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ABSTRACT 

The functibn which maps a square matrix A to its cofactor matrix coNA) is 
examined. A characterization is given for the image of the function. Its injective 
properties on the general linear group of nonsingular matrices are also addressed. 

1. INTRODUCTION AND PRELIMINARIES 

Let A = ( aij) be any n X n matrix over a field. The (i, j) minor of A, 

denoted Mij, is defined to be the determinant of the submatrix that remains 
after the ith row and jth column are deleted from A. The number 
(- l)‘+jMij = Cij is called the (i, j) cofactor of A. By the cofactor matrix of A 
we mean the n X n matrix cof(A), the (i,j) entry of which is Cij. 

The transpose of this matrix, [cof(A)lT, is the classical adjoint of A, 

denoted adj(A). The importance of the adjoint (and hence the cofactor) to 
matrix invertibility is well known. From elementary linear algebra, 

[adj(A)]A = A[adj(A)] = [det(A)]Z,. (1.1) 

Here det(A) denotes the determinant of A, and I,, represents the n X n 

identity matrix. It follows that if A is invertible, 

1 

A-‘= det(A) 
-adj(A). (1.2) 
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Although most linear algebra texts ask their readers to find cof(A) and 
adj(A) upon being given A, seldom is it asked whether, given A, there is a 
matrix B such that cof(B) = A. It is the purpose of this paper to settle the 
question of exactly which matrices are cofactor matrices (and hence adjoint 
matrices). We choose to address cofactor matrices in order to avoid repeat- 
edly taking transposes. Moreover, we will see that the cofactor operator 
yields a homomorphism of semigroups; the adjoint is an antihomomorphism. 

More specifically, let F be an abstract field, M,(F) the collection of 
n X n matrices over F, and cof : M,(F) + M,(F) the function which maps A 
to cof(A). We investigate the elements of the image of cog, and also address 
the question of whether cof is injective. In what follows, let R and C be the 
fields of real and complex numbers respectively. 

We will see that results differ according to three criteria: the action of cof 
on the nonsingular matrices, the action of cof on the singular matrices, and 
the dimension n. Many of our results will be valid in the context of the real 
field R; we will note the modifications for C and F in explanatory remarks. 

First we note the equality 

cof( AR) = cof( A) cof( B) . (1.3) 

See [l], [2], or the comments in [3, p. 201. That is, cof is a semigroup 
homomorphism. Hence, the image of cof is closed under multiplication. 

2. THE OPERATOR cof ON THE GROUP GL,(F) 
OF NONSINGULAR n X n MATRICES 

In this section we examine the cofactor matrices of invertible matrices. 
The building blocks of invertible matrices are the elementary matrices; every 
nonsingular matrix is the product of such matrices. 

We wish to study the precise action of cof on the elementary matrices; 
for example, which elementary matrices are cofactor matrices? Theorems 1 

and 2 will give us a scheme to find a solution to the equation cof(X) = A for 
a given invertible A. The results developed below will be used in the next 
section on singular matrices. 

We adopt the following notation. Let Jij be the type 1 elementary matrix 
resulting from I, by switching rows i and j. By U,(r), r # 0, we mean the 
elementary type 2 matrix formed by multiplying row i of I, by r. Finally, if 
r # 0, the transvection matrix Xij(r) is the elementary type 3 matrix ob- 
tained by replacing row i of I, with (row i)+ r *(row j). It is well known 



COFACTOR MATRICES 47 

that det(Jjj> = - 1, det(q(r)> = r, and det(Xjj(r)) = 1. A similar notation 
may be used for the corresponding column-elementary matrices. 

The following theorem describes the action of cof on elementary matri- 
ces; the proof is straightforward and is omitted. Observe that Jij is a 
symmetric matrix for any i and j. 

THEOREM 1. 

(i) cof(jij) = - _lij; 
(ii> cof(Ui(r>) = ilk + J,(r); 
(iii) cof(X,j(r)) = Xji<- r). 

Similar results hold for column-elementary matrices. 
We now answer the question of which nonsingular matrices are cofactor 

matrices. Observe from Theorem l(iii) that each elementary type 3 is a 
cofactor matrix. 

To classify the invertible cofactor matrices is easy when we observe the 
following: if adj(X) = A, then AX = XA = [det(X>]Z,; hence [det(X)]“-’ = 
det(A). Thus it is necessary that the equation y”-’ = det(A) have a solution 
in F. Conversely, if such y exists, set X = yAPi. 

Hence, for the real field R, we have 

THEOREM 2. Zf n is even, every nonsingular n x n matrix A is a cofactor 
matrix. Zf n is odd, the nonsingular cofactor matrices are precisely those with 
positive determinant. In fact, A = coflr *(A-‘>T], where r is an (n - 1)st root 
of deNA). 

COROLLARY 1. Zf n is even, then U,(r), r # 0, is a cofactor matrix fw 
every pair (i,r). Zf n is odd, U,(r) is a cofactor matrix if and only if r is 
positive. 

COROLLARY~. The type 1 matrix Jij is a cofactor matrix if and only if n is 
even. 

REMARK 1. For an abstract field F, Theorem 2 must be modified to the 
following: A E M,(F) is a cofactor matrix if and only if det(A) is an (n - l)st 
power in F. For example, U,( - $) is a 4 X 4 rational cofactor matrix, but U,(i) 
is not. Of course, every nonsingular complex matrix is a cofactor matrix over 
c. 

The function cof is an injective mapping of GL,( R) into itself if n is even. 
Hence, from Theorem 2 and (1.3) we have 
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COROLLARY 3. Zf n is even, the mapping A + cof(A) is a group isomor- 

phism of GL,(R) with GL,(R). 

Letting GLL(R) denote the subgroup of GL,(R) consisting of matrices 
with positive determinant, we obtain 

COROLLARY 4. Zf n > 2 is odd, the mapping A -+ cof(A) is a group 

homomorphism of GL,( R) onto GLZ (R). The kernel of the homomorphism is 

If I,). 

REMARK 2. We may obtain similar results for an abstract field F by 
introducing the sets V = {A E GL,( F) : det( A) = y”- ’ for some y E F) and 
K = {(n - 1)st roots of unity in F}. Then we have 

THEOREM 3. The mapping A + cof(A) is a group homomorphism of 

GL,( F) onto V; the kernel of the homomorphism is K. I,. 

For example, if F = Z,, the finite field of integers modulo a prime p, and 
n = p, then V is equal to the special linear group SL,(Z,) = (A E 
GL,(Z,): det(A) = l}, and K = Z, \ 0. 

3. THE OPERATOR cof ON THE COLLECTION OF SINGULAR n X n 

MATRICES 

We first observe that the mapping A -+ cof(A) is no longer injective on 
the singular matrices. For example, 

To examine the multiplicative subsemigroup of the singular n X n matri- 
ces defined by the image of cof, we look for “primitive” elements, much as 
the identity I, is a primitive element for the nonsingular matrices. These can 
be found in the matrix units Eij. The n X n matrix Eij has 1 in the (i,j> 

position and 0 elsewhere. Hence, if ek denotes the n X 1 column matrix with 
1 in the kth position and 0 elsewhere, it is true that Eij = eieT. 

THEOREM 4. For every i and j, and for every scalar a, (Y Eij is a 

cofactor matrix * 
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Proof. Any matrix B whose (i, j) cofactor is (Y, and whose ith row and 
jth column are zero, satisfies cof( B) = (Y Eij. n 

For example, let u be the one-to-one mapping of S = (1,. . . , i - 1, 
i+l,..., n} onto {I,..., j-l,j+l,..., n) which preserves increasing order. 
Choose some fixed m E S. Define the n x n matrix Tij to be 

so that the ith row and jth column of Tij are zero, and the submatrix formed 
by deleting row i and column j is the (n - 1) X (n - 1) matrix 
diag(1,. . . , a,. . . , 1) if i + j is even, or diag(1,. . ., - a,. . . ,I> if i + j is odd. 
Then cof(Tij) = CYE~~. For an easier formulation when i # j, let B = I, - 

aEji - Eii - Ejj; again, cof(B) = aEij. 

In fact, we have the following proposition. 

PROPOSITION 1. Zf (Y # 0, then cof(B) = CYE~~ if and only $ the (i, j> 
cofactor of B is (Y, row i of B is zero, and column j of B is zero. 

Proof. Sufficiency is straightforward. To prove necessity, suppose 
cof(B) = cuEij. Obviously the (i, j) cofactor of B must be (Y. Furthermore, 

Brcof(B)= 0 implies that e,eTB = 0. Hence e:B = 0 and Bej = 0. The 
proposition follows. W 

In reference to Proposition 1, the (n - l)X(n - 1) submatrix Bij of B 

formed by deleting the ith row and jth column must satisfy 

Since the determinant function is a group homomorphism of GL,_ ,(F) onto 
F \ 0 with the special linear group SL,_,(F) as kernel, it is true that Bij has 
the form ST, where S E SL,_,(F) and det(T) = f (Y. Letting 

diag(a,l,l,...,l) if i+ j iseven, 

diag(-rw,l,l,..., 1) if i+ j isodd, 
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we have 

COROLLARY 5. If (Y it 0, then cof(B)= crEij zf and only if Bij E 

SL,_,(F)*T, row i of B is zero (eTB= O), and column j of B is zero 
( Bej = 0). 

REMARK 3. For the real field, we may extend Theorem 4 by considering 
polynomials f(x) = a, + a,x + u2x2 + . . . + u,x”‘, with r replaced by some 
n X n matrix unit E,,, n 2 3. If a, = 0, then f(Eij) = PEij for some scalar p, 
and hence f(Eij) is a cofactor matrix. 

Now suppose a, # 0. If i # j, then f(Eij) = aOZn + a,Eii is invertible. 
Therefore, by Theorem 2, f(Eij) is always a cofactor matrix when n is even; 
if n is odd, f( Eij) is a cofactor matrix if and only if a, is positive. If i = j, 
then f(Eii) = f(E,,) = aoZfl + cxEji, where cr = a, + us + * . . + a,. It is well 
know that if the rank of an n X n matrix Y is n - 1 or < n - 1, then 

rank(cof(Y)) = 1 or 0 respectively. So if a, + cx = 0, then f( E,,) is a singular 
matrix of rank > 1, and hence not a cofactor matrix. Otherwise, a, + a # 0 
and f(E,,) is invertible. If n is even, this is a cofactor matrix; if n is odd, 
f(E,,) is a cofactor matrix if and only if a, + cr is positive. 

For the complex field, f ( Eij) is not a cofactor matrix if and only if a, # 0, 
i=j, and a,+~,+ ... +a,=o. 

The main result of this section is 

THEOREM 5. A singular n X n matrix A is a cofactor matrix $and only if 

rank(A) < 1. 

Proof. Necessity follows from Remark 3. To prove sufficiency, suppose 
A has rank 1. Type 3 row operations alone will reduce A to the form 

Hence type 3 column operations on B (or type 3 row operations on the 
transpose of B) then yield the form aEij for some i and j. Since type 3 
elementary matrices are cofactor matrices (and cofactor matrices are closed 
under transpose and composition), the result follows from Theorem 4. W 
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Theorems l-5 combined afford us a scheme to find a solution to 

cof(X) = A, given a rank 1 matrix A. For example, 

i 2 0 0 3 0 0 0 0 1 I 
is not a cofactor matrix, but 

is a real cofactor matrix, since 

( 0 0 0 2 3 0 0 0 0 I =X,,($(2E,a). 

4. SUMMARY AND FURTHER REMARKS 

As a summary of our findings, let G denote GL,,(R) for n even, and 
GLi(R) for n odd; let H denote the collection of n X n matrices A with 

rank(A) < 1. Then cof: M,(R) --) G U H is a surjective mapping, injective on 
GL,(R), when n is even. In fact, it is an epimorphism of semigroups. 

For the complex number field C, G may be replaced with GL,(C) (for n 
either even or odd), since C is algebraically closed. For an abstract field F, 

the notation would be modified as in Theorem 3. 

REMARK 4. Let A be an n X n matrix. 
If A is nonsingular, the solutions X to cof(X) = A depend on A-’ and 

det(A). Theorems 1 and 2 furnish a scheme for finding X when possible. 
If A = 0, we know cof- ‘(A) is the collection of singular matrices of rank 

<n-l. 
If rank(A) = 1, Theorems 1-5 along with Proposition 1 enable us to find 

all solutions to cof(X) = A. From the proof of Theorem 5, A can be factored 
as P(aEij)Q, where P is a product of type 3 row-elementary matrices, and 
Q is a product of type 3 column-elementary matrices. Observe that there 
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may be several possibilities for P, cuEij, and Q. In any case, X is an element 
of cof-‘(P)cof-l(cxEij)cof-l(Q) f or some decomposition P((uE,,.)Q of A. 

The author would like to thank the referee and the associate editor fm 

enlightenment, insight, and thoughtful suggestion. With reference to Section 3, 

the referee noted the interesting fact that adj(Z - cbT/ y) = cbT/ y if y = bTc 
# 0. This gives rise to the problem of expressing the solutions X to adj&J = cbT 

in terms of b and c. 
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