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Abstract

Recently, several authors have considered the problem of extending a partial coloring of a
graph to a complete coloring. We show how similar results can be extracted from old proofs on
recursive colorings of highly recursive graphs. c© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

In the late 1970s several logicians, including Manaster and Rosenstein [15], Bean
[3], Schmerl [16,17], and the author [6,7] considered the computational complexity of
coloring in�nite graphs. They studied recursive and highly recursive graphs and tried
to determine the least k such that such graphs had a k-coloring that could be calculated
by a deterministic algorithm. A graph is recursive if there is a deterministic algorithm
for deciding whether or not a given input is a vertex and whether or not two vertices
are adjacent. A recursive graph is highly recursive if in addition every vertex has
�nite degree and there is a deterministic algorithm for calculating the degree of any
vertex. This extra condition is very powerful because it allows one to calculate the
neighborhood of any vertex in an in�nite graph. It turned out that results concerning
recursive graphs had natural analogs in �nite graph theory that could be expressed
in terms of on-line algorithms. This led to a long series of results (some of only
�nitary interest) including [4,5,8–12,14]. On the other hand, there seemed to be no
natural analogs in �nite graph theory to the results concerning highly recursive graphs.
But recently several graph theorists including Tuza [19], Albertson [1], Albertson and
Moore [2], and Kostochka [13] have been studying the problem of extending a partial
coloring of a graph to a total coloring. The purpose of this note is to show how old
techniques for coloring highly recursive graphs can be used to prove theorems similar
to the results in [1,2,13].
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Albertson answered a question of Thomassen [18] about planar graphs by proving
the following theorem for all graphs.

Theorem 1 (Albertson [1]). Suppose that �(G) = r and W ⊂V (G) such that the dis-
tance between any two distinct members of W is at least 4. Then any (r+1)-coloring
of W can be extended to an (r + 1)-coloring of G.

This raises the following extremal problem. Let r¿2 and de�ne ext(r; d) to be the
least k such that if �(G)6r and W ⊂V (G) with dist(x; y)¿d for any two distinct
vertices in W , then any k-coloring of W can be extended to a k-coloring of G. It is
trivial to check that ext(r; 2) =∞ and ext(r; d)¿r for all d and r. By the theorem
ext(r; 4)=r+1. Albertson and Moore [2] showed that ext(r; 3)=d(3r+1)=2e. They then
considered the problem when W =W1∪W2∪· · ·∪Wm is the union of k-cliques Wi such
that dist(x; y)¿d whenever i 6= j with x ∈ Wi and y ∈ Wj. We write ext(r; k; d) for the
corresponding extremal function. (So ext(r; d)=ext(r; 1; d).) Albertson [1] showed that
ext(r; k; 6k − 2)6r + 1. Kostochka [13] improved this to ext(r; k; 4k)6r + 1. Finally,
Albertson and Moore [2] proved ext(r; k; 2k + 2br=2c)6r + 1.
We shall consider a slightly di�erent problem. For a graph G = (V; E) let

N [W ] = {v ∈ V : v is adjacent to some vertex in W} ∪W;
N (W ) = N [W ] \W;
N 0[W ] =W = N 0(W );

N s+1[W ] = N [Ns[W ]]

and

Ns+1(W ) = Ns+1[W ] \Ns[W ]:
Let Pre(r; d; t), resp. PPre(r; d; t), be the least k such that if G = (V; E) is an

r-colorable graph, resp. perfect graph, W=W1∪W2∪· · ·∪Wm⊂V where dist(Wi;Wj)¿d
whenever i 6= j, and f is a k-coloring of W such that f|Wi can be extended to an
r-coloring of Nt[Wi] for all i, then f can be extended to a k-coloring of G. Note
that we have placed the additional condition on the coloring f that it can be partially
extended.
However when the Wi are all cliques this condition is automatically implied by the

r-colorability of G. In the next section we will warm-up by showing that Pre(r; 3; 0)=
r2 + r, Pre(r; d; 0)= 2r for all d¿4, Pre(r; 3; 1)= r2, and Pre(r; d; 1)62r for all d¿4.
In Section 3 we will extract a proof from Schmerl’s paper [16] on coloring highly
recursive graphs to show that Pre(r; d; 1)=2r− 1 for all d¿6 and Pre(r; d; 2)=2r− 1
for all d¿5. When G is a perfect graph we can do even better. We shall extract a
proof from the author’s paper [6] to show that PPre(r; 4r; 2r − 1) = r + 1.
We end this section with some notation. For positive integers n and k let [n] denote

the set {1; 2; : : : ; n} and ( [n]k ) denote the set of k-subsets of [n]. For a function f and
a subset S ⊂ domain(f), let f|S denote f restricted to S. Let G = (V; E) be a graph.
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A function f : V → S is an S-coloring, or simply a coloring, of G if f(x) 6= f(y) for
all adjacent vertices x and y. A coloring is an r-coloring if its range has cardinality
at most r. Thus an [r]-coloring is an r-coloring that uses colors from [r]. We may

indicate that f is a coloring of G by writing f : V G→ S. The distance dist(x; y) between
two vertices x and y is the number of edges in the shortest path between them. The
distance dist(X; Y ) between two subsets of vertices X and Y is the number edges in
the shortest path from a vertex in one to a vertex in the other.

2. Warm-up

Proposition 2. PPre(r; 3; 0) = Pre(r; 3; 0) = r2 + r and PPre(r; 3; 1) = Pre(r; 3; 1) = r2.

Proof. We shall show that r2+r6PPre(r; 3; 0)6Pre(r; 3; 0)=r2+r and r26PPre(r; 3; 1)
6Pre(r; 3; 1) = r2. First, we show that r2 + r6PPre(r; 3; 0). For i ∈ [r] let X i =
{xiS : S ∈ ( [r2+r−1]r )} and for i ∈ [r], S ∈ ( [r2+r−1]r ) let Wi

S , be pairwise disjoint r-sets
which are also disjoint from the X i. Let G = (V; E) be the graph with

V =
⋃
i∈[r]


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i ∪
⋃

S∈
(
[r2+r−1]

r

)W
i
S




and

E =
{
xiSx

j
T : i 6= j; and S; T ∈

(
[r2 + r − 1]

r

)}

∪
{
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}
:

Then G is a perfect graph. Let f :
⋃

S∈
(
[2r+1]

r

)Wi
S
G→ [r2 + r − 1] be such that

range(f|WS)= S. If g : V G→ [r2 + r− 1] were an extension of f then g would need to
use at least r + 1 colors on each X i and the sets of colors used on X i and X j would
need to be disjoint whenever i 6= j. Clearly, there are not enough colors.
Next, we note in passing that PPre(r; 3; 0)6Pre(r; 3; 0) and show that Pre(r; 3; 0) =

r2 + r. Suppose that G = (V; E) is an r-colorable graph, W =W1 ∪W2 ∪ · · · ∪Wm⊂V
where dist(Wi;Wj)¿3 whenever i 6= j, and f is a [r2+r]-coloring of W such that f|Wi
is an r-coloring for all i. We must show that f can be extended to a [r2 + r]-coloring
g of G. Fix an [r]-coloring h of G. For each v ∈ N (W ) let m(v; j) be the greatest
integer c6j such that c 6∈ {f(w): w ∈ N (v) ∩ W}. Since dist(Wi;Wj)¿3 whenever
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i 6= j and f|Wi is an r-coloring, j − r6m(v; j). De�ne g : V → [r2 + r] by

g(v) =



f(v) if v ∈ W;
h(v)(r + 1) if v 6∈ N [W ];
m(v; h(v)(r + 1)) if v ∈ N (W ):

Using the fact that dist(Wi;Wj)¿3 whenever i 6= j, it is easy to check that g is an
[r2 + r]-coloring of G.
The proof that r26PPre(r; 3; 1)6Pre(r; 3; 1) = r2 is similar. The only di�erence is

that now a vertex in N (Wi) can only be adjacent to vertices of Wi with r− 1 di�erent
colors.

Proposition 3. PPre(r; d; 0) = Pre(r; d; 0) = 2r; for all d¿4.

Proof. We shall show that 2r6PPre(r; d; 0)6Pre(r; d; 0)62r, for all d¿4. First we
show that 2r6PPre(r; d; 0). Let G= (V; E), W1 =W ⊂V , and f : W → [r] be de�ned
by

V = [r]× [r + 1];
E = {(i; j)(i; r + 1): i; j ∈ [r]} ∪ {(i; r + 1)(j; r + 1): i; j ∈ [r] and i 6= j};
W = [r]× [r];
f((i; j)) = j:

So G consists of a clique Q = [r] × {r + 1} and an independent set W of vertices
of degree 1 such that every vertex of Q is adjacent to vertices colored 1; : : : ; r by f.
Clearly, G is an r-colorable perfect graph and any extension of f to a coloring of V
requires r new colors.
Next, we show that Pre(r; d; 0)62r. Suppose that G=(V; E) is an r-colorable graph,

W = W1 ∪ W2 ∪ · · · ∪ Wm⊂V where dist(Wi;Wj)¿4 whenever i 6= j, and f is a
[2r]-coloring of W such that f|Wi is an r-coloring for all i. For v ∈ N (W ), let i(v)
be the unique index i such that v is adjacent to a vertex in Wi. Let h : V

G→ [r]. Let
Ri=range(f|Wi) and si : Ri∩ [r]→ [2r]\ (Ri∪ [r]) be one to one. De�ne g : V → [2r]
by

g(v) =



f(v) if v ∈ W;
h(v) if v 6∈ N [W ] or h(v) 6∈ Ri(v);
si(v) ◦ h(v) if v ∈ N (W ) and h(v) ∈ Ri(v):

Since dist(Wi;Wj)¿4 whenever i 6= j, g is a well de�ned coloring.

3. Main results

We shall need the following lemma.
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Lemma 4. Let G = (V; E) be a graph; W ⊂V; and R and R′ be two sets of r
colors. For every partial coloring f : Nt[Wi]

G→R there exists a partial coloring
f′ : Nt[Wi]

G→R ∪ R′ such that f′|W = f|W and f′ is an R′-coloring of Nt[W ] \W .

Proof. Let s be a bijection between R \ R′ and R′ \ R. De�ne f′ by

f′(v) =
{
f(v) if v ∈ Wi or f(v) ∈ R′;
s ◦ f(v) if v 6∈ Wi and f(v) 6∈ R′:

Theorem 5. Pre(r; 5; 2)62r − 1.

Proof. Let G = (V; E) be an r-colorable graph and let W ⊂V be such that
W = W1 ∪ W2 ∪ · · · ∪ Wm and dist(Wi;Wj)¿5 whenever i 6= j. Suppose further that

fi : N 2[Wi]
G→ [2r− 1] is an r-coloring for all i ∈ [m]. We must show that there exists

a [2r − 1]-coloring g of G such that g|Wi = fi|Wi for all i ∈ [m].
By Lemma 4 we may assume that fi is an [r]-coloring of N 2[Wi]\Wi for all i ∈ [m].

Let h : V G→{r; r + 1; : : : ; 2r − 1}. De�ne g by

g(v) =




h(v) if v 6∈
⋃
i∈[m]

N 2[Wi];

fi(v) if v ∈ N [Wi];
h(v) if v ∈

⋃
i∈[m]

N 2(Wi) and h(v) 6= r;

fi(v) if v ∈ N 2(Wi) and h(v) = r:
If i 6= j, then N 2[Wi] ∩ N 2[Wj] = ∅, since dist(Wi;Wj)¿ 4. It follows that g is well
de�ned. It remains to show that g is a coloring. Consider two adjacent vertices x
and y. Our only concern is that x may be colored by fi and y may be colored by
some other function. This could only happen if x ∈ N (Wi) ∪ N 2(Wi). If x ∈ N (Wi)
then y ∈ N 2(Wi). So if y is not colored by fi then g(y) = h(y)¿r¿fi(x) = g(x).
Otherwise x ∈ N 2(Wi). Since g(x) = fi(x), it must be the case that h(x) = r. Thus
h(y) 6= r. Since y 6∈ N [Wi] and for all j 6= i, dist(Wi;Wj)¿ 4, y 6∈ ⋃

j∈[m] N [Wj]. Thus
g(y) = h(y)¿r¿fi(x) = g(x).

A very similar argument shows that Pre(r; 6; 1)62r− 1. The main di�erence is that
instead of modifying the range of fi on N 2[Wi] \ Wi we modify the range of h on
N 2[Wi]\Wi.

Theorem 6. Pre(r; d; t)¿2r − 1.

Proof. For all positive integers r¿2 and d, we will show that there exists an r-colorable
graph G = (V; E) with a partial coloring f of a subset W = W1 ∪ W2⊂V such that
dist(W1; W2)¿d and f can be extended to a partial r-coloring of N 2[W ], but cannot
be extended to an (2r − 1)-coloring of G.



150 H.A. Kierstead /Discrete Mathematics 219 (2000) 145–152

For i ∈ [2d] let Qi be an r-clique on the vertices X i={xi1; xi2; : : : ; xir}. Let Pi=Qi×Qi
be the graph de�ned on X i × X i by (xim; xin) is adjacent to (xis; xit) i� m 6= s and n 6= t.
Then the diagonal of P is an r-clique and �(P) = r, since assigning color i to every
vertex in the ith row (column) of P produces a coloring. We call such a coloring a
row (column) coloring. Call a coloring f of P row (column) colorful if the vertices of
some row (column) have r di�erent colors. We will need the following easily proved
lemma.

Lemma 7 (Schmerl [16]). If f is a (2r−2)-coloring of P then f is either row colorful
or column colorful; but not both.

Proof. If f were neither row nor column colorful then f would have to repeat a color
on each row and on each column of P. Since f is a proper coloring of P the same
color cannot be repeated on two di�erent rows or on two di�erent columns or on a row
and a column. Thus f would have to use at least 2r colors, a contradiction. On the
other hand, the ranges of a row of P and a column of P have exactly one color, the
color of their common vertex, in common. If f were both row and column colorful
the union of the ranges of the colorful row and the colorful column would contain
2r − 1 colors, a contradiction.

Let G be the graph obtained from P1; : : : ; P2d+2 by adding edges between vertices
of the form (xim; x

i
n) and (x

i+1
s ; xi+1t ) i� m 6= t and n 6= s. The next lemma has a similar

proof to that of the previous lemma.

Lemma 8 (Schmerl [16]). If f is a (2r − 2)-coloring of G then Pi is row colorful i�
Pi+1 is column colorful.

Now, let W1 = P1 and W2 = P2d+2 and de�ne a partial r-coloring f : W → [r] so
that f is a row coloring of W1 and a row coloring of W2. Then f is column colorful
on W1 and on W2, and so by Lemma 8, f cannot be extended to a coloring of G.
However, it is easy to extend f|Wi to a coloring of Nt[Wi] by alternately row and
column coloring the Pi.
If G is a perfect graph then fewer extra colors su�ce. First, we prove a lemma and

then use it to show that PPre(r; 4r; 2r − 1) = r + 1.

Lemma 9. Let G = (V; E) be a perfect r-colorable graph and W ⊂V . If
f : N 2r−2[W ] G→{2; 3; : : : ; r+1}, then there exists an [r+1]-coloring g of G such that
g|W = f|W .

Proof. We shall show by induction on k that for all U ⊂V , if f : U ∩N 2k−2[W ] G→ [k]
and �(G[U ])6k, then there exists a (k + 1)-coloring g of U such that

g|U ∩W = f|U ∩W
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and

g−1(k)⊂U ∩ N 2k−2[W ]:
The base step k = 1 is trivial, so suppose the result holds for k − 1. Let

h : U G→{0; 1; : : : ; k − 1};
I = {v ∈ U ∩ N 2k−2[W ]: f(v) = k};
J = {v ∈ U \ N 2k−3[W ]: h(v) = k − 1}

and

U ′ = U \ (I ∪ J ):
Clearly f′ = f|U ′ ∩ N 2k−4[W ] is a [k − 1]-coloring. We claim that �(G[U ′])6k − 1.
Since G is perfect it su�ces to show that !(G[U ′])6k−1. Suppose that K is a k-clique
in U . If K ⊂U ∩N 2k−2[W ], then K∩I 6= ∅, since f is a [k]-coloring of U ∩N 2k−2[W ].
Otherwise K ⊂U \N 2k−3[W ] and so K ∩ J 6= ∅, since h is a {0; 1; : : : ; k − 1} -coloring
of U . Regardless, K 6⊂U ′, establishing the claim. By the induction hypothesis there
exists a {0; 1; : : : ; k − 1}-coloring g′ of G[U ′] such that g′|U ′ ∩W = f′|U ′ ∩W and
g′−1(k − 1)⊂U ′ ∩ N 2k−4[W ]. De�ne g : U → {0; 1; : : : ; k} by

g(v) =



k if v ∈ I;
k − 1 if v ∈ J;
g′(v) if v ∈ U ′:

Note that if g′(v) = k − 1 then v is not adjacent to any vertex in J . It follows easily
that g is a coloring of U . Also g|U ∩W =f|U ∩W , since U ∩W =(U ′ ∪ I)∩W .

Theorem 10. PPre(r; 4r; 2r − 1)6r + 1.

Proof. Let G = (V; E) be an r-colorable perfect graph and let W ⊂V be such that
W = W1 ∪ W2 ∪ · · · ∪ Wm and d(Wi;Wj)¿4r whenever i 6= j. Suppose further that

fi : N 2r−1[Wi]
G→ [r + 1] is an r-coloring for all i ∈ [m]. We must show that there

exists an [r + 1]-coloring g of G such that g|Wi = fi|Wi for all i ∈ [m].
By relaxing the assumption that fi is an r-coloring and applying Lemma 4 we may

assume that

range(fi|N 2r−1[Wi] \Wi)⊂ [r]:
Now apply the Lemma 9 to G′ = G[V \W ], W ′:=N (W ), and

f′:=
⋃
i∈[m]

fi|N 2r−1[Wi] \Wi:

Note that f′ is a coloring, since d(Wi;Wj)¿4r whenever i 6= j. This yields a coloring
g′ : V \ W G′

→ [r + 1] such that g′|N (W ) = f′|N (W ). Clearly g′ can be extended to
g : V G→ [r + 1] so that g|Wi = fi|Wi for all i ∈ [m].
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Theorem 11. r + 16PPre(r; 4r; 2r − 1):

Proof. For all positive integers r we shall construct an r-colorable graph G = (V; E)
with a partial coloring f of a subset W =W1 ∪W2⊂V such that dist(W1; W2)¿d and
f|Wi can be extended to a partial r-coloring of N 2r−1[Wi], but f cannot be extended
to a r-coloring of G. Let P=(v1; : : : ; v4r+1) be a path. Form G by replacing each vertex
v2i−1, i ∈ [2r + 1], by a (k − 1)-clique Qi. Then G is an r-colorable perfect graph.
Let W1 = Q1 and W2 = Q2r+1. Let f : W → [r] such that f|W1 is an [r − 1]-coloring
and f|W2 is a {2; : : : ; r}-coloring. Clearly f|Wi can be extended to an r-colorings of
N 2r−1[Wi] for i ∈ [2], but f cannot be extended to an r-coloring of G.

Finally, we mention a result of Schmerl [17]. Let N be the set of natural numbers.

Theorem 12. There exists a (computable) function � : N → N such that whenever
36k; G=(V; E) is a graph such that �(G)6k and G does not contain a (k+1)-clique;
W ⊂V is such that |W |6n; and f : N�(n)[W ] G→ [k]; then f|W can be extended to a
k-coloring of G.
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