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SUMMARY
High-grade gliomas are notoriously insensitive to radiation and genotoxic drugs. Paradoxically, the p53 gene
is structurally intact in the majority of these tumors. Resistance to genotoxic modalities in p53-positive
gliomas is generally attributed to attenuation of p53 functions by mutations of other components within
the p53 signaling axis, such as p14Arf, MDM2, and ATM, but this explanation is not entirely satisfactory.
We show here that the central nervous system (CNS)-restricted transcription factor Olig2 affects a key post-
translational modification of p53 in both normal and malignant neural progenitors and thereby antagonizes
the interaction of p53 with promoter elements of multiple target genes. In the absence of Olig2 function,
even attenuated levels of p53 are adequate for biological responses to genotoxic damage.
INTRODUCTION

The p53 tumor suppressor gene and its downstream effectors

play a multifaceted role in protection from cellular stress, geno-

toxic damage, and inappropriate mitogenic cues (Brugarolas

et al., 1995; el-Deiry et al., 1993; Prives and Hall, 1999). Activa-

tion of p53 transcriptional functions by any of these biological

events results in transient growth arrest, permanent growth

arrest or programmed cell death (Brugarolas et al., 1995; el-Deiry

et al., 1993; Prives andHall, 1999;Wynford-Thomas, 1999; Zilfou

and Lowe, 2009). One key effector of p53 biological responses is

the cell cycle inhibitor protein p21WAF1/CIP1 (hereafter called

‘‘p21’’) encoded by CDKN1A. CDKN1A is a direct transcriptional

target of p53 and ablation of CDKN1A can phenocopy some,

though not all, aspects of p53 loss of function (Sherr and

Roberts, 1999).

Recent studies on the production of induced pluripotent stem

(iPS) cells highlight a hitherto unappreciated oppositional
Significance

The data show how a molecular mechanism for sustaining th
times in CNS development has been co-opted by high-grade gl
tions in both normal andmalignant neural progenitor cells viam
ings shed light on developmental origins of these tumors and
relationship between p53, p21 and the stem cell phenotype

(Hong et al., 2009; Kawamura et al., 2009; Li et al., 2009; Marion

et al., 2009; Utikal et al., 2009). Ablation of p53 greatly enhances

the efficiency of iPS formation from normal fibroblast cells and

p21 is an important component of this outcome (Hong et al.,

2009; Kawamura et al., 2009; Li et al., 2009). The iPS work reso-

nates with earlier studies showing that targeted disruption of

either p53 (Meletis et al., 2006) or Cdkn1a (Kippin et al., 2005)

compromises the relative quiescence of neural progenitors and

accelerates self-renewal in the mouse.

If the p53:p21 regulatory axis suppresses self-renewal, how

do stem cells in the general, and neural stem cells in the

particular, suppress these functions during development and

tissue repair? Themolecular mechanism of p53:p21 suppression

would likely involve proteins that are unique to uncommitted

progenitor cell types because global disruption of p53

functions gives rise to an oncogenic phenotype (Donehower

et al., 1992; Harvey et al., 1993). For neural progenitors, the
e replication competent state of neural progenitors at early
ioma. The bHLH transcription factor Olig2 opposes p53 func-
odulation of posttranslational modifications of p53. The find-
may have practical overtones for targeted therapy.
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Figure 1. Olig2 Promotes Survival in Irradi-

ated Neural Progenitor Cells

(A) Differential response of Olig2+/+ and Olig2�/�

neural progenitors to ionizing radiation.

Secondary neurosphere assays were counted at

day 5 following treatment of Olig2+/+ or Olig2�/�

cells with 2, 4, or 8 Gy of ionizing radiation. Scale

bars = 100 mm.

(B) Quantitation of data in (A). The bars in the

histogram represent the percentage of secondary

neurospheres formed in irradiated samples rela-

tive to the untreated control samples.

(C) Quantitation of percentage of viable cells in

the irradiated samples relative to untreated

control in the sample sets from (A) using Trypan

blue exclusion.

(D) BrdU uptake (Olig2+/+ and Olig2�/�) in cells

either untreated or treated with 2 Gy of IR. Cells

were treated with 2 Gy of IR; 24 hr postradiation,

they were pulsed with 10 mM BrdU for 1 hr and

then analyzed by FACS. Data shown here repre-

sents percentage uptake in irradiated samples

relative to untreated samples.

(E) Detection of apoptosis inOlig2+/+ andOlig2�/�

cells after radiation treatment. Cells were treated

with 2 Gy of IR and 24 hr posttreatment analyzed

for activated caspase 3 by FACS analysis. The bar

graph represents percentage of cleaved caspase

3-positive cells present in each sample.

For all graphs, error bars indicate SEM. The data

are representative of three independent experi-

ments. ***p < 0.001; **p < 0.01; *p < 0.05. See

also Figure S1.
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bHLH transcription factor Olig2 is a plausible candidate, based

on expression and functional studies.

During CNS development, Olig2 is expressed in progenitor

cells that give rise to neurons and to myelinating oligodendro-

cytes (Lu et al., 2002; Takebayashi et al., 2002; Zhou and

Anderson, 2002). In the postnatal brain, Olig2 is expressed in

transit amplifying type C neural progenitors of the subventricular

zone that give rise to olfactory neurons and oligodendrocytes

(Hack et al., 2004; Menn et al., 2006). Olig2 is also expressed

in NG2-positive glia, which is the most prevalent cycling progen-

itor cell type in the postnatal brain (Jackson et al., 2006; Ligon

et al., 2006; Magnus et al., 2007). A pathological correlate of

Olig2 expression in healthy neural progenitors is seen in primary

cancers of the CNSwhereOLIG2 is expressed in 100%of diffuse

gliomas irrespective of grade (Ligon et al., 2004). Beyond merely

marking malignant astrocytomas, Olig2 expression is required

for tumor formation in a genetically relevant murine model of

high-grade human glioma (Ligon et al., 2007).

Malignant gliomas are notoriously resistant to radiation and

genotoxic drugs. Paradoxically, thep53gene is structurally intact

in the majority of adult high-grade primary gliomas (Cancer

Genome Atlas Research Network, 2008). Resistance to geno-

toxic modalities in p53-positive gliomas has been attributed to

attenuation of p53 functions by genetic or epigenetic changes
360 Cancer Cell 19, 359–371, March 15, 2011 ª2011 Elsevier Inc.
within a p53 signaling axis that includes the p14Arf, MDM2, and

ATM gene products (Nakamura et al., 2001; Cancer Genome

Atlas Research Network, 2008; Parsons et al., 2008;

Reifenberger et al., 1993).However, CNS lineage-specific factors

that inhibit p53 pathways have not been reported. In this study,

we investigated the potential function for Olig2 as an antagonist

of p53 function in normal and malignant neural progenitors.

RESULTS

Olig2 Suppresses Biological Responses to Genotoxic
Damage
As shown in Figure 1A, normal neural progenitors (wild-type for

both Olig2 and p53) can form secondary neurospheres within

5 days after exposure to radiation. The Olig2 null counterparts

of these cells are significantly more sensitive to radiation. The

same differential sensitivity to genotoxic damage is observed

in cells treated with Temozolomide, a genotoxic drug that is

now a standard-of-care chemotherapeutic agent for adult

patients with recurrent high-grade glioma (see Figure S1 avail-

able online). Loss of Olig2 impacts both the number of secondary

neurospheres and the total number of cells in these secondary

neurosphere assays (Figures 1B and 1C). Cell cycle arrest (as

monitored by BrdU uptake) and to a lesser extent programmed



Figure 2. Olig2-Mediated Radiation Resis-

tance Depends on p53 Status

(A) Olig2-tva-cre+/� driver mice (Schuller et al.,

2008) and p53 conditional null (p53fl/fl) mice were

crossed to obtain neural progenitors that were

null for p53 and either null or heterozygous for

Olig2 function. The cells (neurosphere cultures)

were then dissociated, treated with 2 Gy of IR,

and allowed to form secondary neurospheres for

5 days after treatment. Scale bars = 100 mm.

(B)Olig2�/� cells were transduced with an expres-

sion vector encoding a dominant negative

mutation of p53 (p53DD) or with a vector control.

The cells were then irradiated and secondary neu-

rosphere assays were conducted as per (A)

above. Scale bars = 100 mm.

(C) Stabilizing p53 can radiosensitive Olig2 wild-

type cells. Olig2+/+ cells were treated with

0.25 mM Nutlin or DMSO alone for 16 hr and

then exposed to 2 Gy of IR. The cells were grown

for 5 days to allow secondary sphere formation.

(D) Quantitation of the percentage of neuro-

spheres formed after radiation as compared with

untreated control samples. Scale bars = 100 mm.

(E) Quantitation of percentage of viable cells after

radiation treatment as compared with untreated

controls.

For all graphs, the data are representative of three

independent experiments. ***p < 0.001. Error bars

indicate SEM.
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cell death (as monitored by cleaved caspase 3) contribute to the

differential sensitivity of Olig2 null cells (Figures 1D and 1E).

An Oppositional Relationship between Olig2 and p53
Experiments summarized in Figure 2 document an oppositional

relationship between Olig2 and p53. In one set of studies, we in-

tercrossedOlig2-tva-cre+/� drivermice (Schuller et al., 2008) and

p53 conditional null (p53fl/fl) mice to obtain neural progenitors

that were null for p53 and either null or heterozygous for Olig2

function. As shown (Figures 2A, 2D, and 2E) Olig2 status is

irrelevant to radiation sensitivity in cells wherein p53 has been

genetically ablated. In a second set of experiments, we used

the carboxy-terminal dominant-negative fragment of (p53DD)

to block p53 transcriptional functions. As indicated (Figures

2B, 2D, and 2E), ablation of Olig2 does not rescue radiosensi-

tivity in the presence of dominant-negative p53. In a third set

of experiments, we treated Olig2-positive cells with a p53

agonist (Nutlin, an Mdm2 inhibitor) (Vassilev et al., 2004). As

indicated (Figures 2C–2E), we show that Nutlin-mediated
Cancer Cell 19, 359–371
stabilization of p53 promotes radiosensi-

tivity in the presence of Olig2. Thus, the

oppositional relationship between Olig2

and p53 is symmetrical.

An Olig2:p53 Oppositional
Relationship in Malignant Glioma
To explore biological functions of Olig2 in

p53-positive gliomas, we began with

genetically accessible murine models.

We prepared neurosphere cultures from
p16/p19�/� mice (p19 being the mouse ortholog of human

p14) and then transduced these cells with a constitutively active

mutation of the epidermal growth factor receptor (EGFRvIII)

identified originally in human glioblastoma. At a genetic level,

thesemurine ‘‘tumor neurospheres’’ emulate the ‘‘classic’’ group

of human gliomas (p16/p14�/�;mutant EGFR; wild-type p53)

(Verhaak et al., 2010) and form invasive tumors that recapitulate

the histopathology of high-grade human gliomaswhen engrafted

into the brains of SCID mice (Bachoo et al., 2002; Ligon et al.,

2007).

As expected, p16/p19�/� neurospheres are attenuated rela-

tive to wild-type neurospheres with respect to the level of

activated p53 protein that can be detected following gamma irra-

diation (Figure 3A). However, in secondary neurosphere assays,

p16/p19�/� neurospheres and wild-type neurospheres are

equally tolerant of gamma irradiation. Ablation of Olig2 function

unmasks a radiosensitive phenotype (Figures 3B–3E). Thus,

themajor contributor to the radioresistance phenotype of normal

and malignant neural progenitors is Olig2 status rather than
, March 15, 2011 ª2011 Elsevier Inc. 361



Figure 3. Olig2 Opposes Cellular Res-

ponses to Radiation in Normal and Malig-

nant Neural Progenitors

(A) Ablation of p19 attenuates the amount of acti-

vated p53 that is produced in response to

radiation. Neurosphere cultures of the indicated

genotypes were exposed to 2 Gy of gamma irradi-

ation. Cell lysates obtained 6 hr posttreatment

were analyzed by immunoblotting with antibodies

recognizing phosphorylated p53 (Ser15), total

p53 and b-actin; the quantification results are

shown at right.

(B–D) Neurosphere cultures of the indicated geno-

types were exposed to 2 Gy of gamma irradiation.

Secondary neurosphere assays were counted at

day 5 posttreatment. Scale bars = 100 mm.

(E) Quantification of data in (B)–(D). The data

shown are the percentage of secondary neuro-

spheres formed in irradiated samples relative to

untreated control samples. The results shown

are compiled from three independent experiments

with three independent cell lines. ***p < 0.001.

Error bars indicate SEM.
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p16Ink4a/p19Arf. Additional experiments with the murine tumor

neurospheres recapitulate the oppositional relationship between

Olig2 and p53. The expression of p53DD restores radiation resis-

tance in the absence of Olig2 whereas stabilization of p53 with

Nutlin promotes radiosensitivity in the presence of Olig2

(Figure 4).

All primary human gliomas express OLIG2 protein (Ligon et al.,

2004, 2007). Accordingly, for human gliomas, we conducted

shRNA knockdown experiments to extend our observation of

Olig2:p53 cross-antagonistic interactions. As shown in Figure 5,

OLIG2 promotes survival of two radiation-treated human glioma

neurosphere lines that are wild-type for p53 (the BT37 and

BT112 lines). However, OLIG2 knockdown is without effect in

human glioma cells wherein p53 function has been genetically

ablated (BT70 line). Notably, OLIG2 knockdown does not impair

survival of any of the human cells in the absence of radiation

treatment.

Olig2 Requirement for Glioma Formation
Is p53 Dependent
Previous studies have shown that Olig gene function is required

in order for murine tumor neurospheres to form intracranial
362 Cancer Cell 19, 359–371, March 15, 2011 ª2011 Elsevier Inc.
tumors in SCID mice (Ligon et al., 2007).

In the absence of Olig1/2, these cells

engraft and survive for at least 70 days,

but they do not proliferate to form tumors

(Ligon et al., 2007). Experiments summa-

rized in Figure 6 indicate that the Olig2

requirement for proliferation in vivo is

another manifestation of the Olig2:p53

oppositional relationship for both mouse

and human glioma cell types.

In the murine tumor neurospheres,

even a single copy of the p53 gene is

sufficient to suppress tumor formation in

the absence of Olig2. The requirement
forOlig2 is overcome by removing both copies ofp53 (Figure 6A).

We do note, however, that Olig2 heterozygous, p53 null tumors

develop more quickly than their Olig2 null counterparts

(p < 0.003) raising the possibility of some p53-independent func-

tions that contribute to tumor growth (Figure 6A). Predictably, the

histopathology of p53 null tumors that form in the absence of

Olig2 is quite different from that of the Olig2-positive/p53-posi-

tive tumors that more closely emulate the human disease. In

particular, the Olig2 null tumors have a much greater proportion

of GFAP-positive cells and a near complete absence of cells that

express oligodendrocyte (PDGFRa) and neuronal (Tuj1) progen-

itor-associated markers (Figure 6B).

Intracranial growth of p53-positive human gliomas is likewise

promoted by OLIG2. As indicated in Figure 6C, shRNA knock-

down of OLIG2 reduces the penetrance and significantly

extends the latency of two different p53-positive glioma neuro-

sphere lines. Moreover, the tumors that eventually do arise

from implants of the p53-positive lines show expression of

endogenous OLIG2 protein (Figure 6D). By contrast, penetrance

and latency of a p53 null human glioma line show no significant

responses to OLIG2 knockdown (Figure 6C). Moreover, the

p53 mutant tumors proliferate in the absence of OLIG2



Figure 4. Olig2-Mediated Radiation Resis-

tance in Tumor Progenitor Cells Is Depen-

dent on p53 Status

(A) Suppression of p53 function. An expression

vector encoding a dominant negative mutant

of p53 (p53DD) was transduced into Olig2�/�

p16/p19�/�; EGFRvIII tumor neurospheres as

described in the text. These cells, together with

vector controls were irradiated as shown.

Secondary neurosphere assays were counted at

day 5 posttreatment. Scale bars = 100 mm.

(B) Enhancement of p53 function. Olig2+/+ tumor

neurospheres were treated with 0.25 mM Nutlin

(an Mdm2 inhibitor) or DMSO control for 16 hr

and then exposed to 2 Gy of radiation. Secondary

neurosphere assays were counted at day 5 post-

irradiation. Scale bars = 100 mm.

(C) Quantitation of percentage of secondary neu-

rospheres formed in treated samples as

compared with untreated samples.

(D) Quantitation of percentage of viable cells after

radiation treatment as compared with untreated

control samples. For both graphs, the data are

compiled from three independent experiments.

***p < 0.001, **p < 0.01. Error bars indicate SEM.
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expression (Figure 6E). As noted with the genetically defined

mouse tumor neurospheres, there is a trend (not rising to statis-

tical significance) for OLIG2 to accelerate tumor development

from p53 mutant human glioma cells suggesting additional

p53-independent functions for growth in vivo (Figure 6C).

Olig2 Suppresses p53 Acetylation and DNA Targeting
How might Olig2 oppose p53 biological functions? As indicated

in Figure 7A and Figure S2, Olig2 does not affect the overall

abundance of p53 protein in either control or irradiated cells.

Likewise, Olig2 status is irrelevant to basal or radiation-induced

p53 phosphorylation in any of these cell types. However, as

shown in Figure 7B, Olig2 suppresses the acetylation of p53

in both normal and malignant murine neural progenitors and

in human glioma neurosphere lines. Coincident with p53

hypoacetylation, Olig2 suppresses both basal and radiation-

induced interactions of p53 with several well-characterized

p53 target genes (Cdkn1a, Wig1, Bax, and Mdm2) as shown

by chromatin immune precipitation experiments. Again, this

Olig2-mediated suppression of p53 gene targeting is seen in

both normal and malignant murine neural progenitors and in

human glioma neurosphere cells (Figure 7C). In summary,

Olig2 acts upon a key posttranslational modification of p53

protein itself to suppress downstream genetic and biological

responses (Figure 7D).

The Oppositional Relationship between Olig2 and p53
Is Channeled through p21 in Some but Not All of the Cell
Types
The mechanisms that regulate p53-mediated biological

responses to DNA damage are complex (for reviews, see

Hollstein and Hainaut, 2010; Riley et al., 2008; Vogelstein et al.,

2000; Vousden and Prives, 2009). Activation of p53 stimulates
the expression of some genes and suppresses the expression

of others depending upon cell type, time point of measurement

and extent of DNA damage (Fei et al., 2002; Kannan et al.,

2001; Wei et al., 2006). The biological impact of diminished

DNA targeting was examined in detail for one p53 target gene,

namely, CDKN1A.

As indicated in Figures 8A, 8B, and Figure S3, Olig2 sup-

presses radiation-induced expression of p21 in some, but not

all of the cell types studied here. The expression of p21 is regu-

lated by a wide range of cellular cues including growth factors

and activated oncogenes (Gartel and Tyner, 1999; Olson et al.,

1998). Although the sample size is small, the ability of Olig2 to

oppose radiation-inducedexpression of p21appears to correlate

with EGFR status. In the twomouse lines and one human line that

express wild-type EGFR at physiologic levels, Olig2 opposes

the induction of p21. In the mouse line and human line (BT112)

that express mutated or amplified EGFR, the relationship

between Olig2 expression and p21 expression is not seen.

Functional relationships between p21 induction and growth

arrest were probed using genetically defined murine progenitor

cell lines. As shown in Figure 8C knockdown or knockout of

p21/CDKN1A rescues radiation-induced growth arrest in the

two cell types wherein Olig2 status dictates the response of

p21 to irradiation (wild-type and p16/p19�/� neurospheres) but

not in the one cell type wherein Olig2 status is irrelevant to

p21 induction (the p16/p19�/�;EGFRvIII mouse tumor neuro-

spheres). Notwithstanding the apparent irrelevance of CDKN1A

in this latter cell type, the p16/p19�/�;EGFRvIII mouse neuro-

spheres undergo radiation-induced growth arrest in an Olig2-

dependent fashion as noted for the other cell types above

(Figures 3 and 4). Together, these findings indicate that Olig2-

dependent radioprotection employs additional mechanisms

besides p21 repression, depending on the oncogenic context.
Cancer Cell 19, 359–371, March 15, 2011 ª2011 Elsevier Inc. 363



Figure 5. Olig2 Promotes Radioresistance

in p53-Positive Human Glioma Cells

(A) BT37, a p53 wild-type human cell line, was infected

with either control or shOLIG2 containing lentivirus. After

48 hr, the cells were dissociated, exposed to 2 Gy of IR,

and allowed to form secondary neurospheres for 5 days

after treatment. Untreated cells served as control. Scale

bars = 100 mm.

(B) Same as (A) except that the line used (BT112) has

amplified EGFR locus.

(C) Same as (A) except that the line used (BT70) carries

a mutant p53 (Arg273Cys).

(D) Quantitation of percentage of secondary neuro-

spheres formed in treated samples as compared with

untreated controls. The difference in secondary neuro-

sphere formation between the Olig2+/+ (WT) and

knockdown (KD) is significant to ***p < 0.001 (BT37) and

*p < 0.05 (BT112) for the p53 wild-type cells. Error bars

indicate SEM.
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DISCUSSION

Data summarized here document an intrinsic oppositional rela-

tionship between Olig2 and p53 in normal neural progenitors

and in human high-grade glioma cells. The p53-positive murine

and human glioma cell lines tested here differ from each other

with respect to EGFR status and Ink4a/Arf expression. In addi-

tion, all of the human cell lines differ from the murine models

with regard to PTEN function (ablated in the human lines and

wild-type in the murine lines) (see details in Supplemental Exper-

imental Procedures). Despite the different signaling pathways

that are operative in these multiple murine and human cell lines,

the fundamental relationship between Olig2 expression and p53

function is maintained: When Olig2 is expressed, p53-mediated

responses to genotoxic damage are suppressed. When Olig2 is

ablated (mouse cells) or suppressed by shRNA (human cells)

even attenuated levels of p53 function (as seen, for example, in

p16/p19�/� neurospheres) are sufficient to trigger radiation

induced growth arrest and apoptosis.

The intrinsic oppositional relationship between p53 and Olig2

documented here may contribute to the notorious resistance of

p53-positive gliomas to radiation and chemotherapy. The

majority (�75%) of human high-grade gliomas have a structurally

intact p53 gene and retain at least some level of p53 function

(Nakamura et al., 2001; Cancer Genome Atlas Research

Network, 2008; Parsons et al., 2008). In the fullness of time,

the ability to disrupt Olig2:p53 interactions in glioma cells may

have practical applications in oncology. We recently describe
364 Cancer Cell 19, 359–371, March 15, 2011 ª2011 Elsevier Inc.
a potential strategy for developing small mole-

cule inhibitors of Olig2 functions specifically

those involved in proliferation and tumorigen-

esis (Sun et al., 2011).

Generality of the Olig2:p53 Oppositional
Relationship
The experiments summarized here are focused

upon high-grade human glioma cells and

a ‘‘genetically relevant’’ murine model of high-

grade glioma. However, the high-grade gliomas
are only one component of a group of tumors known collectively

as ‘‘diffuse gliomas’’ that includes all classes of astrocytomas

(WHO grades I through IV), mixed gliomas, and oligodendroglio-

mas (Kleihues and Cavenee, 2007). In addition, the high-grade

gliomas as defined by conventional histopathological criterion

can be further subclassified into at least four distinct tumor types

as indicated by integrated genomic analysis (Verhaak et al.,

2010). In the face of this genetic and histopathological diversity,

OLIG2 is expressed in 100% of the human diffuse gliomas irre-

spective of grade (Ligon et al., 2004).

The pervasive expression of OLIG2 in this group of human

tumors invites generalizations with respect to biological function.

However, a paper by Sun et al. (2011) suggests an important

qualifier on OLIG2 function within other members of the diffuse

glioma group. Sun et al. show that Olig2 is a phosphoprotein

and the phosphorylation state is developmentally regulated.

Phosphorylated Olig2, found in proliferating neural progenitors

and p53-positive human glioma cells, displays promitotic and

anti-p53 functions, whereas nonphosphorylated Olig2 is associ-

ated with nonproliferating, myelinating oligodendrocytes in

maturewhitematter of the brain and is devoid of anti-p53 activity.

The observations of Sun et al. may reconcile the pervasive

expression of OLIG2 in diffuse gliomas with the practical clinical

experience that tumor grade, rather than OLIG2 expression, is

the most important prognostic indicator for human gliomas.

The percentage of OLIG2-positive cells in oligodendroglio-

mas, for example, generally exceeds the fraction of OLIG2

positive cells in high-grade gliomas (Lu et al., 2001; Marie
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et al., 2001), and yet many oligodendrogliomas respond well to

radiation and chemotherapy (Cairncross and Macdonald,

1988; Fortin et al., 1999; Macdonald et al., 1990). Likewise, pedi-

atric low-grade astrocytomas are responsive to radiation and/or

chemotherapy (Kortmann et al., 2003; Packer et al., 1997;

Prados et al., 1997) even though they too are positive for

OLIG2 expression (Ligon et al., 2004). The observations of Sun

et al. raise the interesting possibility that OLIG2 in oligodendro-

gliomas and pediatric astrocytomas may consist mainly of the

unphosphorylated protein that marks noncycling cells in mature

white matter. By contrast OLIG2 in the high-grade gliomas as

studied and modeled here is mainly the phosphorylated protein

that is specifically associated with anti-p53 function.
Inhibition of p53 Acetylation
How does a bHLH transcription factor inhibit a key posttransla-

tional modification of p53? Thus far, chromatin immune precipi-

tation assays (data not shown) and expression profiling studies

(Ligon et al., 2007) reveal no direct or indirect genetic targets

of Olig2 that would influence the acetylation state of p53. Like-

wise, antibody pull-down experiments have thus far failed to

reveal any interaction between the Olig2 and p53 proteins.

Preliminary yeast two-hybrid trapping screens and antibody

pull down experiments have revealed a direct interaction

between Olig2 and a protein known as Brd7 (data not shown).

The Olig2:Brd7 interaction is provocative because Brd7 facili-

tates the interaction of p300 with p53 and thus promotes p53

acetylation (Drost et al., 2010). The observations suggest the

testable hypothesis that Olig2 competes with p53 for an impor-

tant coregulator protein that facilitates acetylation; however,

considerably more work will be needed to test this hypothesis.
Critical p53 Target Genes
Further studies are also required to identify the entire repertoire

of p53 genetic targets that are impacted by OLIG2, and how

these contribute to suppression of p53-dependent responses

to genotoxic damage. In normal neural progenitors, the p21

cell cycle inhibitor is clearly a major component of the Olig2:p53

oppositional relationship (Figure 8), and the Olig2-mediated

suppression of p53 responses to genotoxic damage is identical

in normal and malignant neural progenitors. However, the role of

p21 in the Olig2:p53 relationship is clearly less pronounced or

even irrelevant in some of the malignant lines (e.g., those

expressing EGFRvIII).

As indicated in Figure 7, Olig2 likewise suppresses the interac-

tions of p53 with several other well-characterized p53 target

genes. The additional impacted p53 target genes include

Wig1, Bax, andMdm2 encoding, respectively, a cell cycle inhib-

itor, a proapoptotic protein and a p53 antagonist. Expression

profiling studies show that two of these genes (Wig1 and

Mdm2) are repressed by Olig2 in normal neural progenitor cells

(Ligon et al., 2007). Work in progress is aimed at determining

whether the diminished p53 targeting interactions noted in

Figure 7 are reflected at the level of gene expression in malignant

neural progenitors. To date, we have not detected any effect of

Olig2 on radiation-induced expression of p53-regulated proa-

poptotic genes such as Puma, Bax, and DR5 but this negative

result could reflect limitations of our assay conditions.
In addition, it should be noted that Olig2might directly regulate

the expression of genes that control cell growth and/or

responses to genotoxic damage. Olig2 is known to function as

a transcriptional repressor during spinal cord development

(Mizuguchi et al., 2001; Novitch et al., 2001). Chromatin immune

precipitation studies have shown that Olig2 itself binds to

promoter/enhancer elements adjacent to the proximal p53

binding site onCDKN1A and that Olig2 can suppress expression

of a luciferase reporter gene driven by this region of theCDKN1A

promoter (Ligon et al., 2007). Conceivably, direct repression of

p21 expression by Olig2 could augment the antagonistic action

of Olig2 on p53 acetylation/DNA targeting noted in Figure 7. Still

other preliminary studies show that Olig2 promotes the expres-

sion of certain DNA repair genes (e.g., Mre11a, Hus1, Fancl,

andRad51l3) (data not shown). Enhanced repair of DNA damage

could oppose p53-mediated growth arrest/apoptosis by

removing the genotoxic stimulus to p53 function.

Cell of Origin for Malignant Glioma
Mouse modeling studies highlight postnatal neural progenitors

of the subventricular zone as a plausible cell of origin for at least

some of the human high-grade gliomas (for review, see Stiles

and Rowitch, 2008). Using one of these models, Wang et al.

(2009) have shown that the initial signs of malignant transforma-

tion are seen in Olig2-positive transit amplifying cells of the sub-

ventricular zone. Early loss of p53 function within these cells

appears to provide no selective advantage (Wang et al., 2009).

The Olig2:p53 oppositional relationship described here could

explain why Olig2-positive neural progenitors might be a permis-

sive cell of origin for malignant glioma. Our data suggest that

Olig2 expression in these transit-amplifying cells is already

tantamount to p53 loss of function, and so true genetic loss of

p53 in such cells might have only a nuanced additive effect.

Why would normal neural progenitors express a transcription

factor that opposes the guardian functions of p53 to genotoxic

damage? A compelling incentive is provided by studies showing

that p53 and p21 oppose the self-renewal of adult neural stem

cells (Kippin et al., 2005; Meletis et al., 2006). Olig2-mediated

vulnerability to malignant transformation might be the price paid

by the adult CNS to maintain replication competence in these

cells and sustain a reserve of neural progenitors for response to

injury and for normal turnover of certain neural populations.

Therapeutic Opportunities
TheOlig2:p53 signaling axis describedhere highlights conserved

regulatory relationships between normal development and

neoplastic disease that are implicit within the so called ‘‘cancer

stem cell’’ hypothesis (Tan et al., 2006). Certain aspects of this

hypothesis (e.g., the frequency of stem-like ‘‘tumor initiating

cells’’ within solid tumors) have been contended (Boiko et al.,

2010; Eaves, 2008; Quintana et al., 2008; Shackleton et al.,

2009). Nevertheless, therapeutic opportunities for cancer might

be embedded within molecular mechanisms that control growth

and survival of normal progenitor cells during development. The

results shown in Figures 5 and 6 indicate that small molecule

inhibitors of OLIG2 function capable of crossing the blood-brain

barrier might serve as highly selective therapeutics for malignant

glioma, perhaps as adjuvants to conventional radiation and

chemotherapy. Moreover, this strategy is not dependent on
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Figure 6. Olig2 Requirement for Tumorigenesis Is p53 Dependent

(A) Murine neural progenitors with the indicated Olig2 and p53 genotypes were transduced with EGFRvIII and injected into the brains of SCID mice. As indicated

by the survival plots, mice injected withOlig2cre/cre p53fl/+ cells fail to form tumors in contrast toOlig2cre/cre p53fl/fl cells (p < 0.0003). Note also thatOlig2cre/+ p53fl/fl

cells can form tumors with significantly shorter latency period than Olig2cre/cre p53fl/fl cells (median survival 46 days and 64 days, respectively, p < 0.003).

(B) Comparison of tumors derived fromOlig2cre/+;p53fl/fl andOlig2cre/cre;p53fl/fl cells. Note the greater proportion of GFAP-positive (astrocyte-like) cells and a near

complete absence of PDGFRa positive (oligodendrocyte progenitor-like) and Tuj1-positive (neuron-like) cells in the Olig2 null tumors. Scale bars: the hEGFR

panels 1 mm and others 25 mm.

(C) Kaplan-Meier survival analysis of SCID mice intracranially implanted with human glioma cell lines transduced with OLIG2 shRNA or nontarget shRNA (shNT).

The differences in survival between two corresponding groups are p < 0.013 and 0.001 for p53 wild-type BT37 and BT145 lines, respectively, and p < 0.51 for the

p53 mutant BT70 line.
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lineage predictions of the ‘‘cancer stem cell’’ hypothesis, as it

targets a transient amplifying Olig2-positive cell during tumori-

genesis irrespective of the nature of its cellular precursor.

Transcription factors are generally considered to be poor

targets for drug development because their interactions with

DNA and coregulator proteins involve large areas of surface

contact. However, efficacious surrogate targets for OLIG2-

based drug development might emerge in the form of coregula-

tor proteins, functionally essential downstream genetic targets

or key posttranslational modifying enzymes. We recently identi-

fied a set of three closely spaced serine residues in the amino

terminus of Olig2 that, when phosphorylated, promote the

growth of neural progenitors in cell culture and in the brain

(Sun et al., 2011). Small molecule inhibitors of the protein kinases

that regulate Olig2 phosphorylation state might have practical

applications in glioma therapy.

Finally, it should also be noted that p53 and p21 play generic

roles in suppressing the self-renewal of stem cells (Hong et al.,

2009; Kawamura et al., 2009; Li et al., 2009; Marion et al.,

2009; Utikal et al., 2009). It is thus conceivable that oppositional

relationships between p53 and progenitor-specific transcription

factors analogous to the one described here, will be observed in

a broader range of cancer types.

EXPERIMENTAL PROCEDURES

Mouse Procedures

Animal husbandry was performed according to DFCI and UCSF guidelines

under IACUC approved protocols. Olig2-tva-cre+/� mouse line (Schuller

et al., 2008) was crossed to the conditional p53 knockout line (FVB.129-

Trp53tm1Brn, NCI mouse repository). Five- to 6-week-old immunocompro-

mised SCID mice were obtained from Taconic (ICRSC-M). For orthotopic

transplants, neurospheres were dissociated and resuspended in HBSS at

a density of 100,000 cells/ml. Two ml was injected in the right striatum 2 mm

lateral to the bregma. Animals were euthanized at the onset of neurological

symptoms or once moribund.

Human Materials

All human subjects work was reviewed by the Institutional Review Board

Committees of the Brigham and Women’s Hospital and Dana-Farber Cancer

Institute for appropriate use, that informed consent was obtained from all

subjects when required, and appropriate waiver of consent requirements

was obtained for minimal risk studies.

Neurosphere Cultures

Murine neural progenitor cells were isolated using techniques previously

described (Ligon et al., 2007) with the modification that cells were cultured

in the presence of EGF (20 ng/ml) and bFGF (20 ng/ml).

Olig2cre/+ p53fl/fl, Olig2cre/crep53fl/fl and Olig2cre/crep53fl/+ cells were gener-

ated by crossing Olig2cre/+p53fl/fl to Olig2cre/+p53fl/+ mice. Neurosphere

cultures were established as previously described (Ligon et al., 2007). Cultures

were infected at first passage with retrovirus expressing EGFRvIII (Bachoo

et al., 2002) and treated with puromycin (2 mg/ml) 48 hr after infection. Cultures

were orthotopically transplanted at different passage numbers (P4 to P8).

The human glioma cell lines (BT37 and BT112) were derived from Brigham

and Women’s Hospital patients undergoing surgery according to IRB
(D) Immunohistochemistry of tumors derived from injections of p53-positive BT3

vector no longer express the GFP marker and express OLIG2 at levels compara

H&E staining are 1.25 mm and all others 50 mm.

(E) Immunohistochemistry of tumors derived from injections of p53mutant BT70

continue to express theGFPmarker and show a significant knockdown of OLIG2 r

are 1.25 mm and all others 50 mm.
approved protocols. The BT70 (also referred to as GBM6) line was received

from C. David James (Pandita et al., 2004) (UCSF). The cells derived from

glioblastoma (GBM) biopsies were implanted into immunocompromised

mice. Dissected xenografts were processed as described earlier (Ligon

et al., 2007). For adherent conditions, cells were cultured as previously

described by Pollard et al. (2009).

The relevant genotype of these cell cultures is detailed in Supplemental

Experimental Procedures.

Secondary Neurosphere Assays

The frequency of secondary neurospheres formed upon replating of disaggre-

gated primary neurospheres has been used as a surrogate measure of self-

renewal in replication-competent neural progenitor cells (Bao et al., 2006;

Molofsky et al., 2005; Reynolds and Weiss, 1996). Cultures were performed

as described previously (Ligon et al., 2007). Details are provided in the

Supplemental Experimental Procedures.

Histology Analysis and Immunohistochemistry

Histological screening of tumors and immunohistochemistry procedures were

performed as previously described (Ligon et al., 2007). In situ hybridization was

performed for PDGFRa using antisense digoxigenin-labeled PDGFRa ribop-

robe as described previously (Lu et al., 2000).

Cleaved Caspase 3 Detection

Radiation induced apoptosis was measured by quantitating cleaved caspase

3-positive cells 24 hr post radiation treatment as compared with untreated

samples. In brief, the neurospheres were dissociated and fixed with 4%

paraformaldehyde for 10 min at 37�C and then permeabilzed by incubation

in 90% methanol for 30 min on ice. The cells were stained with anti cleaved

Caspase 3 (Cell Signaling Technology 1:100). The cells were analyzed by

flow cytometry. At least 10,000 gated events were counted for each sample.

The data were then analyzed by FlowJo Software.

Chromatin Immunoprecipitation

Chromatin immunoprecipitations were performed as described earlier

(Ligon et al., 2007). In brief, neurosphere cultures were treated with 2 Gy

ionizing radiation. Untreated cells served as controls. The cells were collected

3 hr postradiation and fixed with 1% formaldehyde for 15 min at room temper-

ature and processed for chromatin immunoprecipitations with p53 antibody

(FL-393, Santa Cruz).

The sequences for primers used for quantitative ChIP analysis are provided

in Supplemental Experimental Procedures.

Virus Production and Packaging

Construction of retroviral vector encoding the constitutively active mutant of

EGFR (EGFRvIII) has been described (Bachoo et al., 2002). Lentiviral stocks

were produced as previously described (Moffat et al., 2006). Details are

provided in the Supplemental Experimental Procedures.

Statistical Analysis

Two-way ANOVA with Bonferroni posttests were carried out to confirm there

was interaction between genotype and treatment (radiation or cytotoxic

drugs). All data presented showed significant interaction between genotype

and treatment. One-way ANOVA with Newman Kleus multiple comparison

test was used to analyze significant difference between treated samples.

Z-test was used to analyze fold enrichment of p53 to its target promoters in

Olig2 null cells as compared with wild-type cells.
7 human glioma cell line. The tumors formed by cells infected with shOLIG2

ble to that seen in tumors that arise from control cells (shNT). Scale bars for

human glioma cell line. The tumors arising in these mice injected with shOLIG2

elative to tumors that arise from control cells (shNT). Scale bars for H&E staining
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Figure 7. Olig2 Suppresses Acetylation and DNA Binding of p53

(A) Ablation ofOlig2 does not affect basal expression of p53 or its phosphorylation upon DNA damage. Cell lysates from cultures either untreated (–) or treated (+)

with 2 Gy of IRwere obtained 6 hr posttreatment and analyzed by immunoblotting with antibodies recognizing phosphorylated p53 (Ser15), total p53, and b-actin.

(B) Olig2 suppresses DNA damage induced acetylation of p53. Cell lysates from cultures either untreated (–) or treated (+) with 2 Gy of IR in the presence of HDAC

inhibitor were obtained 6 hr posttreatment and analyzed by immunoblotting with antibodies recognizing acetylated p53 (lys379) or vinculin. Immunoblots from five

independent experiments were quantitated. The bar graphs represent acetylated p53 levels after radiation in the indicated cell lines. *p < 0.05, ***p < 0.001.

(C) Quantitative ChIP analysis of p53 bound to its target promoters (Cdkn1a,Wig1, Bax, and Mdm2). The bar graphs represent ratio of fold enrichment of p53 at

target sites inOlig2�/� cells overOlig2+/+ cells. For all graphs the data is compiled from three independent experiments. For (B) and (C), error bars represent SEM

and *p < 0.05, **p < 0.01, ***p < 0.001.

(D) Model for Olig2-mediated negative regulation of p53 signaling pathway. DNA damage leads to stabilization and activation of p53 through posttranslational

modifications (phosphorylation and acetylation). Activated p53 transactivates its downstream targets, which leads to either growth arrest or cell death (Barlev

et al., 2001; Dornan et al., 2003; Horn and Vousden, 2007; Riley et al., 2008). As indicated, Olig2 suppresses p53 acetylation and thereby affects p53 association

with target promoters.

See also Figure S2.
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Figure 8. Olig2 Promotes Radiation Resistance in Part through

Suppression of p21

(A) Cell lysates from indicatedmurine cell lines either untreated (–) or treated (+)

with 2 Gy of gamma radiation were obtained 6 hr posttreatment and analyzed

by immunoblotting with antibodies recognizing p21 and b-actin.

(B) Human glioma cell lines (BT37 and BT112) were transduced with a control

hairpin (NT) or shOlig2 and treated with 2 Gy of gamma radiation. Cell lysates

from untreated (–) or treated (+) samples were obtained 6 hr posttreatment and

analyzed by immunoblotting with antibodies recognizing p21 and b-actin.

(C) Ablation of Cdkn1a inOlig2�/� cells with wild-type EGFR restores radiation

resistance.Olig2�/� (left panels) orOlig2�/� p16/p19�/�; EGFRvIII (right panel)

cells were infected with retrovirus expressing control shNT or shCdkn1a. After

48 hr cells were dissociated, exposed to 2 Gy of IR and allowed to form

spheres for 5 days after treatment. Untreated cells served as control. Olig2�/�

p16/p19�/�Cdkn1a�/� cells were treated with 2 Gy of IR and allowed to form

spheres for 5 days after treatment (middle panel). Untreated cells served as

control. Scale bars = 100 mm.

See also Figure S3.
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