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Abstract Ena/VASP family proteins are important modulators
of cell migration and localize to focal adhesions, stress fibres and
the very tips of lamellipodia and filopodia. Proline-rich proteins
like vinculin and zyxin are well established interaction partners,
which mediate Ena/VASP-recruitment via their EVH1-domains
to focal adhesions and stress fibres. However, it is still unclear,
which binding partners Ena/VASP proteins may have at lamelli-
podia tips and how their recruitment to these cellular protrusions
is regulated. Here, we report the identification of a novel protein
with high similarity to the C. elegans MIG-10 protein, which we
termed PREL1 (Proline Rich EVH1 Ligand). PREL1 is a 74
kDa protein and shares homology with the Grb7-family of sig-
nalling adaptors. We show that PREL1 directly binds to Ena/
VASP proteins and co-localizes with them at lamellipodia tips
and at focal adhesions in response to Ras activation. Moreover,
PREL1 directly binds to activated Ras in a phosphoinositide-
dependent manner. Thus, our data pinpoint PREL1 as the first
direct link between Ras signalling and cytoskeletal remodelling
via Ena/VASP proteins during cell migration and spreading.
� 2004 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

The actin cytoskeleton is a prerequisite for cell motility and

undergoes various rearrangements during lamellipodia and fil-

opodia formation, bundling into stress fibres or anchorage to

the substrate through focal adhesions. Cell migration is medi-

ated by a concerted interplay of assembly and disassembly of

all these structures, the formation of which is tightly regulated

by small GTPases of the Rho family [1,2]. The protrusion of

lamellipodia and filopodia requires actin polymerization

involving the de novo nucleation of actin filaments and the

addition of monomers to the barbed ends of pre-existing fila-

ments [3,4]. Incorporation of actin into dynamic structures is

restricted to the sites, e.g., the lamellipodial tip [5], where the

fast growing (barbed) ends of the filaments are located [6].

There is accumulating evidence for the presence of multi pro-

tein-complexes at the very edges or tips of protruding lamelli-
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podia and filopodia harbouring components directly driving

actin nucleation via the Arp2/3 complex [7,8], and other fac-

tors exerting modulatory functions [9, reviewed in 10,11,12].

Bar-Sagi and Feramisco showed already in 1986 [13] that

injection of constitutively active Ras into fibroblasts induces

membrane ruffling, providing a first link between Ras signalling

and the actin cytoskeleton. The ability of active Ras to increase

the invasive potential and motility of fibroblastic cells was pro-

posed to be mediated by the suppression of integrin activation

and adhesion [14, reviewed in 15]. On the contrary, the Ras

family member Rap1 was found to reverse the phenotype of

Ras transformation, to induce adhesion and to trigger integrin

activation in response to its activation [16, reviewed in 17].

In addition to the inside out signalling effects of Ras on inte-

grin activation, engagement of integrins, e.g., through binding

to fibronectin, leads to Ras- and subsequent Erk activation,

which coincides with transient association of Ras with the sites

of integrin engagement [2,18]. Moreover, Nobes and Hall

showed that Ras- but not Erk activation is required for the on-

set of cell migration in wound healing assays, as exemplified by

microinjection of neutralizing anti-Ras antibodies and chemi-

cal inhibitors of MEK [2]. Nevertheless, the molecular link

from Ras to actin reorganization and adhesion turnover dur-

ing cell motility is poorly defined.

Ena/VASP proteins are important regulators of the actin

polymerization machinery, although the exact mechanism of

how this regulation occurs is under debate [12,19]. They are

localized to focal adhesions, along stress fibres and at the tips

of protruding lamellipodia and filopodia [9,20–22] and are

binding partners of the actin monomer binding protein profilin

[21,23]. Combined genetic inactivation of the Ena/VASP fam-

ily members VASP and Mena indicated that these proteins

may not be essential for the formation of lamellipodia and fil-

opodia, although fibroblasts lacking these family members dis-

play alterations in migratory behaviour and protrusion

efficiency [11,12]. Actin-based motility of the facultative intra-

cellular pathogen Listeria monocytogenes is enhanced by Ena/

VASP proteins, both in vivo [24] and in vitro [25]. Ena/VASP

proteins interact directly with the Listeria surface protein ActA

and the enhanced motility was attributed to the recruitment of

profilactin by VASP [23,26] to promote localized actin assem-

bly [27]. However, in vitro, Ena/VASP proteins can also en-

hance actin based motility in the absence of profilin [19].

The surface protein ActA of Listeria is essential and suffi-

cient for the intra- and inter-cellular actin-based motility of

this pathogen. A poly-proline motif flanked by hydrophobic
blished by Elsevier B.V. All rights reserved.
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and acidic residues was identified to mediate recruitment of

Ena/VASP proteins by binding to their N-terminal EVH1 do-

mains [28]. Moreover, homologous polyproline repeats in zyx-

in [29] and vinculin [30] were shown to be involved in the

targeting of Ena/VASP proteins, via their EVH1 domains, to

focal adhesions.

Additional proteins harbouring EVH1-binding motifs were

identified more recently, for instance the haematopoietic pro-

tein Fyb/Slap/ADAP, which binds to Ena/VASP family pro-

teins upon T-cell receptor activation [31], and palladin, also

implicated in contributing to subcellular Ena/VASP position-

ing [32]. However, it remained unclear as to which interaction

partners Ena/VASP proteins may have at lamellipodia tips and

how they are recruited to this subcellular compartment. Re-

cently, for instance, the proto-cadherin Fat1 was found to be

capable of interacting with Ena/VASP proteins at these sites,

providing a potential mechanism for Ena/VASP recruitment

to lamellipodia [33].

The starting point of the present study was our finding that a

monoclonal antibody raised against zyxin recognized the re-

peated EVH1-binding consensus (D/E-FPPPP-XD/E) in both

zyxin and vinculin, and stained lamellipodia tips in migrating

fibroblasts, sites lacking both zyxin and vinculin [34]. Using

this antibody, we identified a novel protein from a HeLa

expression library with high similarity to the C. elegans

MIG-10 protein [35,36], which we have tentatively termed

PREL 1 for Proline-Rich EVH1 Ligand 1.

MIG-10 is a 73 kDa protein and shares sequence homology

with the Grb7-family of signalling adaptors [36–38]. Unlike the

GRB7/10/14 sub-family, MIG-10 and the novel protein identi-

fied in this study lack the C-terminal src homology 2 (SH2) do-

main and harbour multiple poly-proline stretches. We found

that PREL 1 not only binds to VASP and Mena and co-local-

izes with these proteins at lamellipodia tips and in focal adhe-

sions, but that it also interacts with GTP-loaded Ras in a lipid

dependent manner. These findings thus provide a direct link

between Ras signalling and remodelling of the actin cytoskele-

ton via Ena/VASP proteins.
2. Materials and methods

2.1. Cells and transfections
All tissue culture reagents were from Gibco BRL and all chemicals

were from Sigma unless mentioned otherwise. B16F1 (ATCC: CRL-
6323) cells were maintained as described earlier [39]. Rat2 cells (ATCC:
CRL-1764) were cultured in DMEM supplemented with 10% FCS
(PAA Gold) and 2 mM glutamine. Swiss 3T3 (ATCC: CCL-92) and
NIH3T3 cells (ATCC: CRL-1658) were cultured in DMEM supple-
mented with 10% FBS (Sigma), 2 mM glutamine 1.5% non-essential
aminoacids and 1% Na-pyruvate. Transfections were carried out with
SuperFect (Quiagen, Germany, for B16-F1) or with FuGENE (Roche,
Germany, for Rat2 and NIH 3T3), according to the manufacturer�s
protocols.

2.2. Identification of PREL1 and cloning of expression constructs
Screening of a HeLa cell expression library (#69656-3; Novagen

Inc., Madison) was carried out as described earlier [31] using the
monoclonal antibody 31C4 (isotype IgM), which recognizes the
EVH1-recognition consensus, leading to the identification of a novel
open reading frame (ORF) with high similarity to the murine ORF
prp48 (Acc. No.: AF020313) and the nematode mig-10 sequence.
Reverse transcription (RT)-PCR was carried out to obtain the full
length sequence information using the Titan Kit (Roche) according
to the manufacturer�s instructions. Human brain total RNA was used
as a template and was obtained from Ambion (Huston, TX). The ex-
pressed sequence tag (EST) clone (Acc. No.: 14500382) was obtained
from the Resource Centre of the German Human Genome Project
(RZPD, Berlin, Germany) and contained the full length coding se-
quence of the murine gene.
Murine full length PREL1 derived from the above EST clone was

sub-cloned into pEGFP-C or pEGFP-N vectors (Clontech, Palo Alto,
CA). Constructs encoding the proline-rich N-terminus (residues 1–252)
and C-terminus (residues 398–668), the RA-domain (residues 151–276)
and the PH-domain (residues 301–433) were generated by PCR and
cloned into pEGFP-C (Clontech) and pGEX-6P (Amersham) vectors
for eucaryotic and bacterial expression, respectively. All sequences
were confirmed by sequencing. An overview of the constructs used in
this study is available in the Supplementary Information.

2.3. Antibodies
The monoclonal antibody (subtype IgM, clone 31C4) recognizing

the poly-proline region of zyxin was generated against recombinant
human full length zyxin [34]. Epitope mapping was performed as de-
scribed earlier [40].
Polyclonal rabbit antiserum termed pcVASP1 was raised against the

synthetic peptide: C-ATQVGEKPPKDESASQEESEARLPAQ de-
rived from the murine VASP sequence. The anti-PREL1 antiserum
pcPREL1 was raised against a bacterially expressed GST-tagged frag-
ment of PREL1 comprising residues 1–420. Antisera were affinity puri-
fied using the respective peptides or recombinant proteins immobilized
on CNBr-sepharose 4B (Amersham Biosciences, Sweden). Specificity
of the antisera was confirmed by Western blot detection of the endog-
enous and ectopically expressed GFP-tagged proteins. Monoclonal
anti-Mena antibody was described earlier [21]. Antibodies specific
for GFP and Zyxin [34] were from Synaptic Systems (Göttingen, Ger-
many). Monoclonal anti-GST antibody was raised using recombinant
GST as an antigen and characterized as described [40]. Monoclonal
anti-vinculin antibody was from Sigma (Munich, Germany), the
monoclonal anti-Ras antibody was from Upstate Biotechnology
(Charlottsville, VA), and the anti-myc antibody was purchased from
Abcam (Cambridge, UK).

2.4. Immunofluorescence, video microscopy, and data processing
Cells were plated on glass coverslips coated with either 25 lg/ml lam-

inin (Sigma) or 50 lg/ml fibronectin (Roche) prior to either fixation or
video microscopy as indicated. Immunofluorescence staining was per-
formed essentially as described [41]. Secondary reagents were Alexa
Fluor�488- or Alexa Fluor�594-coupled goat antibodies, which were
used in combination with or without Alexa Fluor-dye coupled phalloi-
dins (Molecular Probes, Leiden, The Netherlands) to label the actin
cytoskeleton.
Video microscopy and microinjection of live B16-F1 and NIH3T3

cells expressing GFP-tagged variants of PREL1 were performed as de-
scribed earlier [9]. V12Ras was purified as described [42] and injected at
2.5 mg/ml in a mixture with 0.25 mg/ml Texas-Red-labelled dextrane
(70 kDa, Molecular Probes) to control for successful injections. TPA
(tetradecanoyl phorbol acetate)-treatments were performed at a con-
centration of 1 lg/ml.
Data were acquired using a Zeiss Axiovert 135TV microscope

equipped with a back-illuminated cooled charge-coupled device cam-
era (Princeton Research Instruments) driven by IPLab software (Scan-
alytics, Fairfax, VA) and processed using IPLab and Adobe
Photoshop 6.0 (Adobe Systems, San Jose, CA) software. Statistical
analyses were carried out using Microsoft Excel 2001 and Sigma Plot
8 software.
2.5. Immunoprecipitations and pull-down assays
For immunoprecipitations, cells grown in 10 cm diameter dishes

were washed with PBS and lysed in 500 ll of ice-cold lysis buffer L1
(8 mM Tris base, 12 mM HEPES, 50 mM NaCl, 15 mM KCl, 12
mM MgCl2, 1 mM EGTA, 20 mM NaF, 1 mM Na3VO4, 1% PEG
6000, and Complete Mini�, EDTA-free protease inhibitor cocktail
(Roche) supplemented with or without 1% Triton X-100 as indicated)
for 10 min on ice. In the absence of detergents, cells were harvested
with a cell scraper and lysed by three 10 s pulses in an ultrasonic water
bath (RK 102H, Bandelin electronic, Berlin, Germany) with 5 s vor-
texing steps in between. All lysates were cleared by centrifugation for
15 min at 12 000 · g and 4 �C. Cleared lysates were incubated with
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5 lg of the indicated antibodies for 1 h and followed by incubation
with 30 ll protein G-sepharose beads (Amersham Biosciences) under
agitation for 45 min at 4 �C. Beads were then washed twice with lysis
buffer. Precipitates were resolved by SDS–PAGE and analysed by
immunoblotting.
For pull-down assays, the recombinant GST-tagged proteins or re-

combinant GST alone as control (for constructs, see Supplementary
Material) were coupled to glutathione-sepharose beads (Pharmacia)
and washed in buffer B (50 mM Tris, pH 7.5, 50 mM NaCl, 5 mM
MgCl2, and 0.1 mM DTT). Final concentration of the recombinant
protein on beads was 2 mg/ml slurry. 30 ll of beads was incubated with
cleared lysates (see above) for 1 h at 4 �C, washed twice with lysis-buf-
fer and resuspended in SDS-loading buffer. Precipitates were resolved
by SDS–PAGE and analysed by immunoblotting. For precipitations
of endogenous Mena in Fig. 3(a) and (c), Rat-2 cells were used instead
of NIH3T3 due to the high expression levels of this protein as com-
pared to the latter cell line.

2.6. Protein overlay assays on immobilized peptides and lipids
0.2 mg/ml purified recombinant EVH1-domains of Mena, VASP and

Evl fused to GST [28,43] were incubated on peptide-scans comprising
either the proline-rich N- or C-terminus of murine PREL1 in TBS-T
containing 10% FCS as described earlier [28]. Detection was performed
in analogy to Western blot membranes using a monoclonal anti GST
antibody. For protein-lipid overlays, 0.01 lg/ml of the purified recom-
binant GST-tagged PH-domain of PREL1 was incubated on PIP-strips
(Echelon Research Inc.) and developed as described above. Binding of
the GST-tagged EVH1- and PH domains in overlays was quantified by
luminometry employing a cooled CCD-camera (Fuji) and analysed
using AIDA software (Raytest, Germany). Signals from areas of iden-
tical size were integrated, background subtracted and normalized to
100 as a value for the highest binding.

2.7. Spreading assay and Ras activation assay
10E4 NIH3T3 cells were plated on fibronectin (50 lg/ml, Roche)

coated glass coverslips (12 mm diameter) in 24 well plates and fixed
with 4% PFA/PBS after different time points as indicated. Cells were
permeabilized with 0.1% TX-100 in 4% PFA for 45 s, washed with
PBS and stained with the polyclonal anti PREL1 antibody as described
above. At 10, 20, 40 or 60 min after plating, the number of cells that
had already initiated spreading was quantified. In addition, the frac-
tion of spreading cells was scored for PREL1 localization at lamellipo-
dia tips for each timepoint (n P 300). In parallel, 2x10E6 NIH3T3
cells were plated on fibronectin coated (20 lg/ml, Roche) 10 cm diam-
eter dishes and subjected to Ras activation assays after different time
points according to the manufacturer�s instructions (Upstate Biotech-
nology). Levels of GTP-Ras were assessed by luminometry employing
a cooled CCD-camera (Fuji) and analysed using AIDA software (Ray-
test, Germany).
3. Results and discussion

3.1. Identification of PREL1

When characterizing monoclonal antibodies raised against

human recombinant zyxin [34], a clone was identified (see also

Section 2), which not only recognized zyxin, but also vinculin

and a number of unidentified bands in Western blots of lysates

of various cell lines (Fig. 1(a)). In immunofluorescence, this

antibody stained focal adhesions and stress fibres of fibroblas-

tic cells, where zyxin and vinculin are enriched, as well as the

tips of protruding lamellipodia (Fig. 1(b)).

In order to identify novel ligands for Ena/VASP proteins, we

screened a HeLa expression library employing the above anti-

body. From this screen, we derived several crossreactive

clones, which were identified as the Rho-GEF LARG (Acc.

No.: NP_056128), the ERM family member Radixin (Acc.

No.: NP_002897) and a novel protein, with sequence similarity

to the murine ORF prp48 (Acc. No.: AF020313), which was

identified earlier (together with Mena) in a screen for potential
binding partners of the WW domain of FE65 (PRP48 for Pro-

line Rich Protein from clone number 48) [44]. We tentatively

termed this novel protein PREL1 (Proline Rich EVH1

Ligand 1).

Sequence analyses and database searches revealed that the

human and the murine sequences of PREL1 comprise a coding

sequence of 1998 and 2007 base pairs, respectively, encoding a

protein with numerous proline-rich stretches in their N- and C-

termini and a calculated molecular mass of 73 and 74 kDa,

respectively. In addition, the protein displays a Ras association

(RA) and a pleckstrin homology (PH) domain, both of which

are embedded in a stretch of residues that shows homology to

and defines the Grb7/10/14 family of signalling adaptors [36]

(Fig. 1(c)). This region of sequence-homology of approxi-

mately 300 amino-acid residues was also identified in the C.

elegans protein MIG-10 and was termed the GM-region

(Grb7-MIG-10 homology region) [36,38]. MIG-10, the puta-

tive C. elegans ortholog of PREL1, has been implicated in neu-

ronal cell migration during embryonic development of the

nematode [35,45].

Two homologous genes are present in mammals, PREL1

identified here and the open reading frame KIAA1681 (which

we tentatively named PREL2) with calculated molecular

weights of 74 and 134 kDa, respectively. PREL1 and PREL2

(KIAA1681) show a high degree of sequence homology also

outside the GM region especially in the N-terminus, while

the most striking difference between them is the size of the

C-terminal proline-rich extension. (For a detailed alignment

see Supplementary Material.)

The C. elegans genome harbours one PREL-like gene, i.e.,

MIG-10, with significant homology to PREL1, while the only

PREL-like gene detectable in the genomes of Drosophila mela-

nogaster (CG11940) and Anopheles gambia (agCP1621) display

higher homology to PREL2. Thus, these two novel proteins,

mammalian PREL1 and PREL2, may constitute a new protein

family together with MIG-10 and the gene products encoded

by the fly database entries.

Interestingly, PREL2 (KIAA1681) is located on a region of

human chromosome 10, which has been implicated in the

inherited neuro-degenerative disease Amylotrophic Lateral

Sclerosis 2 (ALS2) and was therefore discussed as a potential

candidate (ALS2 candidate region 9: ALS2CR9) involved in

the development of this disease [46].
3.2. Expression pattern, localization and dynamics of PREL1

To learn more about the expression pattern, tissue distribu-

tion and sub-cellular localization of PREL1, we raised poly-

clonal antibodies against recombinant fragments or synthetic

peptides derived from different regions within the protein.

One antiserum characterized in more detail specifically recog-

nized endogenous PREL1, ectopically expressed GFP-tagged

PREL1 as well as the recombinant protein and revealed an

apparent molecular weight of PREL1 of 100 kDa on Western

blots (Fig. 2(a)). Western blot analyses of different cultured cell

lines and various mouse tissues (Fig. 2(b)) using the novel

polyclonal antiserum showed that PREL1 is widely expressed

and enriched in the haematopoietic system.

Immunolabelling experiments using affinity purified poly-

clonal anti-PREL1 antibodies revealed a strong signal at lamel-

lipodial tips and in addition at focal adhesions in Swiss 3T3

fibroblasts growing on fibronectin (Fig. 2(c)). To further con-



Fig. 1. PREL1 is a novel proline rich protein. (a) Identification of a
novel proline rich protein with an apparent molecular weight of 100
kDa in lysates of murine NIH3T3 fibroblasts employing a monoclonal
antibody (31C4, subtype IgM) that recognizes the EVH1-recognition
motifs in zyxin and vinculin. Detection of zyxin (75 kDa) and vinculin
(120 kDa) was confirmed employing specific antibodies, respectively,
as indicated. Note that endogenous PREL1 is not detectable in lysates
of murine B16-F1 melanoma cells. (b) In Swiss 3T3 fibroblasts growing
on fibronectin, the 31C4 antibody stained both focal adhesions and the
very edge of lamellipodia (arrowhead), as confirmed by counterstain-
ing of the actin cytoskeleton with phalloidin. This distribution is highly
reminiscent of the localization pattern of Ena/VASP family proteins as
exemplified by labelling with polyclonal anti-VASP antibodies
(pcVASP). Scale bars equal 20 lm. (c) Domain overview of the newly
identified PREL1 as compared to the C. elegans MIG-10 protein, the
open reading frame KIAA1681 (PREL2), an uncharacterized Dro-
sophila open reading frame (CG11940) as well as the Grb7/10/14
family. The top line marks the fragment of PREL1 that was isolated
from a HeLa expression library in the 31C4 screen. The percentages
display the degree of sequence identity within the domains of the
depicted proteins and P indicates the location of poly-proline stretches.
All proteins share a central RA (Ras association) and PH (pleckstrin
homology) domain embedded in a larger region of homology termed
GM region, for Grb7/10/14 and MIG-10 region of homology.
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firm this localization, we fused the murine full length cDNA to

EGFP (either N- or C-terminally) and visualized its dynamics in

B16-F1 cells moving on laminin. These studies confirmed that

PREL1 can indeed be recruited to the tips of lamellipodia
(Fig. 2(d)) reminiscent of the distribution of VASP during

lamellipodia protrusion [9] and, less prominently, to focal adhe-

sions (Fig. 2(d)). Notably however, while PREL1 robustly tar-

geted to the tips of protruding lamellipodia in B16-F1 and Swiss

3T3 cells, video microscopy of GFP-PREL1 in NIH3T3 cells

(not shown) or immunolabelling of endogenous PREL1 in the

same cells revealed a more complex distribution pattern, since

lamellipodia protrusion was not always coincident with PREL1

recruitment to their tips. Therefore, we conclude that PREL1 is

targeted to focal adhesions and lamellipodia in a cell type and/

or signalling status-specific manner (see also Figs. 5 and 6).

3.3. Interaction of PREL1 with Ena/VASP proteins via

N-terminal and C-terminal poly-proline motifs

To test for a direct interaction of PREL1 with Ena/VASP

proteins, we performed co-immunoprecipitation experiments

using monoclonal anti-Mena and polyclonal anti-PREL1 anti-

bodies. In these experiments, the Ena/VASP family protein

Mena co-precipitated moderate amounts of ectopically ex-

pressed untagged PREL1 and anti-PREL1 antibodies co-

precipitated endogenous Mena from the same lysates, suggest-

ing that at least a sub-portion of Mena and PREL1 is bound to

each other in vivo (Fig. 3(a)). Analogous experiments were

performed to analyse the interaction of endogenous PREL1

and the Ena/VASP-family member VASP in NIH 3T3 cells

with virtually identical results (not shown).

To assess whether the interaction was direct and whether an

EVH1 domain/poly-proline interaction accounts for the bind-

ing of PREL1 to Mena and VASP as predicted from the

sequence of PREL1, we performed pull-down assays with

GST-tagged EVH1 domains from lysates of cells expressing dif-

ferent GFP-tagged constructs comprising either the N-terminal

or C-terminal proline-rich motifs of PREL1. In these pull-down

assays, significant amounts of both the N-terminus and the

C-terminus of PREL1 as well as the endogenous full length pro-

tein or the ectopically expressed protein fused to GFP could be

precipitated from cellular lysates (Fig. 3(b)). In addition, we

performed pull-down assays using the recombinant GST-

tagged proline-rich N- and C-terminus of PREL1. Endogenous

Mena and VASP were readily coprecipitated from lysates of

Rat-2 and NIH3T3 cells, respectively (Fig. 3(c)).

To further identify those poly-proline motifs of PREL1 that

mediate direct binding to the EVH1 domains of Ena/VASP

family proteins, we employed the peptide overlay technique

[28] (Fig. 3(e) and (f)). The proline rich sequences of the N-ter-

minus (residues 1–160) as well as the C-terminus (residues 433–

668) of PREL1 were synthesized in an immobilized form on a

membrane as an array of 15-mer peptides with an overlap of

12 AA with the preceding and the subsequent peptides, respec-

tively [28,47].

Under these conditions, two of the proline rich stretches, one

in the N-terminus (Fig. 3(e)) and one in the C-terminus (Fig.

3(f)), displayed significant binding to GST-tagged recombinant

EVH1 domains of Mena (Fig. 3(e) and (f)), VASP and EVL

(not shown). In vitro binding of the recombinant EVH1 do-

mains to the other proline rich motifs was significantly weaker

as compared to the motifs highlighted in Fig. 3(e) and (f). In

addition, binding to the N-terminal motif was app. 1.5-fold

lower as compared to the C-terminal motif (for signal quanti-

fication, see Section 2). This latter motif also displays the high-

est degree of conservation to the EVH1 binding consensus

motif D/EFPPPPXD/E [28].



Fig. 2. Expression pattern and subcellular distribution of PREL1.
(a,b) Western blotting of PREL1 from extracts of different cultured cell
lines (a) and various mouse tissues (b) revealed that PREL1 is widely
expressed and highly enriched in tissues or cells of haematopoietic
origin. (DMBM: bone marrow macrophages, DCS: dendritic cells).
Tubulin detection was used as loading control. Note that GFP-tagged
and untagged PREL1 are readily expressed in B16F1 cells lacking the
endogenous protein. A Western blot loaded with various samples and
showing the whole molecular weight range can be viewed in the
Supplementary Material. (c) Swiss3T3 cells were immunolabelled with
polyclonal anti-PREL1 antibodies (pcPREL1) and counterstained for
filamentous actin with phalloidin as indicated. In these cells, PREL1 is
localized at the very edge of lamellipodia (arrowhead) and in focal
adhesions (arrow). Scale bar equals 10 lm. (d) Time lapse phase
contrast (right panels) and fluorescence (left) microscopy of B16-F1
mouse melanoma cells transfected with EGFP-tagged PREL1 moving
on laminin. The panels display representative frames at three consec-
utive timepoints during protrusion of the cell front. Time is given in
minutes and seconds. Note the recruitment of GFP-tagged PREL1 to
the lamellipodium tip (arrowheads) and less prominently to focal
adhesions (arrow). The bracket in the bottom phase contrast image
marks the width of the lamellipodium. Scale bar equals 5 lm.

Fig. 3. PREL1 binds to the EVH1 domains of Ena/VASP proteins in
vivo and in vitro. (a) Co-immunoprecipitations of PREL1 and Mena
using either the polyclonal anti PREL1 antibody pcPREL1 or a
monoclonal anti Mena antibody [21]. (b) Pull-down experiments with
the GST-tagged EVH1 domain of Mena from lysates of NIH3T3 cells
expressing the GFP-tagged proline-rich N- (PR-N) and C-termini (PR-
C) or GFP-tagged full length PREL1. The EVH1 domain readily
precipitated both the N- and C-terminal proline-rich domains of
PREL1 as well as the endogenous and the GFP-tagged full length
protein. Western blot detection was performed using either a mono-
clonal anti-GFP antibody or polyclonal anti-PREL1 antibodies
(pcPREL1) as indicated. (c) Pull-down experiments of Ena/VASP
proteins using the GST-tagged proline rich N- (PR-N) or C-terminus
(PR-C) of PREL1. Lysates from Rat2 cells expressing endogenous
Mena and from NIH3T3 cells expressing high levels of endogenous
VASP were challenged with the immobilized GST-tagged proline rich
N- or C-terminus of PREL1. Western blot detection was performed
using either a monoclonal anti-Mena antibody [21] or polyclonal anti-
VASP antibodies (pcVASP). Endogenous VASP and Mena were
readily co-precipitated. (d) Control pull-down experiments using
immobilized GST alone from lysates of NIH 3T3 cells transfected
with different GFP-tagged PREL1 constructs. Cell lysates (1) were
loaded next to the GST pulldowns (2) and Western blot detection was
performed using the monoclonal anti GFP antibody. Note that GST
does not co-precipitate the GFP-PREL1 or truncated mutants. (e,f)
Peptide overlays of the proline-rich N-terminus (e) or C-terminus (f) of
PREL1 with the GST-tagged EVH1 domain of Mena. Boxes and
arrows depict the amino acid sequences of the spots showing the
strongest signals within the N- or C-terminus of PREL1 as indicated.
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3.4. Interaction of PREL1 with phosphoinositides and

Ras-GTPases

The central region of PREL1 comprises a RA and a PH do-

main embedded within the GM region of homology (see also

Fig. 1(c)). A common feature of PH domains, which occur

in a wide range of proteins, is their ability to bind inositol
phosphates and to be targeted to membranous compartments

[48]. In order to test for potential phospholipid binding of

the PREL1-PH domain, we overlayed a membrane with immo-

bilized phospho-lipids (PIP Strip, Echelon Research Inc.) with

the recombinant GST-tagged PH domain of PREL1, in anal-

ogy to the peptide overlay technique.
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Excitingly, the PH domain of PREL1 displayed highest

binding affinity to phosphatidylinositol monophosphates

PtdIns(5)P and PtdIns(3)P (Fig. 4(a)), which reflects the bind-

ing characteristics shown for the same domain in Grb7 [49].

Binding of the GST-tagged PH domain to immobilized lipids

was quantified luminometrically and revealed signals for

PtdIns(5)P > PtdIns(3)P > PtdIns of 100, 65.8 and 47.6 (arbi-

trary units), respectively.

We then tested whether the RA domain of PREL1 might

bind to Ras-family GTPases. RA domains have been identified

in RasGTP effector proteins such as RalGDS [50,51]. Some

downstream effectors of Ras GTPases, such as Nore1/RapL,

have the ability to bind to GTP loaded H-, K- and N-Ras as

well as to Rap1 via their RA domain and to act in a cell type

specific manner [52,53]. Interestingly, the highly similar RA

domains of Grb7/10/14 proteins were not found to bind to

RasGTP [54,55]. Very recently, however, full length Grb7 as

well as a N-terminal fragment of the human ortholog of

PREL1, which includes the RA but not the PH domain, was

reported to bind to Ras in pull-down assays [56]. To test for

the Ras-binding capabilities of the RA domain of PREL1,

we first performed pull-down assays from lysates of cells

expressing constitutively active mutants of various Ras super-

family GTPases using the recombinant GST-tagged RA do-

main of PREL1. Under these conditions, GST-RA of

PREL1 co-precipitated only low amounts of H-RasV12 (Fig.

4(b)) and K-RasV12 (not shown).

To test whether PREL1 can associate with members of the

Ras family of GTPases in vivo, we performed co-immunopre-

cipitations of endogenous PREL1 with ectopically expressed

myc-tagged constitutively activated mutants of Ras, Rap1,

Rac1, Cdc42 or RhoA using the polyclonal anti-PREL1 anti-

serum. Notably, full length PREL1 could co-immunoprecipi-

tate significant amounts of RasV12 (Fig. 4(c)), but only in

the complete absence of detergents, while even low amounts

of Triton-X100 or NP-40 completely abolished this interaction
Fig. 4. PREL1 binds to constitutively active Ras in a lipid-dependent manner
GST. Detection of bound protein was performed using a monoclonal anti-G
chemiluminescence. The signal was detected and quantified using a CCD c
phosphatidyl monophosphates (PtdIns(3)P and PtdIns(5)P) and, albeit weake
the recombinant GST-tagged RA domain of PREL1 performed on lysates of
absence of Triton X-100 (TX-100). (c) Co-immunoprecipitations of PREL
constitutively active versions of H-Ras, K-Ras and Rap1. Immunoprecipita
specific binding of PREL1 to Ras, but not Rap1 (upper panel). Binding of Ra
in the presence of Triton-X 100 (lower panel). Lanes corresponding to cell ly
and 2, respectively.
(Fig. 4(c), lower panel). Members of the Rho family did not

co-precipitate with PREL1 (not shown), and even the Ras-

family GTPase Rap1 was not detectable in immunoprecipi-

tates of PREL1 under these conditions (Fig. 4(c)), indicating

that binding of PREL1 to small GTPases may be highly spe-

cific also within the Ras-subfamily. Together, these findings

indicate that binding of PREL1 to Triton-soluble components,

such as most phospholipids, is required for efficient binding of

the RA domain to activated Ras-GTPases.

From these data, we hypothesize that membrane binding of

the PH domain might cooperate with the RA domain to asso-

ciate with RasGTP during signal transmission. Moreover, a

potential dependency of RA domain binding to RasGTP on

the presence of an intact PH domain and phosphoinositides

might well explain results from an earlier study, in which

RA-domains of the Grb-family were reported not to bind

Ras GTP-ases [37,54]. This view is not only supported by the

high sequence conservation of the RA-PH domain tandem be-

tween PREL1/2 and the Grb7/10/14 proteins, but also by the

striking similarity in PtdIns phosphate binding characteristics

of the isolated PH domains of both sub-families. In the light

of these findings, it will be interesting to re-evaluate the

GTPase binding characteristics of all Grb7/10/14 family mem-

bers. Finally, in an independent study, Lafuente and colleagues

have now described the human ortholog of murine PREL1 as

an interactor of Rap1 in Jurkat T-cells and termed this protein

RIAM (for Rap interacting adaptor molecule) [57]. In yeast

two-hybrid assays, these authors also detected an interaction

with H-Ras, albeit weaker than that with Rap1. Resolving

the discrepancies between the observations from the latter

and the present study requires further investigations.

3.5. Localization of PREL1 coincides with Ras activation in

NIH3T3 cells

Due to the ability of PREL1 to bind to RasGTP, we asked

as to whether its localization or recruitment might be regulated
. (a) A PIP-strip was overlayed with the PH domain of PREL1 fused to
ST antibody followed by peroxidase-coupled secondary reagents and
amera (see text for further details). Strong binding was detected for
r, for phosphatidyl inositide (PtdIns). (b) Pull-down experiments using
NIH3T3 cells expressing myc-tagged RasV12, lysed in the presence and
1 and Ras-family GTPases from lysates of NIH3T3 cells expressing
tions using the polyclonal anti PREL1 antibody pcPREL1 revealed a
s GTPases to endogenous full length PREL1 was completely abolished
sates (relative loading 1/10) and immunoprecipitates are labelled with 1



Fig. 5. Actin cytoskeletal targeting of PREL1 correlates with Ras
activation during cell spreading. (a) Ras activity in spreading NIH 3T3
fibroblasts was quantified at different timepoints after plating on
fibronectin as indicated, employing a Ras activation assay based on
Ras-GTP pulldowns using the GST-tagged Ras binding domain
(RBD) of Raf1. (b) Localization of PREL1 during spreading on
fibronectin was determined by indirect immunofluorescence at different
timepoints after plating on fibronectin-coated coverslips using poly-
clonal anti PREL1 antibodies (pcPREL1). Note that the recruitment
of PREL1 to lamellipodia is largely lost at late stages of spreading
(upper right image), while VASP remained prominently associated
with lamellipodia and focal adhesions (lower right image). Scale bars
equal 10 lm. (c) Quantification of the percentage of spread cells at the
timepoints indicated (line plot) as compared to the percentage of
spread cells displaying lamellipodial tip localization (column plot).
Values are means ± standard errors of means from three independent
experiments (n P 300 for each condition).
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by cellular RasGTP levels. This possibility seemed attractive,

since it might explain for the differences in subcellular recruit-

ment under different conditions and in different cell types (also

compare to Fig. 2).

It was previously shown that spreading of NIH3T3 cells on

fibronectin coincides with increased Ras activity, reaching a

maximum in the first 10 min and then declining to basal lev-

els within 60 min [58]. Under these conditions, Ras activation

was also reported to be accompanied by Erk (extracellular

signal regulated kinase) activation [58]. Moreover, Nobes

and Hall reported that Ras- and Erk activation during cell

migration, induced by wounding of cell monolayers, is re-

quired for efficient translocation of the cells into the wound

[2].

To learn more about the recruitment mechanisms of PREL1,

we studied the subcellular distribution of PREL1 in NIH3T3

cells during spreading on fibronectin in the context of cellular

RasGTP levels, as determined by Ras activation assays. The

time course of Ras activation in NIH3T3 cells is shown in

Fig. 5(a) and is virtually identical to the results obtained in ear-

lier studies [58]. Intriguingly, microscopic analysis of cells, pro-

cessed in parallel in order to study the subcellular distribution

of endogenous PREL1, revealed a clear recruitment of PREL1

to the tips of circular lamellipodia typically occurring during

cell spreading on fibronectin (Fig. 5(b)). To assess if the num-

ber of cells displaying lamellipodial recruitment of PREL1 cor-

relates with the levels of cellular Ras-activation, we performed

detailed quantifications of the percentage of cells that are

spread at a given timepoint (line plot in Fig. 5(c)) as compared

to the percentage of spread cells that display lamellipodial tip

localization of PREL1 (column plot in Fig. 5(c)). A clear cor-

relation of high Ras activity and PREL1 localization during

spreading could be observed. After 60 min, when cellular Ras-

GTP levels had returned to a basal level, cells displaying lam-

ellipodial PREL1 localization were observed only rarely, while

Ena/VASP proteins still displayed the typical subcellular distri-

bution (lower left image in Fig. 5(b)) described in earlier stud-

ies [9,20]. Hence, we conclude that PREL1 is not essential for

the constitutive recruitment of Ena/VASP proteins to lamelli-

podia or focal adhesions, but instead is recruited to the sites

of rapid actin turnover during Ras activation, where it may

then modulate actin assembly by interaction with Ena/VASP

proteins.

To further corroborate the coincidence between Ras activa-

tion and the translocation of PREL1 to sites of cellular actin

assembly, such as lamellipodia and focal adhesions, we exper-

imentally increased Ras activity in these cells by either micro-

injection of constitutively active recombinant RasV12 (Fig.

6(a)) or by TPA treatment (Fig. 6(b)), which was described ear-

lier to significantly increase Ras-GTP levels in NIH3T3 cells

[59]. In response to both treatments, PREL1 was clearly re-

cruited to focal adhesions, confirming that PREL1 indeed

associates with the actin cytoskeleton in response to Ras acti-

vation.
4. Conclusions

We here report the identification and characterization of a

novel proline rich protein, capable of interacting with the

Ena/VASP family of proteins and of targeting to lamellipo-

dia tips and focal adhesions coincident with high RasGTP
levels. We map in detail the binding sites of the EVH1 do-

mains of Ena/VASP proteins on the proline rich N- and C-

termini of PREL1, in addition to characterizing the binding

features of its central RA - and PH domain. We show that

PREL1 specifically associates with Ras via its RA domain

in a lipid dependent fashion, the latter of which is most likely

attributable to the adjacent PH domain. Finally, we demon-

strate that the subcellular targeting of PREL1 to lamellipodia

and focal adhesions correlates with high Ras-GTP levels as

induced for instance during cell spreading or by phorbol es-

ter treatment.



Fig. 6. Translocation of PREL1 upon experimentally induced Ras activation. (a,b) Time lapse fluorescence and phase contrast microscopy of NIH
3T3 fibroblasts transfected with GFP-tagged full length PREL1 before (�2 min) and after (+61 min) microinjection of constitutively active Ras V12
(a) or before (�2 min) and after (+24 min) treatment with the phorbol ester TPA (b). Significant translocation of largely cytosolic GFP-PREL1 to
focal adhesions upon experimentally induced increase in cellular Ras-GTP levels could be observed. (c) NIH 3T3 cells expressing GFP-tagged
PREL1 (green in merge) and counterstained for endogenous VASP (red in merge) as indicated following TPA treatment (15 min). Note the
colocalization of PREL1 and VASP under these conditions. Scale bars equal 10 lm.
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Together, these data suggest that the novel Ena/VASP inter-

actor PREL1 functions in the signal transduction from Ras

activation to actin cytoskeletal remodelling.
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