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1. Introduction

The theory of finitely generated projective modules is a classical topic in ring theory inspired by
rich connections with K -theory, geometry and algebraic topology. However, it is often difficult to
classify finitely generated projective modules over a given ring up to isomorphism, and one should
be usually content with finding coarser invariants of this class of modules such as its Grothendieck
group. For instance, this is certainly the case for projective modules over the first Weyl algebra;
and calculating ideal class groups of commutative Dedekind domains is a core problem in algebraic
number theory.

On the other hand the theory of infinitely generated projective modules is often essentially eas-
ier. For instance, Kaplansky’s classical result says that every non-finitely generated projective module
over a commutative Dedekind domain is free and later Bass [2] extended this to any indecomposable
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commutative noetherian ring as a consequence of his theory of big projectives. For instance, it follows
from his theory that every non-finitely generated projective module over a simple noetherian ring is
free. Thus it is quite often that the theory of infinitely generated projectives is ‘trivial’, which partly
justifies Bass’ remark [2, p. 24] that it ‘invites little interest’. However, this is not always the case:
non-finitely generated projective modules could be truly ‘big’. For example, extending early results by
Akasaki [1] and Linnell [14], Příhoda [19] found a superdecomposable (that is, without indecompos-
able direct summands) projective module over a certain localization of the integral group ring of the
alternating group A5.

In fact this result is a consequence of a far reaching development by Příhoda [19] of Bass’ theory
of big projectives, that leads to a ‘rough’ classification of infinitely generated projective modules over
noetherian rings satisfying one mild additional condition (∗); for instance, (∗) holds true for any
noetherian ring with the d.c.c. on two-sided ideals. Namely, he showed that projective modules over
a noetherian ring R with (∗) are classified by pairs (I, P ), where I is an idempotent ideal of R and
P is a finitely generated projective R/I-module. The only drawback of his classification is that it is
usually very difficult to understand the structure of the projective module Q corresponding to a given
pair (I, P ); for instance, to decide whether Q is finitely generated or isomorphic to a direct sum of
finitely generated modules.

In this paper we will apply Příhoda’s theory to obtain a satisfactory classification of non-finitely
generated projective modules over the so-called generalized Weyl algebras (GWAs). This class of alge-
bras was introduced and investigated by Bavula [3], but also was studied by Hodges [9] who called
the rings in this class deformations of type-A Kleinian singularities; and by Rosenberg [20] under the
name of hyperbolic rings. For instance, every GWA is a noetherian domain of Krull dimension 1, and
this class of algebras includes the first Weyl algebra and all infinite dimensional primitive quotients
of the universal enveloping algebra U sl2 over a field of characteristic zero. In particular, the global
dimension of any GWA is 1, 2 or ∞, and there is a good understanding of the finitely generated pro-
jective modules—the Grothendieck group of projectives has been calculated (see [7,9,11,18]) for most
GWAs.

Recall that an old result of Kaplansky says that every projective left module over a left hereditary
ring is a direct sum of finitely generated modules isomorphic to left ideals. In this paper we will
show that something similar is true for projective modules over GWAs. In fact, the result is even
more precise: in each GWA we will find finitely many homogeneous left ideals such that every non-
finitely generated projective (left) module is a direct sum of copies of those.

In detail, in Section 2 we discuss some basic properties of idempotent ideals and will gather,
in Section 3, certain (mostly folklore) statements on the structure of projective modules and their
trace ideals. We will overview, in Section 4, the theory of (countably generated) projective modules
(called fair-sized projectives in [19]) over noetherian rings with (∗), and draw some consequences of
this theory. For example, in Theorem 4.7 we will give a general criterion for when every projective
module over a noetherian ring with (∗) is a direct sum of finitely generated modules. For instance, for
this to be true, finitely generated projective modules over factors of R by idempotent ideals must lift
to finitely generated projectives over R . We also collect in this section some nice examples illustrating
the power of the aforementioned theory. For instance (see Example 4.4) we will classify non-finitely
generated projective modules over the ring of differential operators of n-dimensional projective space.

In Section 5 we will discuss some (mostly known) facts on the structure of generalized Weyl
algebras, the main sources of information being Bavula [3] and Hodges [9]. Note that every GWA A
is a noetherian domain with finitely many two-sided ideals (so (∗) holds true) and A has a least
nonzero ideal Imin. We also recall the structure of maximal ideals of GWAs and their simple finite
dimensional modules. We will prove that the nonzero idempotent ideals of a GWA A form a finite
Boolean algebra B(A) and describe its coatoms.

Finally, in Section 7 we will classify infinitely generated projective modules over any GWA A. Using
a description of idempotent ideals of A we will show that every such ideal is the trace of a finitely
generated projective module; moreover, finitely generated projectives can be lifted modulo idempo-
tent ideals of A. This is the crucial point of the paper, and our choice of finitely generated projective
modules (to cover all finitely generated projectives over factor rings) is a bare guess. Certainly we had
in mind a family of finitely generated projective modules constructed by Hodges [9], but our situa-
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tion is essentially more demanding. For instance, the construction of a finitely generated projective
A-module whose trace equals Imin (see Lemma 7.1) is quite involved. Even more this is true for the
construction (in Lemma 7.2) of finitely generated projectives whose traces are atoms in B(A).

Having spent a lot of time and space on these technicalities, we are awarded with a relative easy
proof of two final results (Theorem 7.5 and Proposition 7.6). Namely, Theorem 7.5 states that every
infinitely generated projective module over a GWA A is a direct sum of homogeneous left ideals of A
from a prescribed finite family. In Proposition 7.6 we will improve this result by finding a canonical
form for every infinitely generated projective module over any GWA, thus classifying projectives over
GWAs by means of cardinal invariants.

2. Idempotent ideals

Most modules in this paper will be left modules over rings with unity. An element e of a ring R
is said to be an idempotent if e = e2. For instance, 0,1 ∈ R are trivial idempotents. We say that
an ideal I of R is idempotent if I = I2, for which {0} and R are trivial examples. Furthermore, the
(two-sided) ideal ReR generated by an idempotent e (or by any set of idempotents) is idempotent.
By [12, Corollary 2.43], every finitely generated idempotent ideal of a commutative ring is gener-
ated by an idempotent. However, if I is the augmentation ideal of the integral group ring ZA5, then
(see [1]) I is idempotent, but ZA5 has no nontrivial idempotents.

If R is a semisimple artinian ring, then every two-sided ideal of R is generated by a central idem-
potent, therefore idempotent. Furthermore, in this case the set of (idempotent) ideals of R ordered by
inclusion forms a finite Boolean algebra whose atoms correspond to minimal (two-sided) ideals of R ,
therefore to isomorphism classes of simple R-modules.

Note that the sum of any set of idempotent ideals is idempotent. For instance, every ideal I of R
contains a largest idempotent ideal I idem ⊆ I . Furthermore, when ordered by inclusion, the set of
idempotent ideals of R forms a lattice. The join in this lattice is the usual sum, but the meet of two
idempotent ideals I and J equals (I ∩ J )idem, which could be a proper subset of I ∩ J (see some
examples below).

It is often important to describe the lattice of idempotent ideals of a given ring R . For this the
following reductions will be useful. Suppose that I ⊆ J are ideals of R such that I is idempotent.
Then J is idempotent iff its image J/I is an idempotent ideal of the factor ring R/I . For instance,
assume that R has a least nonzero ideal Imin (that is, R is subdirectly irreducible) such that I2

min �= 0,
therefore Imin is idempotent. It follows from the above remark that the description of idempotent
ideals of R boils down to the description of idempotent ideals of R/Imin.

To make some further reductions we need the following result.

Fact 2.1. (See [22, L. 1].) If I, K are distinct idempotent ideals of R and Jm ⊆ I , Jn ⊆ K for some
ideal J of R , then I and K have distinct images in R/ J .

Another way to say this is that I + J = K + J yields I = K , that is, every idempotent ideal con-
taining some power of J is uniquely determined by its image in R/ J . One obvious instance of this
situation is when J is a nilpotent ideal of R , and more can be said in this case. Recall that a ring R
is said to be semiperfect, if the factor of R by its Jacobson radical J is a semisimple artinian ring and
idempotents can be lifted modulo J . A semiperfect ring with a nilpotent Jacobson radical is called
semiprimary. For instance, every one-sided artinian ring is semiprimary.

Lemma 2.2. Every idempotent ideal of a semiprimary ring R is generated by an idempotent. Furthermore, the
lattice of idempotent ideals of R is a finite Boolean algebra with m atoms, where m is the number of simple
R-modules.

Proof. If J denotes the Jacobson radical of R , then J is nilpotent and R/ J is a semisimple artinian
ring.
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Let I be an idempotent ideal of R . Then I = (I + J )/ J is an idempotent ideal of the semisimple ring
R/ J , hence I is generated by a central idempotent ē. Since J is nilpotent, one can lift ē modulo J —
there exists an idempotent e ∈ R with e + J = ē. Then K = ReR is an idempotent ideal of R such
that K = ē(R/ J ) = I , therefore K = I by Fact 2.1. Thus every idempotent ideal of R is generated by an
idempotent.

Now the canonical projection π : R → R/ J induces a map (also denoted by π ) from the poset
of idempotent ideals of R into the poset of idempotent ideals of R/ J that preserves sums, hence
preserves ordering. Since R/ J is semisimple, the latter poset is a Boolean algebra with m atoms.
Because J is nilpotent, Fact 2.1 yields that π is an injection. Furthermore, by the proof of the first
part, π is a surjection, and it is easily seen that π reflects sums, hence reflects the ordering. Thus π
is an isomorphism of posets, therefore an isomorphism of lattices. �

The following corollary is exactly what we need for further applications.

Corollary 2.3. Suppose that R is a ring with a least nonzero ideal Imin , I2
min �= 0, such that R/Imin is a semipri-

mary ring. Then the lattice of nonzero idempotent ideals of R is a finite Boolean algebra with m atoms, where m
is the number of simple (non-isomorphic) R/Imin-modules.

3. Projective modules

One explanation why idempotent ideals are important is that they are intimately connected with
projective modules. Recall that a module P over a ring R is said to be free if P is isomorphic to a
module R(I) for some set I; and P is called projective if it is isomorphic to a direct summand of a
free module. For instance, every free module is projective, as is the module Re for an idempotent e;
but below we will see less obvious examples of projective modules.

If P is a projective module, then the trace of P , Tr(P ), will denote the sum of images of all mor-
phisms from P to R R . For instance, if P = Re for an idempotent e, then Tr(P ) = ReR is an idempotent
ideal. In fact it is always the case.

Fact 3.1. If P is a projective module, then Tr(P ) is an idempotent ideal such that P = Tr(P )P . Further-
more, Tr(P ) is the least among ideals I such that P = I P .

Proof. The first part is a common knowledge (see [12, Proposition 2.40]). The second part is also well
known, but somehow avoids any written account. �

Clearly (say, from Fact 3.1) Tr(P ) �= 0 for any nonzero projective module P and P is said to be
a generator if Tr(P ) = R (the maximal possible value of the trace). If P is a direct summand of a
free module R(I) , then P is isomorphic to the module generated by the columns of a column-finite
idempotent I × I matrix E over R , therefore Tr(P ) is a two-sided ideal generated by entries of E .

Given projective modules P and Q , we say that P generates Q if, for some α, there is an epimor-
phism P (α) → Q . Since Q is projective, this is the same as Q being isomorphic to a direct summand
of P (α) . The following lemma is also folklore, but should be put on the paper, at least once.

Lemma 3.2. Let P and Q be projective modules. Then the following are equivalent:

(1) P generates Q ;
(2) Q = Tr(P )Q ;
(3) Tr(Q ) ⊆ Tr(P ).

Proof. (1) ⇒ (2). Let f : P (α) → Q be an epimorphism. Applying f to P (α) = Tr(P )P (α) (see Fact 3.1)
we obtain Q = Tr(P )Q .

(2) ⇒ (3). By Fact 3.1, Tr(Q ) is the least ideal I such that Q = I Q , therefore Q = Tr(P )Q yields
Tr(Q ) ⊆ Tr(P ).
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(3) ⇒ (2). Since Tr(Q )Q = Q and Tr(Q ) ⊆ Tr(P ), we conclude that Tr(P )Q = Q .
(2) ⇒ (1). It suffices to prove that every q ∈ Q is in the image of a morphism P k → Q , for

some (finite) k. From Q = Tr(P )Q it follows that q = ∑n
i=1 riqi for some ri ∈ Tr(P ), qi ∈ Q . Clearly

we may assume that n = 1, that is, q = rq′ , r ∈ Tr(P ), q′ ∈ Q . Furthermore, r ∈ Tr(P ) yields that
r = ∑k

j=1 f j(p j), where p j ∈ P and f j : P → R R are morphisms. Let g = ∑k
j=1 f j : Pk → R and let

h : R → Q be given by h(1) = q′ . Then hg maps Pk into Q and hg(
∑k

j=1 p j) = h(r) = rh(1) = rq′ = q,
as desired. �

A module M is said to be countably generated if it has a finite or infinite countable set of generators.
By Kaplansky’s theorem (see [8, Corollary 2.48]) every projective module is a direct sum of countably
generated modules, thus most (but not all) questions on the structure of projective modules can be
reduced to the countably generated case.

The following lemma, which is a version of Eilenberg’s trick (see [2, p. 24] or [12, p. 22]), shows
that a projective module with a larger trace ‘absorbs’ another ‘smaller’ projective module.

Lemma 3.3. Let P and Q be countably generated projective modules with Tr(Q ) ⊆ Tr(P ). If α � β,ω, then
P (α) ∼= P (α) ⊕ Q (β) .

Proof. By Lemma 3.2 and because Q is countably generated, Q , hence Q (β) is isomorphic to a direct
summand of P (α) . If P (α) ∼= Q (β) ⊕ T for some module T , then

P (α) ∼= (
P (α)

)(ω) ∼= (
Q (β) ⊕ T

)(ω) ∼= Q (β) ⊕ (
T ⊕ Q (β)

)(ω) ∼= Q (β) ⊕ P (α). �
As we have seen in Fact 3.1 the trace of a projective module is always an idempotent ideal. Un-

fortunately, given an idempotent ideal I , it is usually quite difficult to decide whether I is a trace of
some projective module. The following is a rare case that provides such an answer.

Fact 3.4. (See [25, Corollary 2.7].) Let I be an idempotent ideal of a ring R such that I is finitely
generated as a right ideal. Then there exists a countably generated projective left R-module whose
trace equals I .

However, we do not know much about the structure of this projective module, for instance,
whether it can be chosen to be finitely generated or not.

In the next section we will discuss the property of a projective module to decompose into a
direct sum of finitely generated modules. Thus the following result of Kaplansky will be useful in this
discussion.

Fact 3.5. (See [12, 2.24].) Every projective left module over a left hereditary ring is a direct sum of
modules isomorphic to finitely generated left ideals.

Recall that Kaplansky proved that every projective module over a local ring is free. One more result
along this line is worth mentioning.

Fact 3.6. (See [2, Corollary 3.4].) Every infinitely generated projective left module over a left noethe-
rian simple ring is free.

4. The theory of fair-sized projectives

In this section we recall (from [19]) a classification of (countably generated) projective modules
over certain classes of noetherian rings. One can consider this theory as a far reaching generalization
of Bass’ theory of big projectives (see [2]).
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We say that a ring R satisfies the condition (∗) if the following holds.

Every (descending) chain I1, I2, . . . of ideals of R , with Ik+1 Ik = Ik+1 for any k, stabilizes. (∗)

For instance, if the lattice of (two-sided) ideals of R is finite then R satisfies (∗).

Remark 4.1. Sakhaev [21] characterized rings R with the following property: Any projective left R-
module finitely generated modulo its Jacobson radical is finitely generated. He showed that this
condition is connected with the stabilization of the (descending) sequence of left principal ideals
of the matrix ring Mn(R) generated by n × n matrices Ai , where Ai+1 Ai = Ai+1 for every i (see con-
dition (t6) in his Theorem 3) for every positive integer n. If Ii denotes the two-sided ideal generated
by entries of Ai then we obtain that Ii+1 Ii = Ii+1, as in (∗). However, it is easy to see that Sakhaev’s
condition is satisfied in any (left) noetherian ring while there are noetherian rings not satisfying (∗).
Therefore in this paper we will not pursue this analogy any further.

Proposition 4.2. (See [19].) Suppose that R is a noetherian ring satisfying (∗). Then there is a natural one-
to-one correspondence between countably generated projective R-modules and pairs (I, P ), where I is an
idempotent ideal of R and P is a finitely generated projective R/I-module.

One direction in this correspondence is easy to describe. If Q is a countably generated projective
R-module, then (∗) implies (see [19] for a proof) that there exists a least ideal I = I(Q ) of R such
that P = Q /I Q is a finitely generated (projective) R/I-module. Thus we assign to Q the pair (I, P ).
The opposite direction in the above correspondence is rather an existence theorem. For example, it is
usually quite difficult to decide whether the (countably generated) projective module corresponding
to a given pair (I, P ) is a direct sum of finitely generated modules or not.

Note that the pairs (0, P ) in the above classification correspond to finitely generated projective R-
modules, so Proposition 4.2 says nothing new about them. Furthermore, if Q is a countably generated
projective module, then, using Fact 3.1, it is easily seen that Q (ω) corresponds to the pair (Tr(Q ),0).
In particular, the pair (R,0) corresponds to the free module R(ω) . For example, it follows that every
infinitely generated projective module over a simple noetherian ring is free, a slightly weaker form of
Bass’ result in Fact 3.6.

Now we will show how this theory works in a slightly more elaborate situation.

Proposition 4.3. Suppose that R is a noetherian ring with a unique nonzero proper ideal J and such that
D = R/ J is a skew field. Further assume that there exists a finitely generated projective module Q such that
Tr(Q ) = J . Then every infinitely generated projective module is either free or isomorphic to R(α) ⊕ Q (β) ,
where α < β , β � ω, and α,β are uniquely determined by Q .

Proof. Since D = R/ J is a skew field, every finitely generated projective R/ J -module is of the form
(R/ J )k for some k < ω. If P is a countably infinitely generated projective module, then I(P ) �= 0,
hence either I(P ) = R , and then P is free, or I(P ) = J . In the latter case P goes to ( J , (R/ J )k) in
the correspondence of Proposition 4.2. But clearly Rk ⊕ Q (ω) also corresponds to this pair, therefore
P ∼= Rk ⊕ Q (ω) .

If P is uncountably generated, then (using Kaplansky’s theorem) decompose it into a direct sum
of countably infinitely generated modules P = ⊕

i∈I P i . By what we have already proved each Pi is
either free or isomorphic to Rki ⊕ Q (ω) for some ki < ω. Gathering the copies of R and Q together, we
obtain P ∼= R(α) ⊕ Q (β) . If α � β,ω then P is isomorphic to R(α) by Lemma 3.3. Otherwise, since P
is not finitely generated, α < β and β � ω.

Now α = dimD P/ J P is uniquely determined by P and the same is true for β = α + β which
equals the uniform dimension of P . �

Note that (at least in some cases—see below) a finitely generated projective module Q is not
unique. However, if Q ′ is another finitely generated projective module with Tr(Q ′) = J , then Propo-
sition 4.2 implies that Q (ω) ∼= Q ′(ω) , because both modules correspond to the pair ( J ,0).
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Now we will give some examples showing that the situation described in Proposition 4.3 occurs
naturally.

Example 4.4. Let R = D(Pn) denote the ring of differential operators on the projective space P
n(k),

where k is an algebraically closed field of characteristic zero. By [6, pp. 213–214] R is a noetherian
domain of Krull dimension n (and global dimension n + 1) with a unique nonzero proper ideal J and
R/ J ∼= k holds true. Thus to apply Proposition 4.3 it suffices to find a finitely generated projective
module Q such that Tr(Q ) = J . Indeed, let Q = D(1) as in [6, p. 215]. Then, by [6, Cor. 4.8], Q is a
finitely generated projective (left) D(Pn)-module such that J Q = Q , hence Tr(Q ) = J .

Thus Proposition 4.3 gives a classification of infinitely generated projective modules over D(Pn).

Example 4.5. Let k be a field of characteristic 2 containing a nonzero element λ which is not a
root of unity. Let S be obtained by factoring the ring of Laurent polynomials k{X±1, Y ±1} by the
ideal generated by XY − λY X . Let σ be an automorphism of S of order 2 given by σ(X) = X−1,
σ(Y ) = Y −1; and set R = Sσ , the subring of S fixed by σ .

Then (see [15, Example 1.8] or [10, pp. 140–141]) R has a unique (nonzero proper) two-sided
ideal J such that R/ J ∼= k and S is an indecomposable rank 2 projective module whose trace is equal
to J .

Thus, by Proposition 4.3 again, we obtain a classification of non-finitely generated projective R-
modules.

As one more example let us consider the subring R = k + xA1(k) of the first Weyl algebra over
a field k of characteristic zero. By [16, 1.3.10, 5.5.11], R is a hereditary noetherian domain with a
unique nonzero proper two-sided ideal J = xA1(k). Then J is a finitely generated projective module
coinciding with its trace. Thus taking Q = J and applying Proposition 4.3 we obtain a classification
of infinitely generated projective R-modules (though one should be able to extract this from the
classification of infinitely generated projective modules over hereditary noetherian prime rings in
Levy and Robson [13]).

In this case the finitely generated projective module Q is not unique. Indeed it is well known
that A1(k) has infinitely many non-isomorphic left ideals. Using End( J ) = xA1(k)x−1 ∼= A1(k) one
concludes that there are infinitely many non-isomorphic (projective) left ideals of R with trace J .

Next we will investigate an even more advanced example of Stafford [23]. To keep the notation of
his paper, in this example we will consider right modules.

Example 4.6. Let k be a field of characteristic zero, C = k[x1, . . . , xn] be the ring of polynomials, and
δ is a derivation of C given by δ(x1) = 1 and δ(xi) = xi xi−1 − 1 for i > 1. Let S = C[y, δ] be the ring
of differential polynomials, and take R = C + x1 S . Then (see [23, pp. 384–385]) R is a noetherian
domain with a least nonzero proper ideal J = x1 S and R/ J ∼= k[x1, . . . , xn−1]. It follows easily that J
is the only nonzero proper idempotent ideal of R; and every finitely generated projective R/ J -module
is isomorphic to (R/ J )k (because every projective k[x1, . . . , xn−1]-module is free). Furthermore, it is
not difficult to check that S is a finitely generated projective R-module whose trace equals J . Thus
arguing as in Proposition 4.3 we conclude that every infinitely generated projective R-module is either
free or isomorphic to R(α) ⊕ S(β) , α < β , β � ω.

Note that over rings in Examples 4.4–4.6 every projective module is a direct sum of finitely gen-
erated modules, but this is not always the case. Indeed, let R = ZA5 be the integral group ring of
the alternating group A5 and let I be the augmentation ideal of R . Since (see [1]) I is idempotent,
by Fact 3.4 there exists a countably generated projective module P whose trace is equal to I . But P
cannot contain a finitely generated direct summand because (as follows from [24, Theorem 8.1]—see
[1, Corollary 14] for arguments) every finitely generated projective R-module is a generator.

In the next proposition we characterize in the framework of the theory of fair-sized projectives
the rings whose projective modules are direct sums of finitely generated modules. As we have already
mentioned (see Fact 3.5) this holds true for left hereditary rings; for a more thorough treatment of
this question see [17].
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Theorem 4.7. Let R be a noetherian ring satisfying (∗). Then the following are equivalent:

(1) Every projective module is a direct sum of finitely generated modules;
(2) (a) every idempotent ideal of R is the trace of a finitely generated projective module and

(b) if I is an idempotent ideal of R and P is a finitely generated projective R/I-module, then there exists
a finitely generated projective module Q such that Q /I Q ∼= P .

Proof. (1) ⇒ (2). (a) Suppose that I is an idempotent ideal of R . By Fact 3.4, there exists a countably
generated projective module Q whose trace is equal to I . By the assumption, Q = ⊕

j∈ J Q j is a direct
sum of finitely generated modules. Then Tr(Q ) is a directed union of traces of finitely generated
projectives Q j1 ⊕ · · · ⊕ Q jk , j1, . . . , jk ∈ J . Since R is noetherian, I is the trace of one of such finitely
generated modules.

(b) Suppose that P is a finitely generated projective R/I-module, where I is an idempotent ideal
of R . Let Q be a countably generated projective module that corresponds to the pair (I, P ) in Propo-
sition 4.2. By the assumption, Q = ⊕

j∈ J Q j is a direct sum of finitely generated modules. From the
definition of I = I(Q ) it follows that Q j �= I Q j for only finitely many j ∈ J . Adding up the Q j from
this finite subset we obtain a finitely generated projective module Q ′ such that Q ′/I Q ′ ∼= P .

(2) ⇒ (1). Let Q be a countably generated projective module and set I = I(Q ), P = Q /I Q (see
Proposition 4.2), therefore I is an idempotent ideal of R and P is a finitely generated projective
R/I-module. By the assumption, there are finitely generated projective modules P1 and P2 such that
Tr(P1) = I and P2/I P2 ∼= P . It is easily seen that the module P (ω)

1 ⊕ P2 also corresponds to the pair

(I, P ), therefore Q ∼= P (ω)
1 ⊕ P2 by Proposition 4.2. �

Note that (2)(b) of the above theorem says that one can ‘lift’ finitely generated projective modules
modulo idempotent ideals.

5. Generalized Weyl algebras

Let k be an algebraically closed field of characteristic zero and let σ be an automorphism of the
ring of polynomials k[H]. In this paper we will consider only the case when σ(H) = H − 1 (and
σ fixes k pointwise); for the case when σ is arbitrary see for example [5]. Let a(H) ∈ k[H] be a
nonconstant polynomial. We say that a k-algebra A = A(a) is a generalized Weyl algebra, GWA, if A is
generated over k[H] by (noncommuting) variables X, Y subject the following relations.

Y X = a(H), XY = σ(a) = a(H − 1) and HY = Y (H − 1), H X = X(H + 1).

Thus for every polynomial b(H) ∈ k[H] we obtain

b(H) · Y = Yσ(b) = Y · b(H − 1) and b(H) · X = Xσ−1(b) = X · b(H + 1).

For instance, consider the first Weyl algebra A1(k) as an algebra of differential operators acting on
the ring of polynomials k[x] on the left; therefore A1 is generated by x and ∂ subject to the relation
∂x − x∂ = 1. It is easily checked that the map X → x, Y → ∂ and H → ∂x provides an isomorphism
from the generalized Weyl algebra A(H) onto A1(k).

Furthermore (see [9] or [5, p. 522]) if G is a cyclic group of order m acting on A1(k) via ∂ → ω∂ ,
x → ω−1x, where ω is a primitive mth root of unity, then the fixed ring AG

1 = k〈∂m, ∂x, xm〉 is a GWA
with a(H) = mm H(H + 1/m) · · · · · (H + (m − 1)/m), where X → xm , Y → ∂m and H → ∂x/m.

Finally, let U be the universal enveloping algebra U sl2(k) with the usual generators e, f ,h (thus
[h, e] = 2e, [h, f ] = −2 f and [e, f ] = h). If C = 4 f e + h2 + 2h is the Casimir element, then all infinite
dimensional primitive factors of U are of the form Uλ = U/(C − λ)U , λ ∈ k. It is straightforward to
verify that Uλ is a GWA with a(H) = λ/4 − (H + 1)H , where X → e, Y → f and H → h/2.
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By [4, Theorem 3.28], one can multiply the polynomial a(H) by a nonzero constant and ‘shift’ it to
the left or right without changing the isomorphism type of A. It follows that every GWA with a linear
polynomial a(H) is isomorphic to A1(k), and every GWA with a quadratic polynomial is isomorphic
to one of primitive factors Uλ .

Note that some rings we have already considered are GWAs. For instance, from [6, p. 205] it
follows that the ring of differential operators D(P1) is isomorphic to U0, that is, to a GWA with
a(H) = −(H + 1)H . By what we have just said this GWA is isomorphic to the GWA with a(H) =
H(H − 1). Using [4, Theorem 3.28], it is easily checked that the latter GWA is not isomorphic to the
GWA with a(H) = H(H −2). However, using translation functors from [9, Theorem 2.3], one concludes
that the last two GWAs are Morita equivalent.

The first crucial fact about GWAs is that they are noetherian.

Fact 5.1. (See [3, Proposition 1.3, Theorem 2.5].) Every GWA is a noetherian domain of Krull dimen-
sion 1.

Furthermore, looking at the roots of a(H) one can decide whether a given GWA is simple and
calculate its global dimension. We say that λ,μ ∈ k are comparable if λ − μ ∈ Z.

Fact 5.2. (See [3, Theorem 5].) Let A = A(a) be a GWA.

(1) A is simple iff a(H) has no comparable (distinct) roots;
(2) A is hereditary iff a(H) has neither comparable nor repeated (= multiple) roots;
(3) A has global dimension 2 iff a(H) has comparable roots but no repeated roots;
(4) A is of infinite global dimension iff a(H) has a repeated root.

Thus every GWA has global dimension 1, 2 or ∞. For instance, if a(H) = H2, then A is a simple
algebra of infinite global dimension; and if a(H) = H(H − 1), then A has global dimension 2 and is
not simple.

Recall that every GWA A has a standard Z-grading: setting deg(X) = 1, deg(Y ) = −1 and
deg(H) = 0, we obtain A = ⊕

n∈Z
An , where An = k[H]Y n = Y nk[H] if n < 0, A0 = k[H], and An =

k[H]Xn = Xnk[H] if n > 0. Note also that ad(H)Xn = [H, Xn] = nXn and ad(H)Y m = −mY m . It follows
easily that every (two-sided) ideal I of A is homogeneous, I = ⊕

n∈Z
In , where In = I ∩ An is the nth

homogeneous component of I; therefore the lattice of two-sided ideals of A is distributive (because
the lattice of ideals of k[H] is distributive). In fact more can be said.

Fact 5.3. (See [3, Proposition 2.2].) If I is a nonzero ideal of a GWA A, then the factor A/I is finite
dimensional. Furthermore, the lattice of ideals of A is finite and there is a least nonzero ideal Imin.

In the following lemma we will pinpoint this ideal. Note that, for every n � 1, XnY n = a(H − 1) ·
· · · · a(H − n) is a polynomial cn(H) such that Y n Xn = a(H + n − 1) · · · · · a(H) = cn(H + n).

Lemma 5.4. Let n be the maximum of |λ − μ|, where λ and μ are comparable roots of a(H). Then Imin is
generated by the polynomial dn(H) = gcd(XnY n, Y n Xn) = gcd(cn(H), cn(H + n)) and Xn, Y n ∈ Imin .

Proof. Let I be a nonzero ideal of A. Since I is homogeneous, it contains a nonzero polynomial
f (H), and we may assume that deg f � 1. Choose k � n such that f (H) and f (H − k) are coprime.
Then f (H)Xk ∈ I and Xk f (H) = f (H − k)Xk ∈ I implies Xk ∈ I (and similarly Y k ∈ I). It follows that
XkY k = ck(H) ∈ I and Y k Xk = ck(H + k) ∈ I , therefore dk(H) = gcd(ck(H), ck(H + k)) ∈ I .

If λ is a root of dk(H) then λ − i and λ + j are roots of a(H) for some 1 � i � k and 0 � j � k − 1.
By the assumption, i + j = |(λ − i) − (λ + j)| � n, in particular i � n and j � n − 1. It follows easily
that dn(H) = dk(H) ∈ I . Thus dn(H) belongs to every nonzero ideal of A, therefore dn generates Imin.

Suppose that λ � μ are roots of dn(H). Then λ − i and μ + j are roots of a(H) for some 1 � i and
j � 0. By the assumption |(μ + j) − (λ − i)| = μ − λ + i + j � n, hence μ − λ � n − 1. Now it is easily
checked that dn(H) and dn(H −n) are coprime, therefore, by the first part of the proof, Xn, Y n ∈ I . �
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For instance, if A is a GWA with a(H) = H(H − 1), then n = 1, hence d1(H) = gcd(XY , Y X) =
gcd((H − 1)(H − 2), H(H − 1)) = H − 1; and 〈H − 1〉 is the unique nonzero proper ideal of A. If A is
a GWA with a(H) = H(H − 1)(H − 2), then n = 2 and d2(H) = gcd(X2Y 2, Y 2 X2) = (H − 1)(H − 2).

Since every maximal ideal of k[H] is generated by H − λ, λ ∈ k, the action of σ on the set of
maximal ideals can be identified with the action λ → λ + 1 on k. The orbits of this action are of the
form λ + Z, λ ∈ k, therefore λ,μ ∈ k are on the same orbit iff they are comparable. If B is an orbit
and λ,μ ∈ B , then we set λ �B μ if μ − λ � 0, that is μ − λ is a nonnegative integer; clearly �B is a
linear ordering.

Let S be the (finite) set of all roots of a(H), and let U denote the set of all orbits containing at
least two roots of a(H). If B ∈ U , then S ∩ B contains a smallest element xB and a largest element
yB �= xB (with respect to �B ). Denote by T B = (xB , yB ] the semi-interval {z ∈ B | xB < z � yB} and
set T = ⋃

B∈U T B . For instance, if a(H) = H(H − 2)(H − 5), then U = {0 + Z} and T = {1,2,3,4,5}, in
particular, 1 ∈ T is not a root of a(H). By Fact 5.2, T is nonempty iff A is not simple.

For every λ ∈ T let Lλ = {μ ∈ S | λ − μ ∈ N} and Rλ = {μ ∈ S | μ − λ ∈ N0}, where N stands for
the set of positive integers and N0 for the set of nonnegative integers. Thus μ ∈ Lλ iff μ is strictly
to the left of λ within the equivalence class of λ; and μ ∈ Rλ iff μ is strictly to the right of λ

in the equivalence class of λ or μ = λ. Let mμ denote the multiplicity of H − λ in a(H) and set
kλ = min(

∑
μ∈Lλ

mμ,
∑

τ∈Rλ
mτ ).

We will give an even more algorithmic way (compare with Lemma 5.4) to compute dn(H).

Lemma 5.5. dn(H) = ∏
λ∈T (H − λ)kλ .

Proof. By definition, dn(H) is the greatest common divisor of cn(H) = XnY n = a(H − 1) · · · · ·a(H −n)

and cn(H + n) = Y n Xn = a(H + n − 1) · · · · · a(H). First notice that H − λ divides dn(H) iff it divides
both cn(H) and cn(H + n), that is, λ − i and λ + j are roots of a(H) for some 1 � i � n, 0 � j � n − 1.
By the definition of T , it follows that H − λ divides dn(H) iff λ ∈ T .

Suppose that λ ∈ T and let us calculate the multiplicity of H − λ in cn(H). Notice that H − λ has
multiplicity mλ−1 in a(H − 1), . . . , and multiplicity mλ−n in a(H − n). Thus H − λ has multiplicity∑

μ∈Lλ
mμ in cn(H). By similar arguments H − λ has multiplicity

∑
τ∈Rλ

mτ in cn(H + n), and the
result follows immediately. �

For instance, let a(H) = H2(H − 1)3(H − 2)4. Then T = {1,2}, L1 = {0}, R1 = {1,2}, hence∑
μ∈L1

mμ = 2,
∑

τ∈R1
mτ = 3 + 4 = 7 and k1 = min(2,7) = 2. Similarly L2 = {0,1}, R2 = {2}, there-

fore
∑

μ∈L2
mμ = 2 + 3 = 5,

∑
τ∈R2

mτ = 4 and k2 = min(5,4) = 4. Thus dn(H) = (H − 1)2(H − 2)4 is
a generator for Imin.

6. Idempotent ideals of GWAs

As one may see from Proposition 4.2, the description of idempotent ideals is an important ingre-
dient in the classification of projective modules. In this section we describe the idempotent ideals of
any GWA. But first we should recall description of maximal ideals of GWAs.

Recall (see Fact 5.3) that every GWA A has a least nonzero ideal Imin such that A/Imin is a finite
dimensional algebra. It follows that every maximal ideal of A contains Imin and is the annihilator of
a simple finite dimensional A-module. A classification of such simples is available from [3]. Suppose
that λ < μ are roots of a(H) lying on the same orbit B . We say that λ and μ are adjacent if the inter-
val (λ,μ) = {τ ∈ B | λ < τ < μ} contains no roots of a(H). For instance, if a(H) = H(H − 2)(H − 4),
then 0 < 2 and 2 < 4 are the only pairs of adjacent roots. If λ < μ are adjacent roots of a(H),
then Sλ,μ will denote the cyclic module A/A(Y n, X, H − μ). It is easily calculated that this mod-
ule is n-dimensional with a k-basis given by Y n−1, . . . ,1. Note also that Y i spans a one-dimensional
eigenspace for the action of H , with eigenvalue μ − i.

Lemma 6.1. (See [3, Theorem 3.2].) Sλ,μ is a simple (finite dimensional) A-module, and every simple finite
dimensional A-module is isomorphic to a module of this form.



1336 P. Příhoda, G. Puninski / Journal of Algebra 321 (2009) 1326–1342
In particular, the number of simple finite dimensional A-modules is the cardinality of T ∩ S .
Thus if Iλ,μ denotes the annihilator of Sλ,μ , then these ideals form a complete list of maximal

ideals of A. Furthermore (see [3, Lemma 3.3]) if μ − λ = m, then the factor A/Iλ,μ is isomorphic to
the full matrix ring Mm(k), therefore A/Iλ,μ is a direct sum of m copies of Sλ,μ .

In fact one can give a precise formula for a generator of Iλ,μ . If λ < μ are adjacent roots on
an orbit B , then Tλ,μ will denote the semi-interval (λ,μ] = {τ ∈ B | λ < τ � μ}. For instance, if
a(H) = H(H − 2)(H − 4), then T0,2 = {1,2} and T2,4 = {3,4}. Clearly T = ⋃

Tλ,μ , where the union
runs over all pairs of adjacent roots of a(H).

Fact 6.2. (See [3, Lemma 3.3].) Iλ,μ is generated by dλ,μ(H) = ∏
τ∈Tλ,μ

(H − τ ).

For instance, if a(H) = H(H − 2)(H − 4), then I0,2 is generated by (H − 1)(H − 2), in particular,
X2, Y 2 ∈ I0,2, but X, Y /∈ I0,2.

Let J ⊇ Imin denote the ideal of A whose image J/Imin is the Jacobson radical of A/Imin. It follows
that J is the intersection of the ideals Iλ,μ when λ < μ run over all pairs of adjacent roots of a(H).
Since T = ⋃

Tλ,μ , we obtain the following.

Corollary 6.3. The zeroth homogeneous component J0 of J is generated by f (H) = ∏
τ∈T (H − τ ).

The remaining homogeneous components of J can be calculated using Fact 6.2. For instance, if
a(H) = H(H − 2)(H − 4), then X2, Y 2 ∈ J (since the maximum of differences between adjacent roots
of a(H) is 2), but (see Lemma 5.4) X4 is the first power of X in Imin.

Since every GWA has the least nonzero ideal Imin and A/Imin is a finite dimensional algebra, by
Corollary 2.3 we obtain the following.

Corollary 6.4. Let A be a GWA with m nonisomorphic simple finite dimensional modules. Then the lattice of
nonzero idempotent ideals of A is a (finite) Boolean algebra B(A) with m atoms.

Note that Imin is the least element of B(A), and every element of B(A) but Imin is a sum of atoms
(since the join in B(A) is usual sum).

But first let us look at the following example. Let A be a GWA with a(H) = H(H −1)(H −2)(H −3).
Then the following is a fragment of the lattice of two-sided ideals of A containing B(A), where
idempotent ideals are marked by bullets.

•
A

•〈H−3〉 •
〈H−2〉

• 〈H−1〉

•(H−2)(H−3) •
(H−1)(H−3)

• (H−1)(H−2)

◦
J (H−1)(H−2)(H−3)

• Imin=〈(H−1)(H−2)2(H−3)〉

• 0

For instance, I0,1 = 〈H − 1〉 (that is, generated by H − 1), I1,2 = 〈H − 2〉 and I2,3 = 〈H − 3〉 are the
only maximal ideals of A, and they are idempotent. However, J , the intersection of all these ideals,
is not idempotent and is strictly larger than Imin. Indeed, the zeroth component of J is generated by
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(H − 1)(H − 2)(H − 3) and is it possible to check (it is not so obvious as it seems!) that it is larger
than the zeroth component of Imin, which is generated by (H − 1)(H − 2)2(H − 3).

If λ < μ are adjacent roots of a(H), then m(λ,μ) = min(mλ,mμ) will denote the common multi-
plicity of λ and μ as roots of a(H). The following lemma describes coatoms in B(A), that is, maximal
idempotent ideals.

Lemma 6.5. Im(λ,μ)
λ,μ , where λ < μ run over adjacent roots of a(H), is a complete list of maximal idempotent

ideals of A.

Proof. If I is a maximal idempotent ideal of A, then I is contained in a maximal ideal L; and L = Iλ,μ

for some adjacent roots λ < μ of a(H), by the description of maximal ideals. Since I is idempotent, it
follows that I ⊆ Lm for all m. But, by [3, Proof of Theorem 3.3], m = m(λ,μ) is the smallest number
such that the ideal Im

λ,μ is idempotent. �
Since B(A) is a Boolean algebra, every idempotent ideal of A is a (unique) intersection (in B(A))

of maximal idempotent ideals Im(λ,μ)
λ,μ . However, since the intersection in B(A) may differ from set-

theoretic intersection, this description is not very constructive. In the next section we will list the
atoms of B(A), hence obtain another, more handy, description of the idempotent ideals of GWAs.

7. Projective modules over GWAs

In this section we will classify projective modules over any given GWA. Recall that (by Bass’ re-
sult) if A is a simple GWA, then every infinitely generated projective module is free. Thus the only
interesting case is when A is not simple, hence (by Fact 5.2) a(H) has distinct comparable roots (that
is, T �= ∅). In most statements of this section we will make a default assumption that A is not simple.

Let us make a general (well known) remark. Suppose that I is a left ideal of a GWA A and
let Q = Q (A) denote the skew field of quotients of A. Since A is a noetherian domain, every
morphism from I to A A is given by right multiplication by some q ∈ Q . Using the dual basis
lemma (see [12, Lemma 2.9]) we conclude that I is projective iff there are p1, . . . , pm ∈ I and
q1, . . . ,qm ∈ Hom(I, A) ⊆ Q such that

∑m
i=1 qi pi = 1. In this case right multiplication by the row

(q1, . . . ,qm) defines a morphism from I to A Am whose one-sided inverse is given by right multipli-
cation by the column (p1, . . . , pm)t . Thus I is represented by the idempotent m × m matrix (piq j),
therefore the trace of I is generated by the piq j . Moreover, Tr(I) is also generated by p′

iq j , where
p′

1, . . . , p′
l is any set of generators for I , for instance this is the case when l = m and pi = ri p′

i for
some ri ∈ A.

First we construct a projective homogeneous left ideal of A whose trace is equal to Imin. We will
use the notation introduced before Lemma 5.5. Recall that if λ ∈ T , then Rλ denotes the set of all roots
of a(H) that are comparable with λ and lie to the right of λ (including λ). Let nλ = ∑

μ∈Rλ
mμ , where

mμ denotes the multiplicity of μ as a root of a(H); and we set q(H) = ∏
λ∈T (H − λ)nλ . It is easily

seen (see Lemma 5.5 for a similar proof) that H −λ has multiplicity nλ in cn(H +n) = Y n Xn , therefore
q(H) = Y n Xn|T , the restriction of cn(H +n) to T . For instance, if a(H) = H(H − 1)(H − 2)(H − 3), then
q(H) = (H − 1)3(H − 2)2(H − 3).

Recall that n denotes the maximum of |λ − μ|, where λ and μ are comparable roots of a(H). For
instance, if λ ∈ T , then λ − n /∈ T .

Lemma 7.1. Pmin = Aq(H) + A Xn is a projective homogeneous left ideal of A whose trace is equal to Imin .

Proof. Recall that Q denotes the classical ring of quotients of A, and let the morphism f : A →
A Q |T |+1 be given by right multiplication by the row (q0, . . . ,qn) = (1, . . . , Y n(H − λ − n)−nλ , . . .),
where each λ ∈ T gives an entry. We claim that, when restricted to Pmin, f provides a morphism from
Pmin to A A. Indeed f (q(H)) = (q(H), . . . ,q(H)Y n(H −λ−n)−nλ , . . .). Since (H −λ)nλ is a factor of q(H)

for each λ ∈ T , therefore q(H)Y n(H −λ−n)−nλ = q(H)(H −λ)−nλ Y n ∈ A. It remains to check that each



1338 P. Příhoda, G. Puninski / Journal of Algebra 321 (2009) 1326–1342
component of f (Xn) belong to A. Indeed, as we have already noticed, (H − λ)nλ divides cn(H + n) =
Y n Xn , hence (H −λ−n)nλ divides cn(H) = XnY n . Thus Xn ·Y n(H −λ−n)−nλ = cn(H)(H −λ−n)−nλ ∈ A.

Now we consider the following polynomials: q(H) and Y n(H − λ − n)−nλ Xn = Y n Xn(H − λ)−nλ ,
λ ∈ T . Because q(H) = ∏

λ∈T (H − λ)nλ = Y n Xn|T , therefore H − λ does not divide Y n Xn(H − λ)−nλ

for any λ ∈ T , and the above polynomials are coprime. Thus there are polynomials p(H), pλ(H),
λ ∈ T such that q(H)p(H)+∑

λ∈T Y n(H −λ−n)−nλ Xn pλ(H) = 1. Now (p0, . . . , pn)t = (q(H)p(H), . . . ,

Xn pλ(H), . . .)t is the column of |T | + 1 elements of Pmin such that the right multiplication by this
column defines a morphism g : A|T |+1 → P with g f = 1Pmin , therefore Pmin is projective.

It remains to show that Tr(Pmin) = Imin. By what we have said at the beginning of the section, the
trace of Pmin is generated by the images of q(H) and Xn when multiplying them by the qi on the
right. Since Imin is a minimal nonzero ideal, it suffices to check that q(H),q(H)Y n(H − λ − n)−nλ ∈ Imin
and Xn, XnY n(H − λ − n)−nλ ∈ Imin. But (see Lemma 5.4) Xn, Y n ∈ Imin, therefore
q(H)Y n(H − λ − n)−nλ = q(H)(H − λ)−nλ Y n ∈ Imin, because (H − λ)nλ divides q(H). Further, from
Lemma 5.5 and the definition of q(H) it follows that dn(H) divides q(H), therefore q(H) ∈ Imin.

Now consider XnY n(H − λ − n)−nλ = cn(H)(H − λ − n)−nλ . As we have already seen, (H − λ − n)nλ

divides cn(H), hence it can be canceled. Recall (see Lemma 5.4) that dn(H) also divides cn(H) and
is a product of polynomials H − μ, μ ∈ T . If λ ∈ T , then λ − n /∈ T , hence dn(H) still divides
cn(H)(H − λ − n)−nλ . By Lemma 5.4, the latter polynomial belongs to Imin, as desired. �

For example if a(H) = H(H − 1)(H − 2)(H − 3), then Pmin = A(H − 1)3(H − 2)2(H − 3) + A X3.
In the next lemma we will extend our supply of projective modules, hence of idempotent ideals.

For λ ∈ T we define qλ(H) = q(H)/(H − λ)nλ = ∏
μ∈T ,μ �=λ(H − μ)nμ and set Pλ = Aqλ(H) + A Xn .

Lemma 7.2. If λ ∈ T , then Pλ is a projective homogeneous left ideal of A whose trace is generated by qλ(H).

Proof. As in Lemma 7.1, let f : A → A Q |T | be given by right multiplication by the row (1, . . . , Y n(H −
μ − n)−nμ, . . .), where each μ ∈ T , μ �= λ gives one entry. We claim that the restriction of f to
Pλ gives a morphism from Pλ to A A. It suffices to check that qλ(H) · Y n(H − μ − n)−nμ ∈ A and
Xn · Y n(H −μ−n)−nμ ∈ A. Indeed qλ(H)Y n(H −μ−n)−nμ = qλ(H)(H −μ)−nμ Y n ∈ A, because μ �= λ

yields that (H −μ)nμ divides qλ(H). Since (H −μ)nμ divides cn(H + n), it follows that (H −μ− n)nμ

divides cn(H), therefore XnY n(H − μ − n)−nμ = cn(H)(H − μ − n)−nμ ∈ A.
Now we consider the following |T | polynomials: qλ(H) and Y n(H − μ − n)−nμ Xn , where

each μ ∈ T , μ �= λ gives one polynomial. Since Y n(H − μ − n)−nμ Xn = cn(H + n)(H − μ)−nμ ,
from the definition of qλ(H) it follows that these polynomials are coprime. (Indeed, H − μ is
not a root of cn(H + n)(H − μ)−nμ for every λ �= μ ∈ T .) Thus qλ(H)pλ(H) + ∑

μ∈T ,μ �=λ Y n ×
(H − μ − n)−nμ Xn pμ(H) = 1 for some polynomials pτ (H), τ ∈ T . Now right multiplication by the
column (qλ(H)pλ(H), . . . , Xn pμ(H), . . .)t of elements of Pλ defines a morphism g : A|T | → P such
that g f = 1Pλ , therefore Pλ is projective.

It remains to calculate the trace of Pλ . By the remark at the beginning of the section, Tr(Pλ)

is generated by the images of qλ(H) and Xn when multiplying them by 1 or Y n(H − μ − n)−nμ ,
λ �= μ ∈ T . Thus qλ(H) = qλ(H) · 1 ∈ Tr(Pλ), and clearly Xn, Y n ∈ Tr(Pλ) (because Xn, Y n belong to
every nonzero ideal—see Lemma 5.4). Furthermore, qλ(H)Y n(H − μ − n)−nμ = qλ(H)(H − μ)−nμ Y n

is a multiple of Y n , hence belongs to 〈qλ(H)〉. Thus it remains to look at XnY n(H − μ − n)−nμ =
cn(H)(H − μ − n)−nμ . But in the proof of Lemma 7.1 we showed that this polynomial is in
Imin ⊆ 〈qλ(H)〉. �

For instance, if a(H) = H(H − 1)(H − 2)(H − 3) and λ = 1 ∈ T = {1,2,3}, then q1(H) =
(H − 2)2(H − 3), hence P1 = A(H − 2)2(H − 3) + A X3 is a projective module whose trace is gen-
erated by (H − 2)2(H − 3).

Now we are in a position to describe the atoms of B(A).

Lemma 7.3. If τ ∈ T , then 〈qτ 〉 = Aqτ A is an atom in B(A), and every atom of B(A) is of this form.
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Proof. By Lemma 7.2, 〈qτ 〉 is the trace of the projective module Pτ , hence idempotent. Since τ ∈ T ,
it follows that τ ∈ Tλ,μ for the only pair λ < μ of adjacent roots of a(H). From Fact 6.2 it follows
that qτ /∈ Iλ,μ and qτ ∈ Iρ,π for all remaining pairs of adjacent roots ρ < π of a(H). Since 〈qτ 〉 is

idempotent, it equals the intersection in B(A) of maximal idempotent ideals Im(ρ,π)
ρ,π (see Lemma 6.5).

It follows easily that 〈qτ 〉 is an atom in B(A), and every atom of B(A) is of this form. �
Thus we have obtained a somehow better (see a remark after Lemma 6.5) description of the idem-

potent ideals of GWAs. Since every nonzero idempotent ideal of A either equals Imin or is a (finite)
sum of atoms, it follows from Lemmas 7.1 and 7.2 that every idempotent ideal of A is the trace of a
finitely generated projective module, hence (2)(a) of Theorem 4.7 holds true. Instead of verifying (2)(b)
of this theorem, we will proceed directly to the classification of projective modules. But first we need
the following lemma.

Lemma 7.4. If τ ∈ Tλ,μ , then Pτ / J Pτ is a simple module isomorphic to Sλ,μ .

Proof. First we will show that Pτ / J Pτ is a cyclic module generated by q̄τ = qτ + J Pτ . For this
it suffices to prove that Xn , the second generator of Pτ , belongs to J Pτ . Indeed, from Xn ∈ J we
obtain Xnqτ (H) = qτ (H − n)Xn ∈ J Pτ . Further, if f (H) = ∏

η∈T (H − η) is a generator of the zeroth
component of J (see Corollary 6.3), then f (H)Xn ∈ J Pτ . Since all the roots of qτ are in T (and n is
the maximum of differences of comparable roots), it follows that qτ (H − n) and f (H) are coprime,
hence Xn ∈ J Pτ .

From the description of maximal ideals of A (see after Fact 6.2) we conclude that qτ /∈ Iλ,μ and
qτ ∈ Iρ,π for all remaining maximal ideals of A. It follows easily that Iλ,μq̄τ = 0̄. Since Iλ,μ is the
annihilator of Sλ,μ , this implies that Pτ / J Pτ is a direct sum of copies of Sλ,μ .

Recall (see before Lemma 6.1) that the τ -eigenspace of Sλ,μ (when acting by H) is 1-dimensional.
Thus to prove that Pτ / J Pτ is simple it suffices to show that its τ -eigenspace is also 1-dimensional.
Moreover, since q̄τ is a generator for this module, it is enough to check that (H − τ )q̄τ = 0̄, that is,
(H − τ )qτ ∈ J Pτ . If f (H) = ∏

η∈T (H − η), then (as above) f (H) ∈ J , hence f (H)qτ ∈ J Pτ . Further-
more, Y n ∈ J implies Y n Xn = cn(H + n) ∈ J Pτ , therefore g(H) = gcd( f (H)qτ (H), cn(H + n)) ∈ J Pτ .
Since every root of f (H)qτ (H) belongs to T and Y n Xn|T = q(H) = (H − τ )nτ qτ , it follows that
g(H) = gcd( f (H)gτ ,q) = (H − τ )qτ ∈ J Pτ , as desired. �

Note that we have some excess of projective modules ‘covering’ the same simple module: if
τ ,η ∈ Tλ,μ , then both Pτ / J Pτ and Pη/ J Pη are isomorphic to Sλ,μ . To get uniqueness one can choose
one representative τ in each set Tλ,μ; and the most natural choice would be to take τ = μ, the ut-
most right end of Tλ,μ , which is a root of a(H). Thus simple finite dimensional A-modules, hence the
corresponding projective ideals, are parameterized by T ∩ S .

Let λ1, . . . , λm be a complete list of elements of T ∩ S (that is, of elements of T which are roots
of a(H)), where we may assume that i < j implies λi <B λ j , if λi and λ j are on the same orbit B . Let
S1, . . . , Sm be the corresponding (complete) list of finite dimensional A-modules. Thus, if λi < λi+1
are adjacent roots of a(H), then Si+1 = Sλi ,λi+1 (in notation before Lemma 6.1). For example, if a(H) =
H(H − 2)(H − 4), then T ∩ S = {2,4}, therefore we set λ1 = 2 < λ2 = 4 and S1 = S0,2, S2 = S2,4. By
what we have just noticed, then Pλ1 , . . . , Pλm are projective homogeneous left ideals of A such that
Pλi / J Pλi

∼= Si .
Now we are in a position to prove the main result of the paper.

Theorem 7.5. Every infinitely generated projective module Q over a generalized Weyl algebra A is a direct
sum of copies of homogeneous left ideals Pmin and Pλ1 , . . . , Pλm .

Proof. By Kaplansky’s theorem we may assume that Q is countably (infinitely) generated. Let I =
I(Q ) be a two-sided ideal of A corresponding to Q in Proposition 4.2; in particular, I is idempotent
and P = Q /I Q is a finitely generated projective A/I-module. Since Q is infinitely generated, therefore
I �= 0.
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Suppose first that I = Imin. Since Imin ⊆ J and J is nilpotent modulo Imin, therefore the canonical
projection P/Imin P → P/ J P is a projective cover of P/ J P as an A/Imin-module. Furthermore, because
A/ J is a semisimple artinian ring, we conclude that P/ J P is a direct sum of simple finite dimensional
A-modules, P/ J P ∼= Sk1

1 ⊕ · · · ⊕ Skm
m . Then P ′ = Pk1

λ1
⊕ · · · ⊕ Pkm

λm
is a projective left A-module with

P ′/ J P ′ ∼= P/ J P . Thus P/Imin P and P ′/Imin P ′ are projective covers of P/ J P as an A/Imin-module,
therefore these modules are isomorphic.

Now it is easy to calculate that the pair corresponding to the projective module P (ω)

min ⊕ P ′ is
(Imin, P ′/Imin P ′), therefore Q is isomorphic to this module by Proposition 4.2.

Now assume that I ⊃ Imin is an idempotent ideal of A. If Ii denotes 〈qλi 〉, then, by Lemma 7.3,
I1, . . . , Im is a complete list of atoms of B(A), therefore I admits a (unique) representation as a sum
of atoms, I = ∑

j∈Λ I j , where Λ is a subset of {1, . . . ,m} (for instance, if I = A, then Λ = {1, . . . ,m});
and let Λ′ = {1, . . . ,m} \ Λ be the complement of Λ.

Since A/ J is semisimple, we conclude that P/ J P is a direct sum of copies of simple modules
S1, . . . , Sm . Furthermore, because I(P ) = I , it follows easily that Q / J Q ∼= ⊕

j∈Λ S(ω)
j ⊕ ⊕

l∈Λ′ Skl
l ,

kl < ω, therefore Q /I Q ∼= ⊕
l∈Λ′ Skl

l . Let us consider the following projective A-module Q ′ =
⊕

j∈Λ P (ω)
λ j

⊕ ⊕
l∈Λ′ Pkl

λl
. Clearly I(Q ) = ∑

j∈Λ Tr(Pλ j ) = ∑
j∈Λ I j = I and Q ′/ J Q ′ ∼= Q / J Q . Using

projective covers (as in the first part of the proof) we conclude that Q ′/Imin Q ′ ∼= Q /Imin Q . Since
Imin ⊆ I , it follows that Q ′/I Q ′ ∼= Q /I Q , therefore Q ′ ∼= Q by Proposition 4.2. �

Note that Hodges [9, Lemma 2.4] constructed a family of finitely generated projective modules
over a GWA A as follows. Suppose that a(H) = b(H)c(H), where the polynomials b(H) and c(H) are
coprime. Then Pb = Ab(H) + A X is a projective homogeneous left ideal of A. It is not difficult to
check that Tr(Pb) is generated by X, Y ,b(H) and c(H − 1). For instance, if a(H) = H(H − 1)(H − 2)

and b(H) = H − 1, then Tr(Pb) = 〈H − 1〉, therefore Tr(Pb) is a maximal (idempotent) ideal of A.
However, Tr(Pb) is always situated close to the top of B(A), for instance, in most cases one cannot
obtain Imin as Tr(Pb). Thus our approach to idempotent ideals ‘from below’ seems to have a crucial
advantage.

If we take a GWA with a(H) = H(H − 2), set b(H) = H − 2 and apply Hodges’ construction, then
(see [9, Theorem 2.3]) P = A(H − 2) + A X is a projective generator whose endomorphism ring is
isomorphic to the GWA with a(H) = H(H − 1), therefore these algebras are Morita equivalent. This is
an example of a translation functor we mentioned before Fact 5.1.

As one can see from the proof of Theorem 7.5, some direct summands of the projective module Q
are clearly redundant. For instance, executing this proof for Q = A(ω) , we will end up with represen-
tation Q ∼= ⊕m

i=1 P (ω)
λi

. In the next proposition we will get rid of these repetitions, therefore obtain
a canonical form for each infinitely generated projective module over a GWA. This also allows us to
include uncountably generated projectives.

Proposition 7.6. Let Q be an infinitely generated projective module over a GWA A. Then exactly one of the
following holds true.

(1) Q is free;
(2) Q ∼= A(α) ⊕ ⊕

i∈Λ P (αi)
λi

⊕ P (β)

min , where ω � α < αi < β and Λ is a proper (maybe empty) subset of
{1, . . . ,m};

(3) Q ∼= A(α) ⊕ ⊕
i∈Λ P (αi)

λi
, where ω � α < αi and Λ is a proper nonempty subset of {1, . . . ,m};

(4) Q ∼= ⊕
i∈Λ P (αi)

λi
⊕ ⊕

j∈M P
k j
λ j

⊕ P (β)

min , where k j < ω, ω � αi < β , and Λ, M are disjoint subsets of

{1, . . . ,m} and Λ is proper and nonempty;

(5) Q ∼= ⊕
i∈Λ P (αi)

λi
⊕ ⊕

j∈M P
k j
λ j

, where k j < ω, ω � αi , and Λ, M are disjoint subsets of {1, . . . ,m} and

Λ is proper and nonempty;

(6) Q ∼= ⊕
j∈M P

k j
λ j

⊕ P (β)

min , where k j < ω, β � ω, and M is a subset of {1, . . . ,m}.

Furthermore all the exponents α,β, . . . in the above representations are uniquely determined by Q .
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Proof. By Theorem 7.5, every infinitely generated projective A-module Q is isomorphic to a direct
sum of copies of A, Pλ1 , . . . , Pλm and Pmin (clearly there is no harm in adding A!). Separating finite
and infinite exponents of the Pλi , we obtain that

Q ∼= A(α) ⊕
⊕

i∈Λ

P (αi)
λi

⊕
⊕

j∈M

P
k j
λ j

⊕ P (β)

min,

where each αi � ω, k j < ω, and Λ, M are disjoint subsets of {1, . . . ,m}; and choose a representation
of Q with a maximal possible α.

Suppose first that α � ω. Because A = Tr(A) ⊃ Tr(Pλi ) = Ii ⊃ Tr(Pmin) = Imin, therefore, by

Lemma 3.3, we can absorb projectives P
k j
μ j into A(α) , therefore assume that M = ∅. Similarly, if α � αi

for some i ∈ Λ then A(α) ⊕ P (αi)
λi

∼= A(α) (so we can drop P (αi)
λi

); and A(α) ⊕ P (β)

min
∼= A(α) if α � β . Fur-

thermore, again by Lemma 3.3, P (αi)
λi

⊕ P (β)

min
∼= P (αi)

λi
if αi � β .

Thus either Q is free or we may assume either that α < αi < β for each i ∈ Λ (or just α < β if
Λ = ∅) or β = 0, Λ �= ∅ and α < αi for each i ∈ Λ.

Suppose that Λ = {1, . . . ,m} and α j = mini∈Λ αi . Since Tr(Pλ1 ⊕ · · · ⊕ Pλm ) = A it follows that⊕
i∈Λ P (αi)

λi
splits off A(α j) as a direct summand, which can be transferred to A(α) . Since α + α j =

α j > α, this contradicts our choice of α. As a result Λ is a proper subset of {1, . . . ,m}, thus we have
obtained (2) and (3) of the proposition.

It remains to consider the case when α = s if finite. If Λ �= ∅ and j ∈ Λ then using Proposition 4.2

it is easily seen that As ⊕ P
(α j)

λ j
is isomorphic to P

(α j)

λ j
⊕ ⊕m

i=1 P s
λi

, therefore Q is isomorphic to a

module of the form (4) or (5).
Similarly if Λ = ∅ and Q is not finitely generated, we obtain (6).
Arguing as in Proposition 4.3 it is easily seen that exponents α,β, . . . are uniquely determined

by Q . For instance, in (4), αi is equal to the uniform dimension of Q /K Q , where K is the annihilator
of the simple module Si = Pλi / J Pλi . �
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