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Abstract

Recently, several authors have considered the problem of extending a partial coloring of a
graph to a complete coloring. We show how similar results can be extracted from old proofs on
recursive colorings of highly recursive graphs. (© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

In the late 1970s several logicians, including Manaster and Rosenstein [15], Bean
[3], Schmerl [16,17], and the author [6,7] considered the computational complexity of
coloring infinite graphs. They studied recursive and highly recursive graphs and tried
to determine the least £ such that such graphs had a k-coloring that could be calculated
by a deterministic algorithm. A graph is recursive if there is a deterministic algorithm
for deciding whether or not a given input is a vertex and whether or not two vertices
are adjacent. A recursive graph is highly recursive if in addition every vertex has
finite degree and there is a deterministic algorithm for calculating the degree of any
vertex. This extra condition is very powerful because it allows one to calculate the
neighborhood of any vertex in an infinite graph. It turned out that results concerning
recursive graphs had natural analogs in finite graph theory that could be expressed
in terms of on-line algorithms. This led to a long series of results (some of only
finitary interest) including [4,5,8-12,14]. On the other hand, there seemed to be no
natural analogs in finite graph theory to the results concerning highly recursive graphs.
But recently several graph theorists including Tuza [19], Albertson [1], Albertson and
Moore [2], and Kostochka [13] have been studying the problem of extending a partial
coloring of a graph to a total coloring. The purpose of this note is to show how old
techniques for coloring highly recursive graphs can be used to prove theorems similar
to the results in [1,2,13].

E-mail address: kierstead@asu.edu (H.A. Kierstead).

0012-365X/00/$ - see front matter (©) 2000 Elsevier Science B.V. All rights reserved.
PII: S0012-365X(99)00372-6



146 H.A. Kierstead| Discrete Mathematics 219 (2000) 145-152

Albertson answered a question of Thomassen [18] about planar graphs by proving
the following theorem for all graphs.

Theorem 1 (Albertson [1]). Suppose that y(G)=r and W C V(G) such that the dis-
tance between any two distinct members of W is at least 4. Then any (r+1)-coloring
of W can be extended to an (r + 1)-coloring of G.

This raises the following extremal problem. Let »>2 and define ext(r,d) to be the
least k£ such that if y(G)<r and W C V(G) with dist(x, y)>d for any two distinct
vertices in W, then any k-coloring of W can be extended to a k-coloring of G. It is
trivial to check that ext(r,2) = oo and ext(r,d) > r for all d and r. By the theorem
ext(r,4)=r+1. Albertson and Moore [2] showed that ext(r,3)=[(3r+1)/2]. They then
considered the problem when W =W, UW,U---UW,, is the union of k-cliques W; such
that dist(x, y)>d whenever i # j with x € W; and y € W;. We write ext(r, k,d) for the
corresponding extremal function. (So ext(r,d)=ext(r, 1,d).) Albertson [1] showed that
ext(r, k,6k —2)<r + 1. Kostochka [13] improved this to ext(r, k,4k)<r + 1. Finally,
Albertson and Moore [2] proved ext(r,k,2k +2|r/2])<r + L.

We shall consider a slightly different problem. For a graph G = (V,E) let

N[W]1={v € V: v is adjacent to some vertex in W} U W7,
N(W)=N[W]\W,
NO[wl1=w =N"(w),
N = NIN*[W]]
and
N (W) =N W\N ],

Let Pre(r,d,t), resp. PPre(r,d,t), be the least £ such that if G = (V,E) is an
r-colorable graph, resp. perfect graph, W=W,UW,U- - -UW,, C V where dist(W;, W;)>d
whenever i # j, and f is a k-coloring of W such that f|W; can be extended to an
r-coloring of N'[W;] for all i, then f can be extended to a k-coloring of G. Note
that we have placed the additional condition on the coloring f that it can be partially
extended.

However when the W; are all cliques this condition is automatically implied by the
r-colorability of G. In the next section we will warm-up by showing that Pre(r,3,0)=
r? +r, Pre(r,d,0)=2r for all d >4, Pre(r,3,1)=r2, and Pre(r,d,1)<2r for all d>4.
In Section 3 we will extract a proof from Schmerl’s paper [16] on coloring highly
recursive graphs to show that Pre(r,d,1)=2r —1 for all d >6 and Pre(r,d,2)=2r —1
for all d=5. When G is a perfect graph we can do even better. We shall extract a
proof from the author’s paper [6] to show that PPre(r,4r,2r — 1) =r + 1.

We end this section with some notation. For positive integers n and k let [n] denote
the set {1,2,...,n} and ([Z]) denote the set of k-subsets of [1]. For a function f and
a subset S C domain(f), let f|S denote f restricted to S. Let G = (V,E) be a graph.
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A function f : V' — S is an S-coloring, or simply a coloring, of G if f(x) # f(») for
all adjacent vertices x and y. A coloring is an r-coloring if its range has cardinality
at most ». Thus an [r]-coloring is an r-coloring that uses colors from [r]. We may
indicate that f is a coloring of G by writing f : V' S, 5. The distance dist(x, y) between
two vertices x and y is the number of edges in the shortest path between them. The
distance dist(X,Y) between two subsets of vertices X and Y is the number edges in
the shortest path from a vertex in one to a vertex in the other.

2. Warm-up
Proposition 2. PPre(r,3,0) = Pre(r,3,0) = > + r and PPre(r,3,1) = Pre(r,3,1) = 2.

Proof. We shall show that »>+r <PPre(r,3,0) <Pre(r, 3,0)=r>+r and > <PPre(,3,1)
<Pre(r,3,1) = r?. First, we show that r> + r <PPre(r,3,0). For i € [r] let X' =
{xi: 8 € ([r2+:_1])} and fori € [r], S € (["2+:_1]) let Wi, be pairwise disjoint r-sets
which are also disjoint from the X'. Let G = (V,E) be the graph with

r=U |xuv U w
1

ielr se ( 2 4r—1] )

r

and
P [ +r—1]
E=<xxp:i#j, and S,T € .
i [rz +r—1] i
Uqxgu:i€[r],S € p € W o
Then G is a perfect graph. Let f : |J Wég[r2 + r — 1] be such that

Se( [2r+1] )

7

range(f|Ws)=S.If g: V KA [ +r — 1] were an extension of f then g would need to
use at least » + 1 colors on each X’ and the sets of colors used on X’ and X/ would
need to be disjoint whenever i # j. Clearly, there are not enough colors.

Next, we note in passing that PPre(r,3,0)<Pre(r,3,0) and show that Pre(r,3,0) =
> + r. Suppose that G = (V,E) is an r-colorable graph, W =W, UW,U---UW, CV
where dist(W;, W;)>3 whenever i # j, and f is a [r*+r]-coloring of W such that f|W;
is an r-coloring for all i. We must show that f can be extended to a [r? + r]-coloring
g of G. Fix an [r]-coloring & of G. For each v € N(W) let m(v,j) be the greatest
integer ¢<j such that ¢ & {f(w): w € N(v) N W}. Since dist(W;, W;)>3 whenever
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i # j and f|W; is an r-coloring, j — r <m(v,j). Define g : V — [r* 4+ r] by

S () if vew,
gv) =< h(v)(r+1) if v € N[W],
m(v, h(v)(r + 1)) if ve N(W).

Using the fact that dist(W;, W;)>=3 whenever i # j, it is easy to check that g is an
[? + r]-coloring of G.

The proof that r> <PPre(r,3,1)<Pre(r,3,1) = r? is similar. The only difference is
that now a vertex in N(W;) can only be adjacent to vertices of W; with » — 1 different
colors. [

Proposition 3. PPre(r,d,0) = Pre(r,d,0) = 2r, for all d =4.

Proof. We shall show that 2r <PPre(r,d,0) <Pre(r,d,0)<2r, for all d >4. First we
show that 2r <PPre(r,d,0). Let G=(V,E), Wy=W CV, and f : W — [r] be defined
by

V=[x [+ 1

E={G)r+ 1) ij€rlfU{Gir+1)(j,r+ 1) ij € [r] and i # j},

W =[] x [r],

S =i
So G consists of a clique Q =[r] x {r + 1} and an independent set W of vertices
of degree 1 such that every vertex of Q is adjacent to vertices colored 1,...,r by f.
Clearly, G is an r-colorable perfect graph and any extension of f to a coloring of V'
requires » new colors.

Next, we show that Pre(r,d,0) <2r. Suppose that G=(V,E) is an r-colorable graph,
W=wiUW,U---UW,CV where dist(W;, W;)=4 whenever i # j, and f is a
[2r]-coloring of W such that f|W; is an r-coloring for all i. For v € N(W), let i(v)
be the unique index i such that v is adjacent to a vertex in W;. Let & : VS [7]. Let
R;=range(f|W;) and s; : R;N[r] — [2r]\ (R;U[r]) be one to one. Define g : V' — [27]
by

f() ifveWw,
g(w) = ¢ h(v) if v & N[W] or h(v) & Ri(v),
Siwy 0o A(v)  if v € N(W) and A(v) € Ryw).

Since dist(W;, W;) =4 whenever i # j, g is a well defined coloring. [J

3. Main results

We shall need the following lemma.
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Lemma 4. Let G = (V,E) be a graph, W CV, and R and R be two sets of r
colors. For every partial coloring f : N’[W,—]gR there exists a partial coloring
1 :N’[W,-]gRUR’ such that f'\W = f|W and f' is an R'-coloring of N'[W]\ W.

Proof. Let s be a bijection between R\ R’ and R’ \ R. Define f’ by

N A C)) ifve W;or f(v) R/,
FO=\5o fv)y ifveWiand f(0) ¢R. [
Theorem 5. Pre(r,5,2)<2r — 1.

Proof. Let G = (V,E) be an r-colorable graph and let W CV be such that
W=WwWiUW,U---UW, and dist(W;, W;)=5 whenever i # j. Suppose further that
fi i N2 [W;] S [2r — 1] is an r-coloring for all i € [m]. We must show that there exists
a [2r — 1]-coloring g of G such that g|W; = f;|W; for all i € [m].

By Lemma 4 we may assume that f; is an [r]-coloring of N2[W;]\ W; for all i € [m].
Let 4 : Vg{r,r—&- 1,...,2r — 1}. Define g by

hv) it og (J NI
i€[m]

fi(v) if v € N[W],

h(v) if ve |J N* (W) and h(v) # r,
i€[m]

fi(v) if v € N*(W;) and h(v) =r.

g(v) =

If i # j, then N2 [W;] N N?[W,] =0, since dist(W;, W;) > 4. It follows that g is well
defined. It remains to show that g is a coloring. Consider two adjacent vertices x
and y. Our only concern is that x may be colored by f; and y may be colored by
some other function. This could only happen if x € N(W;) U N?(W;). If x € N(W,)
then y € N2(W;). So if y is not colored by f; then g(y) = h(y) > r= fi(x) = g(x).
Otherwise x € N%(W;). Since g(x) = fi(x), it must be the case that i(x) = r. Thus
h(y) # r. Since y € N[W;] and for all j # i, dist(W;, W;) >4, y & Uje[m]N[Wj]- Thus
gy)=h(y) >r=filx)=gx). [

A very similar argument shows that Pre(r,6,1)<2r — 1. The main difference is that
instead of modifying the range of f; on N2[W;]\ W; we modify the range of /4 on
N\ W

Theorem 6. Pre(r,d,t)>2r — 1.

Proof. For all positive integers »>2 and d, we will show that there exists an r-colorable
graph G = (V,E) with a partial coloring f of a subset W = W, U W, CV such that
dist(W,, W,)>d and f can be extended to a partial r-coloring of N?[¥], but cannot
be extended to an (2r — 1)-coloring of G.
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For i € [2d] let Q' be an r-clique on the vertices X'={x/,x},...,x.}. Let P’=0'x Q'
be the graph defined on X' x X’ by (x/,,x%) is adjacent to (x!,x!) iff m # s and n # t.
Then the diagonal of P is an r-clique and y(P) = r, since assigning color i to every
vertex in the ith row (column) of P produces a coloring. We call such a coloring a
row (column) coloring. Call a coloring f of P row (column) colorful if the vertices of
some row (column) have r different colors. We will need the following easily proved
lemma. [

Lemma 7 (Schmerl [16]). If fis a (2r —2)-coloring of P then f is either row colorful
or column colorful, but not both.

Proof. If f were neither row nor column colorful then f would have to repeat a color
on each row and on each column of P. Since f is a proper coloring of P the same
color cannot be repeated on two different rows or on two different columns or on a row
and a column. Thus f would have to use at least 2r colors, a contradiction. On the
other hand, the ranges of a row of P and a column of P have exactly one color, the
color of their common vertex, in common. If f were both row and column colorful
the union of the ranges of the colorful row and the colorful column would contain
2r — 1 colors, a contradiction. [J

Let G be the graph obtained from P',..., P***2 by adding edges between vertices
of the form (x,x ) and (x!*!,x/*1) iff m # ¢ and n # s. The next lemma has a similar
proof to that of the previous lemma.

Lemma 8 (Schmerl [16]). If fis a (2r — 2)-coloring of G then P' is row colorful iff
P s column colorful.

Now, let W; = P! and W, = P??*? and define a partial r-coloring f : W — [r] so
that " is a row coloring of W) and a row coloring of W,. Then f is column colorful
on W, and on W,, and so by Lemma 8, f cannot be extended to a coloring of G.
However, it is easy to extend f|W; to a coloring of N'[W;] by alternately row and
column coloring the P'.

If G is a perfect graph then fewer extra colors suffice. First, we prove a lemma and
then use it to show that PPre(r,4r,2r — 1) =r + 1.

Lemma 9. Let G = (V,E) be a perfect r-colorable graph and W CV. If
f N2 [W] E>{2,3,...,r—|— 1}, then there exists an [r+ 1]-coloring g of G such that
glw = fIw.

Proof. We shall show by induction on k that for all U C 7/, if f: UNN*=2[w ]S [k]
and y(G[U]) <k, then there exists a (k + 1)-coloring g of U such that

gunw=rlunw
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and
g '(k)c UnN*=2[w].
The base step & =1 is trivial, so suppose the result holds for £ — 1. Let
h:US{0,1,... .k —1},
I={ve UNN*22[W]: f(v)=k},
J={ve U\N*3[W]: h(v)=k -1}
and
U=U\({IUJ).

Clearly f'= f|U' N N*=4[W]is a [k — 1]-coloring. We claim that y(G[U'])<k — 1.
Since G is perfect it suffices to show that w(G[U’]) <k—1. Suppose that K is a k-clique
in U. If K C UNN%*=2[W], then KNI # (), since f is a [k]-coloring of UNN*—2[W].
Otherwise K C U \ N**=3[W] and so K NJ # (), since h is a {0,1,...,k — 1} -coloring
of U. Regardless, K ¢ U’, establishing the claim. By the induction hypothesis there
exists a {0,1,...,k — 1}-coloring ¢’ of G[U’] such that ¢'|{U' N W = f'|{U' N W and
g 'k —1)CU NN*=4[Ww]. Define g : U — {0,1,...,k} by

k ifvel

gw)y=< k-1 ifvel,

gw) ifovel.
Note that if g’(v) =k — 1 then v is not adjacent to any vertex in J. It follows easily
that g is a coloring of U. Also glUNW = flUNW, since UNW =U'"Ul)nw. 0O

Theorem 10. PPre(r,4r,2r — 1)<r + 1.

Proof. Let G = (V,E) be an r-colorable perfect graph and let W C V' be such that
W=wiJUW,U---UW, and d(W;,W;)=4r whenever i # j. Suppose further that

fi: N2’*1[Wi]g[r + 1] is an r-coloring for all i € [m]. We must show that there
exists an [r + 1]-coloring g of G such that g|W; = f;|W; for all i € [m].
By relaxing the assumption that f; is an r-coloring and applying Lemma 4 we may

assume that

range(fi|N* Wi\ W) C[r]
Now apply the Lemma 9 to G' = G[V \ W], W':=N(W), and

= AN\ W

i€[m]

Note that f’ is a coloring, since d(W;, W;)>4r whenever i # j. This yields a coloring
g V\ Wﬂ[r + 1] such that ¢'|N(W) = f'|N(W). Clearly ¢’ can be extended to
g: Vg[r—&- 1] so that g|W; = f;|W; for all i € [m]. OJ
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Theorem 11. r 4+ 1 <PPre(r,4r,2r — 1).

Proof. For all positive integers » we shall construct an r-colorable graph G = (V,E)
with a partial coloring f of a subset W = W; U W, C V' such that dist(W,, W,)>d and
f|W; can be extended to a partial r-coloring of N ~![W;], but f cannot be extended
to a r-coloring of G. Let P=(vy,...,v4-11) be a path. Form G by replacing each vertex
vyi—1, i € [2r + 1], by a (k — 1)-clique Q;. Then G is an r-colorable perfect graph.
Let Wy = Q and W, = Q5,11. Let f : W — [r] such that f|W; is an [r — 1]-coloring
and f|W, is a {2,...,r}-coloring. Clearly f|W; can be extended to an r-colorings of
N?¥=1[W;] for i € [2], but f cannot be extended to an r-coloring of G. [J

Finally, we mention a result of Schmerl [17]. Let N be the set of natural numbers.

Theorem 12. There exists a (computable) function ¢ : N — N such that whenever
3<k, G=(V,E) is a graph such that A(G)<k and G does not contain a (k+1)-clique,
W CV is such that |W|<n, and f: N®®[W1S [k], then f|W can be extended to a
k-coloring of G.
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