decreasing. Using these facts, it is easy to check that for $k \geqslant 7, \rho_{k}, \rho_{k}^{\prime}$, and $\rho_{k}^{\prime \prime}$ are in the interval $\left(\lambda_{0}, \frac{3}{2} \sqrt{2}\right)$.

We have the following lemma.
Lemma 2.13. For $k \geqslant 7$, we have $\rho_{k}<\rho_{k-4}^{\prime \prime}$ and $\rho_{k}<\rho_{k-3}^{\prime}$.
Proof. Recall that $\rho_{k-4}^{\prime \prime}$ is the root of $d_{2}=x_{1}^{k-4}$ and ρ_{k} is the root of $d_{2}=\frac{2 x_{1}^{k}}{1-x_{1}^{k+1}}$. We need to show $2<x_{2}^{4}\left(1-x_{1}^{k+1}\right)$ for $\lambda \in\left[\lambda_{0}, \frac{3}{2} \sqrt{2}\right]$. For $k \geqslant 7$, we have

$$
\begin{aligned}
x_{2}^{4}\left(1-x_{1}^{k+1}\right) & \geqslant x_{2}^{4}-x_{1}^{4} \\
& \geqslant\left.\left(x_{2}^{4}-x_{1}^{4}\right)\right|_{\lambda_{0}} \\
& >2 .
\end{aligned}
$$

Note that ρ_{k-3}^{\prime} is the root of $d_{2}=\sqrt{d_{1} x_{1}} x_{1}^{k-3}$. It suffices to show $2<\sqrt{d_{1} x_{1}} x_{2}^{3}\left(1-x_{1}^{k+1}\right)$ for $\lambda \in\left[\lambda_{0}, \frac{3}{2} \sqrt{2}\right]$. We have

$$
\begin{aligned}
\sqrt{d_{1} x_{1}} x_{2}^{3}\left(1-x_{1}^{k+1}\right) & \geqslant \sqrt{d_{1} x_{1}} x_{2}^{3}\left(1-x_{1}^{8}\right) \\
& \geqslant\left.\sqrt{d_{1} x_{1}} x_{2}^{3}\left(1-x_{1}^{8}\right)\right|_{\lambda_{0}} \\
& >2 .
\end{aligned}
$$

The proof is completed.

3. Proof of Theorem 1.1

The proof of Theorem 1.1 can be naturally divided into two parts. In the first part, we prove that $G_{n, n-e}^{\min } \in \mathcal{P}_{n, e}$. In the second part, we prove the other statements in Theorem 1.1.

3.1. Part 1

Let $\rho_{n, n-e}^{\min }=\rho\left(G_{n, n-e}^{\min }\right)$ in the rest part of this paper. Now we prove the following theorem, which implies the first part of Theorem 1.1.

Theorem 3.1. If $e \geqslant 6$ and $n \geqslant 10 e^{2}-74 e+142$, then $G_{n, n-e}^{\min } \in \mathcal{P}_{n, e}$.
Proof. By Theorem 5.2 of [2] (see page 2825), it suffices to show $G_{n, n-e}^{\min } \notin \mathcal{P}_{n, e}^{\prime}$ and $G_{n, n-e}^{\min } \notin \mathcal{P}_{n, e}^{\prime \prime}$.
Suppose $G_{n, n-e}^{\min }=T_{\left(k_{1}, k_{2}, \ldots, k_{e-3}\right)}^{\prime} \in \mathcal{P}_{n, e^{\prime}}^{\prime}$. Note that $T_{\left(k_{1}, k_{2}, \ldots, k_{e-3}\right)}^{\prime}$ contains sub-trees of type $T_{\left(k_{1}, *\right)}^{\prime}$, $T_{\left(k_{e-3}, *\right)}^{\prime \prime}$, and $T_{\left(*, k_{i}, *\right)}^{\prime \prime}$ for $2 \leqslant i \leqslant e-4$. By Lemma 2.4, Lemma 2.11, Corollary 2.2, and Lemma 2.12, we have

$$
\begin{aligned}
& \rho_{n, n-e}^{\min }>\rho_{k_{1}}^{\prime}, \\
& \rho_{n, n-e}^{\min }>\rho_{2 k_{e-3}+3}^{\prime \prime}, \\
& \rho_{n, n-e}^{\min }>\rho_{k_{i}}^{\prime \prime}, \quad \text { for } 2 \leqslant i \leqslant e-4 .
\end{aligned}
$$

Next, we show that at least one of $k_{1}, k_{2}, \ldots, k_{e-3}$ is small. Let $l_{1}=\left\lceil\frac{n-3 e+5}{e-3.5}\right\rceil$. We claim

$$
k_{1} \leq l_{1}+1 \text { or } k_{e-3} \leq \frac{l_{1}-3}{2} \text { or } \exists i \in\{2,3, \ldots, e-4\} \text { s.t. } k_{i} \leqslant l_{1} .
$$

Otherwise, we have

$$
k_{1} \geqslant l_{1}+2 \text { and } k_{e-3} \geqslant \frac{l_{1}-2}{2} \text { and } k_{2}, \ldots, k_{e-4} \geqslant l_{1}+1
$$

We get

$$
n=\sum_{i=1}^{e-3} k_{i}+2 e \geqslant l_{1}+2+\frac{l_{1}-2}{2}+\left(l_{1}+1\right)(e-5)+2 e=(e-3.5) l_{1}+3 e-4 \geq n+1 .
$$

Contradiction!
If $k_{1} \leqslant l_{1}+1$, then we have $\rho_{n, n-e}^{\min }>\rho_{l_{1}+1}^{\prime}>\rho_{l_{1}+4}$; if $k_{e-3} \leqslant \frac{l_{1}-3}{2}$, then we have $\rho_{n, n-e}^{\min }>$ $\rho_{2 k_{e-3}+3}^{\prime \prime}>\rho_{l_{1}}^{\prime \prime}>\rho_{l_{1}+4}$; if $k_{i} \leqslant l_{1}$ for some $i \in\{2, \ldots, e-4\}$, then we have $\rho_{n, n-e}^{\min }>\rho_{k_{i}}^{\prime \prime} \geqslant \rho_{l_{1}}^{\prime \prime}>$ $\rho_{l_{1}+4}$. In all cases, we have

$$
\rho_{n, n-e}^{\min }>\rho_{l_{1}+4} .
$$

Let $k=\left\lfloor\frac{n-2 e+2}{e-4}\right\rfloor$. There exists a tree $T \in \mathcal{P}_{n, e}$, which can be obtained by subdividing some edges on internal paths of $T_{(k-1, k, \ldots, k, k-1)}$. Since $n \geqslant 10 e^{2}-74 e+142$, we have

$$
l_{1}+4=\left\lceil\frac{n-3 e+5}{e-3.5}\right\rceil+4 \leqslant\left\lfloor\frac{n-2 e+2}{e-4}\right\rfloor=k
$$

We get

$$
\rho_{n, n-e}^{\min }>\rho_{l_{1}+4} \geqslant \rho\left(T_{(k-1, k, \ldots, k, k-1)}\right) \geqslant \rho(T) .
$$

Contradiction!

Fig. 11. The graphs $H_{\left(k_{1}, \ldots, k_{j}\right)}$.
Now we assume $G_{n, n-e}^{\min }=T_{\left(k_{1}, k_{2}, \ldots, k_{e-2}\right)}^{\prime \prime} \in \mathcal{P}_{n, e}^{\prime \prime}$. This is very similar to previous case. We must have

$$
k_{1} \leq \frac{l_{2}-3}{2} \text { or } k_{e-2} \leq \frac{l_{2}-3}{2} \text { or } \exists i \in\{2, \ldots, e-3\} \text { s.t. } k_{i} \leq l_{2},
$$

where $l_{2}=\left\lceil\frac{n-3 e+7}{e-3}\right\rceil$. A similar argument shows $\rho_{n, n-e}^{\min }>\rho_{l_{2}+4}$. Here we omit the detail.
Let $k=\left\lfloor\frac{n-2 e+2}{e-4}\right\rfloor$. There exists a tree $T \in \mathcal{P}_{n, e}$, which can be obtained by subdividing some edges on internal paths of $T_{(k-1, k, \ldots, k, k-1)}$.

Since $e \geqslant 5$ and $n \geqslant 10 e^{2}-74 e+142$, we have $n>5 e^{2}-31 e+50$; thus,

$$
l_{2}+4=\left\lceil\frac{n-3 e+7}{e-3}\right\rceil+4 \leqslant\left\lfloor\frac{n-2 e+2}{e-4}\right\rfloor=k .
$$

We get

$$
\rho_{n, n-e}^{\min }>\rho_{l_{2}+4} \geqslant \rho\left(T_{(k-1, k, \ldots, k, k-1)}\right) \geqslant \rho(T) .
$$

Contradiction!
Remark 3. Assume $G_{n, n-e}^{\min }=T_{\left(k_{1}, \ldots, k_{r}\right)} \in P_{n, e}$. Let $\bar{k}=\frac{\sum_{i=1}^{r} k_{i}}{r}$. By Lemma 2.13, we can get $k_{i} \geq$ $\left\lfloor\bar{k}+\frac{2}{r}\right\rfloor-3$ for $2 \leq i \leq r-1$ and $k_{i} \geq\left\lfloor\bar{k}+\frac{2}{r}\right\rfloor-2$ for $i=1, r$ whenever $n \geq 9 e-30$.

3.2. Part 2

From now on, we only consider a tree $T_{\left(k_{1}, k_{2}, \ldots, k_{r}\right)}$ in $\mathcal{P}_{n, e}$. (Here $r=e-4$ through the remaining of the paper.) Let $v_{0}, v_{1}, \ldots, v_{r}$ be the list (from left to right) of all degree 3 vertices in $T_{\left(k_{1}, k_{2}, \ldots, k_{r}\right)} \in \mathcal{P}_{n, e}$. Let $H_{\left(k_{1}, k_{2}, \ldots, k_{j}\right)}$ be the graph shown in Fig. 11 .

Now we define two families of sub-trees of $T_{\left(k_{1}, k_{2}, \ldots, k_{r}\right)}$. For $i=1, \ldots, r-1$, let $L_{i}=H_{\left(k_{1}, k_{2}, \ldots, k_{i}\right)}$ (from the left direction). For $j=2, \ldots, r$, let $R_{j}=H_{\left(k_{r}, k_{r-1}, \ldots, k_{j}\right)}$ (from the right direction). We also define $L_{0}=P_{5}$ and $R_{r+1}=P_{5}$.

Lemma 3.1. For any $\lambda \geq \rho\left(T_{\left(k_{1}, k_{2}, \ldots, k_{r}\right)}\right)$, we have

1. $p_{\left(L_{i}, v_{i}\right)}(\lambda) \geqslant 0$ and $q_{\left(L_{i}, v_{i}\right)}(\lambda) \geqslant 0$ for $i=0,1,2, \ldots, r-1$.
2. $p_{\left(R_{j}, v_{j-1}\right)}(\lambda) \geqslant 0$ and $q_{\left(R_{j}, v_{j-1}\right)}(\lambda) \geqslant 0$ for $j=2, \ldots, r+1$.

Proof. For simplicity, we also write $p_{i}=p_{\left(L_{i}, v_{i}\right)}, q_{i}=q_{\left(L_{i}, v_{i}\right)}$ for $i=0,1,2, \ldots, r-1$, and $p_{j}^{\prime}=$ $p_{\left(R_{j}, v_{j-1}\right)}, q_{j}^{\prime}=q_{\left(R_{j}, v_{j-1}\right)}$ for $j=2, \ldots, r+1$. From Eq. (11), we have $p_{r+1}^{\prime}=p_{0}=p_{\left(P_{5}, v_{0}\right)}=$ $\frac{d_{1} x_{1}\left(\lambda^{2}-1\right)}{x_{2}-x_{1}}>0$ and $q_{r+1}^{\prime}=q_{0}=q_{\left(P_{5}, v_{0}\right)}=\frac{d_{2} x_{2}\left(\lambda^{2}-1\right)}{x_{2}-x_{1}}>0$ for any $\lambda>\lambda_{0}$.

It remains to consider p_{i}, q_{i} for $i=1,2, \ldots, r-1$, and p_{j}^{\prime}, q_{j}^{\prime} for $j=2, \ldots, r$. Let μ be the least number such that these functions $p_{i}(\lambda), q_{i}(\lambda) p_{j}^{\prime}(\lambda), q_{j}^{\prime}(\lambda)$ take non-negative values for all $\lambda \geqslant \mu$.

We need to show such μ exists. By Lemma 2.5, we have $\lim _{\lambda \rightarrow+\infty} q_{i}(\lambda)=+\infty$ and $\lim _{\lambda \rightarrow+\infty} q_{j}^{\prime}(\lambda)=$ $+\infty$. Since $\lim _{\lambda \rightarrow+\infty} p_{0}=\lim _{\lambda \rightarrow+\infty} \frac{d_{1} x_{1}\left(\lambda^{2}-1\right)}{x_{2}-x_{1}}=+\infty$ and $p_{i}=\frac{1}{x_{2}-x_{1}}\left(d_{1} x_{1}^{k_{i}} p_{i-1}+x_{2}^{k_{i}-1} q_{i-1}\right)$ (see Lemma 2.6), by induction on i, we have $\lim _{\lambda \rightarrow+\infty} p_{i}(\lambda)=+\infty$. Similarly, we have $\lim _{\lambda \rightarrow+\infty} p_{j}^{\prime}(\lambda)=+\infty$. Thus μ is well-defined.

If $\mu \leqslant \rho\left(T_{\left(k_{1}, k_{2}, \ldots, k_{r}\right)}\right)$, then we are done. Otherwise, we assume $\mu>\rho\left(T_{\left(k_{1}, k_{2}, \ldots, k_{r}\right)}\right)$. Note that μ is always a root of one of those $p_{i}(\lambda), q_{i}(\lambda), p_{j}^{\prime}(\lambda), q_{j}^{\prime}(\lambda)$.

Case (1). There exists an $i(1 \leqslant i \leqslant r-1)$ such that $p_{i}(\mu)=0$. Since $p_{i}=\frac{1}{x_{2}-x_{1}}\left(d_{1} x_{1}^{k_{i}} p_{i-1}+\right.$ $x_{2}^{k_{i}-1} q_{i-1}$), we must have $p_{i-1}(\mu)=q_{i-1}(\mu)=0$. By Lemma 2.7 , we have

$$
\phi_{T_{\left(k_{1}, k_{2}, \ldots, k_{r}\right)}}(\mu)=\left.\left(x_{2}-x_{1}\right)\left(x_{2}^{k_{i}-1} q_{i-1} q_{i+1}^{\prime}-x_{1}^{k_{i}-1} p_{i-1} p_{i+1}^{\prime}\right)\right|_{\mu}=0
$$

It contradicts to the assumption $\mu>\rho\left(T_{\left(k_{1}, k_{2}, \ldots, k_{r}\right)}\right)$.
Case (2). There exists a $j(2 \leqslant j \leqslant r)$ such that $p_{j}^{\prime}(\mu)=0$. This case is symmetric to Case (1).
Case (3). There exists an $i(1 \leqslant i \leqslant r-1)$ such that $q_{i}(\mu)=0$. By Lemma 2.7, we have

$$
\phi_{T_{\left(k_{1}, k_{2}, \ldots, k_{r}\right)}}(\mu)=\left.\left(x_{2}-x_{1}\right)\left(x_{2}^{k_{i+1}-1} q_{i} q_{i+2}^{\prime}-x_{1}^{k_{i+1}-1} p_{i} p_{i+2}^{\prime}\right)\right|_{\mu} \leqslant 0
$$

It contradicts to $\mu>\rho\left(T_{\left(k_{1}, k_{2}, \ldots, k_{r}\right)}\right)$.
Case (4). There exists a $j(2 \leqslant j \leqslant r)$ such that $q_{j}^{\prime}(\mu)=0$. This case is symmetric to Case (3).
The proof of this Lemma is finished.
The following Lemma gives the lower bound for the spectral radius of a general tree $T_{\left(k_{1}, k_{2}, \ldots, k_{r}\right)} \in$ $\mathcal{P}_{n, e}$.

Lemma 3.2. Let $\bar{k}=\frac{\sum_{i=1}^{r} k_{i}}{r}$. We have

$$
d_{2} \geq \frac{2 x_{1}^{\bar{k}+\frac{2}{r}}}{1-x_{1}^{\bar{k}+\frac{2}{r}+1}}
$$

for all $\lambda \geq \rho\left(T_{\left(k_{1}, k_{2}, \ldots, k_{r}\right)}\right)$, where the equality holds if and only if $k_{1}+1=k_{2}=\cdots=k_{r-1}=k_{r}+1$ and $\lambda=\rho\left(T_{\left(k_{1}, k_{2}, \ldots, k_{r}\right)}\right)$.

Proof. For $i=0,1,2, \ldots, r-1$, we define $t_{i}=q_{i} / p_{i}$. Similarly, for $j=2, \ldots, r+1$, we define $t_{j}^{\prime}=q_{j}^{\prime} / p_{j}^{\prime}$. For any $s>0$, we define

$$
f_{s}(t)=\frac{d_{2} x_{2}^{2 s} t-x_{2}}{x_{2}^{2 s-1} t+d_{1}}=\frac{d_{2} x_{2} t-x_{1}^{2 s-2}}{t+d_{1} x_{1}^{2 s-1}}, \quad t>0
$$

We consider the fixed point of $f_{s}(t)$, which satisfies

$$
t^{2}-\left(d_{2} x_{2}-d_{1} x_{1}^{2 s-1}\right) t+x_{1}^{2 s-2}=0
$$

This quadratic equation has a unique root x_{1}^{s-1} when

$$
\begin{equation*}
d_{2}=2 x_{1}^{s}+d_{1} x_{1}^{2 s} \tag{15}
\end{equation*}
$$

We choose $s=s(\lambda)$ to be the root of Eq. (15). The line $y=t$ is tangent to the curve $y=f_{s}(t)$ at $t=x_{1}^{s-1}$. Because $f_{s}(t)$ is an increasing and concave function of t, we have

$$
f_{s}(t) \leq t, \quad \forall t>0
$$

For $i=1, \ldots, r$, we have

$$
\begin{equation*}
f_{k_{i}}(t)=f_{s}\left(x_{2}^{2\left(k_{i}-s\right)} t\right) \leq x_{2}^{2\left(k_{i}-s\right)} t \tag{16}
\end{equation*}
$$

By Lemma 2.7, we get

$$
\phi_{T_{\left(k_{1}, k_{2}, \ldots, k_{r}\right)}}=\left(x_{2}-x_{1}\right)\left(x_{2}^{k_{r}-1} q_{r-1} q_{r+1}^{\prime}-x_{1}^{k_{r}-1} p_{r-1} p_{r+1}^{\prime}\right)
$$

Since $\phi_{T_{\left(k_{1}, k_{2}, \ldots, k_{r}\right)}} \geqslant 0$ for all $\lambda \geq \rho\left(T_{\left(k_{1}, k_{2}, \ldots, k_{r}\right)}\right)$, we get

$$
t_{r-1} t_{r+1}^{\prime} x_{2}^{2\left(k_{r}-1\right)} \geq 1
$$

Note $t_{r+1}^{\prime}=t_{0}=\frac{d_{2} x_{2}}{d_{1} x_{1}}=\frac{d_{2}}{d_{1}} x_{2}^{2}$. Applying inequality (16) recursively, we have

$$
\begin{aligned}
1 & \leqslant \frac{d_{2}}{d_{1}} x_{2}^{2} \cdot x_{2}^{2\left(k_{r}-1\right)} \frac{q_{r-1}}{p_{r-1}} \\
& =\frac{d_{2}}{d_{1}} x_{2}^{2 k_{r}} f_{k_{r-1}}\left(f_{k_{r-2}}\left(\ldots\left(f_{k_{1}}\left(t_{0}\right) \ldots\right)\right)\right) \\
& \leq \frac{d_{2}}{d_{1}} x_{2}^{2 k_{r}} x_{2}^{2\left(k_{r-1}-s\right)} x_{2}^{2\left(k_{r-2}-s\right)} \ldots x_{2}^{2\left(k_{1}-s\right)} t_{0} \\
& =\frac{d_{2}}{d_{1}} x_{2}^{2 k_{r}} x_{2}^{2\left(k_{r-1}-s\right)} x_{2}^{2\left(k_{r-2}-s\right)} \ldots x_{2}^{2\left(k_{1}-s\right)} \frac{d_{2}}{d_{1}} x_{2}^{2} \\
& =\frac{d_{2}^{2}}{d_{1}^{2}} x_{2}^{2(r \bar{k}-(r-1) s+1)} .
\end{aligned}
$$

We get $d_{2} \geqslant d_{1} x_{1}^{r \bar{k}-(r-1) s+1}$; and the equality holds if and only if $k_{1}+1=k_{2}=\cdots=k_{r-1}=$ $k_{r}+1=s$ and $\lambda=\rho\left(T_{\left(k_{1}, k_{2}, \ldots, k_{r}\right)}\right)$. By Remark $1, d_{2} \geqslant d_{1} r_{1}^{r \bar{k}-(r-1) s+1}$ is equivalent to

$$
\begin{equation*}
d_{2} \geqslant 2 x_{1}^{r \bar{k}-(r-1) s+2}+d_{1} x_{1}^{2(r \bar{k}-(r-1) s+2)} \tag{17}
\end{equation*}
$$

Comparing this inequality with Eq. (15), we must have $s \leq r \bar{k}-(r-1) s+2$. Solving s, we get $s \leq \bar{k}+\frac{2}{r}$. Thus,

$$
d_{2}=2 x_{1}^{s}+d_{1} x_{1}^{2 s} \geq 2 x_{1}^{\bar{k}+\frac{2}{r}}+d_{1} x_{1}^{2\left(\bar{k}+\frac{2}{r}\right)}
$$

Applying Remark 1 one more time, we get

$$
d_{2} \geq \frac{2 x_{1}^{\bar{k}+\frac{2}{r}}}{1-x_{1}^{\bar{k}+\frac{2}{r}+1}} .
$$

The proof is completed.

Lemma 3.3. Let $G_{n, n-e}^{\min }=T_{\left(k_{1}, k_{2}, \ldots, k_{r}\right)}$ and $\bar{k}=\frac{\sum_{i=1}^{r} k_{i}}{r}$. Then

$$
d_{2} \leq \frac{2 x_{1}^{\left\lfloor\bar{k}+\frac{2}{r}\right\rfloor}}{1-x_{1}^{\left\lfloor\bar{k}+\frac{2}{r}\right\rfloor+1}}
$$

holds at $\lambda=\rho_{n, n-e}^{\min }$.
Proof. Let $s=\bar{k}+\frac{2}{r}$. Observe that we can always subdivide some edges on internal paths of $T_{(\lfloor s\rfloor-1,\lfloor s\rfloor, \ldots,\lfloor s\rfloor,\lfloor s\rfloor-1)}$ to get a tree T on n vertices and diameter $n-e$. By Lemma 2.4, we have

$$
\rho_{n, n-e}^{\min } \leq \rho(T) \leqslant \rho\left(T_{(\lfloor s\rfloor-1,\lfloor s\rfloor, \ldots,\lfloor\lfloor s\rfloor\rfloor\lfloor s\rfloor-1)}\right)=\rho_{\lfloor s\rfloor} .
$$

By Lemma 2.10, $\rho_{\lfloor s\rfloor}$ is the root of

$$
d_{2}=\frac{2 x_{1}^{\lfloor s\rfloor}}{1-x_{1}^{\lfloor s\rfloor+1}} .
$$

Since $d_{2}(\lambda)$ is increasing while $\frac{2 x_{1}^{\lfloor s\rfloor}}{1-x_{1}^{[s+1}}$ is decreasing on $(\sqrt{2+\sqrt{5}}, \infty)$, we get

$$
d_{2}\left(\rho_{n, n-e}^{\min }\right) \leq d_{2}\left(\rho_{\lfloor s\rfloor}\right)=\left.\frac{2 x_{1}^{\lfloor s\rfloor}}{1-x_{1}^{\lfloor s\rfloor+1}}\right|_{\rho_{\lfloor s\rfloor}} \leq\left.\frac{2 x_{1}^{\lfloor s\rfloor}}{1-x_{1}^{\lfloor s\rfloor+1}}\right|_{\rho_{n, n-e}^{\min }}
$$

The proof is completed.
We get the following corollary.
Corollary 3.1. Let $G_{n, n-e}^{\min }=T_{\left(k_{1}, k_{2}, \ldots, k_{r}\right)} \in \mathcal{P}_{n, e}$ and $s=\frac{1}{r} \sum_{i=1}^{r} k_{i}+\frac{2}{r}=\frac{n-2 e+2}{e-4}$. We have

$$
\frac{2 x_{1}^{s}}{1-x_{1}^{s+1}} \leq d_{2} \leq \frac{2 x_{1}^{\lfloor s\rfloor}}{1-x_{1}^{\lfloor s\rfloor+1}}
$$

holds at $\lambda=\rho\left(G_{n, n-e}^{\min }\right)$. In particular, $\rho\left(G_{n, n-e}^{\min }\right)=\sqrt{2+\sqrt{5}}+O\left(\left(\frac{\sqrt{5}-1}{2}\right)^{s / 2}\right)$.
Lemma 3.4. Assume $G_{n, n-e}^{\min }=T_{\left(k_{1}, \ldots, k_{i}, k_{i+1}, \ldots, k_{r}\right)}$ and $\bar{c}=\frac{\rho_{n, n-e}^{\min }+\sqrt{\left(\rho_{n, n-e}\right)^{2}+4 d_{1} d_{2}}}{2}$. Then the following equalities hold at the point $\lambda=\rho_{n, n-e}^{\min }$.

$$
\begin{align*}
\bar{c} x_{1}^{k_{i}+1} & \leq d_{2} \leq \bar{c} x_{1}^{k_{i}-1} \quad \text { for } i=2, \ldots, r-1 ; \tag{18}\\
\sqrt{\bar{c} d_{1}} x_{1}^{k_{i}+1} & \leq d_{2} \leq \sqrt{\bar{c} d_{1}} x_{1}^{k_{i}} \quad \text { for } i=1, r . \tag{19}
\end{align*}
$$

Proof. We reuse notations $L_{i}, p_{i}, q_{i}, t_{i}($ for $i=0,1, \ldots, r-1)$ and $R_{j}, p_{j}^{\prime}, q_{j}^{\prime}, t_{j}^{\prime}($ for $j=2, \ldots, r+1$), which are introduced in Lemma 3.1 and Lemma 3.2.

Choosing any $i \in\{1, \ldots, r-1\}$, by Lemma 2.7 we have

$$
t_{i} t_{i+2}^{\prime} x_{2}^{2\left(k_{i+1}-1\right)}=1
$$

at $\lambda=\rho_{n, n-e}^{\min }$. This means

$$
\frac{d_{2} x_{2} t_{i-1}-x_{1}^{2\left(k_{i}-1\right)}}{t_{i-1}+d_{1} x_{1}^{2 k_{i}-1}} t_{i+2}^{\prime} x_{2}^{2\left(k_{i+1}-1\right)}=1 .
$$

We can rewrite it as

$$
\begin{equation*}
\left(t_{i-1}-\frac{x_{1}^{2 k_{i}-1}}{d_{2}}\right)\left(t_{i+2}^{\prime}-\frac{x_{1}^{2 k_{i+1}-1}}{d_{2}}\right)=\frac{d_{1} d_{2}+1}{d_{2}^{2}} x_{1}^{2\left(k_{i}+k_{i+1}-1\right)} \tag{20}
\end{equation*}
$$

Note $t_{i}=f_{k_{i}}\left(t_{i-1}\right)=\frac{d_{2} x_{2} t_{i-1}-x_{1}^{2\left(k_{i}-1\right)}}{t_{i-1}+d_{1} x_{1}^{2 k_{i}-1}}>0$. We have

$$
\begin{equation*}
t_{i-1}>\frac{x_{1}^{2 k_{i}-1}}{d_{2}} \tag{21}
\end{equation*}
$$

For $i=1, \ldots, r-1$, we apply Lemma 2.9 to $G_{1}=T_{\left(k_{1}, \ldots, k_{i}, k_{i+1}, \ldots, k_{r}\right)}$ and $G_{2}=T_{\left(k_{1}, \ldots, k_{i}+1, k_{i+1}-1, \ldots, k_{r}\right)}$, where both trees contain a common induced subtree $T_{\left(k_{1}, \ldots, k_{i}+k_{i+1}+1, \ldots, k_{r}\right)}$ (after removing one leaf vertex). If $\phi_{G_{2}}\left(\rho\left(G_{1}\right)\right)>0$, then $\rho\left(G_{1}\right)>\rho\left(G_{2}\right)$. This contradicts to the assumption $G_{1}=G_{n, n-e}^{\min }$.

We get $\phi_{G_{2}}\left(\rho\left(G_{1}\right)\right) \leqslant 0$, i.e., $\phi_{T_{\left(k_{1}, \ldots, k_{i}+1, k_{i+1}-1, \ldots, k_{r}\right)}}\left(\rho_{n, n-e}^{\min }\right) \leqslant 0$.
We apply Lemma 2.8 and obtain the difference of characteristic polynomials of $T_{\left(k_{1}, \ldots, k_{i}, k_{i+1}, \ldots, k_{r}\right)}$ and $T_{\left(k_{1}, \ldots, k_{i}+1, k_{i+1}-1, \ldots, k_{r}\right)}$,

$$
\phi_{T_{\left(k_{1}, \ldots, k_{i}, k_{i+1}, \ldots, k_{r}\right)}}-\phi_{T_{\left(k_{1}, \ldots, k_{i}+1, k_{i+1}-1, \ldots, k_{r}\right)}}=\left(x_{1}-x_{2}\right)\left(p_{i-1} q_{i+2}^{\prime} x_{2}^{k_{i+1}-k_{i}-1}-q_{i-1} p_{i+2}^{\prime} x_{1}^{k_{i+1}-k_{i}-1}\right) .
$$

Evaluating the function above at $\lambda=\rho_{n, n-e}^{\min }$, we have

$$
\left.\left(x_{1}-x_{2}\right)\left(p_{i-1} q_{i+2}^{\prime} x_{2}^{k_{i+1}-k_{i}-1}-q_{i-1} p_{i+2}^{\prime} x_{1}^{x_{i+1}-k_{i}-1}\right)\right|_{\rho_{n, n-e}^{\min }} \geq 0
$$

 rest of the proof, all expressions are evaluated at $\lambda=\rho_{n, n-e}^{\min }$. The notation " $\left.\right|_{\rho_{n, n-e} \text { min }}$ " is omitted for simplicity.

On the one hand, by inequality (21), we can substitute $t_{i+2}^{\prime} \leq t_{i-1} x_{1}^{2\left(k_{i+1}-k_{i}-1\right)}$ into Eq. (20) and get

$$
\left(t_{i-1}-\frac{x_{1}^{2 k_{i}-1}}{d_{2}}\right)\left(x_{1}^{2\left(k_{i+1}-k_{i}-1\right)} t_{i-1}-\frac{x_{1}^{2 k_{i+1}-1}}{d_{2}}\right) \geq \frac{d_{1} d_{2}+1}{d_{2}^{2}} x_{1}^{2\left(k_{i}+k_{i+1}-1\right)}
$$

After simplification, we have

$$
d_{2} t_{i-1}^{2}-x_{1}^{2 k_{i}} \rho_{n, n-e}^{\min } t_{i-1}-d_{1} x_{1}^{4 k_{i}} \geq 0
$$

Recall $\bar{c}=\frac{\rho_{n, n-e}^{\min }+\sqrt{\left(\rho_{n, n-e}^{\min }\right)^{2}+4 d_{1} d_{2}}}{2}$. Solving this quadratic inequality, since $t_{i-1}>0$, we get

$$
t_{i-1} \geq \bar{c} x_{1}^{2 k_{i}} / d_{2}, \quad i=1, \ldots, r-1
$$

By symmetry, we have

$$
t_{i+1}^{\prime} \geq \bar{c} \bar{c}_{1}^{2 k_{i}} / d_{2}, \quad i=2, \ldots, r
$$

On the other hand, we substitute $t_{i-1} \geq t_{i+2}^{\prime} x_{2}^{2\left(k_{i+1}-k_{i}-1\right)}$ into Eq. (20). By the similar calculation, we get

$$
t_{i+2}^{\prime} \leq \bar{c} x_{1}^{2\left(k_{i+1}-1\right)} / d_{2}, \quad i=1, \ldots, r-1
$$

Changing the index $i+2$ to $i+1$, we have

$$
t_{i+1}^{\prime} \leq \bar{c} x_{1}^{2\left(k_{i}-1\right)} / d_{2}, \quad i=2, \ldots, r .
$$

By symmetry, we have

$$
t_{i-1} \leq \bar{c} \bar{c}_{1}^{2\left(k_{i}-1\right)} / d_{2}, \quad i=1, \ldots, r-1
$$

Combining the inequalities above, we get

$$
\begin{align*}
& \frac{\bar{c}}{d_{2}} x_{1}^{2 k_{i}} \leq t_{i-1} \leq \frac{\bar{c}}{d_{2}} x_{1}^{2\left(k_{i}-1\right)}, \quad i=1, \ldots, r-1, \tag{22}\\
& \frac{\bar{c}}{d_{2}} x_{1}^{2 k_{i}} \leq t_{i+1}^{\prime} \leq \frac{\bar{c}}{d_{2}} x_{1}^{2\left(k_{i}-1\right)}, \quad i=2, \ldots, r . \tag{23}
\end{align*}
$$

Now we apply Lemma 2.7 and get

$$
\begin{equation*}
t_{i-1} t_{i+1}^{\prime} x_{2}^{2\left(k_{i}-1\right)}=1 \tag{24}
\end{equation*}
$$

Taking product of inequalities (22), (23), and then substituting $t_{i-1} t_{i+1}^{\prime}$ into Eq. (24). After simplification, wet get inequality (18).

When $i=1$ or r, we have

$$
\frac{\bar{c}}{d_{2}} x_{1}^{2 k_{i}} \leq t_{0}=t_{r+1}^{\prime}=\frac{d_{2}}{d_{1}} x_{2}^{2} \leq \frac{\bar{c}}{d_{2}} x_{1}^{2\left(k_{i}-1\right)}
$$

Solving for d_{2}, we get inequality (19). The proof of this lemma is completed.

Proof of the second part of Theorem 1.1. As in the proof of Lemma 3.4, all expressions in this proof are evaluated at $\lambda=\rho_{n, n-e}^{\min }$ and " $\left.\right|_{\rho_{n, n-e} \text { min }}$ " is omitted for simplicity.

By Lemma 3.4, for $2 \leq i \leq r-1$, we have

$$
\bar{c} x_{1}^{k_{i}+1} \leq d_{2} \leq \bar{c} x_{1}^{k_{i}-1}
$$

By the definition of \bar{c}, we get

$$
2 d_{2} x_{1}^{k_{i}+1} \leq \rho_{n, n-e}^{\min }+\sqrt{\left(\rho_{n, n-e}^{\min }\right)^{2}+4 d_{1} d_{2}} \leq 2 d_{2} x_{1}^{k_{i}-1}
$$

After solving for d_{2} and simplifying, we have

$$
\frac{\rho_{n, n-e}^{\min } x_{1}^{k_{i}+1}+2 x_{1}^{2 k_{i}+3}}{1-x_{1}^{2\left(k_{i}+2\right)}} \leq d_{2} \leq \frac{\rho_{n, n-e}^{\min } x_{1}^{k_{i}-1}+2 x_{1}^{2 k_{i}-1}}{1-x_{1}^{2 k_{i}}} .
$$

Since $\rho_{n, n-e}^{\min }>2>1+x_{1}^{2}=\rho_{n, n-e}^{\min } x^{x_{1}}$, we observe

$$
\frac{2 x_{1}^{k_{i}+1}}{1-x_{1}^{k_{i}+2}}<\frac{\rho_{n, n-e}^{\min } x_{1}^{k_{i}+1}+2 x_{1}^{2 k_{i}+3}}{1-x_{1}^{2\left(k_{i}+2\right)}}
$$

and

$$
\frac{\rho_{n, n-e}^{\min } x_{1}^{k_{i}-1}+2 x_{1}^{2 k_{i}-1}}{1-x_{1}^{2 k_{i}}}<\frac{2 x_{1}^{k_{i}-2}}{1-x_{1}^{k_{i}-1}} .
$$

We obtain

$$
\begin{equation*}
\frac{2 x_{1}^{k_{i}+1}}{1-x_{1}^{k_{i}+2}}<d_{2}<\frac{2 x_{1}^{k_{i}-2}}{1-x_{1}^{k_{i}-1}} \quad \text { for } 2 \leq i \leq r-1 . \tag{25}
\end{equation*}
$$

From Theorem 3.1, we have

$$
\begin{equation*}
\frac{2 x_{1}^{s}}{1-x_{1}^{s+1}} \leq d_{2} \leq \frac{2 x_{1}^{\lfloor s\rfloor}}{1-x_{1}^{\lfloor s\rfloor+1}} \tag{26}
\end{equation*}
$$

Combining inequalities (25) and (26), we get

$$
\begin{aligned}
& \frac{2 x_{1}^{k_{i}+1}}{1-x_{1}^{k_{i}+2}}<\frac{2 x_{1}^{\lfloor s\rfloor}}{1-x_{1}^{\lfloor s\rfloor+1}}, \\
& \frac{2 x_{1}^{k_{i}-2}}{1-x_{1}^{k_{i}-1}}>\frac{2 x_{1}^{s}}{1-x_{1}^{s+1}} .
\end{aligned}
$$

Thus, $\lfloor s\rfloor-1<k_{i}<s+2$. So $\lfloor s\rfloor<k_{i} \leq\lceil s\rceil+1$ where $i=2, \ldots, r-1$.
For $j=1$ or r, combining inequalities (19) and (26), we have

$$
\begin{aligned}
& \frac{\sqrt{\bar{c} d_{1}}}{2} x_{1}^{k_{j}+1} \leq \frac{x_{1}^{\lfloor s\rfloor}}{1-x_{1}^{\lfloor s\rfloor+1}}, \\
& \frac{\sqrt{\bar{c} d_{1}}}{2} x_{1}^{k_{j}} \geq \frac{x_{1}^{s}}{1-x_{1}^{s+1}} .
\end{aligned}
$$

Note that $d_{1} \rightarrow 2 x_{1}$ and $\bar{c} \rightarrow \lambda_{0}$ as n approaches infinity. For sufficiently large n, we have $x_{2}^{0.1}<$ $\frac{\lambda_{0}}{2}<x_{2}^{0.2}$. We get

$$
x_{1}^{k_{j}+1+0.45} \leq x_{1}^{\lfloor s\rfloor} \text { and } x_{1}^{k_{j}+0.4}>x_{1}^{s} .
$$

So $\lfloor s\rfloor-1 \leq k_{j} \leq\lfloor s\rfloor$ for n large enough.
In conclusion, we get

$$
\lfloor s\rfloor-1 \leq k_{j} \leq\lfloor s\rfloor \leqslant k_{i} \leqslant\lceil s\rceil+1
$$

for $2 \leqslant i \leqslant r-1$ and $j=1, r$.

Now we will prove item 2 . It suffices to show $k_{i}-k_{j} \leqslant 2$, for $2 \leqslant i \leqslant r-1$ and $j=1$, r. Suppose that there exist i, j with $i \in\{2, \ldots, r-1\}$ and $j \in\{1, r\}$ so that $k_{i} \geq k_{j}+3$. By Lemma 3.4, we have

$$
\sqrt{\bar{c} d_{1}} x_{1}^{k_{j}+1} \leq d_{2} \leq \bar{c} x_{1}^{k_{j}+2}
$$

Since $\lambda x_{1}^{2}=\left(1+x_{1}^{2}\right) x_{1}<2 x_{1} \leq d_{1}$ for $\lambda \geq \lambda_{0}$ and $\bar{c} \rightarrow \lambda_{0}$ as n approaches infinity, we have $\bar{c} x_{1}^{k_{j}+2}<\sqrt{\bar{c} d_{1}} x_{1}^{k_{j}+1}$ for n large enough. Contradiction!

Now we will prove item 3. By Lemma 3.4, we have $\bar{c} x_{1}^{k_{j}+1} \leq d_{2} \leq \bar{c} x_{1}^{k_{i}-1}$ for all $2 \leq i, j \leq r-1$. This implies $\left|k_{i}-k_{j}\right| \leq 2$. It is sufficient to show that there are no i, j with $\left|k_{i}-k_{j}\right|=2$. Otherwise, suppose there exist $i, j \in\{2, \ldots, r-1\}$ such that $k_{i}=k$ and $k_{j}=k+2$. Without loss of generality, we can assume that $i<j$ and in addition i, j are mostly close to each other. Namely, $k_{l}=k+1$ for all integer l between i and j.

Applying inequality (18) to $k_{i}=k$ and $k_{j}=k+2$, we have

$$
\begin{aligned}
& d_{2} \geqslant \bar{c} x_{1}^{k_{i}+1}=\bar{c} x_{1}^{k+1}, \\
& d_{2} \leqslant \bar{c} x_{1}^{k_{j}-1}=\bar{c} x_{1}^{k+1} .
\end{aligned}
$$

Two inequalities above force $d_{2}=\bar{c} x_{1}^{k+1}$. These equalities force $t_{i-1}=t_{i+1}^{\prime}=x_{1}^{k-1}, t_{j-1}=t_{j+1}^{\prime}=$ x_{1}^{k+1} by inequalities (22) and (23).

Consider the function $f(t)=\frac{d_{2} t-x_{2}}{x_{1} t+d_{1}}=f_{k}\left(x_{1}^{2 k} t\right)$ and let $c=\bar{c} / d_{2}=x_{2}^{k+1}$. It is easy to check $f(c)=\frac{1}{c}$. We claim

$$
t_{l}=x_{1}^{k+1} \quad \text { for } i \leqslant l \leqslant j-1 .
$$

For $l=i$, we have

$$
t_{i}=f_{k}\left(t_{i-1}\right)=f_{k}\left(x_{1}^{k-1}\right)=f\left(x_{2}^{k+1}\right)=f(c)=\frac{1}{c}=x_{1}^{k+1} .
$$

By induction on l, we have

$$
t_{l}=f_{k+1}\left(t_{l-1}\right)=f_{k+1}\left(x_{1}^{k+1}\right)=f\left(x_{2}^{k+1}\right)=f(c)=\frac{1}{c}=x_{1}^{k+1} .
$$

By Lemma 2.7, we have

$$
t_{j-2} t_{j}^{\prime} x_{2}^{2 k}=1
$$

Since $t_{j-2}=x_{1}^{k+1}$, it implies $t_{j}^{\prime}=x_{1}^{k-1}$. However, we also have

$$
t_{j}^{\prime}=f_{k+2}\left(t_{j+1}^{\prime}\right)=f_{k+2}\left(x_{1}^{k+1}\right)=f\left(x_{2}^{k+3}\right) \neq x_{1}^{k-1}
$$

Contradiction!

If $n-6$ is divisible by $e-4$, then $s=\frac{n-6}{e-2}-4$ is an integer. In this case, the only possible sequence ($k_{1}, k_{2}, \ldots, k_{r}$) satisfying items $1-3$ is $(s-1, s, \ldots, s, s-1)$. In particular, we have $G_{n, n-e}^{\min }=$ $T_{(s-1, s, \ldots, s, s-1)}$.

The proof is completed.

4. Proof of Theorems 1.3 and 1.4

4.1. $e=7$

Let $G_{n, n-7}^{\min }=T_{\left(k_{1}, k_{2}, k_{3}\right)} \in \mathcal{P}_{n, 7}$. Note $k_{1}+k_{2}+k_{3}=n-14$. By Theorem 1.1, here are all the possible graphs for $G_{n, n-7}^{\min }$.

Case 1. $\sum_{i=1}^{3} k_{i}=3 k$. We have $\left(k_{1}, k_{2}, k_{3}\right)=(k, k, k)$ or $(k, k+1, k-1)$.
Case 2. $\sum_{i=1}^{3} k_{i}=3 k+1$. We have $\left(k_{1}, k_{2}, k_{3}\right)=(k, k+1, k)$.
Case 3. $\sum_{i=1}^{3} k_{i}=3 k+2$. We have $\left(k_{1}, k_{2}, k_{3}\right)=(k, k+2, k)$ or $(k, k+1, k+1)$.
To simplify the proof of Theorem 1.3, we introduce the following short notations. We have

$$
\begin{aligned}
& p_{0}:=p_{\left(L_{0}, v_{0}\right)}=\frac{\lambda^{2}-1}{x_{2}-x_{1}} d_{1} x_{1}, \\
& q_{0}:=q_{\left(L_{0}, v_{0}\right)}=\frac{\lambda^{2}-1}{x_{2}-x_{1}} d_{2} x_{2}, \\
& p^{(k-1)}:=p_{\left(H_{(k-1)}, v_{1}\right)}=\frac{\lambda^{2}-1}{\left(x_{2}-x_{1}\right)^{2}}\left(d_{1}^{2} x_{1}^{k}+d_{2} x_{2}^{k-1}\right), \\
& q^{(k-1)}:=q_{\left(H_{(k-1)}, v_{1}\right)}=\frac{\lambda^{2}-1}{\left(x_{2}-x_{1}\right)^{2}}\left(d_{2}^{2} x_{2}^{k}-d_{1} x_{1}^{k-1}\right), \\
& p^{(k)}:=p_{\left(H_{(k)}, v_{1}\right)}=\frac{\lambda^{2}-1}{\left(x_{2}-x_{1}\right)^{2}}\left(d_{1}^{2} x_{1}^{k+1}+d_{2} x_{2}^{k}\right), \\
& q^{(k)}:=q_{\left(H_{(k)}, v_{1}\right)}=\frac{\lambda^{2}-1}{\left(x_{2}-x_{1}\right)^{2}}\left(d_{2}^{2} x_{2}^{k+1}-d_{1} x_{1}^{k}\right), \\
& p^{(k+1)}:=p_{\left(H_{(k+1)}, v_{1}\right)}=\frac{\lambda^{2}-1}{\left(x_{2}-x_{1}\right)^{2}}\left(d_{1}^{2} x_{1}^{k+2}+d_{2} x_{2}^{k+1}\right), \\
& q^{(k+1)}:=q_{\left(H_{(k+1)}, v_{1}\right)}=\frac{\lambda^{2}-1}{\left(x_{2}-x_{1}\right)^{2}}\left(d_{2}^{2} x_{2}^{k+2}-d_{1} x_{1}^{k+1}\right), \\
& p^{(k, k+1)}:=p_{\left(H_{(k, k+1)}, v_{2}\right)}=\frac{\lambda^{2}-1}{\left(x_{2}-x_{1}\right)^{3}}\left(d_{1}^{3} x_{1}^{2 k+2}+d_{1} d_{2} x_{1}+d_{2}^{2} x_{2}^{2 k+1}-d_{1}\right), \\
& q^{(k, k+1)}:=q_{\left(H_{(k, k+1)}, v_{2}\right)}=\frac{\lambda^{2}-1}{\left(x_{2}-x_{1}\right)^{3}}\left(d_{2}^{3} x_{2}^{2 k+2}-d_{1} d_{2} x_{2}-d_{1}^{2} x_{1}^{2 k+1}-d_{2}\right) .
\end{aligned}
$$

Proof of Theorem 1.3. We will compare the spectral radius of the possible graphs listed above in three cases separately.

Case 1. $\sum_{i=1}^{3} k_{i}=3 k$.
By Lemma 2.8, we have

$$
\begin{aligned}
\phi_{T_{(k, k, k)}}-\phi_{T_{(k, k+1, k-1)}} & =\left(x_{1}-x_{2}\right)\left(p^{(k)} q_{0} x_{1}-q^{(k)} p_{0} x_{2}\right) \\
& =-\frac{\left(\lambda^{2}-1\right)^{2}}{\left(x_{2}-x_{1}\right)^{2}}\left[\left(d_{2} x_{1}+1\right) d_{1}^{2} x_{1}^{k}-\left(d_{1} x_{2}-1\right) d_{2}^{2} x_{2}^{k}\right] \\
& =\frac{\left(d_{2} x_{1}+1\right)\left(\lambda^{2}-1\right)^{2}}{\left(x_{2}-x_{1}\right)^{2}}\left(d_{2}^{2} x_{2}^{k}-d_{1}^{2} x_{1}^{k}\right)
\end{aligned}
$$

In the last step, we applied the fact $d_{2} x_{1}+1=d_{1} x_{2}-1$.
By Lemma 2.10 and Remark 1, $\rho\left(T_{(k, k+1, k)}\right)\left(=\rho_{k+1}\right)$ satisfies $d_{2} x_{2}^{k / 2}=d_{1} x_{1}^{k / 2}$. The largest root of $\phi_{T_{(k, k, k)}}-\phi_{T_{(k, k+1, k-1)}}=0$ is ρ_{k+1}.

Noting that $d_{2}^{2} x_{2}^{k}-d_{1}^{2} x_{1}^{k}$ is an increasing function of $\lambda \in\left(\sqrt{2+\sqrt{5}}, \frac{3}{2} \sqrt{2}\right)$ for sufficiently large k. By Lemma 2.4, we have $\rho_{k+1}=\rho\left(T_{(k, k+1, k)}\right)<\rho\left(T_{(k, k, k)}\right)$. Evaluating $\phi_{T_{(k, k, k)}}-\phi_{T_{(k, k+1, k-1)}}$ at $\lambda=\rho\left(T_{(k, k, k)}\right)$, we get $\phi_{T_{(k, k+1, k-1)}}\left(\rho\left(T_{(k, k, k)}\right)\right)<0$. Thus, by Lemma 2.2, $\rho\left(T_{(k, k, k)}\right)<\rho\left(T_{(k, k+1, k-1)}\right)$ and $G_{n, n-7}^{\min }=T_{(k, k, k)}$.

Case 2. $\sum_{i=1}^{3} k_{i}=3 k+1$. We must have $G_{n, n-7}^{\min }=T_{(k, k+1, k)}$.
Case 3. $\sum_{i=1}^{3} k_{i}=3 k+2$.
Similarly by Lemma 2.8, we have

$$
\phi_{T_{(k, k+1, k+1)}}-\phi_{T_{(k, k+2, k)}}=\frac{\left(d_{2} x_{1}+1\right)\left(\lambda^{2}-1\right)^{2}}{\left(x_{2}-x_{1}\right)^{2}}\left(d_{2}^{2} x_{2}^{k}-d_{1}^{2} x_{1}^{k}\right)
$$

Noting that $d_{2}^{2} x_{2}^{k}-d_{1}^{2} x_{1}^{k}$ is an increasing function of $\lambda \in\left(\sqrt{2+\sqrt{5}}, \frac{3}{2} \sqrt{2}\right)$ for sufficiently large k. We have $\phi_{T_{(k, k+1, k+1)}}(\lambda)<\phi_{T_{(k, k+2, k)}}(\lambda)$ for any $\sqrt{2+\sqrt{5}} \leqslant \lambda<\rho_{k+1}$. By Lemma 2.4, we get $\rho\left(T_{(k, k+2, k)}\right)<\rho\left(T_{(k, k+1, k)}\right)=\rho_{k+1}$. Thus, $\phi_{T_{(k, k+1, k+1)}}\left(\rho\left(T_{(k, k+2, k)}\right)\right)<0$. It follows $\rho\left(T_{(k, k+1, k+1)}\right)$ $>\rho\left(T_{(k, k+2, k)}\right)$. So $G_{n, n-7}^{\min }=T_{(k, k+2, k)}$.

The proof of Theorem 1.3 is completed.

4.2. $e=8$

Now we let $G_{n, n-8}^{\min }=T_{\left(k_{1}, k_{2}, k_{3}, k_{4}\right)} \in \mathcal{P}_{n, 8}$. By Theorem 1.1, all the possible graphs for $G_{n, n-8}^{\min }$ are as follows.

Case 1. If $\sum_{i=1}^{4} k_{i}=4 k$, then $\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=(k, k, k, k),(k, k, k+1, k-1),(k, k+1, k, k-1)$, or $(k-1, k+1, k+1, k-1)$.
Case 2. If $\sum_{i=1}^{4} k_{i}=4 k+1$, then $\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=(k, k+1, k, k)$ or $(k, k+1, k+1, k-1)$.
Case 3. If $\sum_{i=1}^{4} k_{i}=4 k+2$, then $\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=(k, k+1, k+1, k)$.
Case 4. If $\sum_{i=1}^{4} k_{i}=4 k+3$, then $\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=(k, k+1, k+1, k+1)$ or $(k, k+1, k+2, k)$.
Proof of Theorem 1.4. Similarly, we denote $p^{(k, k)}=P_{\left(H_{(k, k)}, v_{2}\right)}, q^{(k, k)}=q_{\left(H_{(k, k)}, v_{2}\right)}, p^{(k-1, k+1)}=$ $P_{\left(H_{(k-1, k+1)}, v_{2}\right)}$, and $q^{(k-1, k+1)}=q_{\left(H_{(k-1, k+1)}, v_{2}\right)}$.

We will compare the spectral radius of all possible graphs listed in four cases above.

Case 1. $\sum_{i=1}^{4} k_{i}=4 k$.
First we prove

$$
\rho\left(T_{(k, k, k, k)}\right)=\rho\left(T_{(k, k, k+1, k-1)}\right)=\rho\left(T_{(k-1, k+1, k+1, k-1)}\right) .
$$

By Lemma 2.3, it is easy to see

$$
\rho\left(T_{(k, k, k, k)}\right)=\rho\left(T_{(k-1, k)}\right)=\rho\left(T_{(k-1, k+1, k+1, k-1)}\right) .
$$

Applying Lemma 2.7 to these graphs, we get

$$
\begin{aligned}
& \phi_{T_{(k, k, k, k)}}=p^{(k, k)} q^{(k)} x_{2}^{k-1}\left(x_{2}-x_{1}\right)\left(\frac{q^{(k, k)}}{p^{(k, k)}}-\frac{p^{(k)}}{q^{(k)}} x_{1}^{2 k-2}\right), \\
& \phi_{T_{(k, k, k+1, k-1)}}=p^{(k, k)} q^{(k-1)} x_{2}^{k}\left(x_{2}-x_{1}\right)\left(\frac{q^{(k, k)}}{p^{(k, k)}}-\frac{p^{(k-1)}}{q^{(k-1)}} x_{1}^{2 k}\right), \\
& \phi_{T_{(k, k, k+1, k-1)}}=p^{(k-1, k+1)} q^{(k)} x_{2}^{k-1}\left(x_{2}-x_{1}\right)\left(\frac{q^{(k-1, k+1)}}{p^{(k-1, k+1)}}-\frac{p^{(k)}}{q^{(k)}} x_{1}^{2 k-2}\right), \\
& \phi_{T_{(k-1, k+1, k+1, k-1)}}=p^{(k-1, k+1)} q^{(k-1)} x_{2}^{k}\left(x_{2}-x_{1}\right)\left(\frac{q^{(k-1, k+1)}}{p^{(k-1, k+1)}}-\frac{p^{(k-1)}}{q^{(k-1)}} x_{1}^{2 k}\right) .
\end{aligned}
$$

Let $\rho=\rho\left(T_{(k, k, k, k)}\right)=\rho\left(T_{(k-1, k+1, k+1, k-1)}\right)$ and $\rho^{\prime}=\rho\left(T_{(k, k, k+1, k-1)}\right)$. Write $J(\lambda)=p^{(k, k)}$ $q^{(k-1)} x_{2}^{k}\left(x_{2}-x_{1}\right)$ and $K(\lambda)=p^{(k-1, k+1)} q^{(k)} x_{2}^{k-1}\left(x_{2}-x_{1}\right)$. By Lemma 3.1, $J(\rho)>0$ and $K(\rho)>0$.

Note that ρ is the root of both equations

$$
\begin{equation*}
\frac{q^{(k, k)}}{p^{(k, k)}}=\frac{p^{(k)}}{q^{(k)}} x_{1}^{2 k-2} \quad \text { and } \quad \frac{q^{(k-1, k+1)}}{p^{(k-1, k+1)}}=\frac{p^{(k-1)}}{q^{(k-1)}} x_{1}^{2 k} \tag{27}
\end{equation*}
$$

Note that ρ^{\prime} is the root of both equations

$$
\begin{equation*}
\frac{q^{(k, k)}}{p^{(k, k)}}=\frac{p^{(k-1)}}{q^{(k-1)}} x_{1}^{2 k} \quad \text { and } \quad \frac{q^{(k-1, k+1)}}{p^{(k-1, k+1)}}=\frac{p^{(k)}}{q^{(k)}} x_{1}^{2 k-2} \tag{28}
\end{equation*}
$$

We have

$$
\begin{aligned}
\phi_{T_{(k, k, k+1, k-1)}}(\rho) & =\left.J(\rho)\left(\frac{p^{(k)}}{q^{(k)}} x_{1}^{2 k-2}-\frac{p^{(k-1)}}{q^{(k-1)}} x_{1}^{2 k}\right)\right|_{\rho} \\
& =\left.K(\rho)\left(\frac{p^{(k-1)}}{q^{(k-1)}} x_{1}^{2 k}-\frac{p^{(k)}}{q^{(k)}} x_{1}^{2 k-2}\right)\right|_{\rho}
\end{aligned}
$$

Thus, $\phi_{T_{(k, k, k+1, k-1)}}(\rho)^{2}=-\left.J(\rho) K(\rho)\left(x_{1}^{2 k-2} \frac{p^{(k)}}{q^{(k)}}-\frac{p^{(k-1)}}{q^{(k-1)}} x_{1}^{2 k}\right)^{2}\right|_{\rho} \leqslant 0$. We get $\phi_{T_{(k, k, k+1, k-1)}}(\rho)=0$. Similarly, we can prove $\phi_{T_{(k, k, k, k)}}\left(\rho^{\prime}\right)=0$. Hence, we get $\rho=\rho^{\prime}$.

Now we prove $\rho\left(T_{(k, k, k+1, k-1)}\right)<\rho\left(T_{(k, k+1, k, k-1)}\right)$. By Lemma 2.8, we have

$$
\phi_{T_{(k, k, k+1, k-1)}}-\phi_{T_{(k, k+1, k, k-1)}}=\left(x_{1}-x_{2}\right)\left(p^{(k)} q^{(k-1)}-q^{(k)} p^{(k-1)}\right)=d_{1} d_{2} \lambda^{2}\left(\lambda^{2}-1\right)^{2}>0
$$

for any $\lambda>\lambda_{0}$. So $\rho\left(T_{(k, k, k+1, k-1)}\right)<\rho\left(T_{(k, k+1, k, k-1)}\right)$. We are done in this case.

Case 2. $\sum_{i=1}^{4} k_{i}=4 k+1$.
Similarly, by Lemma 2.8, we have

$$
\begin{aligned}
\phi_{T_{(k, k+1, k, k)}}-\phi_{T_{(k, k+1, k+1, k-1)}} & =\left(x_{1}-x_{2}\right)\left(p^{(k, k+1)} q_{0}-q^{(k, k+1)} p_{0}\right) \\
& =\frac{\left(d_{2} x_{1}+1\right)\left(\lambda^{2}-1\right)^{2} x_{2}^{2 k+1}}{\left(x_{2}-x_{1}\right)^{3}}\left(d_{2}^{3}-2 d_{1} d_{2} x_{1}^{2 k+1}-d_{1}^{3} x_{1}^{4 k+2}\right) .
\end{aligned}
$$

Here we use proof by contradiction. Suppose $G_{n, n-8}^{\min }=T_{(k, k+1, k+1, k-1)}$. By Lemma 3.4, $d_{2}=$ $\sqrt{\bar{c} d_{1}} x_{1}^{k}$ at $\lambda=\rho\left(T_{(k, k+1, k+1, k-1)}\right)$. Note $\bar{c} \rightarrow \lambda_{0}$ as $n \rightarrow \infty$. When n is large enough, we will get $\bar{c}>(2+\epsilon) x_{1}$ for some constant $\epsilon>0$. Thus, we get

$$
d_{2}^{2}=\bar{c} d_{1} x_{1}^{2 k}>(2+\epsilon) d_{1} x_{1}^{2 k+1} .
$$

For n large enough, we have $\phi_{T_{(k, k+1, k, k)}}-\phi_{T_{(k, k+1, k+1, k-1)}}>0$ at $\lambda=\rho\left(T_{(k, k+1, k+1, k-1)}\right)$. Equivalently $\phi_{T_{(k, k+1, k, k)}}\left(\rho\left(T_{(k, k+1, k+1, k-1)}\right)\right)>0$. By Lemma 2.9, we get $\rho\left(T_{k, k+1, k, k}\right)<\rho\left(T_{k, k+1, k+1, k-1}\right)$. Contradiction! Hence, we have $G_{n, n-8}^{\min }=T_{k, k+1, k, k}$.

Case 3. $\sum_{i=1}^{4} k_{i}=4 k+2$. There is only one possible graph $T_{(k, k+1, k+1, k)}$.
Case 4. $\sum_{i=1}^{4} k_{i}=4 k+3$.
Similarly by Lemma 2.8, we have

$$
\begin{aligned}
\phi_{T_{(k, k+1, k+1, k+1)}}-\phi_{T_{(k, k+1, k+2, k)}} & =\left(x_{1}-x_{2}\right)\left(p^{(k, k+1)} q_{0}-q^{(k, k+1)} p_{0}\right) \\
& =\frac{\left(d_{2} x_{1}+1\right)\left(\lambda^{2}-1\right)^{2} x_{2}^{2 k+1}}{\left(x_{2}-x_{1}\right)^{3}}\left(d_{2}^{3}-2 d_{1} d_{2} x_{1}^{2 k+1}-d_{1}^{3} x_{1}^{4 k+2}\right) \\
& <\frac{\left(d_{2} x_{1}+1\right)\left(\lambda^{2}-1\right)^{2} x_{2}^{2 k+1}}{\left(x_{2}-x_{1}\right)^{3}}\left(d_{2}^{3}-2 d_{1} d_{2} x_{1}^{2 k+1}\right) \\
& =\frac{d_{2}\left(d_{2} x_{1}+1\right)\left(\lambda^{2}-1\right)^{2} x_{2}^{2 k+1}}{\left(x_{2}-x_{1}\right)^{3}}\left(d_{2}^{2}-2 d_{1} x_{1}^{2 k+1}\right) .
\end{aligned}
$$

We now suppose $G_{n, n-8}^{\min }=T_{(k, k+1, k+1, k+1)}$ in this case. By Lemma 3.4, $d_{2}=\sqrt{\bar{c} d_{1}} x_{1}^{k+1}$ at $\lambda=$ $\rho\left(T_{(k, k+1, k+1, k+1)}\right)$. Recall that $\bar{c} \rightarrow \lambda_{0}$ as $n \rightarrow \infty$. When n is large enough, we get $\bar{c}<2 x_{2}$. Thus $d_{2}=\sqrt{\overline{c d_{1}}} x_{1}^{k+1}<\sqrt{2 d_{1} x_{2}} x_{1}^{k+1}$. We get $\phi_{T_{(k, k+1, k+2, k)}}\left(\rho\left(T_{(k, k+1, k+1, k+1)}\right)\right)>0$. Applying Lemma 2.9 with $G_{2}=T_{(k, k+1, k+2, k)}$ and $G_{1}=T_{(k, k+1, k+1, k+1)}$, we have $\rho\left(T_{k, k+1, k+2, k}\right)<\rho\left(T_{k, k+1, k+1, k+1}\right)$. Contradiction! Hence $G_{n, n-8}^{\min }=T_{k, k+1, k+2, k}$. The proof is completed.

References

[1] A.E. Brouwer, A. Neumaier, The graphs with spectral radius between 2 and $\sqrt{2+\sqrt{5}}$, Linear Algebra Appl. 115 (1989) $273-276$.
[2] S.M. Cioabǎ, E.R. van Dam, J.H. Koolen, J. Lee, Asymptotic results on the spectral radius and the diameter of graphs, Linear Algebra Appl. 432 (2010) 722-737.
[3] E.R. van Dam, R.E. Kooij, The minimal spectral radius of graphs with a given diameter, Linear Algebra Appl. 423 (2007) 408-419.
[4] D.M. Cvetković, M. Doob, I. Gutman, On graphs whose spectral radius does not exceed ($2+\sqrt{5})^{1 / 2}$, Ars Combin. 14 (1982) 225-239.
[5] X. Yuan, J. Shao, Y. Liu, The minimal spectral radius of graphs of order n with diameter $n-4$, Linear Algebra Appl. 428 (2008) 2840-2851.
[6] D.M. Cvetković, M. Doob, H. Sachs, Spectra of graphs, in: Theory and Application, 15th ed., Academic Press, New York, 1980.
[7] A.J. Hoffman, J.H. Smith, On the spectral radii of topologically equivalent graphs, in: Fiedler (Ed.), Recent Advances in Graph Theory, Academia Praha, New York, 1975, pp. 273-281.
[8] A. Hoffman, On limit points of spectral radii of non-negative symmetrical integral matrices, in: Lecture Notes in Mathematics, vol. 303, Springer, Berlin, 1972, pp. 165-172.
[9] B.N. Parlett, The Symmetric Eigenvalue Problems, Prentice-Hall, Englewood Cliffs, NJ, 1980.
[10] J.H. Smith, Some properties of the spectrum of a graph, in: Combinatorial Structures and their Applications, Gordan and Breach, New York, 1970.
[11] X. Sun, Sorting graphs with given diameter by spectral radius, Master Thesis, Tsinghua University, 2008 (in Chinese).
[12] J. Wang, Q. Huang, X. An, F. Belardo, Some notes on graphs whose spectral radius is close to $\frac{3}{2} \sqrt{2}$, Linear Algebra Appl. 429 (2008) 1606-1618.
[13] R. Woo, A. Neumaier, On graphs whose spectral radius is bounded by $\frac{3}{2} \sqrt{2}$, Graphs Combin. 23 (2007) 713-726.
[14] A.J. Schwenk, Computing the characteristic polynomial of a graph, in: Graphs and Combinatorics, Lecture Notes in Mathematics, vol. 406, 1974, pp. 153-172.
[15] Q. Li, K. Feng, On the largest eigenvalue of graph, Acta Math. Appl. Sinica 2 (1979) 167-175. (in Chinese).
[16] A.E. Brouwer, W.H. Haemers, Spectra of Graphs, Springer, 2011.

[^0]: * Corresponding author.

 E-mail addresses: lanjf07@mails.tsinghua.edu.cn (J. Lan), lu@math.sc.edu (L. Lu), lshi@math.tsinghua.edu.cn (L. Shi).
 ${ }^{1}$ This author was supported in part by NSF Grant DMS 1000475.
 ${ }^{2}$ This author was supported in part by NSFC Grant 10701046.

[^1]: 3 Conjecture 5.5 of [2] contains a typo: "... $P_{2,1,1,2, n-6}^{2,\left\lfloor\frac{D-2}{3}\right\rfloor, D-\left\lfloor\frac{D-2}{3}\right\rfloor, D-2} \ldots$..

