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ABSTRACT

Cavaretta et al. [1] had shown that in some special cases of polynomials of
lacunary interpolation in the roots of unity, the analogue of a theorem of Walsh is
valid. They offered a conjecture in the case of (0, m,,...,m,_,) interpolation in the n
roots of unity. The objective here is to prove the conjecture and to prove a similar
result in the case of 2-periodic lacunary interpolation on 2n roots of unity.

1. INTRODUCTION

Let A, denote the class of functions analytic in |z| < p (p > 1). For a given
feA,letp, \(z; ) denote the Lagrange interpolation to f in the n roots of
unity, and let P, _,(z; f) denote the Taylor polynomial of degree n —1 for f
about the origin. A beautiful theorem of Walsh [6] asserts that
lim, _, . [p,_1(2; f)— P._1(z; £)] = 0 for |z| < p? and that this convergence is
uniform and geometric on compact subsets of |z| < p?. Recently there has
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been considerable interest in this theorem and its various extensions [1, 5).
Here we are interested in its relation to the H-B problem of (0, m,,...,m,_;)
interpolation in the n roots of unity where {m,}}~! are any nonnegative
integers with 0 =my, <m, <--- <m__,. It was shown [2, 4] that if m; <kn
(k=0,1,...,5 — 1), then the problem is regular (i.e., has a unique solution). If
Az)=X¥a,z”, let B,,_, o(% f)=15° 'a,z” and let b,, _,(z; f) denote the
unique polynomial of (0, m,...,m,_,) interpolation in n roots of unity. If
g, (z)=z"7Urs7n (j=1,2,...), set

n—1

Bsn—l,j(z;f)= E av+(j+s—l)nbsn—l(z;gv,j)’ (11)
v=0

Cavaretta et al. [1] offered the following conjecture:

Conjecture. For any fin A, and for each positive integer /,

-1

lim bsn—l(z;f)_ E Bsn—l,j(Z;f) =0 (12)
n— oo j=0

for |z| < p**(!/9), the convergence being uniform and geometric for all z with
|z| < Z < p**/%), Moreover the result (1.2) is best possible.

This conjecture was based on some special cases treated, viz., the H-B
problem of (0,1,...,r—1), (0,m), (0,2,3), and (0,1,...,r—2,r+m —2)
interpolation. The main difficulty in the proof of the conjecture in the general
case derives from the difficulty of writing the polynomial b,,_ (z; f) in the
form (1/27i)fpf(t)K(t, z)dt and of the finding the explicit form of the
kernel. In the special cases treated, this difficulty was bypassed by adopting a
different approach. _

The existence and uniqueness question for a more general H-B interpola-
tion on roots of unity was recently solved in [3]. If w is a primitive 2n-root of
unity, let 1, ?,..., 02" "2 be the n roots of unity and let w, w3,...,w?"* be the
nrootsof —1. Let 0=my<m; <--- <m, _, and 0 < 1fiy <--- <1t _, be
two sets of integers, with s = s; + s,. It was shown in [3] that if {m,} and {17, }
satisfy a suitable Polya condition [see (5.1) below], there is a unique poly-
nomial of degree sn —1 which interpolates at the n roots of unity in the
(0,m,,...,m, _,) sense and at the n roots of —1 in the (g, iy,.... M, _,)
sense.

Following the terminology in [3], we shall call this the 2-periodic case of
lacunary interpolation on the 2n roots of unity. We observe that the condi-
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tions for the n-periodic case of lacunary interpolation in (kn)th roots of unity,
k > 2, to be regular are not known.

The objective of this note is twofold: (1) to give a proof of the conjecture
of Cavaretta et al., and (2) to prove a similar result in the case of the
2-periodic case of lacunary interpolation. Section 2 deals with a few pre-
liminaries and a lemma. In Section 3 we derive the explicit form of the kernel
K(t, z) such that

b 155 £) = 57 [AOK(e,2) de (13)

Here and elsewhere I" denotes the circle |z2] = R < p. In Section 4 we find a
suitable form for B, _, /(%; f) and use it to give a proof of the conjecture.

Section 5 deals with the equiconvergence problem for the 2-periodic
lacunary interpolation. We state the result and sketch the proof. In Section 6
we state the corresponding result for the general Hermite problem and offer a
conjecture.

2. PRELIMINARIES

The following determinant will play a leading role in the sequel:

1 1 . 1
(Pm, (+n)m, - (p+(s—1)n),,
M) =M,()= . | | ,
(V)mrx (V+n)ms—l (V+(S_1)n)'";~1

(2.1)

where (v),,=v»(v —1)--- (¥ —m +1). We shall sometimes denote the ele-
ments of M(») by a;(») and its cofactors by A;{v). We shall need the
following lemmas:

Lemma 1 [4]). For fixed integers {m}{_, such that 0 <m;<--- <m,,
m;< jn(j=1,2,...,q) and for any nonnegative integer, v, the determinant



606 R. B. SAXENA, A. SHARMA, AND Z. ZIEGLER

M(») is positive. Also

M(y)=n_(”'l+'“+'”°)[g(v)+0(%)] as noo, (22

where g(v) is bounded and decreasing for 0<vr<n
Set

s—1

Ay(v, k)= M(» ){ an(r)+ X (V+k")m,Aj+1,>\+1(V)}- (2.3)

j=1

It is easy to see that A,(v,k) is the ratio of two determinants. If
0<k<s—1, then Ay(»,k)=0 or 1 according as k= A or k=A. For k> s,
the determinant in the numerator does not vanish, and, using a modified
version of Lemma 1, we see that it is of the same order as the denominator.
Thus, Ay(»,k), k> s, does not vanish and is bounded by a constant as
n — 0.

Lemma 2. The unique polynomial q,,(t, z) of degree n — 1 such that

k 2"
qm(t,w )=ml(t—z)m—+l' , k=0,1,....n-1,
- z—u"
is given explicitly by
tn+m v—1 )
au(t,z)=(-D" Eo dtm(_tT_—l_)z- (24)

Proof. A little manipulation shows that

md™ [ gm—gm  gmam(enm—gnm)
An(t,2)=(-1) dt_m[(t"—l)(t—z)+ (t"-1(t-z) |

which is easily seen to be a polynomiai of degree n — 1. From this we get (2.4)
by differentiation. |
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We note, for future use, the following identity which is easy to verify:
m dm [gntm-r 1 . (y+ }\n)m
(————t = ) t go e (2.5)

3. THE KERNEL K(t, z)

We shall determine the kernel K(t, z) which is a polynomial of degree
ns — 1 and satisfies the conditions

4 _& 1

smot 02T E— 2| o0k

(k=0,1,....n—1, »=0,m,,....,m,_;). (3.1)

We shall prove

ProposiTiOoN 1. The kernel K(t, z) is given by

s—1
K(t,2)= ¥ B(z),  B(a)em,,, (32)
A=0
where
n—1
t n n— y » A)\(v’k)
P,‘(z) ( )t(x+1)n+ got " kgs $(k+Dn (3'3)

and A,(», k) is given by (2.3).

Proof. It is easy to verify that

(2MP(2))T = 074G\ (DIP(2)] _ o (3.4)

where D = d /dz and

m;

m.
Con(D)= L () AmyamooDmr, 0<id<a (39)

r=0
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From (3.1), (3.2), (3.4), and (3.5) we obtain the following system of differen-
tial equations determining P,(z):

s—1 n—1l-v_v»
t 4
Z PA(Z)— Z __1
=0 (3.6)
T DB = (D)™ il el
o i An NE)= ST dt™\ -1 i

Noting that an application of the Leibnitz rule yields G;,.(D)z" = (v +
)\n)mjz", and appealing to the elementary theory of differential equations, we
can derive (3.3) from (3.6) and the identity (2.5). a

Remark 1. Recalling the fact that

T a4y )= (g 17

the relations (3.2) and (3.3) imply that

FAASA T |
K(t,z)—— {1—(;) }E+K1(t,z), (37)
where
s—1
Ki(t,z)= Y z*R,(t,z2), (3.8)
A=0
with
nl & Ar, k)
Ry(t,z)= X t"'72" ) ttk+1)n : (3.9)
v=0 =g
4. PROOF OF THE CONJECTURE
Let g, (z)=z"*0""D" (»=0,1,....,n; j= ..). The polynomial

b,,_\(z: ¢, ]) is easily determined by the method used above We set

s—1

bsn—l(z; gv,j)= Z zAnQ}\(Z; v, j)’ (41)

A=0
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where the polynomials Q,(z; », ) € m,_, and are governed by the following

set of differential equations:

s—1

Z Qa(z; V’j) =z,
A=0

s—1

L Goan(D)QN(z 7, )= (v +(j+s=Dn)mz"  (p=1.2..

A=0

Hence we have
Qa(z; 7, j) =z"A\(v,j+s~1),

so that

s—1
bsn—l(Z; gv,j) =z" Z z}‘nA)\(V; j+ R 1)
A=0

We can now find the polynomials B, _, ,(z; f). For j= 0, we have

2miJpt— 2z

B0l f) = 2: a7 =g [P (1=

For j> 1, we have

n—1

Bsn—l,j(z; f)= E av+(j+s—-1)nbsn—l(Z;gv,j)

y=

ff(t)K*(t z)dt,

T omi

where

n—1

1 Z s—1
Ki(t,z)= Tot" T2 Y AL (v, j s — 1),

+
g+ n A=0

(4.2)

cs—1).

(4.3)

(4.4)

(45)

(4.6)
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From (3.7), (4.4), and (4.5), we see that

-1
bsn—l(Z;f)+Bsn—l,0(z; f)_’ Z Bsn—l,j(z;f)
j=1

-1 frﬂt) Kl(t,z)—lilK’;(t,z) dt
j=1

2mi
s—1
1 o L X M k)
- n—-l-y_» A=0
2mi -/I‘*f(t)ygot o kgs $k+Dn
s~1
11 & 2 j+s—1)
A=0
- dt
jgl t(s+j)n
s—1
1 n—1 o ZAnA)\(V,k)
= ¢ tn—l—vzv A=0 dt.
2mi '[I‘f( );Z;O k=§+l g(k+Dn

Since A)(», k) is bounded as n — oo for each fixed A, », k, and A,(», s + 1) = 0,
it follows that the above difference tends to zero when |z| < p**/*). This
follows by considering the highest power of z in the numerator and the lowest
power of ¢ in the denominator and applying the methods used in [1].

Remark. If f(z)=1/p - z, it follows from (1.1), (3.2), (3.3), and (4.3)
that we have

k-1
bns—l(Z; f)_- E an-—l,j(z; f)]
j=0

z_pl+l/a

s—1 n—1 ad A( k)
1- ! AN
= L g0 g prriogasin SRS
>\=0 V=0 k=s+l_1 p

s—1 n—1 e 4 (___V k)
— -_ A ’
_ Z prn+1/9) Z pt 1T Hl/s) Z (k+1)n
y=0 v=0 k=s+1-1 P
__1 ““IAs-l(”,s+"1)+O( 1)
P Do i o
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Since A,(v,k), k>s, does not vanish and is bounded by a constant as
n — o0, it follows that in this case (1.2) does not hold when z = p**!/*, This
shows that (1.2) is best possible.

5. 2-PERIODIC LACUNARY INTERPOLATION

We now extend the equiconvergence results to the case of 2-periodic
lacunary interpolation where two different sequences of derivatives are pre-
scribed at odd and at even powers of a 2nth root of unity.

Let 0=my<m;<--- <mg _, and 0< iy <--- <7ii,__; be two se-
quences of integers. We consider the problem of (0, m,,...,m, _,) interpola-
tion at w?* (k=0,1,...,n—1) and of (s, my,...,M, ;) interpolation at
w?**1(k=0,1,...,n — 1), where w is a primitive 2nth root of unity. Thus the
total number of conditions is (s; + s,)n, and the interpolating polynomial is
of degree ns — 1, where we set s = s, + 5,. Following [3], we require that

mi<kn, k=0,1,...,s—1, (5.1)
where 0 = mg <m] <--- <m/_, is the set of {m,}U{7,} arranged in increas-
ing order. This ensures the existence and uniqueness of the interpolatory
polynomial. 3

In this case we need the determinant M(») of order s given by
1 1 1
(»)m, (v+1n)m, (r+(s=1)n)m,
M(V)= (D)msl—l (V+n)msl—l T (V+(s—1)n)msl~l
()i, (=D+n)z, - (=) (p+(s—Dn)y
W, (D+r)a o (“) T H+(s=Dn)a

(5.2)

It has been shown [3, p. 672] that when (5.1) is satisfied, M(»)=0.
Let b,,_(z; f) be the polynomial of 2-periodic lacunary interpolation
described above, and let

. ns—1
an—l,O(Z; f)= Z avzy' (53)
=0

v
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Further, let
n—1
an—l,j(Z;f)= Z av+(j+s-l)nbns—l(z;gv,j)‘ (54)

We shall prove

Tueorem 1. For any fin A, and for each positive integer 1,
i 2%
limw bns—l(z; f) - Z an—l,j(Z; f) =0 (5'5)
n— j=0

Jor |z| < p */9, the convergence being uniform and geometric for all z with
|2] < Z < pt ™9, Moreover the result (5.5) is best possible.

Proof. The proof follows the same lines as that of the conjecture in
Section 4. As in Section 3, we shall find the kernel K(#, z) which is a
polynomial in z of degree ns — 1 and which satisfies the following conditions:

™ .
3z"'fK(t’z)L_wzk
m)
=_——(t 2:)m1+1,]’=0,1,...,31—1, k=0,1,_”’n_1’
—-w
(5.6)
i .

az'ﬁJK(t’ Z)]z_wzk-H

)
=—-y  j=0,1,...,5,—1, k=0,1,...,n—1.
(t _ w2k+1)m’+l

We set K(t, z)=E3262""P\(z) and let G;,,(D) and G,,,(D) denote
differential operators given by
™y

c,-,A,.(D)=p};o(';'f)(xn)pzmv’"ﬂ,
) (5.7)

mj 5 ~ ~—
&an(D)= T () An),z5ropmr.
p=0

2

b~
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As in Section 3, the following differential equations determine Py(z):

s—1

Z Gj,)\n(D)P)\(Z)zqu(t’z)’ j=0,1,...,31_1,

A=0
. (5.8)
> (__1)}‘Gj,)\n(D)P)\(z)=q~fﬁj(t’z)’ j=0.1,....8, 1,
A=0

where q,,(t, z) is given by (2.4) and §,,(¢, z) is defined by
-1 dm tn+m v—1
4t 2)=(~1)" Z dt,,.(———t—,.T)z . (5.9)

Observe that G, satisfies the condition at odd powers of w, stated in (5.6).
We note the analogue of the identity (2.5), viz.

mdm tn+m—v—l ey [} (—l)h(v+>\n)m
( 1) dtm( t"+1 )_t Z t(}\+l)n * (510)

If A, j(») denotes the cofactor of the (i, j) element in (5.2), we get from
(5.8) an explicit form for P,(z). Thus we have

B(n)-L i § A (5.11)
=0

=0 t(]+l)n

where

By(r. )= { 5 An(0)- (04 jn)i_y

i=1

iy A.-ﬂl,«v)(—1)f(v+jn)i_1}[M(v)]‘1. (5.12)

i=1

Observe that for 0 < j< s —1, j= A, the sum on the right in (5.12) vanishes,
whereas for j= A, A,(», ) =1, in view of the definition of A, (») as cofactors
of M(»). Moreover, for j>s, the determinant in the numerator does not
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vanish, in view of the method of proof used in [3, p. 672]. Hence we have

7, t" — n—y— (V ])
B(2)= (—W Zt .E o

(A=0,1,....s—1). (5.13)

This implies
s—1 .
psn _ g n—1 Z ZMA)‘(V’j)
K(t,z) +Zt" v= 1”2)‘—0,—,
(t—z)tsn v=0 j=s ¢+ bn
s—1 =
-1 n—1 o0 Z z}‘nA"(v’j)
i —y— A=0
byp—r, (25 )~ Z oo, (7 F)= 2t IZ",Z T Gt
v=0 j=s+1

By using the same reasoning as in the proof of Lemma 1 (cf. [4]), we can see
that A,(», §) is bounded for fixed A, », jas n — oo. Proceeding as in Section 4,
we thus obtain (5.5).

If we take f(z)=1/(p— z) and argue as in the Remark at the end of
Section 4, we see that (5.5) is best possible. [ ]

6. EXTENSIONS

An extension to general mixed Hermite-Birkhoff conditions is not
straightforward, in view of the unavailability of existence and uniqueness
theorems in the general case. However, the Hermite problem is always
solvable, and the equiconvergence can be analyzed using our methods.

For f € A, consider the Hermite interpolation polynomial h,,_(z; f) at
3nth roots of unity according to the scheme

0,1,....,5,-1) at w3k, k=0,1,...,n-1,
0,1,...,8,—1) at «**! k=0,1,...,n—-1, (6.1)
(0,1,...,s,—1) at o2, k=0,1,...,n—-1,
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where w is a primitive root of w®" =1 and s = s, + s, + s5. Let h,,,_4(z; f)
denote the Hermite interpolant to f satisfying (6.1). Let H ,_(z; f)=
rinsla, 2%, and set

n—1

Hsn—l,j(Z; f)= E av+(j+s-—l)nhsn—-l(2; gv,j)’
v=0

where g,  is defined as at the beginning of Section 4. Then following the
above analysis we can prove

TueoreM 2. For any fin A, and for each positive integer I,

1-1
lim |k, (2 f) = L Hypy (2 F)[=0 (6.2)
=0

n—oo .

J

for |z| < o *V/9), where the convergence is uniform and geometric in |z| < Z
< pt*/9, Moreover, the result (6.2) is best possible.

We conjecture that whenever the mixed Hermite-Birkhoff problem on
(ng)th roots of unity has a unique solution, an analogue of Theorem 1 is true.

REFERENCES

1 A.S. Cavaretta, Jr., A. Sharma, and R. S. Varga, Interpolation in the roots of unity:
An extension of a theorem of J. L. Walsh, Resultate Math., 1980, No. 3, pp.
155-191.

2 A.S. Cavaretta, Jr., A. Sharma, and R. S. Varga, Hermite-Birkhoff interpolation in
the nth roots of unity, Trans. Amer. Math. Soc. 259(2): 621-628 (1980).

3 A. Sharma, P. W. Smith, and J. Tzimbalario, Polynomial interpolation on roots of
unity with applications, in Proceedings of the Conference on Approximation and
Function Spaces, Gdansk (Poland), PWN, 1981, pp. 667-685.

4 S. D. Riemenschneider and A. Sharma, Birkhoff interpolation at the nth roots of
unity: convergence, Canad. J. Math. 23(2): 362-371 (1981).

5 R. S. Varga, Topics in Polynomial and Rational Interpolation and Approximation,
Seminaire de Math. Superieures, Univ. of Montreal, 1982, Section 81, Chapter IV,
pp- 69-93.

6 ]. L. Walsh, Interpolation and Approximation by Rational Functions in the
Complex Domain, AM.S. Collog. Publ., Vol. XX, Providence (R.I.) 5th ed., 1969,
p. 153.

Received 30 July 1982; revised 30 August 1982



