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A b s t r a c t - - A  radial basis function approffiimatioa has the form 

• (=) = ~ ui ¢'(11= - =ill~), = • R", 
jeZ,f 

where ~: [0 ,~)  ...* R i ,  ~ e  siren ~ i o n ,  (t:.,').,.ez, are real coel~clen~, and the ce,~t,'e, (=.~).i~Z" 
axe pointa in n a. It is known that radial basis functic~ appemxlmations - - ; -~ the multiquedric 
~b(r) -- (r ~ + c2) 1/2 pmsess many useful and interesting properties when the centres form an infinite 
regular lattice. We m~dyse the limiting case as c - ,  co and identify a class d functions that arise as 
uniform limits of the multiquadric interpolants. In the unlvariate case, we observe that the cardinal 
function for the multiquadrlc becomes the slnc function as c --* co. The limit of the maltlvariate 
cardinal func t i~  is also identified. 

1. INTRODUCTION 

The radial basis function approach to interpolating a function f :  R a --~ R on the integer lattice Z d 
is as follows. Given a continuous univariate function ~0: [0, oo) --, R, we seek a cardinal ~nct ion  

X(z)  = ~ a i W(llz - Jll), z e R d, (1.1) 
~EZ d 

that satisfies 

Therefore, 

X(k) = ao,~, k ~ Z d. 

I f ( z )  = ~ f ( j )  X(z - j ) ,  z E R d, (1.2) 
jEZd 

is an interpolant to f on the integer lattice whenever (1.2) is well defined. Here, [[. [[ is the 
Euclidean norm on R d. This approach provides a useful and flexible family of approximants for 
many choices of ~o, but here we concentrate on the Hardy multiquadric ~oc(r) = (r 2 + c2) x/~. For 
this function, Buhmann [1] has shown that a cardinal function Xc exists and its Fourier tranform 
is given by the equation 

,~¢(ll~ll) ~ • S a, (1.3) 

where {~c(ll~ll) : ~ E R a) is the generalized Fourier transform of {~o¢(llzll ) : z E W/). Further, 
X¢ possesses a classical Fourier transform (see [2,3]). In this paper, we prove that 3~c enjoys the 
following property: 

I, ~ e (-~r, ~r) ~, 
eli m ~c(~) = 0, ~ ~ I -z- ,  ~r] a, (1.4) 

This paper forms part of a doctoral thesis written under the supervisi~ of M.J.D. Powell, whose help and scrutiny 
of this paper have been invaluable. 
z Current Addre~: Center for ApproY~;m~_ "on Theory, Texas A&M University, College Stetion, TX 77843, U.S.A. 

Typeset by .A.&4$-TF_~ 



2 B.J.C. ]~AXTSR 

which sheds new light on the approximation properties of the multiquadric as c ~ co. For 
example, in the case d = 1, (1.4) implies that  lim¢..,oo X¢(z) = sine(z), providing a p e r h ~  
unexpected link with sampling theory and the classical theory of the Whittaker cardinal spline. 
Further, our work has links with the error analysis of Buhmann and Dyn [4] and illuminates the 
explicit calculation of Section 4 of Powell [5]. It may also be compared with the results of Madych 
and Nelson [6] and Madych [7], because these papers present analogous results for polyharmonic 
cardinal splines. 

2. SOME P R O P E R T I E S  OF THE M U L T I Q U A D R I C  

The generalized Fourier transform of 9c is given by 

@o(IIEII) = -=-~/'27rc'~ (d+i)/2 \[[-~) K(,~+~)I2(e I1~11), (2.1) 

for nonzero E • Rd (see [2]). Here, {Ku(r) : r > 0} are the modified B~sel functions, which 
are positive and smooth in R +, have a pole at the origin, and decay exponentially (see [8]). 
There is an integral representation for these modified Bessel functions [8, Equation 9.6.23] which 
transforms (2.1) into a highly useful formula for ~ :  

@o(ilEIi) = - ,~ ,  c d+~ exp(--cz IIEII)(= ~ - 1)'~/~ dz, (2.2) 

where Ad -- xa/~/F(l + all2). A simph consequence of (2.2) is the following lemma, which bounds 
the exponential decay of ~. 

LEMMA 2.1. z,"ll~ll > I1,~11 > 0, then 

I~(llEII)l _< exp[-c(llEll - 11'711)1 I~(11'$)1. 

PROOF. Applying (2.2), we obtain 

I~o(II¢!~)~ = Ad C d'l'1 ~xp[-cx(llEll - ll~ll)] exp(-cz II~II) (z 2 - I) d/2 dz 

<_ exp(-~(llEll- II~II))I~(II~II)I, 

providing the desired bound, un 

We now prove our main result. We let I: R ~ ~ R be the character/side faa~io,  of the cube 
[-~r, f]d, that  is 

1, E • [ -~,  ~r] d, 

x(O = 0, E ¢ [-¢, ¢], .  

PROPOSITION 2.2. Let E be any fixed point ofR d. We have 

lim ~c(E) -- I(E), 
C--~OO 

if II~[Ioo ~ ~', that is E does not lie in the boundary of [ -~ ,  ~.]d. 
PROOF. First, suppose that  E ~ [-~',~']d. Then there exists a nonzero in t~pr  ko such that  
lie + 2~ koll < IIEll, and Lemma 2.1 provides the hounds 

I@¢(IIEII)I _< exp[-c(llEII - lie + 2~ koll)]l~(llE + 2~ koll)l 

--< exp[-c(llE[[ - lie q" 2a" k0[D] ~ I~o(IIE + 2~r/~ll)l. 
kEZ'd 

Thus, applying (1.3) and remembering that  ~bc does not change sign, we have 

0 < ~c(E) _< exp[-c(llE[[ - lie + 2~ k0H)], E ~[ [-=,  ~]d. (2.3) 
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The upper bound of (2.3) converges to zero as c ~ oo, which completes the proof for this range 
of~. 

Suppose now that ~ ~ ( -+ ,  +)d. Further, we shall assume that ~ is nonzero, because we know 
that 3~e(0) = 1 for all values of c. Then, 116 + 2 .  kll > I~11, for every nonzero integer k E Z d. 
Now (1.3) provides the expression 

i,~,,(ii 6 + 2',r +II) I'~ -a 

kez+\{0} 
(2.4) 

We shall show that 

I ~,(116 + 2+ +ll) l ?& ~ NM6N i = o, 6 ~ c-r,+)+, (2.5) 
kez"X{o} 

which, together with (2.4), implies that lin~_+oo ~¢(~) -- 1. 
Now, Lemma 2.1 implies that 

]++(11~ + 2+kll)[ 
kq+Z'\.(o}+ T+~6~ < ~ exp[-c(ll6+2+++ll-11611)], 

kez+\.{o} 
(2.6) 

and each term of the series on the right converges to zero as c ~ oo, since 116 + 2+tll > 11611 for 
every nonzero integer k. Therefore, we need only deal with the tail of the series. Specifically, we 
derive the equation 

+tLmo+ ~ exp[-c(ll~ + 2+kl l -  I1<~11)] = 0, (2.?) 
Ilql_>211+ll 

where e = [t, t , . . . ,  1] T. Now, if I1+11 _> 2 I1~11, then 

II,~ + 2+kll- II,~II >' 2+(11+11- llell) _> +II+II, 

remembering that we have 11611 _< + Ilell- Hence, 

exp[-c(ll++2++ll-11611)]_< ~ exp(-+cll+ll). (2.8) 
llkll >'2 llell II~'II > :v II"II 

It is a simple exercise to prove that the series ~"~llbll>211dl exp(-+ Ilkl[) is convergent. Therefore, 
given any e > 0, there exists a positive number R > 1 such that 

exp(-+ Ilkll) _< +. 
llkll>2-Rllell 

Consequently, when c >_ rR] we have the inequality 

E exp(-+cllkll) < E exp(-+llkll) -< c, 
I lk l l> 2 Ilell I1~11> 2R I1~11 

which establishes (2.5). The proof is complete. 

3. MULTIQUADRICS AND ENTIRE FUNCTIONS OF EXPONENTIAL T Y P E  + 

DEFINITION 3.1. Let f E L2(Rd). We shall say that f is a f~nction of e~poneniia[ type A i f  its 
Fourier transform ] is supported by the cube [-A, A] ~. We shall denote the set of  all functions 
of  exponential type A by EA(Rd). 
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We remark that the Paley-Wiener theorem implies that f nmy be extanded to an entire function 
on C a satisfying a certain growth condition at infinity [9, p. 108ff]. However, we do not use the 
Paley-Wiener theorem in this paper. 

LEMMA 3.2. Let f G E~.(R d) n L2(R d) be a continuous function. Then we have the equation 

+ 2 -k) = .f(k) e x p ( - i k 0 ,  
keZ d kEZ ~ 

(3.1) 

the second series being convergent in L2(Ra). 
PROOF. Let 

g(0 = ~ /(~ + 2~'k), ~ e n'. 
kEZ d 

At any point ~ E R d, this series contains at most one nonzero term, because of the condition on 
the support o f / .  Hence, g is well defined. Further, we have the relations 

f[- Ig(~)i'd~ = f,, [/(~)('d~ < oo, 
I r  ~lt.] a d 

since the Parsevai theorem implies that / is an element of L2(Rd). Thus, g E L2([-x, ~r] d) and 
its Fourier series 

g(~) = ~ gkexp(ik~), 
kEZ • 

is convergent in L2([-lr, lid). The Fourier coefficients are given by the expressions 

= (21r) -d / ] (~)exp(- ik~)  d~ = (2~') -d / ](~) exp(-ik~) d~ = f ( -h ) ,  gk 
a[-,r,~ l, J|  

where the final equation uses the Fourier inversion theorem for L2(Rd). The proof is complete. II 

We observe that an immediate consequence of the lemma is the convergence of the series 
~'~kez" If(k)] 2, by the Parseval theorem. 

For the following results, we shall need the fact that Xc E L2(Rd), which is a consequence of 
the analysis of Buhmann [1]. 

LEMMA 3.3. Let f E E~(R d) n L2(R ~) be a continuous function. For each positive integer n, we 
define the function 

S~"~(~) = ( Z I I  'll, _< - f(k)exp(-ik~))f~c(~), ~ER d . (3.2) 

Then {S~c f : n = 1, 2, . . .  } forms a Cauchy sequence in L2(Ra). 

PROOF. Let Qn: R d ~ R be the trigonometric polynomial 

Qn(~)= Z f(l¢)exp(-il¢~), (3.3) 
Ilkll,<- 

so that Snf(~) = Qn(~)Xc(~). It is a consequence of Lemma 3.2 that this sequence of functions 
forms a Canchy sequence in L~([-Ir, lr]~). Indeed, we shall prove that for m >_. n we have 

Jl$~f - $~fJlL,m,) <- I iQ- - O,dlL.([-,~,,],), (3.4) 

so that the sequence of functions {S~f : n = 1,2, . . .  } is a Cauchy sequence in L2(Rd). 



Asymptotic cardinal function 

Now, Fubini's theorem provides the relation 

/ILL,(,,,) ~ = a.[, Iq,,,(~) - q,,(~)l ~ i~(~) d~ 

However, (1.3) gives the bound 

(3.5) 

~ ( e  + 2=0 = E,~z, ~( l le + 2~rlll) 
xez, ( E ~ z ,  ~c(ll~ + 2~rtll)) ~' 

<_ 1, (3.6) 

which, together with (3.5), yields inequality (3.4). | 
Thus, we may define 

Se'~(~) - ~e(~) E / ( k )  exp(-ik~), (3.?) 
kEZ  d 

and the series is convergent in L2(Rd). Applying the inverse Fourier transform term by term, we 
obtain the useful equation 

so f(=) = ~ f ( t )  xo(x-  t). • ~ a s 
kEZ ,~ 

THEOREM 3.4. Let f E E,(R a) f3 L2(R a) be a continuous function. We have 

lim s~ l(~) = f(.). 
~---~ O0 

and the convergence is uniform on R e. 
PROOF. We have the equation 

Se f ( x )  - f ( x )  -- (2f) -d / ~ /(~ + 2gk) (Xe(~) - I(~)) exp(ix~) d~. 
J |  • kEZ d 

Thus, we deduce the bound 

lr'lr]• A:E2" 
(3.8) 

--(2-)-dfj[_...].'Y(e)l (1-~o(a)+..,.,,o} ~ ~0(e+2,,)) d~. 

using the fact that )~¢ is non-negative, and we observe that this upper bound is independent of z. 
Therefore, we prove that the upper bound converges to zero as c --~ c~. 

Applying (1.31, we obtain the relation 

E xe(~ + 2zrk) - 1 - ~¢(~), (3.9) 
t~z•\{o) 

whence 
]Se f ( z )  - f ( z ) l  ~ 2(2~r) -d / I/(~)1(1 - Xc(~)) d~. (3.10) 

J [ - a ' , w ]  • 

Now, f E La([-Ir, lr] a) implies f E Ll([-lr,~r]a), by the Cauchy-Schwartz inequality. Further, 
Proposition 2.2 gives the limit limc-,oo ~¢(~) = 1, for ~ E (-~r, ~r) d, and we have 0 _< 1-3~¢(~) _< 1, 
by (1.3). Therefore, the dominated convergence theorem implies that 

cli mo(2f)-~ / I1(~)[(1 - ~e(~)) d~ = 0. 
vI- 

The proof is complete. | 

m ~ t  tt~t 
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4. CONCLUSIONS 

Section 4 of Powell [5] provides an explicit calculation that is analogous to the proof of Theo- 
rem 3.4 when f ( z )  = z ~. Of course, this function does not satisfy the conditions of Theorem 3.4. 
Therefore, extensions of this result are necessary, but the final form of the theorem is not clear 
at present. 

Theorem 3.4 encourages the use of  large c for certain functions. Indeed, it suggests that  large c 
will provide high accuracy interpolants for univariate functions tha t  are well approximated by 
integer translates of the sinc function. Thus,  in exact arithmetic, a large value of c should be 
useful whenever the function is well apprc~imated by the Whit taker  cardinal series. However, 
we remark that  the linear systems arising when c is large can be rather  ill-conditioned. Indeed, 
Baxter  [10] proves tha t  the smallest eigenvalue of the interpolation matr ix  generated by a finite 
regular grid converges to  zero exponentially quickly as c ---, eo. We refer the reader to [10, Table I] 
for further information. Therefore, special techniques are required for the effective use of large c. 

REFERENCES 

1. M.D. BuhmJmn, Multiqusdratic interpolatkm with radial basis fucntlons, Contort. A~prox. 6,225-255 (1990). 
2. D.S. Jones, The Theory of Generllime~ Fl, m¢fionJ, Csmbrldse Univ. Press, Cambrldse, England, (1982). 
3. L. Schw~z, T ~ o ~ e  dea D~frlbltlonm, Herman, Pads, (1966). 
4. M.D. Buhmann and N. Dyn, Error estinmtes for mulquadratlc interpolation, In Carves asd S~r~aceJ (F_~Uted 

by P.-J. Laurent, A. Le M~imut~, and L.L. Sclmmaker), pp. 51-58, AcAdemlc Press, New York, (1991). 
5. M.J.D. Powell, Un/vm-J~e multlqusdr4,tlc interpoktica: Some recent results, In C~rve, 6~d $~rfaeeJ, 

(Edited by P.-J. Laurent, A. Le M~mut~, and L.L. Sclmmaker), pp. 371-381, Academic Press, New York, 
( i~i) .  

6. W.R. Madych and S.A. Nelson, Palyhsrmonic cardinal splines, J. Appr0z. Theor~j 60, 141-156 (1990). 
7. W.R. Madych, Polyhsrmc~ic splines, multivariate analysis and entire functions, l ,  t e r ~ i o , ~ l  Serie, of 

N~meric~l An~lysiJ 94, 205-216 (1990). 
8. M. Abramowltz and I.A. Stesun, Hndbook of Me~hem6tic6/FsnctionJ, Dover, New York, (1970). 
9. E.M. Stein and G. Weiss, l~trod~ctio# to F o ~ e r  A.~ly~i~ o.  E~¢l~de~. S~¢e~, Princeton Univ. Press, 

Princeton, N J, (1971). 
10. B.J.C. Baxter, Norm estimates for Toeplltz distance matrices, In DAMTP Report NAI6, University of 

C,,mbrid~, England, (1991). 


