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Abstract

The addition of a Bessel drift 1
x to a Brownian motion affects the lifetime of the process in the interval

(0, ∞) in a well-understood way. We study the corresponding effect of a power −
β
x p (β 6= 0, p > 0) of

the Bessel drift. The most interesting case occurs when β > 0. If p > 1 then the effect of the drift is not
too great in the sense that the exit time has the same critical value q0 for the existence of qth moments
(q > 0) as the exit time of Brownian motion. When p < 1, the influence is much greater: the exit time has
exponential moments.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

For any real-valued process Z t , let τR(Z) be the first hitting time of R by Z :

τR(Z) = inf{t > 0 : Z t = R}.

It is well-known that Brownian motion Wt will exit the interval (0, ∞) in finite time and in fact,
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Px (τ0(W ) > t) =
2

√
2π

∫ x/
√

t

0
e−u2/2 du (1.1)

(Feller [10]). The addition of the drift −
β
x yields the Bessel process Bt with dimension δ =

1 − 2β:

dBt = dWt − β B−1
t dt, t < τ0(B).

It is known (Göing-Jaeschke and Yor [11]) that for δ < 2,

Px (τ0(B) > t) =
2δ/2

Γ (1 − δ/2)

∫ x/
√

t

0
u1−δe−u2/2 du (1.2)

and for δ ≥ 2,

Px (τ0(B) = ∞) = 1.

Also see DeBlassie [9] and Bañuelos and Smits [4] for other derivations.
In this article we will study the effect of changing the drift to −

β
x p for β 6= 0 and p > 0:

dX t = dWt − β X−p
t dt, t < τ0(X). (1.3)

If β < 0, it is easy to show

Px (τ0(X) = ∞) = 1 for p > 1
1 > Px (τ0(X) = ∞) > 0 for p < 1.

Consequently, we will concentrate on the case β > 0. Our main results are the following
theorems.

Theorem 1.1. For β > 0 and p > 1,

Ex [τ0(X)q
] < ∞ if q <

1
2

Ex [τ0(X)q
] = ∞ if q >

1
2
.

Let

B(a, b) =

∫ 1

0
ta−1(1 − t)b−1dt

denote the Beta function.

Theorem 1.2. For β > 0 and p < 1,

lim
t→∞

t−
1−p
1+p log Px (τ0(X) > t) = −γ (p, β)

where:

γ (p, β) =
1
2

p−
2p

1+p β
2

1+p

[
B
(

1
2
,

1 − p
2p

)
+ B

(
3
2
,

1 − p
2p

)]/
B
(

1
2
,

1 + p
2p

) 1−p
1+p

.
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Here is some intuition concerning our results. Clearly, since β > 0, τ0(X) ≤ τ0(W ). Since
we are computing the chance that X takes a long time to exit (0, ∞), it is plausible that for this
event to occur, the process must spend a lot of time away from 0. Thus the behaviour of the drift
far away from 0 ought to have the most influence. Now for β > 0 and p < 1, for any α < 1,

−
β

x p ≤
α − 1

2x
, x large

and we expect X will exit sooner than a Bessel process B of any dimension α < 1. By (1.2),
Px (τ0(B) > t) ≈ ct (α−2)/2, so by varying α < 1, we see τ0(X) ought to have all qth moments
finite (q > 0). Theorem 1.2 tells us τ0(X) even has exponential moments.

Notice:

lim
p→0+

γ (p, β) =
β2

2
and (1.4)

lim
p→1−

γ (p, β) = ∞. (1.5)

When p = 1 we get a Bessel process and so for some q > 0, Px (τ0(X) > t) ≈ t−q . Thus for p
close to 1 and t large, we expect:

γ ≈ −t−
1−p
1+p log Px (τ0(X) > t) ≈ −1 · log t−q ,

which is huge, consistent with (1.5). On the other hand, when p = 0, we get a Brownian motion
with drift (X t = Wt − βt) and it is known that log Px (τ0(X) > t) ≈ −

β2

2 t (Borodin and
Salminen [5]). Thus for p close to 0 and t large, we expect:

−γ ≈ t−
1−p
1+p log Px (τ0(X) > t) ≈ t−1

(
−

β2

2
t
)

= −
β2

2
,

consistent with (1.4).
As for β > 0 and p > 1, if α < 1 then

−
β

x p ≥
α − 1

2x
, x large.

Thus we expect X to exit later than a Bessel process of dimension α close to 1. On the other
hand, τ0(X) ≤ τ0(W ), and X exits sooner than W . Since W is a Bessel process with dimension
1 (at least up to time τ0(W )), we see τ0(X) and τ0(W ) are about the same in the sense that they
have the same qth moments. Theorem 1.1 shows this intuition is correct.

Our results and techniques have implications for some other problems. For example, the
family of square root diffusions:

dX t = c
√

|X t | dWt + (a + bX t ) dt, (1.6)

which includes the squared Bessel processes, has been the subject of much research. Aside from
applications in various areas of probability and the intrinsic interest it has generated, the family
of these diffusions has found an important niche in mathematical finance and economics. See the
survey article of Göing-Jaeschke and Yor [11]. For example, in the seminal paper of Cox et al.
[6], the family of square root diffusions was used to model short-term interest rates:

drt = σ
√

rt dWt + κ(θ − rt ) dt. (1.7)
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Justification for the use of this model includes the following empirically relevant facts:

1. interest rates are always nonnegative;
2. if the rate reaches 0, it can become positive later;
3. the infinitesimal variance of the interest rate increases as the interest rate increases;
4. there is a steady-state distribution for the interest rate.

Göing-Jaeschke and Yor [11] point out the following relationship between squared Bessel
processes and square root diffusions (1.6). If Yt is a squared Bessel process with dimension
δ =

4a
c2 , that is:

dYt = 2
√

|Yt | dWt + δYt dt,

then the solution to (1.6) can be represented by

X t = ebt Y
(

c2

4b
(1 − e−bt )

)
.

Thus in the context of (1.7) we can write

rt = e−κt Y
(

σ 2

4κ
(eκt

− 1)

)
, (1.8)

where Yt is a squared Bessel process with dimension 4κθ

σ 2 . Instead of using the Bessel process:

dBt = dWt − β B−1
t dt,

(where β is chosen so that Yt = B2
t ) one could use the perturbed Brownian motion

dBt = dWt − cB−p
t dt, (1.9)

for some p 6= 1.
In order to ensure properties 1 and 2 above carry through, we use B2

t in place of Yt when
p < 1 and Bq

t in place of Yt when p > 1, where q > p + 1 is chosen so large that 2p(p+1)

q2 < 1.
Moreover, under these circumstances, properties 3 and 4 will also hold.

To help decide whether or not this is a reasonable change, one could ask how long it takes
the interest rate to reach 0. Then empirical data could be used to decide which process gives a
better model. In light of the identity (1.8), we see the finding when the process reaches 0 comes
down to seeing how long the perturbed Brownian motion (1.9) takes to hit 0—this is precisely
the content of our results.

To describe another situation in which our work has implications, we review some known
results. Let W ⊆ R2 be a wedge with angle θ . If τW is the exit time of Brownian motion from
W , then Bañuelos and Smits [4] have shown that:

Px (τW > t) ∼ C1(x)t−π/2θ as t → ∞.

If τ z
W is the lifetime of Brownian motion in W conditioned to converge to x ∈ ∂W , then Davis

and Zhang [7] have shown that:

Px (τ
z
W > t) ∼ C2(x, z)t−π/θ as t → ∞.

Thus the chance of τ z
W being large is much smaller than the chance of τW being large, and so the

conditioning makes the process die out faster.
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On the other hand, if K ⊆ R2 is bounded and open, and if τK is the exit time of Brownian
motion from K , then it is known that:

Px (τK > t) ∼ C4(x)e−λK t as t → ∞,

where λK is the first Dirichlet eigenvalue of 1
2∆ on K (Port and Stone [17]). It is also known that:

Px (τ
z
K > t) ∼ C3(x)e−λK t as t → ∞,

(DeBlassie [8], Kenig and Pipher [13] and Bañuelos and Davis [2]). In this case, the conditioning
does not make the process die out any faster.

Now consider the ‘parabolic-type’ region:

D = {(x, y) : x > 0, |y| < x p
},

where 0 < p < 1. Bañuelos et al. [3], Li [14] and Lifshits and Shi [15] have shown that

lim
t→∞

t−
1−p
1+p log Px (τD > t) = C5,

where C5 is explicitly known. This situation is intermediate between the case of the wedge W
and the bounded open set K . It would be very interesting to see if conditioning preserves this
ordering. In other words, how does the conditioning affect the lifetime of the process? We do not
know the answer, but our results provide the following insight.

Write

S =

{
(x, y) : |y| <

π

2

}
and let F : D → S be conformal with

lim
x→∞

F(x, y) = ∞.

Let z ∈ ∂ D correspond to the limiting value of F(x, y) as x → −∞ in S. The Martin kernel of
D with pole at z can be written as

h(x, y) = e−Re F(x,y) cos(Im F(x, y))

and the differential operator associated with Brownian motion in D conditioned to converge to z
is

1
2
∆ +

∇h
h

· ∇.

Analogous to the intuition described above concerning our results, in order for τ z
D to be large,

we expect the process to spend much time away from z. Also, the conditioning keeps the process
away from ∂ D \ {z} and so the greatest influence should come from the horizontal component of
the process. Thus:

h(x, y) ≈ e−Re F(x,y)

and by results of Warschawski [22],

F(x, y) ≈
π

2(1 − p)
x1−p as x → ∞.

We conclude:
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∇h
h

· ∇ ≈ −
π

2
x−p ∂

∂x
and the operator associated with the conditioned Brownian motion is much like:

1
2

∂2

∂x2 −
π

2
x−p ∂

∂x
.

This is the operator studied in this article and Theorem 1.2 suggests:

lim
t→∞

t−
1−p
1+p log Px (τD > t) = −γ

(
p,

π

2

)
.

Hence we conjecture the conditioning does not affect the lifetime very much, just as in the case
of K bounded.

Here is the organization of the article. In Section 2 we use a comparison argument much
like that described above to prove Theorem 1.1. The method is not precise enough to decide the
critical case q =

1
2 . In Section 3 we make an h-transform to eliminate the first order term in the

differential operator 1
2

d2

dx2 − βx−p d
dx corresponding to X . The resulting operator takes the form

1
2

d2

dx2 + V (x), where the potential V is singular. This transformation lets us reduce consideration
to study of a Feynman-Kac type functional to which techniques of large deviations apply. In
Sections 4 and 5 we use the techniques to obtain lower and upper bounds and we show the
bounds coincide. The common value is given by the solution of a singular variational problem
which we solve in Section 6.

2. Proof of Theorem 1.1

Throughout this section we will assume β > 0 and p > 1. Let α < 1 be very close to 1 and
suppose Bt is a Bessel process with dimension α:

dBt = dWt +
1 − α

2
B−1

t dt, t < τ0(B).

Choose M > 0 so large that:

−
β

x p ≥
α − 1

2x
, x ≥ M/2.

Then by the Comparison Theorem for Itô processes (Ikeda and Watanabe [12]),

PM (τM/2(X) > t) ≥ PM (τM/2(B) > t). (2.1)

The Laplace transform of τM/2(B) is known (Göing-Jaeschke and Yor [11]) to be

EM [exp(−λτM/2(B))] = 2−ν K−ν(M
√

2λ)

K−ν(M
√

λ/2)

where

ν =
α

2
− 1 < −

1
2

(2.2)

is very close to −
1
2 and Kν is the modified Bessel function. Using this identity, after an integration

by parts, the measure

µ(A) =

∫
A

PM (τM/2(B) > t)dt
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has Laplace transform:

ω(λ) =
1
λ

[
1 − 2−ν K−ν(M

√
2λ)

K−ν(M
√

λ/2)

]
.

Using the identity:

Kν(z) =
π

2
I−ν(z) − Iν(z)

sin νπ

and the series expansion

Iν(z) =

( z
2

)ν ∞∑
k=0

( z
2 )2k

k!Γ (ν + k + 1)

(Abramowitz and Stegun [1] page 375), one can show that for some cν,M :

ω(λ) ∼ cν,Mλ−ν−1 as λ → 0.

Then since the density of µ is monotone, by Feller’s Tauberian Theorem (Feller [10], Theorem
4 on page 446):

PM (τM/2(B) > t) ∼
cν,M

Γ (ν + 1)
tν as t → ∞. (2.3)

Now we can prove Theorem 1.1. Let x > 0. By making M larger if necessary, it is no loss to
assume M > x . Then by the strong Markov property, with

η = τ0(X) ∧ τM (X),

we have:

Px (τ0(X) > t) ≥ Px (Xη = M, τ0(X) > t, η < t)

≥ Px (Xη = M)PM (τ0(X) > t)

≥ Px (Xη = M)PM (τM/2(X) > t)

≥ Px (Xη = M)PM (τM/2(B) > t)

(by (2.1)). Since ν < −
1
2 in (2.2) can be made arbitrarily close to −

1
2 , we get that

Ex [τ0(X)q
] = ∞ if q >

1
2
.

Note by the trivial bound

Px (τ0(W ) > t) ≥ Px (τ0(X) > t)

and (1.1), we get

Ex [τ0(X)q
] < ∞ if q <

1
2
.

This completes the proof of Theorem 1.1.
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3. Transformation of the problem

For the rest of the paper, we will assume β > 0 and 0 < p < 1. In this section an h-transform
is used to convert the problem into one involving large deviations. Denote the differential operator
associated with the process X t by:

L =
1
2

d2

dx2 −
β

x p
d

dx
and write p(t, x, y) for the transition density of the process killed upon striking 0:

Px (X t ∈ A, τ0(X) > t) =

∫
A

p(t, x, y)dy.

Let:

V (x) = −
1
2
[βpx−1−p

+ β2x−2p
], x > 0 (3.1)

L1 =
1
2

d2

dx2 + V, and (3.2)

h(x) = exp
(

−
β

1 − p
x1−p

)
, x ≥ 0. (3.3)

Note h is L1-harmonic: L1h = 0. The h-transform Lh
1 of L1 is defined by

Lh
1 f =

1
h

L1(h f ).

Then it is a simple matter to show

Lh
1 = L . (3.4)

Let Yt be the process associated with L1, killed upon reaching 0. This process exists because
the potential V (x) appearing in L1 is nonpositive. By (3.4), if p1(t, x, y) is the transition density
of Yt , then

p(t, x, y) = p1(t, x, y)h(y)/h(x)

(Pinsky [16], Theorem 4.1.1 on page 126). By the Feynman-Kac formula, for one-dimensional
Brownian motion Bt ,

Px (τ0(X) > t) =

∫
∞

0
p(t, x, y)dy

=
1

h(x)

∫
∞

0
p1(t, x, y)h(y)dy

=
1

h(x)
Ex [h(Yt )Iτ0(Y )>t ]

=
1

h(x)
Ex

[
exp

(∫ t

0
V (Bs)ds

)
h(Bt )Iτ0(B)>t

]
. (3.5)

Let:

C0 = {ω : [0, 1] → R | ω is continuous, ω(0) = 0}
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and equip C0 with the sup norm. If ω ∈ C0 is absolutely continuous (with respect to Lebesgue
measure) denote its derivative by ω̇ or ω′. Then set:

K0 =

{
ω ∈ C0 :

∫ 1

0
[ω̇u]

2du < ∞

}
.

With

c1 =
1
2
β2 and

c2 =
β

1 − p
, (3.6)

for ω ∈ K0 define

F(ω) = c1

∫ 1

0
|ω(u)|−2pdu + c2|ω(1)|1−p

+
1
2

∫ 1

0
[ω̇(u)]2du, (3.7)

if the first integral is finite; otherwise, set F(ω) = ∞.

Theorem 3.1. For any x > 0,

lim
t→∞

t−
1−p
1+p log Ex

[
exp

(∫ t

0
V (Bs)ds

)
h(Bt )Iτ0(B)>t

]
= − inf

ω∈K0
F(ω). �

Notice the infimum exists and so by (3.5) this theorem will prove the existence of the limit in
Theorem 1.2.

4. Proof of Theorem 3.1: Lower bound

In this section we prove:

lim inf
t→∞

t−
1−p
1+p log Ex

[
exp

(∫ t

0
V (Bs)ds

)
h(Bt )Iτ0(B)>t

]
≥ − inf

ω∈K0
ω≥0

F(ω). (4.1)

For x < 0 set Vi (x) = 0, i = 1, 2, 3 and for x ≥ 0 define

V1(x) =
1
2
βpx−1−p

V2(x) = c1x−2p

V3(x) = c2x1−p,

where c1 and c2 are from (3.6) and we take 1
0 = ∞. Notice the following scaling identities hold:

V1(r x) = r−1−pV1(x)

V2(r x) = r−2pV2(x)

V3(r x) = r1−pV3(x).

Moreover, for ω ≥ 0

F(ω) =

∫ 1

0
V2(ω(u))du + V3(ω(1)) +

1
2

∫ 1

0
[ω̇(u)]2du (4.2)
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and for τ0(B) > t ,∫ t

0
V (Bs)ds −

β

1 − p
B1−p

t = −

∫ t

0
[V1(Bs) + V2(Bs)]ds − V3(Bt ).

Thus:

Ex

[
exp

(∫ t

0
V (Bs)ds

)
h(Bt )Iτ0(B)>t

]
= Ex

[
exp

(
−

∫ t

0
[V1(Bs) + V2(Bs)]ds − V3(Bt )

)
Iτ0(B)>t

]
= Ex

[
exp

(
−

∫ 1

0
[V1(Btu) + V2(Btu)]t du − V3(Bt )

)
Iτ0(B)>t

]

= Ex/
√

t

[
exp

(
−

∫ 1

0
[V1(

√
t Bu) + V2(

√
t Bu)]t du − V3(

√
t B1)

)
Iτ0(B)>1

]
(Brownian scaling)

= Ex/
√

t

[
exp

(
−t (1−p)/2

∫ t

0
V1(Bu)du − t1−p

∫ 1

0
V2(Bu)du − t (1−p)/2V3(B1)

)

× Iτ0(B)>1

]
(4.3)

(scaling properties of V1–V3).
Now let g ∈ K0 be such that g ≥ 0 and F(g) < ∞. Consider any ε > 0 and define

Zu = Bu − g(u)/
√

ε

η = τ0(Z) = inf{u > 0 : Zu = 0}.

Note that for Z0 > 0,

η > 1 ⇒ τ0(B) > 1 and (4.4)

η > 1 ⇒ Vi (g(u)/
√

ε) ≥ Vi (Bu) for all u ≤ 1, i = 1, 2. (4.5)

Lemma 4.1. For δ > 0 and ε = t−(1−p)/(1+p),

Px/
√

t

(
τ0(B) > 1, t (1−p)/2V3(B1) +

1
√

ε

∫ 1

0
g′(u)dBu >

δ

ε

)
= o(Px/

√
t (τ0(B) > 1))

as t → ∞.

Proof. In what follows, c will be a number whose exact value might change from line to line, but
it will always be independent of t . Under Px/

√
t , the random variable

∫ 1
0 g′(u)dBu is Gaussian

with mean 0 and variance
∫ 1

0 [g′(u)]2du. Hence

Ex/
√

t

[
exp

(∫ 1

0
g′(u)dBu

)]
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is independent of t . Using this together with the fact that

ε−1/(1−p)t−1/2
= ε−1/2,

we have for t > 1,

Px/
√

t

(
τ0(B) > 1, t (1−p)/2V3(B1) +

1
√

ε

∫ 1

0
g′(u)dBu >

δ

ε

)

≤ Px/
√

t

(
τ0(B) > 1, t (1−p)/2V3(B1) >

δ

2ε

)
+ Px/

√
t

(
τ0(B) > 1,

∫ 1

0
g′(u)dBu >

δ

2
√

ε

)

≤ Px/
√

t (B1 > cε−1/(1−p)t−1/2) + exp
(

−
δ

2
ε−1/2

)
Ex/

√
t

[
exp

(∫ 1

0
g′(u)dBu

)]

≤ exp(−cε−1/2)Ex/
√

t (e
B1) + c exp

(
−

δ

2
ε−1/2

)
= c exp(−cε−1/2

+ xt−1/2) + c exp
(

−
δ

2
ε−1/2

)
≤ c exp(−cε−1/2). (4.6)

From (1.1),

Px/
√

t (τ0(B) > 1) =
2

√
2π

∫ x/
√

t

0
e−u2/2du

∼
2

√
2π

x
√

t
= cε

1
2 (1+p)/(1−p) (4.7)

as t → ∞. Here f1(t) ∼ f2(t) as t → ∞ means f1(t)
f2(t)

→ 1 as t → ∞. Hence for t large,

Px/
√

t

(
τ0(B) > 1, t (1−p)/2V3(B1) +

1
√

ε

∫ 1
0 g′(u)dBu > δ

ε

)
Px/

√
t (τ0(B) > 1)

≤
c exp(−cε−1/2)

(
√

ε)(1+p)/(1−p)

→ 0 as t → ∞, since ε → 0+ iff t → ∞. �

Corollary 4.2. For ε = t−(1−p)/(1+p),

lim inf
t→∞

ε log Px/
√

t

(
τ0(B) > 1, t (1−p)/2V3(B1) +

1
√

ε

∫ 1

0
g′(u)dBu ≤

δ

ε

)
≥ 0.

Proof. Writing A = t (1−p)/2V3(B1) +
1

√
ε

∫ 1
0 g′(u)dBu , we have

Px/
√

t

(
τ0(B) > 1, A ≤

δ

ε

)
= Px/

√
t (τ0(B) > 1) − Px/

√
t

(
τ0(B) > 1, A >

δ

ε

)
= Px/

√
t (τ0(B) > 1)

[
1 −

Px/
√

t (τ0(B) > 1, A > δ
ε
)

Px/
√

t (τ0(B) > 1)

]
.
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Take the logarithm of both sides, multiply by ε and let t → ∞. Then by Lemma 4.1, and
(4.7)

lim inf
t→∞

ε log Px/
√

t

(
τ0(B) > 1, A ≤

δ

ε

)
≥ lim inf

t→∞
ε log Px/

√
t (τ0(B) > 1)

= 0. �

Lemma 4.3. For ε = t−(1−p)/(1+p),

lim inf
t→∞

ε log Ex/
√

t [exp(−t (1−p)/2V3(Z1))Iη>1] ≥ −
1
2

∫ 1

0
[g′(u)]2du.

Proof. By the Cameron–Martin–Girsanov Theorem, for any δ > 0,

Ex/
√

t [exp(−t (1−p)/2V3(Z1))Iη>1]

= Ex/
√

t

[
Iτ0(B)>1 exp

(
−t (1−p)/2V3(B1) −

1
√

ε

∫ 1

0
g′(u)dBu −

1
2ε

∫ 1

0
[g′(u)]2du

)]

≥ exp

(
−

1
2ε

∫ 1

0
[g′(u)]2du −

δ

ε

)

× Px/
√

t

(
τ0(B) > 1, t (1−p)/2V3(B1) +

1
√

ε

∫ 1

0
g′(u)dBu ≤

δ

ε

)
.

Hence by Corollary 4.2,

lim inf
t→∞

ε log Ex/
√

t [exp(−t (1−p)/2V3(Z1))Iη>1] ≥ −
1
2

∫ 1

0
[g′(u)]2du − δ.

Let δ → 0+ to finish. �

Now we can prove (4.1). Since 0 < p < 1, V3(a + b) ≤ V3(a) + V3(b). Then by definition
of Z , with ε = t−(1−p)/(1+p),

Ex/
√

t [exp(−t (1−p)/2V3(B1))Iη>1] = Ex/
√

t [exp(−t (1−p)/2V3(Z1 + g(1)/
√

ε))Iη>1]

≥ exp(−t (1−p)/2V3(g(1)/
√

ε))Ex/
√

t [exp(−t (1−p)/2V3(Z1))Iη>1]

= exp(−t (1−p)/2ε−(1−p)/2V3(g(1)))Ex/
√

t [exp(−t (1−p)/2V3(Z1))Iη>1]

(by the scaling property of V3)

= exp(−ε−1V3(g(1)))Ex/
√

t [exp(−t (1−p)/2V3(Z1))Iη>1] (4.8)

(by choice of ε).

Also, by scaling properties of V1 and V2, and choice of ε:
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exp

(
−t (1−p)/2

∫ 1

0
V1(g(u)/

√
ε)du − t1−p

∫ 1

0
V2(g(u)/

√
ε)du

)

= exp

(
t (1−p)/2ε(1+p)/2

∫ 1

0
V1(g(u))du − t1−pε p

∫ 1

0
V2(g(u))du

)

= exp

(
−

∫ 1

0
V1(g(u))du − ε−1

∫ 1

0
V2(g(u))du

)
. (4.9)

Then:

Ex

[
exp

(∫ t

0
V (Bs)ds

)
h(Bt )Iτ0(B)>t

]
= Ex/

√
t

[
exp

(
−t (1−p)/2

∫ 1

0
V1(Bu)du − t1−p

∫ 1

0
V2(Bu)du − t (1−p)/2V3(B1)

)

× Iτ0(B)>1

]

(by (4.3))

≥ exp

(
−t (1−p)/2

∫ 1

0
V1(g(u)/

√
ε)du − t1−p

∫ 1

0
V2(g(u)/

√
ε)du

)
·Ex/

√
t [exp(−t (1−p)/2V3(B1))Iη>1]

(by (4.4) and (4.5))

≥ exp

(
−

∫ 1

0
V1(g(u))du − ε−1

∫ 1

0
V2(g(u))du

)
· exp(−ε−1V3(g(1)))Ex/

√
t [exp(−t (1−p)/2)V3(Z1)Iη>1]

(by (4.9) and (4.8)). By Lemma 4.3 and our choice of ε, this yields

lim inf
t→∞

t−(1−p)/(1+p) log Ex

[
exp

(∫ t

0
V (Bs)ds

)
h(Bt )Iτ0(B)>t

]
≥ −

∫ 1

0
V2(g(u))du − V3(g(1)) −

1
2

∫ 1

0
[g′(u)]2du.

Taking the supremum over all g ∈ K0 such that g ≥ 0 and F(g) < ∞ and using (4.2) gives
(4.1).
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5. Proof of Theorem 3.1: Upper bound

In this section we derive an upper bound that matches the lower bound from the previous
section. To this end, we first show:

lim sup
t→∞

t−(1−p)/(1+p) log Ex

[
exp

(∫ t

0
V (Bs)ds

)
h(Bt )Iτ0(B)>t

]

≤ − inf
ω∈K0

[
J (ω) +

1
2

∫ 1

0
[ω̇(u)]2du

]
(5.1)

where

J (ω) =

∫ 1

0
V2(ω(u))du + V3(ω(1))

if the integral is finite; otherwise set J (ω) = ∞.
Let Qε be the law on C([0, ∞), R) of

√
ε B under P0, where

ε = t−(1−p)/(1+p)

as usual. Then by (4.3) and scaling properties of V1 − V3, writing f (ε) = xε1/(1−p),

Ex

[
exp

(∫ t

0
V (Bs)ds

)
h(Bt )Iτ0(B)>t

]
= E0

[
exp

(
−t (1−p)/2

∫ 1

0
V1

(
Bu +

x
√

t

)
du − t1−p

∫ 1

0
V2

(
Bu +

x
√

t

)
du

− t (1−p)/2V3

(
B1 +

x
√

t

))
I
(

τ0

(
B +

x
√

t

)
≥ 1

)]

= E0

[
exp

(
−

∫ 1

0
V1(

√
ε Bu + f (ε))du − ε−1

∫ 1

0
V2(

√
εBu + f (ε))du

− ε−1V3(
√

ε B1 + f (ε))

)
I
(

τ0

(
B +

x
√

t

)
> 1

)]

≤ E Qε

[
exp

(
−

∫ 1

0
V1(ωu + f (ε))du − ε−1

∫ 1

0
V2(ωu + f (ε))du

− ε−1V3(ω1 + f (ε))

)]

= E Qε

[
exp

(
−

1
ε

Jε(ω)

)]
(5.2)

where

Jε(ω) = ε

∫ 1

0
V1(ωu + f (ε))du +

∫ 1

0
V2(ωu + f (ε))du + V3(ω1 + f (ε))

if the integrals are finite; otherwise, Jε(ω) = ∞.
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Notice J is lower semicontinuous on C0 and if ωn → ω in C0 as ε → 0, then

lim inf
n→∞

ε→0+

Jε(ωn) ≥ J (ω).

Hence by Varadhan’s theorem (Varadhan [21], Theorem 2.3)

lim sup
ε→0+

ε log E Qε

[
exp

(
−

1
ε

Jε(ω)

)]
≤ − inf

ω∈C0

[
J (ω) +

1
2

∫ 1

0
[ω̇(u)]2du

]

= − inf
ω∈K0

[
J (ω) +

1
2

∫ 1

0
[ω̇(u)]2du

]
.

Using this in (5.2) gives (5.1).
Next we show the lower bound from (4.1) matches the upper bound from (5.1):

inf
ω∈K0
ω≥0

F(ω) = inf
ω∈K0

[
J (ω) +

1
2

∫ 1

0
[ω̇(u)]2du

]
. (5.3)

If ω ≥ 0 then by (4.2),

F(ω) = J (ω) +
1
2

∫ 1

0
[ω̇(u)]2du.

Hence it is clear that

inf
ω∈K0
ω≥0

F(ω) ≥ inf
ω∈K0

[
J (ω) +

1
2

∫ 1

0
[ω̇(u)]2du

]
.

For the opposite inequality, consider any ω ∈ K0. Then we can write {u : ω(u) > 0} =⋃
n(an, bn) as a disjoint union of a countable collection of open intervals. Notice on (an, bn),

ω = ω+, where ω+
= max(0, ω). Then since

⋃
n{an, bn} is countable, ω+ is absolutely

continuous on [0, 1] and is 0 almost everywhere on {u : ω(u) ≤ 0}. Thus

J (ω) +
1
2

∫ 1

0
[ω̇(u)]2du ≥

∫ 1

0
V2(ω

+
u )du + V3(ω

+

1 ) +

∫ 1

0
[(ω+

u )′]2du

= F(ω+)

≥ inf
ω̃≥0

ω̃∈K0

F(ω̃).

Taking the infimum over ω ∈ K0 yields the desired inequality and the proof of (5.3) is complete.
To finish the proof of Theorem 3.1, just note an argument like that for (5.3) shows

inf
ω∈K0
ω≥0

F(ω) = inf
ω∈K0

F(ω).

6. Solution of the variational problem

The main result of this section is the explicit solution of the variational problem arising in
Theorem 3.1. Combined with Theorem 3.1, it will complete the proof of Theorem 1.2.
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Theorem 6.1. We have:

inf
ω∈K0

F(ω) =
1
2

p−
2p

1+p β
2

1+p

[
B
(

1
2
,

1 − p
2p

)
+ B

(
3
2
,

1 − p
2p

)]/
B
(

1
2
,

1 + p
2p

) 1−p
1+p

.

We break up the proof into several steps, eventually reducing the problem to elementary calculus.
For θ ≥ 0, define:

Fθ (ω) = c1

∫ 1

0
[ω2(u) + θ ]

−p du + c2|ω(1)|1−p
+

1
2

∫ 1

0
[ω̇(u)]2du

if the last integral exists and take it to be ∞ otherwise. We will often write

‖ω̇‖2 =

√∫ 1

0
[ω̇(u)]2 du .

The following lemma is on page 75 in Riesz and Sz.-Nagy [18].

Lemma 6.2. A function ω : [0, 1] → R is the integral of a function F in L2 iff

sup
m∑

k=1

[ω(tk) − ω(tk−1)]
2

tk − tk−1
< ∞,

where the supremum is taken over all partitions 0 = t0 < t1 < · · · < tm = 1 of [0, 1]. Moreover,
the supremum is exactly ‖F‖

2
2. �

Lemma 6.3. For θ ≥ 0, infω∈K0 Fθ (ω) is attained.

Proof. Choose ωn ∈ K0 such that Fθ (ωn) → infω∈K0 Fθ (ω). Then an = Fθ (ωn) is a bounded
sequence and so by nonnegativity of all the terms in Fθ , ‖ω̇n‖2 is a bounded sequence. By passing
to a subsequence if necessary, we can assume for some γ ,

‖ω̇n‖2 ≤ 2γ for all n and ‖ω̇n‖2 → γ as n → ∞.

The set {ω ∈ K0 : ‖ω̇‖2 ≤ 2γ } is a compact subset of C0 (Strassen [20], Section 1). Then by
passing to a subsequence, it is no loss to assume for some x ∈ K0 with ‖ẋ‖2 ≤ 2γ , we have
ωn → x in C0. In fact,

‖ẋ‖2 ≤ γ,

as we now show. If 0 = t0 < t1 < · · · < tm = 0 is any partition of [0, 1], then by Lemma 6.2

m∑
k=1

[ωn(tk) − ωn(tk−1)]
2

tk − tk−1
≤ ‖ω̇n‖

2
2.

Let n → ∞ to get

m∑
k=1

[x(tk) − x(tk−1)]
2

tk − tk−1
≤ γ 2.

Apply Lemma 6.2 again to see ‖ẋ‖
2
2 ≤ γ 2, as claimed.
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To finish, observe by Fatou’s lemma that:

inf
ω∈K0

Fθ (ω) ≤ Fθ (x) = c1

∫ 1

0
[x2

u + θ ]
−pdu + c2|x1|

1−p
+

1
2

∫ 1

0
[ẋu]

2du

= c1

∫ 1

0
lim

n→∞
[ω2

n(u) + θ ]
−pdu + c2 lim

n→∞
|ωn(1)|1−p

+
1
2

lim
n→∞

∫ 1

0
[ω̇n(u)]2du −

1
2

lim
n→∞

∫ 1

0
[ω̇n(u)]2du +

1
2
‖ẋ‖

2
2

≤ lim
n→∞

Fθ (ωn) −
1
2
γ 2

+
1
2
‖ẋ‖

2
2

≤ lim
n→∞

Fθ (ωn)

= inf
ω∈K0

Fθ (ω).

Thus Fθ (x) = infω∈K0 Fθ (ω). �

Lemma 6.4. There is a sequence (θn, ωn) ∈ (0, ∞)× K0 and x ∈ K0 such that θn → 0, ωn ≥ 0
is a minimizer of Fθn on K0, limn→∞ ‖ω̇n‖2 exists, ωn → x in C0 and x is a minimizer of F on
K0.

Proof. Since infω∈K0 Fθ (ω) is decreasing in θ ,

sup
θ>0

inf
ω∈K0

Fθ (ω) = lim
θ→0+

inf
ω∈K0

Fθ (ω).

Also, for each θ > 0, F(ω) ≥ Fθ (ω) and so:

inf
ω∈K0

F(ω) ≥ sup
θ>0

inf
ω∈K0

Fθ (ω). (6.1)

Next, choose θn → 0 such that

inf
ω∈K0

Fθn (ω) → sup
θ>0

inf
ω∈K0

Fθ (ω) as n → ∞.

By Lemma 6.3 there exist ωn ∈ K0, n = 1, 2, . . ., such that

inf
ω∈K0

Fθn (ω) = Fθn (ωn).

Notice from the form of Fθ , it is no loss to assume ωn ≥ 0. Since infω∈K0 F(ω) < ∞, by (6.1)
Fθn (ωn) is a bounded sequence. Then we can argue exactly as in the proof of Lemma 6.3, passing
to a subsequence if necessary, to get that for some: x ∈ K0,

‖ω̇n‖2 → γ

ωn → x in C0

‖ẋ‖2 ≤ γ.
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Thus all conclusions of the lemma, except the last one, follow. Moreover:

inf
ω∈K0

F(ω) ≤ F(x)

=

[
c1

∫ 1

0
lim

n→∞
[ω2

n(u) + θn]
−pdu + c2 lim

n→∞
|ωn(1)|1−p

+
1
2

lim
n→∞

‖ω̇n‖
2
2

]

−
1
2

lim
n→∞

‖ω̇n‖
2
2 +

1
2
‖ẋ‖

2
2

≤ lim
n→∞

Fθn (ωn)

= lim
n→∞

inf
ω∈K0

Fθn (ω)

= sup
θ>0

inf
ω∈K0

Fθ (ω)

≤ inf
ω∈K0

F(ω)

(by (6.1)). Thus equality holds throughout and x is a minimizer of F on K0. �

Our goal is to derive an explicit expression for the minimizer x from Lemma 6.4. This will
be done by showing x solves a second order differential equation which has an explicit solution.
The idea is that from the calculus of variations, ωn from Lemma 6.4 solves a certain differential
equation. Letting n → ∞ gives the equation for x .

Lemma 6.5. Let θ > 0 and suppose y ≥ 0 is a minimizer of Fθ on K0. Then

2pc1[y2(u) + θ ]
−p−1 y(u) + ÿ(u) = 0 on [0, 1] (6.2)

and for any u0 ∈ [0, 1]

ẏ2(u) = 2c1
(y2(u0) + θ)p

− (y2(u) + θ)p

(y2(u0) + θ)p(y2(u) + θ)p + ẏ2(u0), u ∈ [0, 1]. (6.3)

Proof. Observe that for a = y1

inf
ω∈K0

Fθ (ω) = Fθ (y) = c1

∫ 1

0
[y2

u + θ ]
−pdu + c2a1−p

+
1
2
‖ẏ‖

2
2

≥ inf
ω∈K0

{
c1

∫ 1

0
[ω2

u + θ ]
−pdu +

1
2
‖ω̇‖

2
2 : ω1 = a

}
+ c2a1−p

≥ inf
ω∈K0

{
c1

∫ 1

0
[ω2

u + θ ]
−pdu + c2|ω1|

1−p
+

1
2
‖ω̇‖

2
2 : ω1 = a

}
= inf

ω∈K0
{Fθ (ω) : ω1 = a}

≥ inf
ω∈K0

Fθ (ω).

In particular, equality holds throughout and so for:

Gθ (ω) = c1

∫ 1

0
[ω2

u + θ ]
−pdu +

1
2
‖ω̇‖

2
2,

we see infω∈K0{Gθ : ω1 = a} is taken on at y.



D. DeBlassie, R. Smits / Stochastic Processes and their Applications 117 (2007) 629–654 647

Define ‖ · ‖K0 to be the natural norm on K0:

‖ω‖K0 = sup
[0,1]

|ω| + ‖ω̇‖2.

If K is a functional on K0, write δK for the variation of K :

δK (ω, z) =
∂

∂ε
K (ω + εz)|ε=0.

Then by the Lagrange Multiplier Theorem (Smith [19]), for K (ω) = ω1, there is a real λ such
that

δGθ (y, z) = λδK (y, z) for all z ∈ K0.

That is,

−2pc1

∫ 1

0
[y2

u + θ ]
−p−1 yuzu du +

∫ 1

0
ẏu żu du − λz1 = 0 for all z ∈ K0.

Integration by parts in the first integral yields:∫ 1

0

[
−2pc1

∫ 1

u
[y2

s + θ ]
−p−1 ys ds + ẏu

]
żu du −

∫ 1

0
λżu du = 0 for all z ∈ K0.

In particular:

−2pc1

∫ 1

u
[y2

s + θ ]
−p−1 ys ds + ẏu − λ = 0. (6.4)

Thus we see ẏu is continuous and differentiable on [0, 1] and λ = ẏ1. Differentiation of (6.4)
yields (6.2). Finally, multiplying (6.2) by ẏu and then integrating from u0 to u gives (6.3). �

Lemma 6.6. The minimizer x from Lemma 6.4 satisfies the following properties:

(1) x > 0 on (0, 1);
(2) 2pc1x−2p−1

u + ẍu = 0 on (0, 1);
(3) for any v0 ∈ (0, 1),

ẋ2
u = 2c1

x2p
v0 − x2p

u

x2p
v0 x2p

u
+ ẋ2

v0
, u ∈ (0, 1).

Proof. Let θn and ωn be from Lemma 6.4. By Lemma 6.5, ωn is concave on (0, 1); that is, for
any 0 < λ < 1,

ωn(λu + (1 − λ)v) ≥ λωn(u) + (1 − λ)ωn(v), u, v ∈ (0, 1).

Let n → ∞ to see x is also concave on (0, 1). Hence if xu = 0 for some u ∈ (0, 1), then x ≡ 0
on (0, 1) and so F(x) = ∞, contrary to x minimizing F . Thus x > 0 on (0, 1).

By (1) and Lemma 6.5, for any [a, b] ⊆ (0, 1), ω̈n is Cauchy on C[a, b], the space of
continuous functions on [a, b] equipped with the sup norm. Moreover,

sup
n

sup
[a,b]

|ω̈n| < ∞.
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Thus by the Mean Value Theorem the family {ω̇n : n ≥ 1} is equicontinuous on [a, b]. Once
we show the family is pointwise bounded on [a, b], by Ascoli’s Theorem there is a subsequence
of ω̇n that converges uniformly on [a, b]. By diagonalizing we get a subsequence of ω̇n that
converges uniformly on compact subsets of (0, 1). Thus by passing to a subsequence, it is no
loss to assume ω̇n converges uniformly on compact subsets of (0, 1). The grand conclusion is
that we can replace y and θ in (6.2) and (6.3) by ωn and θn , respectively, and then let n → ∞ to
get (2) and (3).

All that remains is to verify pointwise boundedness of {ω̇n} on [a, b]. We will show for every
u ∈ [a, b],

sup
n

ω̇2
n(u) < ∞. (6.5)

By (6.3), with y = ωn and θ = θn ,

ω̇2
n(u) = 2c1

(ω2
n(b) + θn)p

− (ω2
n(u) + θn)p

(ω2
n(b) + θn)p(ω2

n(u) + θn)p + ω̇2
n(b), u ∈ [a, b]. (6.6)

Since ωn → x in C0 and since x > 0 on (0, 1), once we show

sup
n

ω̇2
n(b) < ∞, (6.7)

(6.5) will follow.
To prove (6.7), assume it is false. By passing to a subsequence, it is no loss to assume:

ω̇2
n(b) → ∞. Then by (6.6), ω̇2

n(u) → ∞ for all u ∈ [a, b]. By Fatou’s lemma this yields:

∞ =

∫ 1

0
lim inf
n→∞

ω̇2
n(u)du

≤ lim inf
n→∞

∫ 1

0
ω̇2

n(u)du

= lim
n→∞

‖ω̇n‖
2
2

< ∞,

by Lemma 6.4; contradiction. Thus (6.7) must hold. �

We need one more property of the minimizer x from Lemma 6.4. By Lemma 6.6, x is strictly
concave on (0, 1), hence one of the following must hold:

(C) for some unique u0 ∈ (0, 1], ẋ(u0) = 0 and x(u0) = sup x
OR

(D) x is strictly increasing on [0, 1] and ẋ(1) > 0.

Lemma 6.7. The case (D) is impossible and thus (C) holds for x.

Proof. Suppose (D) holds. Let v < 1 be very close to 1 and define

g(u) =

{
x(u), 0 ≤ u ≤ v

x(v) + ẋ(1)(u − v), v < u ≤ 1.
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Then g ∈ K0 and since ẋ > 0 is decreasing on (0, 1) (by Lemma 6.6(2)), |ġ| ≤ |ẋ |. Hence

F(g) − F(x) ≤ c1

[∫ 1

v

[xv + ẋ1(u − v)]−2pdu −

∫ 1

v

x−2p
u du

]
+ c2[(xv + ẋ1(1 − v))1−p

− x1−p
1 ]

= A + B, say.

It is easy to show

lim
v→1−

A
(1 − v)2 = 0

lim
v→1−

B
(1 − v)2 =

1 − p
2

x1−p
1 ẍ1.

Since x is strictly increasing, x1 6= 0, and by Lemma 6.6, ẍ1 < 0. Thus by making v < 1
sufficiently close to 1, F(g) − F(x) < 0, contrary to x being a minimizer. �

Now we are in a position to show minimizing F on K0 is the same as minimizing over a
certain smaller set S, which we now define.

Consider any b > 0 such that:

1
2

≤
1

√
2c1

bp
∫ b

0
z p(b2p

− z2p)−1/2 dz ≤ 1. (6.8)

Then:

1
√

2c1
bp
∫ b

0
z p(b2p

− z2p)−1/2dz +
1

√
2c1

bp
∫ b

0
z p(b2p

− z2p)dz ≥ 1

≥
1

√
2c1

bp
∫ b

0
z p(b2p

− z2p)dz,

and this implies there exists a unique a = a(b) ∈ [0, b] such that

1
√

2c1
bp
∫ b

0
z p(b2p

− z2p)−1/2dz +
1

√
2c1

bp
∫ b

a
z p(b2p

− z2p)dz = 1. (6.9)

Define:

f (u) =
1

√
2c1

bp
∫ u

0
z p(b2p

− z2p)−1/2dz, 0 ≤ u ≤ b

g(u) = f (b) +
1

√
2c1

bp
∫ b

u
z p(b2p

− z2p)−1/2dz, a ≤ u ≤ b.

(6.10)

Then f is strictly increasing, g is strictly decreasing and

0 < f (b) ≤ g(a) = 1,

by (6.9). Denote their respective inverses by:

f −1
: [0, f (b)] → [0, b]

g−1
: [ f (b), 1] → [a, b],
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and then define:

ωt =

{
f −1(t), 0 ≤ t ≤ f (b),

g−1(t), f (b) < t ≤ 1.

Let S be the set of all such ω. It is easy to check that ω is continuous, ω(0) = 0, ω(1) = a,
ω > 0 on (0, 1) and

∫ 1
0 ω̇2

u du < ∞. In particular:

S ⊆ K0. (6.11)

Lemma 6.8. We have

inf
ω∈K0

F(ω) = inf
ω∈S

F(ω).

Proof. With x from Lemma 6.4, it suffices to show x ∈ S. Let u0 be from case (C) just before
Lemma 6.7 and set a = x(1), b = x(u0). Then by Lemma 6.6(3),

ẋ2
u = 2c1

b2p
− x2p

u

b2px2p
u

, 0 < u < 1.

Since ẋu > 0 on (0, u0) and ẋu < 0 on (u0, 1),

ẋu =



√
2c1

√√√√b2p − x2p
u

b2px2p
u

, u ∈ (0, u0),

−

√
2c1

√√√√b2p − x2p
u

b2px2p
u

, u ∈ (u0, 1).

Separation of variables leads to the solution:

xt =

{
f −1(t), 0 ≤ t ≤ f (b),

g−1(t), f (b) < t ≤ 1

where f and g are from (6.10) with our choice of a = x(1) and b = x(u0). Thus x ∈ S, as
desired. �

For elements ω ∈ S, F(ω) takes on a very explicit form. Let

By(p, q) =

∫ y

0
t p−1(1 − t)q−1dt, 0 ≤ y ≤ 1

be the incomplete Beta function. Notice

B1(p, q) = B(p, q),

the Beta function.

Lemma 6.9. For ω ∈ S with y = 1 −
( a

b

)2p,

F(ω) =
β

4p
b1−p

[
B
(

1
2
,

1 − p
2p

)
+ By

(
1
2
,

1 − p
2p

)
+

4p
1 − p

(1 − y)
1−p
2p

+ B
(

3
2
,

1 − p
2p

)
+ By

(
3
2
,

1 − p
2p

)]
.
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Proof. Recall for ω ≥ 0 that

F(ω) = c1

∫ 1

0
ω

−2p
u du + c2ω

1−p
1 +

1
2

∫ 1

0
ω̇2

u du (6.12)

where

c1 =
β2

2
, c2 =

β

1 − p
. (6.13)

Let ω ∈ S and take y = 1 −
( a

b

)2p. Now for u0 = f (b), using the change of variables u = f (v)

for u ∈ (0, u0) and u = g(v) for u ∈ (u0, 1), we have∫ 1

0
ω

−2p
u du =

∫ u0

0
ω

−2p
u du +

∫ 1

u0

ω
−2p
u du

=
bp

√
2c1

[∫ b

0
v−p

[b2p
− v2p

]
−1/2dv +

∫ b

a
v−p

[b2p
− v2p

]
−1/2dv

]
.

Changing variables w =
(

v
b

)2p then gives∫ 1

0
ω

−2p
u du =

b1−p

2p
√

2c1

[
B
(

1
2
,

1 − p
2p

)
+ By

(
1
2
,

1 − p
2p

)]
.

A similar argument shows∫ 1

0
ω̇2

u du =

√
2c1

b1−p

2p

[
B
(

3
2
,

1 − p
2p

)
+ By

(
3
2
,

1 − p
2p

)]
.

To finish, substitute these into (6.12), use (6.13) and the fact that

c2ω
1−p
1 =

β

1 − p
a1−p

=
β

1 − p
b1−p

(a
b

)1−p

=
β

1 − p
b1−p(1 − y)

1−p
2p . �

Because of Lemma 6.9, computing infω∈S F(ω) reduces to ordinary calculus.

Theorem 6.10. We have

inf
ω∈S

F(ω) =
1
2

p−
2p

1+p β
2

1+p

[
B
(

1
2
,

1 − p
2p

)
+ B

(
3
2
,

1 − p
2p

)]/
B
(

1
2
,

1 + p
2p

) 1−p
1+p

.

Proof. Let ω ∈ S and by Lemma 6.9 write

F(ω) = g(b)

where

g(b) =
β

4p
b1−p

[
B
(

1
2
,

1 − p
2p

)
+ By

(
1
2
,

1 − p
2p

)
+

4p
1 − p

(1 − y)
1−p
2p

+ B
(

3
2
,

1 − p
2p

)
+ By

(
3
2
,

1 − p
2p

)]
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with y = 1 −
( a

b

)2p. Let I = [b1, b2] be the set of all b satisfying (6.8). Hence by Lemma 6.9,

inf
ω∈S

F(ω) = inf
b∈I

g(b).

Below we will show g is increasing on I . Taking this for granted, we get

inf
ω∈S

F(ω) = g(b1).

Making the change of variables w =
( z

b

)2p in (6.8) converts it to

1
2

≤
b1+p

2p
√

2c1
B
(

1
2
,

1 + p
2p

)
≤ 1

and so we see b1 is given by

1
2

=
b1+p

1

2p
√

2c1
B
(

1
2
,

1 + p
2p

)
. (6.14)

Similarly, (6.9) gets converted to

b1+p

2p
√

2c1

[
B
(

1
2
,

1 + p
2p

)
+ By

(
1
2
,

1 + p
2p

)]
= 1, y = 1 −

(a
b

)2p
. (6.15)

Plug b = b1 into (6.15) and use (6.14) to see

By

(
1
2
,

1 + p
2p

)
= B

(
1
2
,

1 + p
2p

)
,

which forces y = 1. Thus

g(b1) =
β

4p
b1−p

1

[
2B

(
1
2
,

1 − p
2p

)
+ 2B

(
3
2
,

1 − p
2p

)]
and by (6.14) we get

g(b1) =
1
2

p−
2p

1+p β
2

1+p

[
B
(

1
2
,

1 − p
2p

)
+ B

(
3
2
,

1 − p
2p

)]/
B
(

1
2
,

1 + p
2p

) 1−p
1+p

,

as desired.
It remains to show g is increasing on I . By (6.15),

dy
db

= −2p
√

2c1 (1 + p)b−2−p y1/2(1 − y)
−

1−p
2p .

Then using (6.15)

g′(b) =
β

2

√
2c1

[
B
(

1
2
,

1 + p
2p

)
+ By

(
1
2
,

1 + p
2p

)]−1

b−1−2pg1(y) (6.16)

where

g1(y) = (1 − p)

[
B
(

1
2
,

1 − p
2p

)
+ By

(
1
2
,

1 − p
2p

)
+

4p
1 − p

(1 − y)
1−p
2p

+ B
(

3
2
,

1 − p
2p

)
+ By

(
3
2
,

1 − p
2p

)]
− (1 + p)(1 − y1/2)/(1 + y1/2)

[
B
(

1
2
,

1 + p
2p

)
+ By

(
1
2
,

1 + p
2p

)]
.
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Since y ∈ [0, 1], to show g is increasing on I , it suffices to show g1 ≥ 0 on [0, 1]. Now

g′

1(y) = y−1/2(1 + y1/2)−2g2(y)

where

g2(y) = (1 − y)
1−p
2p +1

(1 − p) + (1 + p)

×

[
−(1 − y)

1+p
2p + B

(
1
2
,

1 + p
2p

)
+ By

(
1
2
,

1 + p
2p

)]
.

Furthermore,

g′

2(y) = (1 + p)(1 + y−1/2)(1 − y)
1−p
2p > 0,

and so g2 is increasing on [0, 1]. Thus its minimum value is

g2(0) = −2p + (1 + p)B
(

1
2
,

1 + p
2p

)
. (6.17)

If this is nonnegative, then we will have that g′

1 ≥ 0, and g1 is increasing on [0, 1]. This yields

g1(y) ≥ g1(0) = (1 − p)

[
B
(

1
2
,

1 − p
2p

)
+

4p
1 − p

+ B
(

3
2
,

1 − p
2p

)]
− (1 + p)B

(
1
2
,

1 + p
2p

)
= 4p > 0,

using the identities

B(a, b) =
Γ (a)Γ (b)

Γ (a + b)
,

xΓ (x) = Γ (x + 1).

Hence by (6.16), g′(b) ≥ 0, and g is increasing.
To see that g2(0) in (6.17) is nonnegative, write

g2(0) = 2p
[
−1 +

1 + p
2p

B
(

1
2
,

1 + p
2p

)]
and use the identities above together with the fact that Γ ( 1

2 ) =
√

π . �
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