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The spectral radius ρ(G) of a graph G is the largest eigenvalue of

its adjacency matrix A(G). For a fixed integer e≥ 1, let Gmin
n,n−e be a

graphwithminimal spectral radius among all connected graphs onn

verticeswith diameter n−e. Let Pm1,m2,...,mt
n1,n2,...,nt ,p

be a tree obtained from

a path of p vertices (0 ∼ 1 ∼ 2 ∼ · · · ∼ (p − 1)) by linking one

pendant path Pni atmi for each i ∈ {1, 2, . . . , t}. For e= 1, 2, 3, 4, 5,

Gmin
n,n−e were determined in the literature. Cioabǎ et al. [2]

conjectured for fixed e� 6, Gmin
n,n−e is in the family Pn,e =

{P2,m2,...,me−4,n−e−2
2,1,...,1,2,n−e+1 | 2 < m2 < · · · < me−4 < n − e − 2}.

For e= 6, 7, they conjectured Gmin
n,n−6 = P

2,� D−1
2

�,D−2

2,1,2,n−5 and Gmin
n,n−7 =

P
2,� D+2

3
�,D−� D+2

3
�,D−2

2,1,1,2,n−6 . In this paper, we settle their conjectures posi-

tively.Note that any tree inPn,e isuniquelydeterminedby its internal

path lengths. For any e − 4 non-negative integers k1, k2, . . . , ke−4,

let T(k1,k2,...,ke−4) = P
2,m2,...,me−4,n−e−2
2,1,...,1,2,n−e+1 with ki =mi+1 −mi − 1, for

1� i� e − 4. (Here we assume m1 = 2 and me−3 = n − e − 2.)

Let s=
∑e−4

i=1 ki+2

e−4
. For any integer e� 6 and sufficiently large n, we

prove that Gmin
n,n−e must be one of the trees T(k1,k2,...,ke−4) with the

parameters satisfying �s� − 1� kj � �s� � ki � �s� + 1 for j= 1,
e − 4 and i= 2, . . . , e − 5. Moreover, 0≤ ki − kj ≤ 2 for 2≤ i≤
e − 5, j= 1, e − 4; and |ki − kj| ≤ 1 for 2≤ i, j≤ e − 5. These re-

sults are best possible as shown by cases e= 6, 7, 8, where Gmin
n,n−e

are completely determined here. Moreover, if n − 6 is divisible by

e − 4 and n is sufficiently large, then Gmin
n,e = T(k−1,k,k,...,k,k,k−1)

where k= n−6
e−4

− 2.
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1. Introduction

LetG = (V, E)beasimpleconnectedgraph, andA(G)be theadjacencymatrixofG. The characteristic

polynomial of G is defined by φG(λ) = det(λI − A(G)). The spectral radius, denoted by ρ(G), is the

largest root of φG . The problem of determining graphs with small spectral radius can be traced back

to Hoffman and Smith [7,8,10]. Smith completely determined all connected graphs G with ρ(G) � 2.

The connected graphs with ρ(G) < 2 are precisely simple Dynkin Diagrams An, Dn, E6, E7, and E8.

The connected graphs with ρ(G) = 2 are exactly those simple extended Dynkin Diagrams Ãn, D̃n, Ẽ6,

Ẽ7, and Ẽ8. Note An := Pn (paths) and Ãn := Cn (cycles). The rest of (extended) Dynkin Diagrams are

drawn in Fig. 1 (for the details of Dynkin Diagrams, see [16]).

Cvetković et al. [4] gave a nearly complete description of all graphs G with 2 < ρ(G) �
√
2 + √

5.

Their description was completed by Brouwer and Neumaier [1]. Those graphs are some special trees

with atmost two vertices of degree 3.Wang et al. [12] studied somegraphswith spectral radius close to

3
2

√
2.Woo andNeumaier [13] determined the structures of graphs Gwith

√
2 + √

5 � ρ(G) � 3
2

√
2;

if G has maximum degree at least 4, then G is a dagger (i.e., a path is attached to a leaf of a star S4); if G

is a tree with maximum degree at most 3, then G is an open quipu (i.e., the vertices of degree 3 lies on

a path); else G is a closed quipu (i.e., a unicyclic graph with maximum degree at most 3 satisfies that

the vertices of degree 3 lies on a cycle).

Van Dam and Kooij [3] used the following notation to denote an open quipu. Let Pm1,m2,...,mt
n1,n2,...,nt,p

be a

tree obtained from a path on p vertices (0 ∼ 1 ∼ 2 ∼ · · · ∼ (p − 1)) by linking one pendant path

Pni at mi for i = 1, 2, . . . , t (see Fig. 2.) The path 0 ∼ 1 ∼ 2 ∼ · · · ∼ (p − 1) is called main path. For

i = 1, . . . , t − 1, let P(i) be the ith internal path (mi ∼ mi+1 ∼ · · · ∼ mi+1) and ki = mi+1 −mi − 1

be the number of internal vertices on P(i). In general, an internal path in G is a path v0 ∼ v1 ∼ · · · ∼ vs
such that d(v0) > 2, d(vs) > 2, and d(vi) = 2, whenever 0 < i < s. An internal path is closed if

v0 = vs.

Van Dam and Kooij [3] asked an interesting question “which connected graph of order n with a

given diameter D has minimal spectral radius?”. The diameter of a connected graph is the maximum

distance among all pairs of its vertices. They [3] solved this problemexplicitly for graphswith diameter

Fig. 1. Dynkin Diagrams.

Fig. 2. Pm1,m2,...,mt
n1,n2,...,nt ,p
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D ∈ {1, 2, �n/2�, n − 3, n − 2, n − 1}. The cases D = 1 and D = n − 1 are trivial. Aminimizer graph,

denoted by Gmin
n,D , is a graph that has the minimal spectral radius among all the graphs of order n and

diameterD. VanDamandKooij [3] proved thatGmin
n,2 is either a star or aMooregraph;Gmin

n,�n/2� is the cycle

Cn;G
min
n,n−2 is the tree P

1
1,n−1;G

min
n,n−3 is the tree P

1,n−4
1,1,n−2. They conjecturedGmin

n,n−e = P
� e−1

2
�,n−e−� e−1

2
�

� e−1
2

�,� e−1
2

�,n−e+1

for any constant e � 1 and n large enough.

The case e = 4 was proved by Yuan et al. [5], and also independently by Cioabǎ et al. [2]. Cioabǎ et

al. actually proved more results: they settled the case e = 5 and disproved the case e � 6. (The case

e � 6 was also disproved independently by Sun [11].) Cioabǎ et al. [2] proved the following theorem.

Theorem 5.2 of [2] For e ≥ 6, ρ(Gmin
n,n−e) →

√
2 + √

5 as n → ∞. Moreover Gmin
n,n−e is contained in one

of the following three families of graphs

Pn,e =
{
P
2,m2,...,me−4,n−e−2
2,1,...,1,2,n−e+1 | 2 < m2 < · · · < me−4 < n − e − 2

}
,

P ′
n,e =

{
P
2,m2,...,me−3,n−e−1
2,1,...,1,1,n−e+1 | 2 < m2 < · · · < me−3 < n − e − 1

}
,

P ′′
n,e =

{
P
1,m2,...,me−2,n−e−1
1,1,...,1,1,n−e+1 | 1 < m2 < · · · < me−2 < n − e − 1

}
.

Cioabǎ et al. [2] made three conjectures.

Conjecture 1 [2, 5.3]. For fixed e � 5, a minimizer graph with n vertices and diameter D = n − e is in

the family Pn,e, for n large enough.

Conjecture 2 [2, 5.4]. The graph P
2,� D−1

2
�,D−2

2,1,2,n−5 is the uniqueminimizer graphwith n vertices and diameter

D = n − 6, for n large enough.

Conjecture 3 [2, 5.5]. The graph P
2,� D+2

3
�,D−� D+2

3
�,D−2

2,1,1,2,n−6 is the unique minimizer graph with n vertices and

diameter D = n − 7, for n large enough. 3

In this paper, we settle these three conjectures positively.

Note that graphs in each family can be determined by the lengths of internal paths (see Fig. 3).

The parameters ki’s and mi’s are related as follows. In the first family Pn,e, T(k1,k2,...,ke−4) =
P
2,m2,...,me−4,n−e−2
2,1,...,1,2,n−e+1 if ki = mi+1 −mi − 1 for 1 � i � e− 4, wherem1 = 2 andme−3 = n− e− 2. In

the second family P ′
n,e, T

′
(k1,k2,...,ke−3)

= P
2,m2,...,me−3,n−e−1
2,1,...,1,1,n−e+1 if ki = mi+1 − mi − 1 for 1 � i � e − 3,

wherem1 = 2 andme−2 = n − e − 1. In the third family P ′′
n,e, T

′′
(k1,k2,...,ke−2)

= P
1,m2,...,me−2,n−e−1
1,1,...,1,1,n−e+1 if

ki = mi+1 − mi − 1 for 1 � i � e − 2, where m1 = 1 and me−1 = n − e − 1. In all three cases, the

summation of all ki’s is always equal to n − 2e.

We have the following theorem.

Theorem 1.1. For any e ≥ 6 and sufficiently large n, Gmin
n,n−e must be a tree T(k1,k2,...,ke−4) inPn,e satisfying

1. �s� − 1 � kj � �s� � ki � �s� + 1 for 2 � i � e − 5 and j = 1, e − 4, where s = n−6
e−4

− 2.

2. 0 ≤ ki − kj ≤ 2 for 2 ≤ i ≤ e − 5 and j = 1, e − 4.

3. |ki − kj| ≤ 1 for 2 ≤ i, j ≤ e − 5.

In particular, if n − 6 is divisible by e − 4, then Gmin
n,n−e = T(s−1,s,...,s,s−1).

3 Conjecture 5.5 of [2] contains a typo: “…P
2,� D−2

3
�,D−� D−2

3
�,D−2

2,1,1,2,n−6 …”.
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Fig. 3. The three families of graphs: Pn,e , P ′
n,e ,P ′′

n,e .

Here we completely determine the Gmin
n,n−e for e = 6, 7, 8 and settle the Conjectures 2 and 3

positively.

Theorem 1.2. For e = 6 and n large enough, Gmin
n,n−e is unique up to a graph isomorphism.

1. If n = 2k + 12, then Gmin
n,n−6 = T(k,k).

2. If n = 2k + 13, then Gmin
n,n−6 = T(k,k+1).

Theorem 1.3. For e = 7 and n large enough, Gmin
n,n−e is unique up to a graph isomorphism.

1. If n = 3k + 14, then Gmin
n,n−7 = T(k,k,k).

2. If n = 3k + 15, then Gmin
n,n−7 = T(k,k+1,k).

3. If n = 3k + 16, then Gmin
n,n−7 = T(k,k+2,k).

Theorem 1.4. For e = 8 and n large enough, Gmin
n,n−e is determined up to a graph isomorphism as follows.

1. If n = 3k + 16, then Gmin
n,n−8 = T(k,k,k,k), T(k,k,k+1,k−1), or T(k−1,k+1,k+1,k−1); all three trees have

the same spectral radius.

2. If n = 3k + 17, then Gmin
n,n−8 = T(k,k+1,k,k).

3. If n = 3k + 18, then Gmin
n,n−8 = T(k,k+1,k+1,k).

4. If n = 3k + 19, then Gmin
n,n−8 = T(k,k+1,k+2,k).

For e = 6, Theorem 1.2 is an easy corollary of Theorem 1.1. Theorem 1.3 and Theorem 1.4 show that

the bounds on ki’s in Theorem 1.1 are best possible.

The remaining of the paper is organized as follows. In Section 2, we prove some useful lemmas.

The proof of Theorem 1.1 is presented in Section 3 and the proof of Theorem 1.3 and 1.4 are given in

Section 4.
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2. Basic notations and lemmas

2.1. Preliminary results

For any vertex v in a graph G, let N(v) be the neighborhood of v. Let G − v be the remaining graph

of G after deleting the vertex v (and all edges incident to v). Similarly, G−u− v is the remaining graph

of G after deleting two vertices u, v. Here are some basic facts found in literature [14,6,7,9,11], which

will be used later.

Lemma 2.1 [14]. Suppose that G is a connected graph. If v is not in any cycle of G, then φG = λφG−v −∑
w∈N(v) φG−w−v. If e = uv is a cut edge of G, then φG = φG−e − φG−u−v.

Lemma 2.2. Let G1 and G2 be two graphs, then the following statements hold:

1. [6] If G1 is connected and G2 is a proper subgraph of G1, then ρ(G1) > ρ(G2).
2. [15] If G1 is connected and G2 is a spanning proper subgraph of G1, then ρ(G1) > ρ(G2) and

φG2
(λ) > φG1

(λ) for all λ ≥ ρ(G1).
3. If φG2

(λ) > φG1
(λ) for all λ ≥ ρ(G1), then ρ(G2) < ρ(G1).

4. If φG1
(ρ(G2)) < 0,then ρ(G1) > ρ(G2).

Lemma 2.3 [11]. Let G1 and G2 be two (possibly single-vertex) connected graphs with a ∈ V(G1) and

b ∈ V(G2), and let H1 and H2 be two graphs shown in Fig. 4. Then ρ(H1) = ρ(H2).

Proof. Applying Lemma 2.1 to H1 with the cut edge v1v2, we get

φ(H1) = φ(G1—•)φ(G1— • — • —G2) − φ(G1)φ(G2)φ(G1—•)

= φ(G1—•) (φ(G1— • — • —G2) − φ(G1)φ(G2)) .

Since G1 and G2 are connected, H1 is connected. Note G1—• is a subgraph of H1. By Lemma 2.2 item 1,

we have ρ(H1) > ρ(G1—•). Thus, ρ(H1) is the largest root of

φ(G1— • — • —G2) − φ(G1)φ(G2). (1)

Note the expression (1) is symmetric on G1 and G2. By symmetry, ρ(H2) is also the largest root of the

expression (1). Therefore ρ(H1) = ρ(H2). The proof of the lemma is finished. �

Lemma 2.4 [7]. Let uv be an edge of a connected graph G of order n, and denote by Gu, v the graph obtained

from G by subdividing the edge uv once, i.e., adding a new vertex w and edges wu,wv in G − uv. Then the

following two properties hold:

1. If uv does not belong to an internal path of G and G �= Cn, then ρ(Gu, v) > ρ(G).

2. If uv belongs to an internal path of G and G �= P
1,n−2
1,1,n , then ρ(Gu, v) < ρ(G).

Fig. 4. The graphs H1 and H2.
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Fig. 5. For i = 1, 2, 3, three graphs (Gi, v) are constructed from (H, v′).

Theorem 2.1 (Cauchy Interlace Theorem [16]). Let A be a Hermitian matrix of order n, and let B be

a principal submatrix of A of order n − 1. If λn � λn−1 � · · · � λ1 lists the eigenvalues of A and

μn−1 � μn−2 � · · · � μ1 lists the eigenvalues of B, then

λn � μn−1 � λn−1 � · · · � λ2 � μ1 � λ1.

Applying Cauchy Interlace Theorem to the adjacency matrices of graphs, we have the following

corollary.

Corollary 2.1. Suppose G is a connected graph. Let λ2(G) be the second largest eigenvalue of G. For any

vertex v, we have

λ2(G) < ρ(G − v) < ρ(G).

2.2. Our approach

A rooted graph (G, v) is a graph G together with a designated vertex v as a root. For i = 1, 2, 3 and

a given rooted graph (H, v′), we get a new rooted graph (Gi, v) from H by attaching a path Pi to v′ and
changing the root from v′ to v as shown in Fig. 5.

Note that any tree in the three families Pn,e, P ′
n,e, P ′′

n,e can be built up from a single vertex through

a sequence of three operations above. Applying Lemma 2.1, we observe that the pair (φGi
, φGi−v)

linearly depends on (φH, φH−v′) with coefficients in Z[λ]. We can choose proper base to diagonalize

the operation from (H, v′) to (Gi, v).

Let λ0 be the constant

√
2 + √

5 = 2.058 . . .. In this paper, we consider only the range λ � λ0.

Let x1 and x2 be two roots of the equation x2 − λx + 1 = 0. We have

x1 = λ − √
λ2 − 4

2
, x2 = λ + √

λ2 − 4

2

and

x1 + x2 = λ, x1x2 = 1. (2)

For any vertex v in a graph G, we define two functions (of λ) p(G,v) and q(G,v) satisfying

φG = p(G,v) + q(G,v),

φG−v = x2p(G,v) + x1q(G,v).

This definition can be written in the following matrix form:

⎛
⎝ φG

φG−v

⎞
⎠ =

⎛
⎝ 1 1

x2 x1

⎞
⎠

⎛
⎝ p(G,v)

q(G,v)

⎞
⎠ . (3)
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Using Eq. (2), we can solve p(G,v) and q(G,v) and get

⎛
⎝ p(G,v)

q(G,v)

⎞
⎠ = 1

x2 − x1

⎛
⎝ −x1 1

x2 −1

⎞
⎠

⎛
⎝ φG

φG−v

⎞
⎠ . (4)

For example, let v be the center of the odd path P2k+1. We have

⎛
⎝p(P1,v)

q(P1,v)

⎞
⎠ = 1

x2 − x1

⎛
⎝−x21

x22

⎞
⎠ , (5)

⎛
⎝p(P3,v)

q(P3,v)

⎞
⎠ = λ

⎛
⎝x21
x22

⎞
⎠ , (6)

⎛
⎝p(P5,v)

q(P5,v)

⎞
⎠ = λ2 − 1

x2 − x1

⎛
⎝(λ − x31)x1

(x32 − λ)x2

⎞
⎠ . (7)

We have the following lemma.

Lemma 2.5. For any tree G and any vertex v, we have

lim
λ→+∞ q(G,v)(λ) = +∞. (8)

Proof. From Lemma 2.1, we have

φG = λφG−v − ∑
w∈N(v)

φG−w−v.

By Eq. (4), we get

q(G,v) = 1

x2 − x1
(x2φG − φG−v)

= 1

x2 − x1

⎛
⎝x2

⎛
⎝λφG−v − ∑

w∈N(v)

φG−w−v

⎞
⎠ − φG−v

⎞
⎠

= 1

x2 − x1

⎛
⎝(λx2 − 1)φG−v − x2

∑
w∈N(v)

φG−w−v

⎞
⎠

= x2

x2 − x1

⎛
⎝x2φG−v − ∑

w∈N(v)

φG−w−v

⎞
⎠ .

Note thatφG−v is a polynomial of degree n−1with highest coefficient 1whileφG−w−v is a polynomial

of degree n − 2 with highest coefficient 1. Since x2 > 1 > x1, we have x2φG−v − ∑
w∈N(v) φG−w−v

goes to infinity as λ approaches infinity. �

Lemma 2.6. Let G1, G2, G3 be the graphs shown in Fig. 5. Then the following equations hold:

1.

⎛
⎝ p(G1,v)

q(G1,v)

⎞
⎠ =

⎛
⎝ x1 0

0 x2

⎞
⎠

⎛
⎝ p(H,v′)

q(H,v′)

⎞
⎠ .
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2.

⎛
⎝ p(G2,v)

q(G2,v)

⎞
⎠ = 1

x2 − x1

⎛
⎝ λ − x31 x1

−x2 x32 − λ

⎞
⎠

⎛
⎝ p(H,v′)

q(H,v′)

⎞
⎠ .

3.

⎛
⎝ p(G3,v)

q(G3,v)

⎞
⎠ = 1

x2 − x1

⎛
⎝ −x41 + λ2 − 1 λx1

−λx2 x42 − λ2 + 1

⎞
⎠

⎛
⎝ p(H,v′)

q(H,v′)

⎞
⎠ .

Proof. By Lemma 2.1, we have

⎛
⎝ φG1

φG1−v

⎞
⎠ =

⎛
⎝ λ −1

1 0

⎞
⎠

⎛
⎝ φH

φH−v′

⎞
⎠ .

Combining it with Eqs. (3) and (4), we get

⎛
⎝ p(G1,v)

q(G1,v)

⎞
⎠ =

⎛
⎝ 1 1

x2 x1

⎞
⎠

−1 ⎛
⎝ λ −1

1 0

⎞
⎠

⎛
⎝ 1 1

x2 x1

⎞
⎠

⎛
⎝ p(H,v′)

q(H,v′)

⎞
⎠

= 1

x2 − x1

⎛
⎝ 2 − λx1 x21 − λx1 + 1

−x22 + λx2 − 1 λx2 − 2

⎞
⎠

⎛
⎝ p(H,v′)

q(H,v′)

⎞
⎠

=
⎛
⎝ x1 0

0 x2

⎞
⎠

⎛
⎝ p(H,v′)

q(H,v′)

⎞
⎠ .

The proofs of items 2 and 3 are similar as that of item 1. �

We denote the three matrices by A, B, and C. Namely,

A =
⎛
⎝ x1 0

0 x2

⎞
⎠ , B = 1

x2 − x1

⎛
⎝ λ − x31 x1

−x2 x32 − λ

⎞
⎠ ,

C = 1

x2 − x1

⎛
⎝ −x41 + λ2 − 1 λx1

−λx2 x42 − λ2 + 1

⎞
⎠ .

The diagonal elements of B are very useful parameters. To simplify our notations later, we define

two parameters d1 and d2 as follows:

d1 = λ − x31, (9)

d2 = x32 − λ. (10)

Note that d2 = 0 if λ = λ0. The Eq. (7) can be written as

⎛
⎝p(P5,v)

q(P5,v)

⎞
⎠ = λ2 − 1

x2 − x1

⎛
⎝d1x1
d2x2

⎞
⎠ . (11)
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Fig. 6. The graph (H1, v1) · P1 · (H2, v2).

Fig. 7. The graph Gi,j .

From the definitions of d1 and d2, we can derive the following identity:

d1x2 − d2x1 = 2. (12)

Given two rooted graphs (H1, v1) and (H2, v2), we define some new graphs. Denote by (H1, v1) · Pi,
the graph consisting of the graph H1 and a path Pi linking one of its ends at the vertex v1. Similarly

denote by (H1, v1) · Pi · (H2, v2) the graph consisting of graphs H1,H2 and a path Pi linking the two

ends at v1, v2 respectively.

Lemma 2.7. φ(H1,v1)·P1·(H2,v2)(λ) = (x2 − x1)(q(H1,v1)q(H2,v2) − p(H1,v1)p(H2,v2)).

Proof. By Lemmas 2.1 and Eq. (3), we have

φ(H1,v1)·P1·(H2,v2)(λ)

= λφH1
φH2

− φH1−v1φH2
− φH2−v2φH1

= (x1 + x2)(p(H1,v1) + q(H1,v1))(p(H2,v2) + q(H2,v2)) − (p(H1,v1)x2 + q(H1,v1)x1)

(p(H2,v2) + q(H2,v2)) − (p(H1,v1) + q(H1,v1))(p(H2,v2)x2 + q(H2,v2)x1)

= (p(H2,v2) + q(H2,v2))(p(H1,v1)x1 + q(H1,v1)x2) − (p(H1,v1) + q(H1,v1))(p(H2,v2)x2 + q(H2,v2)x1)

= p(H2,v2)p(H1,v1)x1 + q(H2,v2)q(H1,v1)x2 − p(H2,v2)p(H1,v1)x2 − q(H2,v2)q(H1,v1)x1

= (x2 − x1)(q(H1,v1)q(H2,v2) − p(H1,v1)p(H2,v2)). �

Lemma 2.8. Let Gi,j be the graph shown in Fig. 7 where i, j are the numbers of included vertices. Then

φGi,j − φGi+1,j−1
= (x1 − x2)

(
p(H1,v1)q(H2,v2)x

j−i−1
2 − q(H1,v1)p(H2,v2)x

j−i−1
1

)
.

Proof. By Lemma 2.1, we have

φGi,j = λφ(H1,v1)·Pi+j+1·(H2,v2) − φ(H1,v1)·Piφ(H2,v2)·Pj ,
φGi+1,j−1

= λφ(H1,v1)·Pi+j+1·(H2,v2) − φ(H1,v1)·Pi+1
φ(H2,v2)·Pj−1

.

Thus, we get
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φGi,j − φGi+1,j−1
= φ(H1,v1)·Pi+1

φ(H2,v2)·Pj−1
− φ(H1,v1)·Piφ(H2,v2)·Pj

=
(
p(H1,v1)x

i+1
1 + q(H1,v1)x

i+1
2

) (
p(H2,v2)x

j−1
1 + q(H2,v2)x

j−1
2

)
−

(
p(H1,v1)x

i
1 + q(H1,v1)x

i
2

) (
p(H2,v2)x

j
1 + q(H2,v2)x

j
2

)
= p(H1,v1)q(H2,v2)

(
x
i+1
1 x

j−1
2 − xi1x

j
2

)
+ q(H1,v1)p(H2,v2)

(
x
j−1
1 x

i+1
2 − x

j
1x

i
2

)
= xi1x

i
2

[
p(H1,v1)q(H2,v2)(x1x

j−i−1
2 − x

j−i
2 ) + q(H1,v1)p(H2,v2)(x

j−i−1
1 x2 − x

j−i
1 )

]
= (x1 − x2)

(
p(H1,v1)q(H2,v2)x

j−i−1
2 − q(H1,v1)p(H2,v2)x

j−i−1
1

)
.

The proof is completed. �

Lemma 2.9. Suppose G1 and G2 are two connected graphs satisfying G1 −u1 = G2 −u2 for some vertices

u1 ∈ V(G1) and u2 ∈ V(G2). If φG2
(ρ(G1)) > 0, then ρ(G1) > ρ(G2).

Proof. Let G = G1 − u1 = G2 − u2. By Corollary 2.1, we have

ρ(Gi) > ρ(G) � λ2(Gi) for i = 1, 2.

Here λ2(Gi) is the second largest eigenvalue of Gi. We have ρ(G1) > λ2(G2).
Since ρ(G2) is a simple root and lim

λ→∞ φG2
(λ) = +∞, we have

φG2
(λ) < 0 for λ ∈ (λ2(G2), ρ(G2)).

Since φG2
(ρ(G1)) > 0 and ρ(G1) > λ2(G2), we must have ρ(G1) > ρ(G2). �

2.3. A special tree T(k−1,k,...,k,k−1)

The tree T(k−1,k,...,k,k−1) (∈ Pn,e) plays an important role in this paper. We have the following

lemma.

Lemma 2.10. The spectral radius of the tree T(k−1,k,...,k,k−1) is the unique root ρk of the equation d2 =
2xk1

1−x
k+1
1

in the interval

(√
2 + √

5, ∞
)
.

Remark 1. The following equations are equivalent to one another.

d2 = 2xk1

1 − x
k+1
1

,

d2x
k
2 − d1x

k
1 = 2,

d2 = d1x
k−1
1 ,

d2x
k−1
2

2 = d1x
k−1
2

1 ,

d2 = 2xk1 + d1x
2k
1 .

If “=” is replaced by “�”, then these inequalities are still equivalent to each other. These equivalences

can be proved by Eq. (12). The details are omitted.

Remark 2. For any k � 4, we have ρk ≤ ρ4 < 3
2

√
2. For any e � 6 and n � (k + 2)(e − 4) + 6, we

can obtain a tree T on n vertices and diameter n − e by subdividing some edges on internal paths of
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T(k−1,k,...,k,k−1). By Lemma 2.4, we have

ρ(T) � ρ(T(k−1,k,...,k,k−1)) = ρk <
3

2

√
2.

In particular, for e � 6 and n � (k + 2)(e − 4) + 6 = |T(k−1,k,...,k,k−1)|, we have ρ(Gmin
n,n−e) < 3

2

√
2.

In the set of graphs with spectral radius at most

√
2 + √

5 (see [1]), there is no graph with diameter

n − e for e � 6. Thus, ρ(Gmin
n,n−e) �

√
2 + √

5.

Proof of Lemma 2.10. Let G = T(k−1,k,...,k,k−1) and v be the leftmost vertex. Note that G can be built

up from a single vertex with a series of three operations as specified in Lemma 2.6. We have

φG = (1, 1)

⎛
⎝ p(T(k−1,k,...,k,k−1),v)

q(T(k−1,k,...,k,k−1),v)

⎞
⎠

= (1, 1)A2CAk−1BAk . . . BAk−1CA

⎛
⎝ 1 1

x2 x1

⎞
⎠

−1 ⎛
⎝ λ

1

⎞
⎠

= (λ2 − 1)2

x2 − x1
(−d1, d2)A

k−1BAk . . . BAk−1

⎛
⎝ d1x1

d2x2

⎞
⎠

= (λ2 − 1)2

x2 − x1
(−d1, d2)A

k−1BAk . . . BAk

⎛
⎝ d1

d2

⎞
⎠ .

Let l = k−1
2

; l does not have to be an integer. Define Al =
⎛
⎝ xl1 0

0 xl2

⎞
⎠. We can write φG as

φG = (λ2 − 1)2

x2 − x1
(−d1x

l
1, d2x

l
2)(A

lBAl+1)r−1

⎛
⎝ d1x

l
1

d2x
l
2

⎞
⎠ . (13)

It is easy to calculate

AlBAl+1 = 1

x2 − x1

⎛
⎝ d1x

k
1 1

−1 d2x
k
2

⎞
⎠ . (14)

Nowwe prove that ρk is a root of φG . At λ = ρk , we have d1x
l
1 = d2x

l
2 and d1x

k
1 + 1 = d2x

k
2 − 1. Thus

(AlBAl+1)

⎛
⎝ 1

1

⎞
⎠ = 1

x2 − x1

⎛
⎝ d1x

k
1 1

−1 d2x
k
2

⎞
⎠

⎛
⎝ 1

1

⎞
⎠

= d1x
k
1 + 1

x2 − x1

⎛
⎝ 1

1

⎞
⎠ .

We have
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Fig. 8. The graphs T ′′
(i,k,j) .

φG(ρk) = (λ2 − 1)2

x2 − x1
(−d1x

l
1, d2x

l
2)(A

lBAl+1)r−1

⎛
⎝ d1x

l
1

d2x
l
2

⎞
⎠

= (λ2 − 1)2

(x2 − x1)r
(d1x

k
1 + 1)r−1d21x

k−1
1 (−1, 1)

⎛
⎝ 1

1

⎞
⎠

= 0.

It remains to prove φG(λ) > 0 for any λ > ρk . When λ > ρk , we have d2x
k
2 − 1 > d1x

k
1 + 1 (and

d2x
l
2 > d1x

l
1). It is easy to check AlBAl+1 maps the region {(z1, z2) : z2 � z1 > 0} to {(z1, z2) : z2 >

z1 > 0}. By induction on r, (AlBAl+1)r−1 maps the region {(z1, z2) : z2 � z1 > 0} to {(z1, z2) : z2 >
z1 > 0}. Let

⎛
⎝ z1

z2

⎞
⎠ = (AlBAl+1)r−1

⎛
⎝ d1x

l
1

d2x
l
2

⎞
⎠ .

Since d2x
l
2 > d1x

l
1 > 0, we have z2 > z1 > 0. From Eq. (13), we get

φG = (λ2 − 1)2

x2 − x1
(−d1x

l
1, d2x

l
2)(A

lBAl+1)r−1

⎛
⎝ d1x

l
1

d2x
l
2

⎞
⎠

= (λ2 − 1)2

x2 − x1
(−d1x

l
1, d2x

l
2)

⎛
⎝ z1

z2

⎞
⎠

= (λ2 − 1)2

x2 − x1
(d2x

l
2z2 − d1x

l
1z1)

> 0.

The proof of the lemma is finished. �

2.4. Limit points of some graphs

Using the tools developed in the previous section, we can compute the limit point of the spectral

radius of some graphs.

Lemma 2.11. Let T ′′
(i,k,j) be the tree shown in Fig. 8 and ρ′′

k be the unique root of d2 = xk1 in the interval(√
2 + √

5, +∞
)
. Then lim

i,j→∞ ρ(T ′′
(i,k,j)) = ρ′′

k .

Proof. By Lemma 2.4, we have

ρ(T ′′
(i,k,i)) � ρ(T ′′

(i,k,j)) � ρ(T ′′
(j,k,j)) if i � j.
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Fig. 9. The graph T ′′(k, i).

Fig. 10. The graph T ′(k, j).

It suffices to show lim
l→∞ ρ(T ′′

(l,k,l)) = ρ′′
k . Let v be the leftmost vertex of T ′′

(l,k,l). A simple calculation

shows

φT ′′
(l,k,l)

= (1, 1)

⎛
⎜⎝ p(T ′′

(l,k,l),v)

q(T ′′
(l,k,l),v)

⎞
⎟⎠

= (1, 1)ABAlBAkBAlB

⎛
⎝ 1 1

x2 x1

⎞
⎠

−1 ⎛
⎝ λ

1

⎞
⎠

= x
2l−k+1
2 (d2x2 + x21)

2

(x2 − x1)5

[
((d2x

k
2)

2 − 1) − 2x
2l−k+3
1 (d1x

k
1 + d2x

k
2)

−x
2(2l−k+3)
1 ((d1x

k
1)

2 − 1)
]
.

As l goes to infinity, lim
l→∞ ρ(T ′′

(l,k,l)) is the largest root of (d2x
k
2)

2 − 1 = 0; namely d2 = xk1. The

proof is completed. �

We have the following corollary from Lemma 2.11.

Corollary 2.2. Let T ′′
(k,i) be the tree shown in Fig. 9. We have lim

i→∞ ρ(T ′′
(k,i)) = ρ′′

2k+3.

Proof. By Lemma 2.3, we have ρ(T ′′
(k,i)) = ρ(T ′′

(i,2k+3,i)). Thus lim
i→∞ ρ(T ′′

(k,i)) = lim
i→∞ ρ(T ′′

(i,2k+3,i)) =
ρ′′
2k+3. �

Lemma 2.12. Let T ′
(k,j) be the tree shown in Fig. 10 and ρ′

k be the unique root of d2 = d
1
2

1 x
k+ 1

2

1 in the

interval

(√
2 + √

5, +∞
)
. Then lim

j→∞ ρ(T ′
(k,j)) = ρ′

k.

Proof. Similarly, we have
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φT ′
(k,j)

= (1, 1)

⎛
⎜⎝ p(T ′

(k,j),v)

q(T ′
(k,j),v)

⎞
⎟⎠

= (1, 1)ABAjBAkCA

⎛
⎝ 1 1

x2 x1

⎞
⎠

−1 ⎛
⎝ λ

1

⎞
⎠

= x
j+k+1
2 (λ2 − 1)(d2x2 + x31)

(x2 − x1)3

(
d22 − d1x

2k+1
1 − d2x

2j+3
1 − d21x

2j+2k+4
1

)
.

As j goes to infinity, lim
l→∞ ρ(T ′

(k,j)) is the largest root of d22 = d1x
2k+1
1 ; namely d2 = d

1
2

1 x
k+ 1

2

1 . The

proof is completed. �

2.5. Comparison of ρk, ρ
′
k, and ρ′′

k

Observe that ρk , ρ
′
k , and ρ′′

k satisfy similar equations. Since 1 <
√

d1x1 < 2

1−x
k+1
1

, we have

ρ′′
k � ρ′

k � ρk.

For λ ∈ [λ0,
3
2

√
2], x2, d2, and d1x1 are increasing while x1 is decreasing. Using these facts, it is

easy to check that for k � 7, ρk , ρ
′
k , and ρ′′

k are in the interval (λ0,
3
2

√
2).

We have the following lemma.

Lemma 2.13. For k � 7, we have ρk < ρ′′
k−4 and ρk < ρ′

k−3.

Proof. Recall that ρ′′
k−4 is the root of d2 = x

k−4
1 and ρk is the root of d2 = 2xk1

1−x
k+1
1

. We need to show

2 < x42(1 − x
k+1
1 ) for λ ∈ [λ0,

3
2

√
2]. For k � 7, we have

x42(1 − x
k+1
1 ) � x42 − x41

� (x42 − x41)|λ0

> 2.

Note that ρ′
k−3 is the root of d2 = √

d1x1x
k−3
1 . It suffices to show 2 <

√
d1x1x

3
2(1 − x

k+1
1 ) for

λ ∈ [λ0,
3
2

√
2]. We have

√
d1x1x

3
2(1 − x

k+1
1 ) �

√
d1x1x

3
2(1 − x81)

�
√

d1x1x
3
2(1 − x81)|λ0

> 2.

The proof is completed. �

3. Proof of Theorem 1.1

The proof of Theorem 1.1 can be naturally divided into two parts. In the first part, we prove that

Gmin
n,n−e ∈ Pn,e. In the second part, we prove the other statements in Theorem 1.1.
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3.1. Part 1

Let ρmin
n,n−e = ρ(Gmin

n,n−e) in the rest part of this paper. Now we prove the following theorem, which

implies the first part of Theorem 1.1.

Theorem 3.1. If e � 6 and n � 10e2 − 74e + 142, then Gmin
n,n−e ∈ Pn,e.

Proof. By Theorem 5.2 of [2] (see page 2825), it suffices to show Gmin
n,n−e /∈ P ′

n,e and Gmin
n,n−e /∈ P ′′

n,e.

Suppose Gmin
n,n−e = T ′

(k1,k2,...,ke−3)
∈ P ′

n,e. Note that T ′
(k1,k2,...,ke−3)

contains sub-trees of type T ′
(k1,∗),

T ′′
(ke−3,∗), and T ′′

(∗,ki,∗) for 2 � i � e − 4. By Lemma 2.4, Lemma 2.11, Corollary 2.2, and Lemma 2.12,

we have

ρmin
n,n−e > ρ′

k1
,

ρmin
n,n−e > ρ′′

2ke−3+3,

ρmin
n,n−e > ρ′′

ki
, for 2 � i � e − 4.

Next, we show that at least one of k1, k2, . . . , ke−3 is small. Let l1 = � n−3e+5
e−3.5

�. We claim

k1 ≤ l1 + 1 or ke−3 ≤ l1 − 3

2
or ∃i ∈ {2, 3, . . . , e − 4} s.t. ki � l1.

Otherwise, we have

k1 � l1 + 2 and ke−3 � l1 − 2

2
and k2, . . . , ke−4 � l1 + 1.

We get

n =
e−3∑
i=1

ki + 2e � l1 + 2 + l1 − 2

2
+ (l1 + 1)(e − 5) + 2e = (e − 3.5)l1 + 3e − 4 ≥ n + 1.

Contradiction!

If k1 � l1 + 1, then we have ρmin
n,n−e > ρ′

l1+1 > ρl1+4; if ke−3 � l1−3
2

, then we have ρmin
n,n−e >

ρ′′
2ke−3+3 > ρ′′

l1
> ρl1+4; if ki � l1 for some i ∈ {2, . . . , e − 4}, then we have ρmin

n,n−e > ρ′′
ki

� ρ′′
l1

>

ρl1+4. In all cases, we have

ρmin
n,n−e > ρl1+4.

Let k = � n−2e+2
e−4

�. There exists a tree T ∈ Pn,e, which can be obtained by subdividing some edges

on internal paths of T(k−1,k,...,k,k−1). Since n � 10e2 − 74e + 142, we have

l1 + 4 =
⌈
n − 3e + 5

e − 3.5

⌉
+ 4 �

⌊
n − 2e + 2

e − 4

⌋
= k.

We get

ρmin
n,n−e > ρl1+4 � ρ(T(k−1,k,...,k,k−1)) � ρ(T).

Contradiction!
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Fig. 11. The graphs H(k1,...,kj) .

Nowwe assumeGmin
n,n−e = T ′′

(k1,k2,...,ke−2)
∈ P ′′

n,e. This is very similar to previous case.Wemust have

k1 ≤ l2 − 3

2
or ke−2 ≤ l2 − 3

2
or ∃i ∈ {2, . . . , e − 3} s.t. ki ≤ l2,

where l2 = � n−3e+7
e−3

�. A similar argument shows ρmin
n,n−e > ρl2+4. Here we omit the detail.

Let k = � n−2e+2
e−4

�. There exists a tree T ∈ Pn,e, which can be obtained by subdividing some edges

on internal paths of T(k−1,k,...,k,k−1).

Since e � 5 and n � 10e2 − 74e + 142, we have n > 5e2 − 31e + 50; thus,

l2 + 4 =
⌈
n − 3e + 7

e − 3

⌉
+ 4 �

⌊
n − 2e + 2

e − 4

⌋
= k.

We get

ρmin
n,n−e > ρl2+4 � ρ(T(k−1,k,...,k,k−1)) � ρ(T).

Contradiction! �

Remark 3. Assume Gmin
n,n−e = T(k1,...,kr) ∈ Pn,e. Let k̄ =

∑r
i=1 ki
r

. By Lemma 2.13, we can get ki ≥
�k + 2

r
� − 3 for 2 ≤ i ≤ r − 1 and ki ≥ �k + 2

r
� − 2 for i = 1, r whenever n ≥ 9e − 30.

3.2. Part 2

From now on, we only consider a tree T(k1,k2,...,kr) inPn,e. (Here r = e−4 through the remaining of

the paper.) Let v0, v1, . . . , vr be the list (from left to right) of all degree 3 vertices in T(k1,k2,...,kr) ∈ Pn,e.

Let H(k1,k2,...,kj) be the graph shown in Fig. 11.

Now we define two families of sub-trees of T(k1,k2,...,kr). For i = 1, . . . , r − 1, let Li = H(k1,k2,...,ki)

(from the left direction). For j = 2, . . . , r, let Rj = H(kr ,kr−1,...,kj) (from the right direction). We also

define L0 = P5 and Rr+1 = P5.

Lemma 3.1. For any λ ≥ ρ(T(k1,k2,...,kr)), we have

1. p(Li,vi)(λ) � 0 and q(Li,vi)(λ) � 0 for i = 0, 1, 2, . . . , r − 1.

2. p(Rj,vj−1)(λ) � 0 and q(Rj,vj−1)(λ) � 0 for j = 2, . . . , r + 1.

Proof. For simplicity, we also write pi = p(Li,vi), qi = q(Li,vi) for i = 0, 1, 2, . . . , r − 1, and p′
j =

p(Rj,vj−1), q
′
j = q(Rj,vj−1) for j = 2, . . . , r + 1. From Eq. (11), we have p′

r+1 = p0 = p(P5,v0) =
d1x1(λ

2−1)
x2−x1

> 0 and q′
r+1 = q0 = q(P5,v0) = d2x2(λ

2−1)
x2−x1

> 0 for any λ > λ0.

It remains to consider pi, qi for i = 1, 2, . . . , r − 1, and p′
j , q

′
j for j = 2, . . . , r. Let μ be the least

number such that these functions pi(λ), qi(λ) p′
j(λ), q′

j(λ) take non-negative values for all λ � μ.
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We need to show such μ exists. By Lemma 2.5, we have lim
λ→+∞ qi(λ) = +∞ and lim

λ→+∞ q′
j(λ) =

+∞. Since lim
λ→+∞ p0 = lim

λ→+∞
d1x1(λ

2−1)
x2−x1

= +∞ and pi = 1
x2−x1

(d1x
ki
1 pi−1+x

ki−1
2 qi−1) (see Lemma

2.6), by induction on i, we have lim
λ→+∞ pi(λ) = +∞. Similarly, we have lim

λ→+∞ p′
j(λ) = +∞. Thus μ

is well-defined.

If μ � ρ(T(k1,k2,...,kr)), then we are done. Otherwise, we assume μ > ρ(T(k1,k2,...,kr)). Note that μ

is always a root of one of those pi(λ), qi(λ), p′
j(λ), q′

j(λ).

Case (1). There exists an i (1 � i � r − 1) such that pi(μ) = 0. Since pi = 1
x2−x1

(d1x
ki
1 pi−1 +

x
ki−1
2 qi−1), we must have pi−1(μ) = qi−1(μ) = 0. By Lemma 2.7, we have

φT(k1,k2,...,kr )
(μ) = (x2 − x1)(x

ki−1
2 qi−1q

′
i+1 − x

ki−1
1 pi−1p

′
i+1) |μ= 0.

It contradicts to the assumption μ > ρ(T(k1,k2,...,kr)).

Case (2). There exists a j (2 � j � r) such that p′
j(μ) = 0. This case is symmetric to Case (1).

Case (3). There exists an i (1 � i � r − 1) such that qi(μ) = 0. By Lemma 2.7, we have

φT(k1,k2,...,kr )
(μ) = (x2 − x1)(x

ki+1−1
2 qiq

′
i+2 − x

ki+1−1
1 pip

′
i+2) |μ� 0.

It contradicts to μ > ρ(T(k1,k2,...,kr)).

Case (4). There exists a j (2 � j � r) such that q′
j(μ) = 0. This case is symmetric to Case (3).

The proof of this Lemma is finished. �

The following Lemma gives the lower bound for the spectral radius of a general tree T(k1,k2,...,kr) ∈
Pn,e.

Lemma 3.2. Let k =
∑r

i=1 ki
r

. We have

d2 ≥ 2x
k+ 2

r

1

1 − x
k+ 2

r
+1

1

for all λ ≥ ρ(T(k1,k2,...,kr)), where the equality holds if and only if k1 + 1 = k2 = · · · = kr−1 = kr + 1

and λ = ρ(T(k1,k2,...,kr)).

Proof. For i = 0, 1, 2, . . . , r − 1, we define ti = qi/pi. Similarly, for j = 2, . . . , r + 1, we define

t′j = q′
j/p

′
j . For any s > 0, we define

fs(t) = d2x
2s
2 t − x2

x
2s−1
2 t + d1

= d2x2t − x
2s−2
1

t + d1x
2s−1
1

, t > 0.

We consider the fixed point of fs(t), which satisfies

t2 − (d2x2 − d1x
2s−1
1 )t + x

2s−2
1 = 0.

This quadratic equation has a unique root x
s−1
1 when

d2 = 2xs1 + d1x
2s
1 . (15)
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We choose s = s(λ) to be the root of Eq. (15). The line y = t is tangent to the curve y = fs(t) at

t = x
s−1
1 . Because fs(t) is an increasing and concave function of t, we have

fs(t) ≤ t, ∀t > 0.

For i = 1, . . . , r, we have

fki(t) = fs(x
2(ki−s)
2 t) ≤ x

2(ki−s)
2 t. (16)

By Lemma 2.7, we get

φT(k1,k2,...,kr )
= (x2 − x1)(x

kr−1
2 qr−1q

′
r+1 − x

kr−1
1 pr−1p

′
r+1).

Since φT(k1,k2,...,kr )
� 0 for all λ ≥ ρ(T(k1,k2,...,kr)), we get

tr−1t
′
r+1x

2(kr−1)
2 ≥ 1.

Note t′r+1 = t0 = d2x2
d1x1

= d2
d1
x22. Applying inequality (16) recursively, we have

1 � d2

d1
x22 · x2(kr−1)

2

qr−1

pr−1

= d2

d1
x
2kr
2 fkr−1

(fkr−2
(. . . (fk1(t0) . . .)))

≤ d2

d1
x
2kr
2 x

2(kr−1−s)
2 x

2(kr−2−s)
2 . . . x

2(k1−s)
2 t0

= d2

d1
x
2kr
2 x

2(kr−1−s)
2 x

2(kr−2−s)
2 . . . x

2(k1−s)
2

d2

d1
x22

= d22

d21
x
2(rk−(r−1)s+1)
2 .

We get d2 � d1x
rk−(r−1)s+1
1 ; and the equality holds if and only if k1 + 1 = k2 = · · · = kr−1 =

kr + 1 = s and λ = ρ(T(k1,k2,...,kr)). By Remark 1, d2 � d1x
rk−(r−1)s+1
1 is equivalent to

d2 � 2x
rk−(r−1)s+2
1 + d1x

2(rk−(r−1)s+2)
1 . (17)

Comparing this inequalitywith Eq. (15),wemust have s ≤ rk−(r−1)s+2. Solving s, we get s ≤ k+ 2
r
.

Thus,

d2 = 2xs1 + d1x
2s
1 ≥ 2x

k+ 2
r

1 + d1x
2(k+ 2

r
)

1 .

Applying Remark 1 one more time, we get

d2 ≥ 2x
k+ 2

r

1

1 − x
k+ 2

r
+1

1

.

The proof is completed. �
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Lemma 3.3. Let Gmin
n,n−e = T(k1,k2,...,kr) and k =

∑r
i=1 ki
r

. Then

d2 ≤ 2x
�k+ 2

r
�

1

1 − x
�k+ 2

r
�+1

1

holds at λ = ρmin
n,n−e.

Proof. Let s = k + 2
r
. Observe that we can always subdivide some edges on internal paths of

T(�s�−1,�s�,...,�s�,�s�−1) to get a tree T on n vertices and diameter n − e. By Lemma 2.4, we have

ρmin
n,n−e ≤ ρ(T) � ρ(T(�s�−1,�s�,...,�s�,�s�−1)) = ρ�s�.

By Lemma 2.10, ρ�s� is the root of

d2 = 2x
�s�
1

1 − x
�s�+1
1

.

Since d2(λ) is increasing while
2x

�s�
1

1−x
�s�+1
1

is decreasing on

(√
2 + √

5, ∞
)
, we get

d2(ρ
min
n,n−e) ≤ d2(ρ�s�) = 2x

�s�
1

1 − x
�s�+1
1

∣∣∣∣∣∣
ρ�s�

≤ 2x
�s�
1

1 − x
�s�+1
1

∣∣∣∣∣∣
ρmin
n,n−e

.

The proof is completed. �

We get the following corollary.

Corollary 3.1. Let Gmin
n,n−e = T(k1,k2,...,kr) ∈ Pn,e and s = 1

r

∑r
i=1 ki + 2

r
= n−2e+2

e−4
. We have

2xs1

1 − x
s+1
1

≤ d2 ≤ 2x
�s�
1

1 − x
�s�+1
1

holds at λ = ρ(Gmin
n,n−e). In particular, ρ(Gmin

n,n−e) =
√
2 + √

5 + O

(
(
√

5−1
2

)s/2
)

.

Lemma 3.4. Assume Gmin
n,n−e = T(k1,...,ki,ki+1,...,kr) and c = ρmin

n,n−e+
√

(ρmin
n,n−e)

2+4d1d2

2
. Then the following

equalities hold at the point λ = ρmin
n,n−e.

cx
ki+1
1 ≤ d2 ≤ cx

ki−1
1 for i = 2, . . . , r − 1; (18)√

cd1x
ki+1
1 ≤ d2 ≤ √

cd1x
ki
1 for i = 1, r. (19)

Proof. We reuse notations Li, pi, qi, ti (for i = 0, 1, . . . , r − 1) and Rj, p
′
j, q

′
j, t

′
j (for j = 2, . . . , r + 1),

which are introduced in Lemma 3.1 and Lemma 3.2.

Choosing any i ∈ {1, . . . , r − 1}, by Lemma 2.7 we have

tit
′
i+2x

2(ki+1−1)
2 = 1
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at λ = ρmin
n,n−e. This means

d2x2ti−1 − x
2(ki−1)
1

ti−1 + d1x
2ki−1
1

t′i+2x
2(ki+1−1)
2 = 1.

We can rewrite it as⎛
⎝ti−1 − x

2ki−1
1

d2

⎞
⎠

⎛
⎝t′i+2 − x

2ki+1−1
1

d2

⎞
⎠ = d1d2 + 1

d22
x
2(ki+ki+1−1)
1 . (20)

Note ti = fki(ti−1) = d2x2ti−1−x
2(ki−1)
1

ti−1+d1x
2ki−1

1

> 0. We have

ti−1 >
x
2ki−1
1

d2
. (21)

For i=1, . . . , r−1,we apply Lemma2.9 toG1=T(k1,...,ki,ki+1,...,kr) andG2 = T(k1,...,ki+1,ki+1−1,...,kr),

where both trees contain a common induced subtree T(k1,...,ki+ki+1+1,...,kr) (after removing one leaf

vertex). If φG2
(ρ(G1)) > 0, then ρ(G1) > ρ(G2). This contradicts to the assumption G1 = Gmin

n,n−e.

We get φG2
(ρ(G1)) � 0, i.e., φT(k1,...,ki+1,ki+1−1,...,kr )

(ρmin
n,n−e) � 0.

We apply Lemma 2.8 and obtain the difference of characteristic polynomials of T(k1,...,ki,ki+1,...,kr)

and T(k1,...,ki+1,ki+1−1,...,kr),

φT(k1,...,ki,ki+1,...,kr )
−φT(k1,...,ki+1,ki+1−1,...,kr )

=(x1−x2)
(
pi−1q

′
i+2x

ki+1−ki−1
2 − qi−1p

′
i+2x

ki+1−ki−1
1

)
.

Evaluating the function above at λ = ρmin
n,n−e, we have

(x1 − x2)
(
pi−1q

′
i+2x

ki+1−ki−1
2 − qi−1p

′
i+2x

ki+1−ki−1
1

)∣∣∣
ρmin
n,n−e

≥ 0.

Since qi−1 � 0 and p′
i+2 � 0 (from Lemma 3.1), we get

t′i+2

ti−1
≤ x

2(ki+1−ki−1)
1 at λ = ρmin

n,n−e. In the

rest of the proof, all expressions are evaluated at λ = ρmin
n,n−e. The notation “|ρmin

n,n−e
” is omitted for

simplicity.

On the one hand, by inequality (21), we can substitute t′i+2 ≤ ti−1x
2(ki+1−ki−1)
1 into Eq. (20) and get

⎛
⎝ti−1 − x

2ki−1
1

d2

⎞
⎠

⎛
⎝x

2(ki+1−ki−1)
1 ti−1 − x

2ki+1−1
1

d2

⎞
⎠ ≥ d1d2 + 1

d22
x
2(ki+ki+1−1)
1 .

After simplification, we have

d2t
2
i−1 − x

2ki
1 ρmin

n,n−eti−1 − d1x
4ki
1 ≥ 0.

Recall c̄ = ρmin
n,n−e+

√
(ρmin

n,n−e)
2+4d1d2

2
. Solving this quadratic inequality, since ti−1 > 0, we get

ti−1 ≥ c̄x
2ki
1 /d2, i = 1, . . . , r − 1.

By symmetry, we have

t′i+1 ≥ c̄x
2ki
1 /d2, i = 2, . . . , r.
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On the other hand, we substitute ti−1 ≥ t′i+2x
2(ki+1−ki−1)
2 into Eq. (20). By the similar calculation,

we get

t′i+2 ≤ c̄x
2(ki+1−1)
1 /d2, i = 1, . . . , r − 1.

Changing the index i + 2 to i + 1, we have

t′i+1 ≤ c̄x
2(ki−1)
1 /d2, i = 2, . . . , r.

By symmetry, we have

ti−1 ≤ c̄x
2(ki−1)
1 /d2, i = 1, . . . , r − 1.

Combining the inequalities above, we get

c̄

d2
x
2ki
1 ≤ ti−1 ≤ c̄

d2
x
2(ki−1)
1 , i = 1, . . . , r − 1, (22)

c̄

d2
x
2ki
1 ≤ t′i+1 ≤ c̄

d2
x
2(ki−1)
1 , i = 2, . . . , r. (23)

Now we apply Lemma 2.7 and get

ti−1t
′
i+1x

2(ki−1)
2 = 1. (24)

Taking product of inequalities (22), (23), and then substituting ti−1t
′
i+1 into Eq. (24). After simplifica-

tion, wet get inequality (18).

When i = 1 or r, we have

c̄

d2
x
2ki
1 ≤ t0 = t′r+1 = d2

d1
x22 ≤ c̄

d2
x
2(ki−1)
1 .

Solving for d2, we get inequality (19). The proof of this lemma is completed. �

Proof of the second part of Theorem 1.1. As in the proof of Lemma 3.4, all expressions in this proof

are evaluated at λ = ρmin
n,n−e and “|ρmin

n,n−e
" is omitted for simplicity.

By Lemma 3.4, for 2 ≤ i ≤ r − 1, we have

cx
ki+1
1 ≤ d2 ≤ cx

ki−1
1 .

By the definition of c̄, we get

2d2x
ki+1
1 ≤ ρmin

n,n−e +
√

(ρmin
n,n−e)

2 + 4d1d2 ≤ 2d2x
ki−1
1 .

After solving for d2 and simplifying, we have

ρmin
n,n−ex

ki+1
1 + 2x

2ki+3
1

1 − x
2(ki+2)
1

≤ d2 ≤ ρmin
n,n−ex

ki−1
1 + 2x

2ki−1
1

1 − x
2ki
1

.
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Since ρmin
n,n−e > 2 > 1 + x21 = ρmin

n,n−ex1, we observe

2x
ki+1
1

1 − x
ki+2
1

<
ρmin
n,n−ex

ki+1
1 + 2x

2ki+3
1

1 − x
2(ki+2)
1

and

ρmin
n,n−ex

ki−1
1 + 2x

2ki−1
1

1 − x
2ki
1

<
2x

ki−2
1

1 − x
ki−1
1

.

We obtain

2x
ki+1
1

1 − x
ki+2
1

< d2 <
2x

ki−2
1

1 − x
ki−1
1

for 2 ≤ i ≤ r − 1. (25)

From Theorem 3.1, we have

2xs1

1 − x
s+1
1

≤ d2 ≤ 2x
�s�
1

1 − x
�s�+1
1

. (26)

Combining inequalities (25) and (26), we get

2x
ki+1
1

1 − x
ki+2
1

<
2x

�s�
1

1 − x
�s�+1
1

,

2x
ki−2
1

1 − x
ki−1
1

>
2xs1

1 − x
s+1
1

.

Thus, �s� − 1 < ki < s + 2. So �s� < ki ≤ �s� + 1 where i = 2, . . . , r − 1.

For j = 1 or r, combining inequalities (19) and (26), we have

√
cd1

2
x
kj+1

1 ≤ x
�s�
1

1 − x
�s�+1
1

,

√
cd1

2
x
kj
1 ≥ xs1

1 − x
s+1
1

.

Note that d1 → 2x1 and c → λ0 as n approaches infinity. For sufficiently large n, we have x0.12 <
λ0

2
< x0.22 . We get

x
kj+1+0.45
1 ≤ x

�s�
1 and x

kj+0.4
1 > xs1.

So �s� − 1 ≤ kj ≤ �s� for n large enough.

In conclusion, we get

�s� − 1 ≤ kj ≤ �s� � ki � �s� + 1

for 2 � i � r − 1 and j = 1, r.
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Now we will prove item 2. It suffices to show ki − kj � 2, for 2 � i � r − 1 and j = 1, r. Suppose
that there exist i, j with i ∈ {2, . . . , r − 1} and j ∈ {1, r} so that ki ≥ kj + 3. By Lemma 3.4, we have

√
cd1x

kj+1

1 ≤ d2 ≤ cx
kj+2

1 .

Since λx21 = (1 + x21)x1 < 2x1 ≤ d1 for λ ≥ λ0 and c → λ0 as n approaches infinity, we have

cx
kj+2

1 <
√

cd1x
kj+1

1 for n large enough. Contradiction!

Now we will prove item 3. By Lemma 3.4, we have cx
kj+1

1 ≤ d2 ≤ cx
ki−1
1 for all 2 ≤ i, j ≤ r − 1.

This implies |ki − kj| ≤ 2. It is sufficient to show that there are no i, j with |ki − kj| = 2. Otherwise,

suppose there exist i, j ∈ {2, . . . , r − 1} such that ki = k and kj = k + 2. Without loss of generality,

we can assume that i < j and in addition i, j are mostly close to each other. Namely, kl = k + 1 for all

integer l between i and j.

Applying inequality (18) to ki = k and kj = k + 2, we have

d2 � cx
ki+1
1 = cx

k+1
1 ,

d2 � cx
kj−1

1 = cx
k+1
1 .

Two inequalities above force d2 = cx
k+1
1 . These equalities force ti−1 = t′i+1 = x

k−1
1 , tj−1 = t′j+1 =

x
k+1
1 by inequalities (22) and (23).

Consider the function f (t) = d2t−x2
x1t+d1

= fk(x
2k
1 t) and let c = c̄/d2 = x

k+1
2 . It is easy to check

f (c) = 1
c
. We claim

tl = x
k+1
1 for i � l � j − 1.

For l = i, we have

ti = fk(ti−1) = fk(x
k−1
1 ) = f (xk+1

2 ) = f (c) = 1

c
= x

k+1
1 .

By induction on l, we have

tl = fk+1(tl−1) = fk+1(x
k+1
1 ) = f (xk+1

2 ) = f (c) = 1

c
= x

k+1
1 .

By Lemma 2.7, we have

tj−2t
′
j x

2k
2 = 1.

Since tj−2 = x
k+1
1 , it implies t′j = x

k−1
1 . However, we also have

t′j = fk+2(t
′
j+1) = fk+2(x

k+1
1 ) = f (xk+3

2 ) �= x
k−1
1 .

Contradiction!

If n − 6 is divisible by e − 4, then s = n−6
e−2

− 4 is an integer. In this case, the only possible

sequence (k1, k2, . . . , kr) satisfying items1-3 is (s−1, s, . . . , s, s−1). In particular,wehaveGmin
n,n−e =

T(s−1,s,...,s,s−1).

The proof is completed. �
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4. Proof of Theorems 1.3 and 1.4

4.1. e=7

Let Gmin
n,n−7 = T(k1,k2,k3) ∈ Pn,7. Note k1 + k2 + k3 = n − 14. By Theorem 1.1, here are all the

possible graphs for Gmin
n,n−7.

Case 1.
3∑

i=1

ki = 3k. We have (k1, k2, k3) = (k, k, k) or (k, k + 1, k − 1).

Case 2.
3∑

i=1

ki = 3k + 1. We have (k1, k2, k3) = (k, k + 1, k).

Case 3.
3∑

i=1

ki = 3k + 2. We have (k1, k2, k3) = (k, k + 2, k) or (k, k + 1, k + 1).

To simplify the proof of Theorem 1.3, we introduce the following short notations. We have

p0 := p(L0,v0) = λ2 − 1

x2 − x1
d1x1,

q0 := q(L0,v0) = λ2 − 1

x2 − x1
d2x2,

p(k−1) := p(H(k−1),v1) = λ2 − 1

(x2 − x1)2
(d21x

k
1 + d2x

k−1
2 ),

q(k−1) := q(H(k−1),v1) = λ2 − 1

(x2 − x1)2
(d22x

k
2 − d1x

k−1
1 ),

p(k) := p(H(k),v1) = λ2 − 1

(x2 − x1)2
(d21x

k+1
1 + d2x

k
2),

q(k) := q(H(k),v1) = λ2 − 1

(x2 − x1)2
(d22x

k+1
2 − d1x

k
1),

p(k+1) := p(H(k+1),v1) = λ2 − 1

(x2 − x1)2
(d21x

k+2
1 + d2x

k+1
2 ),

q(k+1) := q(H(k+1),v1) = λ2 − 1

(x2 − x1)2
(d22x

k+2
2 − d1x

k+1
1 ),

p(k,k+1) := p(H(k,k+1),v2) = λ2 − 1

(x2 − x1)3
(d31x

2k+2
1 + d1d2x1 + d22x

2k+1
2 − d1),

q(k,k+1) := q(H(k,k+1),v2) = λ2 − 1

(x2 − x1)3
(d32x

2k+2
2 − d1d2x2 − d21x

2k+1
1 − d2).

Proof of Theorem 1.3. Wewill compare the spectral radius of the possible graphs listed above in three

cases separately.

Case 1.
3∑

i=1

ki = 3k.

By Lemma 2.8, we have
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φT(k,k,k) − φT(k,k+1,k−1)
= (x1 − x2)

(
p(k)q0x1 − q(k)p0x2

)

= − (λ2 − 1)2

(x2 − x1)2

[
(d2x1 + 1)d21x

k
1 − (d1x2 − 1)d22x

k
2

]

= (d2x1 + 1)(λ2 − 1)2

(x2 − x1)2

(
d22x

k
2 − d21x

k
1

)
.

In the last step, we applied the fact d2x1 + 1 = d1x2 − 1.

By Lemma 2.10 and Remark 1, ρ(T(k,k+1,k)) (= ρk+1) satisfies d2x
k/2
2 = d1x

k/2
1 . The largest root of

φT(k,k,k) − φT(k,k+1,k−1)
= 0 is ρk+1.

Noting that d22x
k
2 − d21x

k
1 is an increasing function of λ ∈

(√
2 + √

5, 3
2

√
2

)
for sufficiently large

k. By Lemma 2.4, we have ρk+1 = ρ(T(k,k+1,k)) < ρ(T(k,k,k)). Evaluating φT(k,k,k) − φT(k,k+1,k−1)
at

λ = ρ(T(k,k,k)),wegetφT(k,k+1,k−1)
(ρ(T(k,k,k))) < 0. Thus, byLemma2.2,ρ(T(k,k,k)) < ρ(T(k,k+1,k−1))

and Gmin
n,n−7 = T(k,k,k).

Case 2.
3∑

i=1

ki = 3k + 1. We must have Gmin
n,n−7 = T(k,k+1,k).

Case 3.
3∑

i=1

ki = 3k + 2.

Similarly by Lemma 2.8, we have

φT(k,k+1,k+1)
− φT(k,k+2,k)

= (d2x1 + 1)(λ2 − 1)2

(x2 − x1)2

(
d22x

k
2 − d21x

k
1

)
.

Noting that d22x
k
2 − d21x

k
1 is an increasing function of λ ∈

(√
2 + √

5, 3
2

√
2

)
for sufficiently large

k. We have φT(k,k+1,k+1)
(λ) < φT(k,k+2,k)

(λ) for any

√
2 + √

5 � λ < ρk+1. By Lemma 2.4, we get

ρ(T(k,k+2,k)) < ρ(T(k,k+1,k)) = ρk+1. Thus,φT(k,k+1,k+1)
(ρ(T(k,k+2,k))) < 0. It follows ρ(T(k,k+1,k+1))

> ρ(T(k,k+2,k)). So Gmin
n,n−7 = T(k,k+2,k).

The proof of Theorem 1.3 is completed. �

4.2. e=8

Now we let Gmin
n,n−8 = T(k1,k2,k3,k4) ∈ Pn,8. By Theorem 1.1, all the possible graphs for Gmin

n,n−8 are as

follows.

Case 1. If
4∑

i=1

ki = 4k, then (k1, k2, k3, k4) = (k, k, k, k), (k, k, k + 1, k − 1), (k, k + 1, k, k − 1), or

(k − 1, k + 1, k + 1, k − 1).

Case 2. If
4∑

i=1

ki = 4k + 1, then (k1, k2, k3, k4) = (k, k + 1, k, k) or (k, k + 1, k + 1, k − 1).

Case 3. If
4∑

i=1

ki = 4k + 2, then (k1, k2, k3, k4) = (k, k + 1, k + 1, k).

Case 4. If
4∑

i=1

ki = 4k + 3, then (k1, k2, k3, k4) = (k, k + 1, k + 1, k + 1) or (k, k + 1, k + 2, k).

Proof of Theorem 1.4. Similarly, we denote p(k,k) = P(H(k,k),v2), q
(k,k) = q(H(k,k),v2), p

(k−1,k+1) =
P(H(k−1,k+1),v2), and q(k−1,k+1) = q(H(k−1,k+1),v2).

We will compare the spectral radius of all possible graphs listed in four cases above.
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Case 1.
4∑

i=1

ki = 4k.

First we prove

ρ(T(k,k,k,k)) = ρ(T(k,k,k+1,k−1)) = ρ(T(k−1,k+1,k+1,k−1)).

By Lemma 2.3, it is easy to see

ρ(T(k,k,k,k)) = ρ(T(k−1,k)) = ρ(T(k−1,k+1,k+1,k−1)).

Applying Lemma 2.7 to these graphs, we get

φT(k,k,k,k) = p(k,k)q(k)x
k−1
2 (x2 − x1)

(
q(k,k)

p(k,k)
− p(k)

q(k)
x
2k−2
1

)
,

φT(k,k,k+1,k−1)
= p(k,k)q(k−1)xk2(x2 − x1)

(
q(k,k)

p(k,k)
− p(k−1)

q(k−1)
x2k1

)
,

φT(k,k,k+1,k−1)
= p(k−1,k+1)q(k)x

k−1
2 (x2 − x1)

(
q(k−1,k+1)

p(k−1,k+1)
− p(k)

q(k)
x
2k−2
1

)
,

φT(k−1,k+1,k+1,k−1)
= p(k−1,k+1)q(k−1)xk2(x2 − x1)

(
q(k−1,k+1)

p(k−1,k+1)
− p(k−1)

q(k−1)
x2k1

)
.

Let ρ = ρ(T(k,k,k,k)) = ρ(T(k−1,k+1,k+1,k−1)) and ρ′ = ρ(T(k,k,k+1,k−1)). Write J(λ) = p(k,k)

q(k−1)xk2(x2 − x1) and K(λ) = p(k−1,k+1)q(k)x
k−1
2 (x2 − x1). By Lemma 3.1, J(ρ) > 0 and K(ρ) > 0.

Note that ρ is the root of both equations

q(k,k)

p(k,k)
= p(k)

q(k)
x
2k−2
1 and

q(k−1,k+1)

p(k−1,k+1)
= p(k−1)

q(k−1)
x2k1 . (27)

Note that ρ′ is the root of both equations

q(k,k)

p(k,k)
= p(k−1)

q(k−1)
x2k1 and

q(k−1,k+1)

p(k−1,k+1)
= p(k)

q(k)
x
2k−2
1 . (28)

We have

φT(k,k,k+1,k−1)
(ρ) = J(ρ)

(
p(k)

q(k)
x
2k−2
1 − p(k−1)

q(k−1)
x2k1

)∣∣∣∣∣
ρ

= K(ρ)

(
p(k−1)

q(k−1)
x2k1 − p(k)

q(k)
x
2k−2
1

)∣∣∣∣∣
ρ

.

Thus, φT(k,k,k+1,k−1)
(ρ)2 = −J(ρ)K(ρ)

(
x
2k−2
1

p(k)

q(k) − p(k−1)

q(k−1) x
2k
1

)2 ∣∣∣
ρ

� 0. We get φT(k,k,k+1,k−1)
(ρ) = 0.

Similarly, we can prove φT(k,k,k,k) (ρ
′) = 0. Hence, we get ρ = ρ′.

Now we prove ρ(T(k,k,k+1,k−1)) < ρ(T(k,k+1,k,k−1)). By Lemma 2.8, we have

φT(k,k,k+1,k−1)
− φT(k,k+1,k,k−1)

= (x1 − x2)
(
p(k)q(k−1) − q(k)p(k−1)

)
= d1d2λ

2(λ2 − 1)2 > 0

for any λ > λ0. So ρ(T(k,k,k+1,k−1)) < ρ(T(k,k+1,k,k−1)). We are done in this case.
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Case 2.
4∑

i=1

ki = 4k + 1.

Similarly, by Lemma 2.8, we have

φT(k,k+1,k,k)
− φT(k,k+1,k+1,k−1)

= (x1 − x2)
(
p(k,k+1)q0 − q(k,k+1)p0

)

= (d2x1 + 1)(λ2 − 1)2x2k+1
2

(x2 − x1)3

(
d32 − 2d1d2x

2k+1
1 − d31x

4k+2
1

)
.

Here we use proof by contradiction. Suppose Gmin
n,n−8 = T(k,k+1,k+1,k−1). By Lemma 3.4, d2 =√

cd1x
k
1 at λ = ρ(T(k,k+1,k+1,k−1)). Note c → λ0 as n → ∞. When n is large enough, we will get

c > (2 + ε)x1 for some constant ε > 0. Thus, we get

d22 = cd1x
2k
1 > (2 + ε)d1x

2k+1
1 .

For n large enough, we have φT(k,k+1,k,k)
− φT(k,k+1,k+1,k−1)

> 0 at λ = ρ(T(k,k+1,k+1,k−1)). Equiva-

lently φT(k,k+1,k,k)
(ρ(T(k,k+1,k+1,k−1))) > 0. By Lemma 2.9, we get ρ(Tk,k+1,k,k) < ρ(Tk,k+1,k+1,k−1).

Contradiction! Hence, we have Gmin
n,n−8 = Tk,k+1,k,k .

Case 3.
4∑

i=1

ki = 4k + 2. There is only one possible graph T(k,k+1,k+1,k).

Case 4.
4∑

i=1

ki = 4k + 3.

Similarly by Lemma 2.8, we have

φT(k,k+1,k+1,k+1)
− φT(k,k+1,k+2,k)

= (x1 − x2)
(
p(k,k+1)q0 − q(k,k+1)p0

)

= (d2x1 + 1)(λ2 − 1)2x2k+1
2

(x2 − x1)3

(
d32 − 2d1d2x

2k+1
1 − d31x

4k+2
1

)

<
(d2x1 + 1)(λ2 − 1)2x2k+1

2

(x2 − x1)3

(
d32 − 2d1d2x

2k+1
1

)

= d2(d2x1 + 1)(λ2 − 1)2x2k+1
2

(x2 − x1)3

(
d22 − 2d1x

2k+1
1

)
.

We now suppose Gmin
n,n−8 = T(k,k+1,k+1,k+1) in this case. By Lemma 3.4, d2 = √

cd1x
k+1
1 at λ =

ρ(T(k,k+1,k+1,k+1)). Recall that c → λ0 as n → ∞. When n is large enough, we get c < 2x2. Thus

d2 = √
cd1x

k+1
1 <

√
2d1x2x

k+1
1 . We get φT(k,k+1,k+2,k)

(ρ(T(k,k+1,k+1,k+1))) > 0. Applying Lemma 2.9

with G2 = T(k,k+1,k+2,k) and G1 = T(k,k+1,k+1,k+1), we have ρ(Tk,k+1,k+2,k) < ρ(Tk,k+1,k+1,k+1).

Contradiction! Hence Gmin
n,n−8 = Tk,k+1,k+2,k. The proof is completed. �
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